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Abstract

I study repeated games with mediated communication and frequent actions

and obtain a Folk Theorem in case side transfers fail to provide the right

incentives but otherwise a strong form of individual identifiability holds. Even

in the limit, when noise is driven by Brownian motion and actions are arbitrarily

frequent, as players become increasingly patient it is possible for players to

attain equilibrium payoffs far beyond static outcomes. This brings together the

work on repeated games in discrete and continuous time. As an application, I

suggest how firms may mediate dynamic collusive agreements in oligopoly.
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1 Introduction

Recently, the topic of repeated games in continuous time/with frequent actions has

received considerable attention in leading economics journals (Sannikov, 2007; San-

nikov and Skrzypacz, 2007, 2010; Faingold and Sannikov, 2011; Fudenberg and Levine,

2007, 2009). Arguably, one of the main results of this burgeoning literature is that

when players’ noisy observations are driven by Brownian motion, it is impossible to

obtain (symmetric) outcomes beyond the repetition of static equilibria, i.e., equilibria

of the stage game being repeated. All these papers share one key assumption: they

restrict attention to equilibria in public strategies.

In this paper I argue that removing their restriction to equilibria in public strategies

restores the possibility of truly dynamic equilibria, well beyond the repetition of static

equilibria. In doing so, I reconcile the theory of repeated games in discrete time

with its continuous time counterpart. To make this point as clearly as possible, as

well as to deliver a basic interpretation of how information is managed dynamically

to obtain the possibility result below, I employ mediated strategies (Forges, 1986;

Myerson, 1986), which are a plausible generalization of private strategies. In many

circumstances, mediated strategies are not strictly necessary for dynamic equilibria,

but clarify exposition and understanding of the forces at play. See Section 6 for further

discussion. A mediated strategy is the following information management institution:

players are given confidential, non-binding recommendations by a disinterested party

(or machine, or not-necessarily-public randomization device), called a “mediator,”

that depend on the mediator’s own past observations. In general, these observations

may include all kinds of previous communication with the players.

Information management institutions are useful generally, but to make their useful-

ness more difficult, I focus the model below on public monitoring. With private mon-

itoring, it is even easier to implement the kinds of dynamic equilibria that I construct

below. (See Section 6 for discussion.) But just how are these institutions useful? In

the language of mediation, the answer is explained easily. It is well known (Abreu

et al., 1990) that delaying the arrival of information to players helps to economize

on incentives because they can be effectively “recycled.” Yet, in repeated games with

public monitoring, the public signal cannot be delayed without changing the game’s

underlying information structure. However, the mediator can delay the arrival to a

player of others’ recommendations, and use that delay to economize on incentives—so

much so that truly dynamic strategies can be equilibria with Brownian noise.
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It is perhaps best to explain the basic argument in two parts. In the first part, I

make infeasible changes to an information structure, and in the second, I apply these

changes in a feasible way. I begin with the first part, but let me say right away

that although the general approach below is motivated by the insight of Abreu et al.

(1990), their construction does not work to overcome the impossibility results for

Brownian motion. Furthermore, although a version of the construction by Kandori

and Matsushima (1998, Theorem 3) overturns the implausibility results for Brownian

motion, in the sense that something may be possible beyond static Nash, it is not

enough to obtain a Folk Theorem. I propose an intermediate approach that not only

overturns the impossibility results, but also delivers a Folk Theorem. See Section 2.

For intuition, consider first the Prisoners’ Dilemma with imperfect public monitor-

ing, whose binary signals carry probabilities that are consistent with the random walk

representation of an arithmetic Brownian motion as the time interval between inter-

actions vanishes. Of course, we assume that the volatility parameter of the Brownian

motion does not depend on the action profiles, although the drift is lower when a

player defects than when he cooperates. One way of summarizing the impossibility

results in the literature is as follows. The best (public) symmetric equilibrium payoff

must necessarily involve some punishment after a down jump, and indeed may be

calculated as the cooperative payoff net of incentive costs: deviation payoffs divided

by the likelihood ratio test of whether or not someone deviated. As the time between

interactions, ∆ > 0, diminishes, this likelihood ratio converges to zero, therefore the

incentive cost becomes arbitrarily large, and all (symmetric) incentives break down

as ∆→ 0, for any fixed interest rate r > 0.

Consider a T -period block of length T = c/∆, where c is a constant. Such T -period

block has the same “calendar time” length, regardless of ∆. Suppose that the arrival

of all the public signals in the block can be delayed until the T th period. Begin

recommending that everyone cooperates. If p is the probability of a down-jump when

both players cooperate and q > p when one player defects, construct a score based

on the empirical likelihood of a unilateral deviation: if there are more than qT down

jumps in a T -period block then mutual defection ensues with some probability, call

it Π. Otherwise, “rinse and repeat:” the score is reset to zero and a new T -period

block begins with the same rules as before.1

1Kandori and Matsushima (1998) used pT instead of qT , which is not enough for a Folk Theorem

in this paper’s model. See Section 2 for details.
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If the punishment is large enough to deter a single deviation then it will deter all

deviations, because, by delaying the arrival of information (the public signal), it is

possible to recycle incentives. The size of expected punishment necessary to deter a

single deviation is approximately a one-period gain divided by the probability change

due to a single deviation. By the Central Limit Theorem, this converges to a constant

that depends on c and r > 0 as ∆ → 0. Finally, as r → 0 we may choose c → ∞
so that in the limit as r → 0, there is a symmetric equilibrium where payoffs are

arbitrarily close to those from full cooperation. But here we had already set ∆→ 0,

so in the limit of repeated games with frequent actions, sufficiently patient players

who are able to delay the arrival of some information can obtain a Folk Theorem.

For the second part of the argument, I apply this idea to the delay of the arrival of

others’ recommendations rather than the arrival of some public signal, but otherwise

apply the overall construction just described. I make assumptions on payoffs and sig-

nal probabilities to make my point simply and generally. In this sense, I broadly follow

Compte (1998), although there are important differences in my approach. Mostly I

make technical assumptions so that I can easily extend and apply the algorithm of

Fudenberg and Levine (1994) to T -public communication equilibria. With respect to

payoffs, I make technical assumptions so that I can achieve a Folk Theorem without

requiring pairwise identifiability. In terms of probabilities, I make a technical restric-

tion that in the public monitoring case is stronger than individual identifiability (but

not in the private monitoring case) but close in spirit to it, and much weaker than

pairwise identifiability in that it is consistent with it being impossible to statistically

identify a deviator after a unilateral deviation.

Identifying deviators is the spirit of pairwise identifiability; it is used extensively not

only by Fudenberg et al. (1994) to prove their Folk Theorem, but also by Sannikov

and Skrzypacz (2010). The latter argue that there is no way to sustain outcomes

beyond repetition of static Nash equilibria if they involve value-burning as ∆ → 0,

for any r > 0, because incentive costs explode. However, they also show that it is

possible to attain truly dynamic outcomes with “budget-balanced” continuation val-

ues, i.e., with transfers of value amongst players that do not burn any value. For this

to render desirable outcomes enforceable, it is necessary to distinguish between the

innocent and the guilty, to be able to reward some while punishing others and main-

tain budget balance (Rahman and Obara, 2010). When this is possible, one obtains

a Folk Theorem, after taking the limit as ∆ → 0, in a way that value-burning alto-

gether. Information management institutions can add a significant amount of value
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in this context, too. For instance, in repeated oligopoly with capacity constraints, it

is possible to sustain (almost) perfect collusion, because a sufficiently weak version

of pairwise identifiability holds. What is possible, with a weaker version of pairwise

identifiability that accommodates mediated communication, is a generalization of the

Folk Theorem with public communication equilibria. See Rahman (2012b) for a de-

tailed discussion of this issue, as well as Section 5 below. In this paper, however,

I show that it is possible to provide incentives to players in repeated games with

frequent actions without the use of such value transfers.

The main result of the paper is a “Nash-threats” Folk Theorem (although the threats

are not Nash equilibria, but correlated equilibria), which argues that information

management can lead to “mutual cooperation” even if value-burning is required in

repeated games with frequent actions, as players becomes unboundedly patient. The

order of limits matters in this statement: first ∆→ 0 and then r → 0. Taking limits in

the opposite order is the standard approach of discrete-time repeated games, whereas

taking limits in this way is the approach followed by, e.g., Sannikov (2007); Sannikov

and Skrzypacz (2007, 2010); Faingold and Sannikov (2011). All these papers argue

that it is not possible to have a Folk Theorem in continuous time when value-burning

is necessary. However, the argument above suggests that this is indeed possible. The

rest of the paper involves applying this idea to general repeated games, where the

information that is delayed is the mediator’s recommendations.

Other observations easily follow from the analysis of the paper. For instance, it

is not difficult to see that when signals converge to a Poission arrival process, the

construction above shows that full efficiency is achievable in the “bad news” case,

but not in the “good news” case—see also Abreu et al. (1990). This is because in the

bad news case the likelihood ratio does not vanish as ∆→ 0, so delaying information

allows for “reusing” incentive costs to deter more deviations than just one. On the

other hand, in the good news case, the likelihood ratio decreases at rate ∆. Changing

T does not help to prevent losses due to incentive costs from becoming unbounded.

The rest of the paper is organized as follows. In Section 2, I lay out a basic argument

that changes the underlying information structure. In Section 3, I present the main

model and assumptions. In Section 4, I try to apply the argument of Section 2 and

obtain a Folk Theorem by delaying the arrival of recommendations instead of changing

the information structure. In Section 5, I apply it to the Prisoners’ Dilemma and

repeated oligopoly. Finally, Sections 6 and Section 7 discuss the model and conclude.
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2 Basic Argument

In this section, I will present a streamlined version of the basic argument that is gen-

eralized later. To get there, first I will argue that neither the approach due to Abreu

et al. (1990) nor that due to Kandori and Matsushima (1998), despite being able to

deliver a Folk Theorem in discrete time, is not able to deliver it in the continuous

time limit with Brownian information. Then I argue that an intermediate approach,

somewhere between the two approaches above, does work. All this discussion will

take place around arguably the simplest possible context: the Prisoners’ Dilemma.

2.1 Prisoners’ Dilemma

Consider the Prisoners’ Dilemma with imperfect public monitoring, repeated in dis-

crete time, with common discount factor δ.

C D

C u, u −b, u+ g

D u+ g,−b 0, 0

Payoffs

Here, u > g − b. There are two signals, γ and β, with 0 < Pr(β|C,C) = p < q =

Pr(β|C,D) = Pr(β|D,C) < 1.

Public equilibrium payoffs with symmetric strategies, v, solve:

v = (1− δ)u+ δ[(1− p)v + p(1− α)v] ⇔ v = u− δ

1− δ
pαv,

v ≥ (1− δ)(u+ g) + δ[(1− q)v + q(1− α)v] ⇔ αv ≥ 1− δ
δ

g

q − p
,

where α ∈ [0, 1] is the probability of mutual defection henceforth. Since the incentive

constraint above will bind, writing ` = q/p yields

v = u− g

`− 1
.

The feasibility constraint that 0 ≤ αv ≤ v implies that

u ≥ g

`− 1

[
1 +

1− δ
δ

p

]
,

therefore, to attain the value v = u−g/(`−1) it is necessary for δ to be large enough

for this inequality to be satisfied. Clearly, such a δ exists strictly between 0 and 1.
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2.2 Abreu et al. (1990) Fails

Recall first the argument due to Abreu et al. (1990). Their insight was to delay

the arrival of information, so instead of the public signal arriving every period, no

information arrives until the end of a T -period block, where all the information arrives

at once. Their equilibrium construction relies on the following strategies: Start with

mutual cooperation for the entire T -period block. If at the end of the block the

vector βT is observed then mutual defection henceforth will occur with probability α.

Otherwise, the cooperative phase just described continues for another block. Now,

T -public equilibrium symmetric payoffs can be found similarly as above:

v = (1− δT )u+ δT [(1− pT )v + pT (1− α)v] ⇔ v = u− δT

1− δT
pTαv.

Incentive compatibility requires one more argument. First, assume that a player

deviates only in the first period. The gain from such a deviation is (1− δ)g. The cost

of the deviation is δT (`− 1)pTαv. So α must satisfy (1− δ)g ≤ δT (`− 1)pTαv. It is

easy to see that if this constraint is satisfied then all the incentive constraints in the

T -period block are satisfied. Indeed, for τ deviations, the gain is at most (1− δ)τg,

whereas the cost is δT (`τ − 1)pTαv. Since ` > 1, it follows that `τ − 1 ≥ τ(` − 1),

which implies incentive compatibility for τ deviations from a single one.

Recognizing that this constraint will bind at an optimum and rearranging yields

v = u− 1− δ
1− δT

g

`− 1
.

As δ → 1, v → u − 1
T

g
`−1

, and as T → ∞, v → u, which delivers a Folk Theorem in

discrete time, as long as it is possible to delay information.

This argument fails in repeated games with frequent actions, i.e., when the limit is

taken with respect to ∆ instead of δ, because ` depends on ∆, too. To see this, let

δ = e−r∆. In order to obtain Brownian motion in the limit, define p and q in terms

of the random walk representation of Brownian motion: p = 1
2
[1 − (x/η)

√
∆], and

q = 1
2
[1− (y/η)

√
∆], where x > y are the drifts of the Brownian motion that players

observe and η > 0 is the volatility parameter.

As ∆→ 0, the efficiency loss from punishing bad news can be written in terms of ∆

as follows, for some constant C > 0:

1− δ
1− δT

g

`− 1
≈ r∆

r∆T

g

C∆1/2
=

1

T

g

C∆1/2
.
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It might seem that, as long as T → ∞ faster than ∆−1/2, the efficiency loss from

punishing bad news can be made arbitrarily small, but this will violate the feasibility

constraint that α ≤ 1. Indeed, the feasibility constraint can be rewritten as

1− δ
δ

g

δTpT (`− 1)
≤ αv ≤ v ≈ u− 1

T

g

C∆1/2
⇔ u ≥ g

C∆1/2

[
1

T
+

r∆

e−r∆TpT

]
.

But clearly pT → 0 much faster than ∆ if T → ∞ faster than ∆−1/2, so the second

term on the right-hand side inequality above is violated as T → ∞. This finally

implies that the argument due to Abreu et al. (1990) fails with frequent actions and

any fixed discount rate r > 0.

2.3 Kandori and Matsushima (1998) Doesn’t Go All the Way

There is another way of managing information that “partially survives” the frequent

action limit as long as players are sufficiently patient. This is in stark contrast with

the previous subsection, where nothing survived regardless of how patient players

were. It is related to an example in Kandori and Matsushima (1998). As ∆→ 0, let

T = c/∆, for some constant c to be specified later. Count the number of γ signals

and β signals over a T -period block, and let the equilibrium strategies be as follows.

Players plan mutual cooperation over the entire block. At the end of the block, if the

number of β-signals is greater than pT , then mutual punishment is triggered with

probability α. Otherwise, there is no punishment, the signal realizations of the block

are forgotten, and the next block begins afresh.

The (symmetric) lifetime average payoff to a player is now

v = u− δT

1− δT
αvx,

where

x =

b(1−p)T c∑
t=0

(
T

t

)
pT−t(1− p)t

and bzc is the greatest integer less than or equal to z.

Let n∗ = b(1− p)T c. Discouraging a single deviation requires

(1− δ)g ≤ δTαv(q − p)
(
T − 1

n∗

)
pT−1−n∗

(1− p)n∗
.
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Indeed, punishment probability after one deviation equals

q

b(1−p)T c∑
n=0

(
T − 1

n

)
pT−1−n(1− p)n + (1− q)

b(1−p)T c−1∑
n=0

(
T − 1

n

)
pT−1−n(1− p)n.

With no deviation, just replace q with p, so the probability change is

(q − p)

b(1−p)T c∑
n=0

(
T − 1

n

)
pT−1−n(1− p)n −

b(1−p)T c−1∑
n=0

(
T − 1

n

)
pT−1−n(1− p)n


= (q − p)

(
T − 1

n∗

)
pT−1−n∗

(1− p)n∗
.

For τ deviations, (1−δτ )g ≤ δTαv∆Πτ , where ∆Πτ = Πτ−Π and Πτ is the probability

of at least pT failures given τ deviations. Hoeffding (1956) shows that

Πτ ≥
b(1−p)T c∑
n=0

(
T

n

)
pT−n(1− p)n,

where p = [(qτ + p(T − τ)]/T is the arithmetic mean of each of the Bernoulli trial

probabilities under consideration. By the Central Limit Theorem, if T is large enough,

∆Πτ is approximated arbitrarily closely by

1√
2πTp(1− p)

∫ (p−p)T

0

exp

{
− z2

2Tp(1− p)

}
dz

≈ ∆Φ

(
τ x−y

η

√
c

T

)
= Φ

(
τ x−y

η

√
c

T

)
− Φ(0),

where Φ is the standard normal cumulative distribution function. Without loss, by

taking a subsequence if necessary, we may assume that τ/T → ρ ∈ [0, 1] as T →∞.

The incentive constraint for τ deviations becomes

g ≤ αv
Φ(ρx−y

η

√
c)− Φ(0)

(1− e−rcρ)/e−rc
.

If rc is sufficiently small, the inequality becomes approximately

g ≤ αv
Φ(ρx−y

η

√
c)− Φ(0)

ρrc
.

It is easy to see that the right-hand side of this inequality is minimized with respect

to ρ at ρ = 1. Graphically, this is illustrated in Figure 1 below. The right-hand side

is (proportional to) the gradient of a line from the mid-point of the standard normal
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x − y
η

c

ρ = 0
ρ =1/ 2
ρ =1

Figure 1: Cumulative normal has lowest slope between 0 and ρx−y
η

√
c at ρ = 1.

cdf and some point to its right depending on ρ. The lowest gradient is at the furthest

possible point, at x−y
η

√
c, where ρ = 1.

Therefore, it is not the case, as in the previous subsection, that discouraging one

deviation implies that all other deviations are discouraged. In fact, the most tightly

binding incentive constraint is that meant to discourage T deviations, corresponding

to ρ = 1. Nevertheless, if T deviations are discouraged then it is clearly the case

that τ deviations are also discouraged for all τ less than T , so satisfying the previous

inequality guarantees incentive compatibility.

In trying to maximize v, players’ symmetric payoffs, this constraint will bind. Sub-

stituting for αv then yields

v = u− g/2

Φ(x−y
η

√
c)− Φ(0)

,

where Π0 → 1/2 as ∆→ 0. This is is feasible only if

u ≥ g

Φ(x−y
η

√
c)− Φ(0)

[
1
2

+
rc

e−rc

]
.

Therefore, c must be large and rc small. Even assuming feasibility, and having taken

the limit ∆ → 0, consider the limit as c → ∞, r → 0, and rc → 0. (E.g., let r → 0

and c = r−1/2.) If u is big enough relative to g, it is possible to obtain a symmetric

equilibrium outcome that is strictly better than static Nash, but we still don’t get a

Folk Theorem as players become patient. From the previous two expressions,

v → u− g as r → 0.

This is reminiscent of Compte’s (1998) comparison of rewards and punishments.
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2.4 Intermediate Approach

We will now consider an approach to providing incentives that lies somewhere in

between Abreu et al. (1990) and Kandori and Matsushima (1998). I will amend the

previous subsection’s construction as follows. Just like the previous subsection, as

∆ → 0, let T = c/∆, for some constant c to be specified later. Count the number

of γ signals and β signals over a T -period block, and let the equilibrium strategies

be as follows. Players plan mutual cooperation over the entire block. At the end of

the block, if the number of β-signals is greater than qT (instead of pT ), then mutual

punishment is triggered with probability α. Otherwise, there is no punishment, the

signal realizations of the block are forgotten, and the next block begins afresh. The

key difference here is that punishment takes place after more failures. However, as

∆ → 0, q − p → 0, so the difference between the number of failures required in this

subsection versus the previous subsection vanishes slowly (at rate
√

∆).

I will now show that discouraging just one deviation is enough to provide incentives,

unlike the previous subsection. Moreover, I will prove a Folk Theorem: as players

become (unboundedly) patient, the efficient outcome becomes an equilibrium.

The lifetime average payoff to a player is now

v = u− δT

1− δT
αvΠ0, where Π0 =

b(1−q)T c∑
n=0

(
T

n

)
pT−n(1− p)n.

By similar calculations to those in the previous subsection,

Π0 ≈ 1
2
− 1√

2πT/4

∫ (q−p)T

0

exp

{
−z2

2T/4

}
dz

for large T . Consider a player’s plan to deviate τ times. Let Πτ be the probability

of at least qT failures given τ deviations. Boland et al. (2004) shows that

Πτ ≥
b(1−q)T c∑
n=0

(
T

n

)
p̃T−n(1− p̃)n,

where p̃ = qτ/Tp(T−τ)/T is the geometric mean of each of the Bernoulli trial probabil-

ities under consideration. Just as with Π0, for large T this is approximately

1
2
− 1√

2πT/4

∫ (q−p̃)T

0

exp

{
−z2

2T/4

}
dz
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Therefore,

∆Πτ ≥
1√

2πT/4

∫ (q−p)T

(q−p̃)T
exp

{
−z2

2T/4

}
dz = Φ(2(q − p)

√
T )− Φ(2(q − p̃)

√
T )

≈ Φ(x−y
η

√
c)− Φ((1− ρ)x−y

η

√
c),

where the last approximating equation follows in two steps. First, assume without

loss of generality that τ/T → ρ ∈ [0, 1]. Next, notice that p̃ ≈ p as ∆t → 0. To see

this, consider the Taylor series expansion of p̃ with respect to
√

∆ around
√

∆ = 0.

Simple calculations yield that p̃ equals p plus terms of order higher than
√

∆.

This time, it is easy to see that the right-hand side of the inequality above divided

by ρ is minimized by ρ = 0. For graphical intuition, see Figure 2 below.

x − y
η

c

ρ = 0
ρ =1/ 2
ρ =1

Figure 2: Cumulative normal has lowest slope from (1− ρ)x−y
η

√
c to x−y

η

√
c at ρ = 0.

In the same spirit as the previous subsection, if rc is small then the most binding

incentive constraint is that associated with ρ→ 0, which yields

rcg ≤ e−rcαvϕ(x−y
η

√
c)x−y

η

√
c,

where ϕ is the standard normal density function. Substituting for αv yields

v = u− g
1− Φ(x−y

η

√
c)

ϕ(x−y
η

√
c)x−y

η

√
c
.

Therefore, feasibility requires that

u ≥ rcg

ϕ(x−y
η

√
c)x−y

η

√
c

[
1

e−rc
+

1− Φ(x−y
η

√
c)

rc

]
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Having already taken the limit ∆→ 0, let c→∞ and choose r(c) = ϕ(x−y
η

√
c)x−y

η
/c,

so that r → 0 and rc → 0 as c → ∞. Using the fact that the normal distribution

has a “linearly” exploding hazard rate, i.e., (1 − Φ(z))/(ϕ(z)z) → 0 as z → ∞, we

finally obtain a Folk Theorem:

v → u as r → 0.

To summarize: information management yields asymptotic efficiency in repeated

games with frequent actions as players become unboundedly patient. The order of

limits matters in this statement: first ∆ → 0 and then r → 0. Taking limits in the

opposite order is the standard approach of discrete-time repeated games, whereas

taking limits the way I just did is consistent with, e.g., Sannikov (2007); Sannikov

and Skrzypacz (2007, 2010); Faingold and Sannikov (2011). All these papers argue

that a Folk Theorem is not possible in continuous time when value-burning is neces-

sary. However, the argument above suggests that this is indeed possible. The rest of

the paper involves applying this idea to communication equilibria of general repeated

games, where the information that is delayed is the mediator’s recommendations.

As a final comment, it is not difficult to see that when signals converge to a Poission

arrival process, the construction above shows that full efficiency is achievable in the

“bad news” case, but not in the “good news” case—see also Abreu et al. (1990).

This is because in the bad news case ` − 1 does not vanish as ∆ → 0, so delaying

information allows for “reusing” incentive costs to deter more deviations than just

one. On the other hand, in the good news case, `− 1 decreases at rate ∆. Changing

T does not help to prevent losses due to incentive costs from becoming unbounded.

3 Model

Consider a repeated game with public monitoring in discrete time, with very similar

notation as the previous section. The stage game consists of a finite set I = {1, . . . , n}
of players, a finite set Ai of actions for each player i ∈ I, where A =

∏
iAi, utility

profile u : I × A → R, where ui(a) is the utility to player i from action profile a.

Players have a common discount factor δ, where δ ∈ [0, 1). Given a sequence of action

profiles a∞ = (a1, a2, . . .), the utility to player i is given by

Ui(a
∞) = (1− δ)

∞∑
t=1

δt−1ui(at).
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I now make two substantial restrictions on payoffs and the information structure.

Let U = conv{u(a) ∈ Rn : a ∈ A} be the convex hull of stage-game payoff vectors.

For every player i and correlated strategy µ, let

ui(µ) = max
βi:Ai→Ai

∑
a∈A

µ(a)ui(βi(ai), a−i),

and write u(µ) = (u1(µ), . . . , un(µ)). Let u = (u1, . . . , un) be the vector of correlated

minmax values, i.e., ui = minµ ui(µ) for all i. Let U = {u ∈ U : u ≥ u} be the set

of feasible, individually rational payoffs. Let ∆◦(A) be the set of completely mixed

correlated strategies, and for each coalition J , write

UJ = {u ∈ U : ∃µ ∈ ∆◦(A) s.t. ui ≥ ui(µ) ∀i ∈ J and ui ≤ ui(µ) ∀i 6∈ J} and U∗ =
⋂
J⊂I

UJ .

Finally, let U∗ =
⋂
J⊂I UJ . This construction of U∗ follows closely (though not

exactly) the one by Compte (1998); see specifically his Theorem 2 on page 609.

Assumption 1 (Payoffs). I restrict u to resemble the Prisoners’ Dilemma as follows:

(a) The set U has dimension n.

(b) The stage game has a strictly Pareto inefficient correlated equilibrium, with

payoff profile denoted by u0. Write U0 = {u ∈ U : u ≥ u0}.

(c) U∗ ⊃ ri U0, where “ri” stands for relative interior.

Assumption 1 makes the game similar to a Prisoners’ Dilemma in some key aspects.

This assumption is satisfied by a lot of important games in economics, such as the

Prisoners’ Dilemma, of course, and Cournot oligopoly. The point of making these

assumptions is to simplify the derivation of a Folk Theorem in repeated games with

frequent actions when transfers (of continuation values) across agents are ineffective.

Otherwise, the Folk Theorem would apply directly from a combination of Tomala

(2009) and Rahman and Obara (2010) with Sannikov and Skrzypacz (2010, Proposi-

tion 1). These assumptions can be relaxed without jeopardizing the main results of

the paper, but no new strategic insights would emerge. The point of the paper is sim-

ply that whenever delaying information can substitute for transferring continuation

values across players, value-burning becomes a useful tool for providing incentives, in

contrast with the results of Sannikov and Skrzypacz (2010), where value-burning was

deemed ineffective under Brownian information as a result of their restriction to pub-

lic strategies. This restriction, which arguably amounts to no strategic management

of information, can be problematic in games with frequent actions.
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Assumption 1(a) says that in principle it is possible to punish players individually,

which is standard, and 1(b) that there is room for everyone’s improvement beyond

static equilibrium. Assumption 1(c) is a technical shortcut: it simplifies the proof of

the Folk Theorem, in line with (Compte, 1998, Theorem 2). I will explain this in more

detail later, but it basically says that when one must give incentives to a coalition

J through rewards, the necessary compensation associated with those rewards above

and beyond payoffs from correlated equilibrium is arbitrarily small.

The plan now is to develop a discrete-time model of imperfect monitoring whose noise

converges to Brownian motion as the time interval between interactions vanishes. To

this end, we shall fix the simplest possible consistent expression of this idea, the

(binomial) random walk representation of Brownian motion. Although this is the

simplest approach, the results below easily apply to more general representations.

For every action profile a ∈ A, let p(a) = 1
2
[1− (x(a)/η)

√
∆] be the probability that

a Bernoulli trial yields a failure.2 As the time interval length ∆ → 0, the binomial

process defined by p(a), where success translates into a jump up of length η
√

∆ and

failure a jump down by the same amount, yields a Brownian motion X with law

dX = x(a)dt+ ηdW,

where W corresponds to the Wiener process.

The following strong detectability condition is necessary for the results of the paper.

It comes from its version in the discrete-time model of Rahman (2011).

Definition 1. The vector p is said to exhibit conic independence if

p(ai, ·) 6∈cone{p(bi, ·) : bi 6= ai} and 1− p(ai, ·) 6∈cone{1− p(bi, ·) : bi 6= ai} ∀(i, ai).

Conic independence is stronger than individual identifiability; it may be interpreted

as saying that even signal-contingent deviations are statistically detectable. However,

this condition is much weaker than pairwise identifiability, which requires that, for

every profile of unilateral deviations, it is possible to statistically identify the culprit.

Since we will be varying ∆ below and p depends on ∆, it might be more convenient

to derive a condition on x that guarantees conic independence.3 Conic independence

can easily be expressed in terms of the drift x as follows.

2Therefore, a success also has positive probability when ∆ is small. This assumption means that

every signal is possible, regardless of what players play. It is common in the literature, largely made

for simplicity: no signal is ever off the equilibrium path.
3Actually, we only require conic independence for a sequence {∆m > 0} converging to zero.
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Lemma 1. There exists ∆ > 0 such that the vector of probabilities p∆ exhibits conic

independence for all ∆ ∈ (0,∆) if the vector of drifts x satisfies

x(ai, ·) 6∈ conv{x(bi, ·) : bi 6= ai}+ L1 ∀(i, ai), (2)

where “ conv” stands for convex hull and L1 = {α(1, . . . , 1) : α ∈ R}.

Proof. Let us argue the contrapositive. Suppose that for every ∆ > 0 there exists

∆ ∈ (0,∆) such that p∆ fails to exhibit conic independence, i.e., there are positive

linear combinations y+
∆ and y−∆ (for the up-jumps and down-jumps, respectively) such

that, using the random walk representation of Brownian motion,

x(a) =
∑
bi

y±i∆(ai, bi)x(bi, a−i)± (1−
∑
bi

y±i∆(ai, bi))/
√

∆ ∀(i, a).

Take a sequence {∆m > 0}, strictly decreasing to 0, and consider the corresponding

sequence {y±m = y±∆m
}. Clearly,

∑
bi
y±im(ai, bi) → 1 as m → ∞, since otherwise

the equation above will fail. Since y ≥ 0, it follows that each y±im is a bounded

sequence, hence has a convergent subsequence. Taking subsequences of subsequences

if necessary, there is a subsequence such that all y±im converge together to some limit

y±i . Depending on the rate at which
∑

bi
y±im(ai, bi)→ 1 relative to ∆m → 0, the term

(1−
∑

bi
y±im(ai, bi))/

√
∆m can converge to any real number, independent of a−i. �

Lemma 1 gives a condition on the drifts of the limiting Brownian process such that the

“canonical” random walk representation described above exhibits conic independence

sufficiently close to it. As a result, the Folk Theorem of Section 4 applies. However, it

should be noted that the condition on drifts in Lemma 1 is sufficient but not necessary

for the analysis below to apply. What is necessary is the implication in Lemma 2, for

which conic independence is used. The advantage of conic independence is that it’s

a simple condition to describe. However, it depends on ∆, which is a disadvantage.

The condition of Lemma 1 solves this problem.

For an example of this condition on drifts, see the Prisoners’ Dilemma of Section 5,

illustrated in Figure 3 below. There, (2) above is satisfied, therefore conic indepen-

dence holds for all small ∆. For further discussion of (2), see Section 6.

We will restrict attention to signaling structures that satisfy the condition on drifts

in Lemma 1 above. Although stronger than individual identifiability, this condition

is still substantially weaker than pairwise identifiability.

Assumption 2 (Probabilities). The vector x of drifts satisfies (2).
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Figure 3: Conic independence holds for the Prisoners’ Dilemma of Section 5.

4 Folk Theorem

I break up this section into punishments, rewards and the paper’s main result.

4.1 Punishments

The next key lemma is an easy consequence of conic independence.

Lemma 2. If p exhibits conic independence then V (µ) > 0 for every completely mixed

correlated strategy µ, where V is defined pointwise by

V (µ) = max
γ,ξ,ζ≥0,π

γ s.t. ξi(a), ζi(a) ≤ 1 ∀(i, a),

γ ‖∆ui(µ)‖ ≤
∑
a−i

(ξi(a)− ζi(a))∆p(a, bi)µ(a) ∀(i, ai, bi 6= ai),∑
a−i

p(a−i, bi)µ(a)πi ≤
∑
a−i

ξi(a)p(a−i, bi)µ(a) ∀(i, ai, bi),∑
a−i

(1− p(a−i, bi))µ(a)πi ≤
∑
a−i

ζi(a)(1− p(a−i, bi))µ(a) ∀(i, ai, bi),

πi =
∑
a

[ξi(a)p(a) + ζi(a)(1− p(a))]µ(a) ∀i,

where ‖∆ui(µ)‖ = max(ai,bi) ∆ui(µ, ai, bi).
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Proof. The proof is a simple application of duality. The dual of this problem is

V (µ) = max
η,σ,y≥0,κ

∑
(i,a)

η+
i (a) + η−i (a) s.t.

∑
i

∆ui(µ, σi) ≥ 1,

η+
i (a) ≥ ∆p(a, σi)µ(a) +

∑
bi

y+
i (ai, bi)p(a−i, bi)µ(a)− κip(a)µ(a) ∀(i, a),

η−i (a) ≥ −∆p(a, σi)µ(a) +
∑
bi

y−i (ai, bi)(1− p(a−i, bi))µ(a)− κi(1− p(a))µ(a) ∀(i, a),

κi =
∑
(a,bi)

y+
i (ai, bi)p(a−i, bi)µ(a) + y−i (ai, bi)(1− p(a−i, bi))µ(a) ∀i.

If V (µ) = 0 then necessarily ∆p(a, σi)µ(a)+
∑

bi
y+
i (ai, bi)p(a−i, bi)µ(a)−κip(a)µ(a) =

−∆p(a, σi)µ(a)+
∑

bi
y−i (ai, bi)p(a−i, bi)µ(a)−κip(a)µ(a) = 0 for all (i, a). Otherwise,

if one of these terms is positive then one of the η’s will also be positive, a contradiction.

If one of these terms is negative then, since η ≥ 0, it follows that
∑

(i,a) η
+
i (a)+ηi(a)−

is strictly greater than the sum of the left-hand sides of the corresponding inequalities,

which clearly add up to 0.

Now, conic independence implies that every deviation is detectable, and clearly, the

first constraint implies that σi is a deviation for some i, so σi is detectable. But conic

independence further implies that then there is no yi such that the right-hand side of

every dual inequality equals zero. �

The key condition needed below is that V (µ) > 0. However, conic independence

is reminiscent of individual identifiability, and in this sense intuitive. Call the first

family of constraints above γ-incentive constraints, and the next two families of con-

straints dynamic stability constraints. The last family of constraints is just notation.

Next, I will use the fact that V (µ) > 0 to obtain a Folk Theorem in the following

sense. I will construct a “pseudo-equilibrium” of the repeated game as ∆→ 0, which

will be a communication equilibrium of an auxiliary T -period game with transfers,

and then show that these transfers become self-generated as r → 0.

Given a completely mixed correlated strategy µ, let µT be its T -period iid repetition.

Suppose that (γ, ξ, ζ, π) solves the problem of Lemma 2 with value V (µ) > 0, and,

for each player i, let σ∗i solve

max
σi

‖∆ui(µ)‖σi({bi 6= ai})∑
(a,bi)

σi(bi|ai)(ξi(a)− ζi(a))∆p(a, bi)µ(a)
.

Hence, σ∗i is a deviation that maximizes the incentive cost for player i, i.e., the utility

gained from the deviation divided by the associated change in probability.
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Define the score of the block by the following secret process. First, pick a player i

at random with probability 1/n. For any history (aT , sT ), where sT is a vector of

up-jumps and down-jumps of the random walk, the mediator performs T independent

Bernoulli trials. The tth trial has success probability ξi(at) if st was a down-jump

and ζi(at) if st was an up-jump. Following the intermediate approach of Section 2,

punishment for player i ensues if the sum of successes in the T trials exceeds

π∗i = πi(σ
∗
i ) =

∑
a∈A

[ξi(a)p(σ∗i (ai), a−i) + ζi(a)(1− p(σ∗i (ai), a−i))]µ(a),

where p(σ∗i (ai), a−i) =
∑

bi
p(bi, a−i)σ

∗
i (bi|ai) is the probability of a down-jump if

player i plays according to σ∗i instead of obeying the mediator. Punishment to player

i entails a transfer of some fixed amount wi of what I will call “money” for now.

Assuming that the construction above is an equilibrium, the average lifetime utility

to player i is given by

vi = (1− δT )ui(µ) + δT [(1− Πi/n)vi + (Πi/n)(vi − wi)],

where Πi, the probability that i is punished if everyone abides by the candidate

equilibrium and i was selected, equals

Πi =

b(1−π∗
i )T c∑

t=0

(
T

t

)
πT−ti (1− πi)t

and πi =
∑

a[ξi(a)p(a) + ζi(a)(1− p(a))]µ(a). Rearranging yields

vi = ui(µ)− δT

1− δT
Πiwi/n.

4.2 Incentive Compatibility

Now I will argue that the contract defined above is incentive compatible for all large

enough T , and that wi → 0 as r → 0. To begin, assume that player i has not deviated

yet, and considers deviating to σ∗i for τ periods. Following the analysis of Section 2,

it is clear that wi feasibly exists to dissuade player i from any such deviation. On

the other hand, if player i considers deviating to some other σi then the associated

probability of failure in that period cannot decrease relative to σ∗i by definition of σ∗i ,

so the incentive constraint for σi is implied by the incentive constraint for σ∗i . This

logic applies to τ deviations, too.
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As in Section 2, the above contract discourages non-history-contingent deviations,

so it remains to show that history-contingent deviations are discouraged. I will use

a modification of the following discrete-time argument. Suppose that the score of

a block was constructed, instead of as described above, according to a variation on

Abreu et al. (1990), where a player is punished if there are T failures (instead of π∗i T ).

It is easy to see that the dynamic stability condition of Lemma 2 guarantees in-

centive compatibility for each one-step deviation after every history, which implies

overall incentive compatibility. Indeed, for any partial history hti of recommendations

and signal realizations for player i, and actual actions bti, let Pr(F t−1, hti|bti) be the

joint probability of t− 1 failures in the previous t− 1 periods and the partial history

hti conditional on bti, and let Pr(F T−t) denote the unconditional probability that from

periods t + 1 to T there will be only failures. Finally, for a given deviation in a

single period, ∆ Pr(Ft) corresponds to the change in probability of contemporane-

ous failure from the deviation. With this notation, dynamic stability implies that

Pr(F t−1, hti|bti) ≥ πt−1
i Pr(hti|bti) and Pr(F T−t) = πT−ti . Therefore, since the probabil-

ity of failure after obedience satisfies Pr(F t−1, hti|ati) = πt−1
i Pr(hti|ati), it follows that

discouraging a one-step deviation after a history of obedience discourages all one-step

deviations, since

Pr(hti|bti)(1− δ) ‖∆ui‖ ≤ δTπT−1
i Pr(hti|bti)∆ Pr(Ft)wi

≤ δT Pr(F t−1, hti|bti)︸ ︷︷ ︸
≥πt−1

i Pr(hti|bti)

∆ Pr(Ft) Pr(F T\t)︸ ︷︷ ︸
=πT−t

i

wi.

As a result, incentive compatibility is achievable by the Abreu et al. (1990) version

of the contract above in the strong sense that for every history, a one-step deviation

can always be discouraged. Unfortunately, this argument does not quite hold with

the actual contract proposed above for frequent actions. The problem is that after

sufficiently many deviations and “bad” signals, it is possible that the probability of

punishment does not really change by a large enough amount to discourage a one-

step deviation. However, it can be shown that, in this case, even though a one-step

deviation cannot be discouraged, the deviations required to get to that point can.

I will make this argument next in a few steps. But first, let us focus on deviations

that are not history-contingent. Taking a subsequence if necessary, without loss ξ and

ζ converge to ξ and ζ, say, as ∆→ 0. Since the random walks driven by p converge

to Brownian motion, it follows that πi and π∗i each converge at rate
√

∆ to

πi =
∑
a∈A

1
2
(ξi(a) + ζ i(a))µ(a).
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Lemma 3. Assumption 2 implies that πi ∈ (0, 1).

Proof. Let W (µ,∆) = V (µ,∆)
√

∆, where V (µ,∆) is the value function from Lemma

2, and replace γ in the problem that defines it with λ
√

∆. By conic independence, it

follows that W (µ,∆) > 0 for all small ∆ > 0. It remains to show that W (µ, 0) > 0.

This clearly yields πi ∈ (0, 1), since πi ∈ {0, 1} and the incentive compatibility

constraint imply that W (µ; 0) = 0. The dual of the problem defining W is

min
η,y≥0

∑
(i,a)

η+
i (a) + η−i (a) s.t. ‖∆ui‖

∑
bi 6=ai

σi(bi|ai) ≥ 1,

η±i (a) ≥ ±∆xi(a, σi) + 1
2
µ(a)[

∑
bi

y±i (ai, bi)− yi] ∀(i, a),

yi = 1
2
µ(a−i)

∑
bi

y+
i (ai, bi) + y−i (ai, bi) ∀i.

If W (µ, 0) = 0 then, since η ≥ 0, it follows that ±∆xi(a, σi) + 1
2
µ(a)[

∑
bi
y±i (ai, bi)−

yi] ≤ 0 for all (i, a). But since (using the equation in the dual that pins down y) the

sum of all these left-hand sides equals zero, it follows that each of them equals zero

individually. But this contradicts Assumption 2. �

Without loss, σ∗i also converges to σi, say. It is easy to see that, moreover, σi is a

deviation. Indeed, by monotonicity σ∗i maximizes

Ci(σi) =
‖∆ui(µ)‖σi({bi 6= ai})

√
∆∑

a(ξi(a)− ζi(a))∆p(a, σi)µ(a)
=

‖∆ui(µ)‖σi({bi 6= ai})
−
∑

a
1
2
(ξi(a) + ζi(a))(∆x(a, σi)/η)µ(a)

This converges to ‖∆ui(µ)‖σi({bi 6= ai})/ −
∑

a
1
2
(ξi(a) + ζ i(a))(∆x(a, σi)/η)µ(a),

which is maximized by σi. Let

zi = z(σi) =
−
∑

a
1
2
(ξi(a) + ζ i(a))(∆x(a, σi)/η)µ(a)√

πi(1− πi)
.

Following the derivations of Section 2, the amount of punishment required to discour-

age any number of uncontingent deviations is bounded by

wi(r) =
nrc

ϕ(zi
√
c)zi
√
c
‖∆ui(µ)‖ .

The value to player i from this arrangement is given by

vi = ui(µ)− ‖∆ui(µ)‖
h(zi
√
c)zi
√
c
,
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where h(z) is the hazard rate of a standard normal random variable. Notice that vi

is independent of r, even though wi(r) does depend on the interest rate—linearly, in

fact. Of course, vi does depend on c, which may be viewed as a function of r.

This is summarized in the last lemma of this subsection.

Lemma 4. Fix r > 0, let T = bc/∆c, and define C∗i = maxσi Ci(σi). By conic

independence, C∗i ∈ (0,∞). Moreover,

vi → vi = ui(µ)− ‖∆ui(µ)‖
h(zi
√
c)zi
√
c

and

wi → wi(r) =
nrc

e−rcϕ(zi
√
c)zi
√
c
‖∆ui(µ)‖ as ∆→ 0.

Lemma 4 follows immediately from the previous discussions. Given µ, r and c, the

above values for vi and wi may or may not be self-generated, i.e., they may or may

not describe a communication equilibrium of the repeated game. However, we will

see that there exists r > 0 such that for all r < r, the payments above can be made

self-generated by letting c→∞ at the appropriate rate. Moreover, as r → 0, it will

be seen that the set of communication equilibrium values converges to U0, yielding a

“Nash threats” Folk Theorem.

Now, let us consider history-contingent deviations. I will use dynamic stability below

to show that the arrangement above discourages all history-contingent deviations for

sufficiently large T . Fix any history-contingent deviation σTi , and let ∆Π denote

the change in the probability that player i is punished by the amount wi above.

Decompose ∆Π with respect to each partial history as follows. For each partial history

hti = (bt−1
i , st−1, ati) of recommendations ati, actions bt−1

i and observations st−1 for

player i during the first t periods of a T -period block, let Pr(hti) denote its probability

and ∆Π(hti) denote the change in probability of punishment for player i between

deviating according to σTi up to history hti, and then obeying the mediator for the rest

of the T -period block, and deviating up to history ht−1
i (again, obeying henceforth).

Thus, for example, ∆Π(h1
i ) = Π(h1

i ) − Π(h0
i ), where Π(h0

i ) is the probability of

punishment after deviating according to σi1 in the first period and obeying henceforth,

and Π(h1
i ) is the probability of punishment given that player i deviated in period 1

according to σi1 and deviated in period 2, after partial history h2
i , according to σi2(h2

i ).

It will be useful to decompose ∆Π as follows.

∆Π = ∆Π(h0
i ) +

∑
hti

Pr(hti)∆Π(hti)
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Since ∆Π(hti) ≥ 0 assumes no more deviations after t, we may rewrite it as follows.

Let F1 denote the event that the first Bernoulli trial in the scoring rule described

above leads to a failure, and let ∆Π1(hti) be the change in probability of punishment

between deviating according to σTi for the first t periods and deviating for the first

t − 1 periods given the partial history hti, given that the first Bernoulli trial was a

success. Similarly, ∆Π0(hti) corresponds to the same change in probability except

that now it is assumed that the first Bernoulli trial was a failure. With this notation,

∆Π(hti) = Pr(F1, h
t
i)∆Π0(hti) + (Pr(hti)− Pr(F1, h

t
i))∆Π1(hti)

= Pr(hti)∆Π1(hti) + Pr(F1, h
t
i)︸ ︷︷ ︸

≥ Pr(hti)πi

[∆Π0(hti)−∆Π1(hti)︸ ︷︷ ︸
= (∗)

].

By dynamic stability, it immediately follows that Pr(F1, h
t
i) ≥ Pr(hti)πi. Therefore,

as long as (∗) above is not negative, we can apply a similar trick to the discrete-

time case and collapse ∆Π(hti) to a count of the number of deviations. Indeed, if

(∗) is not negative then ∆Π(hti) ≥ Pr(hti)[πi∆Π0(hti) + (1 − πi)∆Π1(hti)]. However,

[πi∆Π0(hti) + (1 − πi)∆Π1(hti)] equals the difference in probability of punishment

assuming that player i obeyed the mediator in period 1.4

Given the history hti, the probability change ∆Π0(hti) is just the difference in probabil-

ity of n∗ successes or fewer in the T−1 heterogeneous Bernoulli trials that correspond

to periods 2 through T . Similarly, ∆Π1(hti) is the difference in probability of n∗ − 1

successes or fewer. Let ∆Π1(hti) = πi∆Π0(hti) + (1−πi)∆Π1(hti) denote the probabil-

ity difference of n∗ successes or fewer in the T − 1 heterogeneous Bernoulli trials that

correspond to periods 2 through T together with the Bernoulli trial corresponding to

period 1 with success probability 1− πi.

Now we can iterate this process. Let F2 denote the event that the second Bernoulli

trial in the scoring rule described above leads to a failure. Just as with F1, dynamic

stability implies that Pr(F2, h
t
i) ≥ Pr(hti)πi. Define ∆Π0

1(hti) and ∆Π1
1(hti) similarly

to ∆Π0(hti) and ∆Π1(hti), but with reference to the second period instead of the first.

By the same argument as before,

∆Π(hti) ≥ Pr(F2, h
t
i)∆Π0

1(hti) + (Pr(hti)− Pr(F2, h
t
i))∆Π1

1(hti)

= Pr(hti)∆Π1
1(hti) + Pr(F2, h

t
i)[∆Π0

1(hti)−∆Π1
1(hti)]

≥ Pr(hti)[πi∆Π0
1(hti) + (1− πi)∆Π1

1(hti)].

4There is one minor caveat: player i may correlate subsequent deviations with his first-period

deviation. This is captured already in the probability of hti, whose dependence on σT
i is maintained.
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Again, label ∆Π2(hti) = πi∆Π0
1(hti) + (1 − πi)∆Π1

1(hti). Iterating this process re-

peatedly until period t − 1 yields ∆Πt−1(hti), which consists of the difference in the

probability of punishment between deviating in period t and not deviating in period

t, but obeying the mediator during all other periods. By the analysis of Section 2,

at history hti, player i has no incentive to deviate in period t, since the utility gain

(1 − δ)δt−1 Pr(hti) ‖∆ui‖ is outweighed by the loss δT∆Πt−1(hti)wi. If (∗) were non-

negative for all hti, we could add these gains and losses with respect to hti, weighted

by their probability, and obtain overall incentive compatibility with respect to σTi .

However, it is not necessarily the case that (∗) is non-negative for all hti, therefore

the previous argument fails. To see this, write n∗ = (1 − π∗i )T , and notice that

∆Π0(hti) − ∆Π1(hti) equals the probability of exactly n∗ successes after deviating

according to σTi during periods 2 through t minus the probability after deviating

during periods 2 through t−1. If the history hti is such that the probability of failure

during the periods of deviation is higher than σ∗i and if there are sufficiently many

such periods, it is possible that n∗ successes are too many, in other words, that the

failure probabilities are so high that n∗ successes are above the expected number of

successes given history hti. As a result, the probability of n∗ successes is higher when

the tth trial has higher success probability, which is of course the case when player i

does not deviate in period t.

I will show that although this implies that some one-step deviations may be profitable

after some histories, the behavior required to reach such histories is unprofitable as

T → ∞. I will bound incentives as follows. Whenever, the difference in probability

of n∗ successes above is not positive, I shall simply fix the difference in probability

of punishment after history hti to equal zero. Clearly, this probability difference is

always non-negative, so such fix provides a lower bound on deviation costs.

To see the effect of such fix, for any history hti such that ∆Π0(hti) − ∆Π1(hti) ≤ 0,

set ∆Π(hti) = 0, as well as for all the successors of hti. For any T -period history hTi
subsequent to hti, the difference between the probability of punishment given hTi and

the probability of punishment given no deviation, Π(hTi )− Π0, satisfies

Π(hTi )− Π0 ≥ Π(hti)− Π0 ≥ Φ(zi
√
c)− Φ((1− ρ∗)zi

√
c)

for large T , where ρ∗ = π∗i /π
∗∗
i and π∗∗i = maxσi max{Pr(F |σi, up),Pr(F |σi, down)}

is the largest possible failure probability from a one-period deviation σi given (ζi, ξi),

regardless of whether the realized public signal was “up” or “down.” To see this, notice

first that Π0 converges to Φ(zi
√
c) as T → ∞. Moreover, the probability Π(hti) of
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punishment after hti must include enough previous deviations and signal realizations

for which the conditional probability of punishment is strictly greater than π∗i that

∆Π0(hti)−∆Π1(hti) ≤ 0. These deviations cannot induce a failure probability greater

than π∗∗i , since π∗∗i is clearly an upper bound on the failure rate. Therefore, at a

minimum, at least ρ∗T deviations must have taken place for the average success

probability of the Bernoulli trials consisting of ρ∗T trials with failure rate π∗∗i and

(1− ρ∗)T trials with failure rate πi be equal less than or equal to 1− π∗i . Repeating

the steps of Section 2, this leads to the estimate Φ((1− ρ∗)zi
√
c) for the probability

of punishment when T is large.

This argument bounds the cost of deviating conditional on history hTi . As regards

the deviation gains, they are clearly bounded by (1 − δT )∆ui, hence the following

“tough” incentive constraint implies incentive compatibility given history hTi :

(1− δT )∆ui ≤ δTwi[Φ(zi
√
c)− Φ((1− ρ∗)zi

√
c)].

Finally, as T → ∞, it is easy to see that ρ∗ → 1, therefore, replacing our previous

expression for wi into the incentive constraint above yields the limiting relationship

∆ui ≤ ‖∆ui(µ)‖ Φ(zi
√
c)− Φ(0)

ϕ(zi
√
c)zi
√
c
.

As r → 0, c→∞ and rc→ 0, the inequality is satisfied for large enough T . Indeed,

it is implied by incentive compatibility with respect to one-period deviations.

4.3 Rewards

The previous argument deals with sustaining equilibrium via individual punishments.

However, sometimes it will be convenient to implement rewards. We take care of these

next, to then derive a Folk Theorem. Next we will use a similar scoring approach

as above to give rewards, i.e., in case some score exceeds a given amount, a player’s

utility is increased. This leads to only slightly different results. Let us begin with the

corresponding lemma for rewards.

Lemma 5. If p exhibits conic independence then W (µ) > 0 for every completely
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mixed correlated strategy µ, where W is defined pointwise by

W (µ) = max
γ,ξ,ζ≥0,π

γ s.t. ξi(a), ζi(a) ≤ 1 ∀(i, a),

γ∆ui(µ, ai, bi) ≤
∑
a−i

(ζi(a)− ξi(a))∆p(a, bi)µ(a) ∀(i, ai, bi),∑
a−i

p(a−i, bi)µ(a)πi ≥
∑
a−i

ξi(a)p(a−i, bi)µ(a) ∀(i, ai, bi),∑
a−i

(1− p(a−i, bi))µ(a)πi ≥
∑
a−i

ζi(a)(1− p(a−i, bi))µ(a) ∀(i, ai, bi),

πi =
∑
a

[ξi(a)p(a) + ζi(a)(1− p(a))]µ(a) ∀(i, a).

The proof of this result is identical to that of Lemma 2, so omitted. For simplicity,

although we could use the same scoring rule here as for punishments, we will adapt the

idea of Abreu et al. (1990) to rewards instead. Given a solution to the linear program

of Lemma 5 and a history (aT , sT ) for the mediator, after having chosen player i

with probability 1/n, she will decide not to reward i with probability πi(a
T , sT ) =∏

t[ξi(a)(1− 1(st)) + ζi(a)1(st)], whose expectation is, of course, πTi . Assuming that

this construction is an equilibrium, the average lifetime utility to player i is given by

vi = (1− δT )ui(µ) + δT [(1− (1− πTi )/n)vi + (1− πTi )/n(vi + wi)],

where now wi is player i’s reward in terms of continuation value. Rearranging yields

vi = ui(µ) +
δT

1− δT
(1− πTi )wi/n,

of course. To establish incentive compatibility, a slightly different value of wi applies

from the one for punishments. The reason is that for rewards, deterring one deviation

no longer suffices to deter more of them. On the other hand, it is possible to deter all

of them relatively easily, since the change in likelihood ratio from so many deviations

is non-negligible as ∆ → 0. Specifically, the benefit from deviating in the first

period is given by (1− δ)∆ui(ai1, bi1), whereas the cost is δT (wi/n)(1− `)yi1, where

` = πi(ai1, bi1)/πi(ai1), πi(ai, bi) =
∑

a−i
[ξi(a)p(a−i, bi) + ζi(a)(1 − p(a−i, bi))]µ(a),

πi(ai) = πi(ai, ai), and yi1 = µ(ai1)−πT−1
i πi(ai1). By Lemma 5, yi1 ≥ µ(ai1)(1−πTi ).

Iterating this observation further, the utility gain from deviating every period equals

(1−δT )∆ui(µ, σ
∗
i ), for some deviation σ∗i . On the other hand, the monetary loss equals

δT (wi/n)(1 − `(σ∗i )T )(1 − πTi ). The associated inequality implies that all deviations

are unprofitable, since 1− `T ≤ (T/τ)(1− `τ ) for 0 ≤ τ ≤ T and 0 ≤ ` < 1.
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If T = c/∆ then, as ∆→ 0, the incentive constraint for T deviations becomes simply

this: (1−e−rc)∆ui(µ, σ∗i ) ≤ e−rc(wi/n). Similarly, the limit lifetime utility to player i

as ∆→ 0 becomes vi = ui(µ)+[e−rc/(1−e−rc)]wi/n = ui(µ)+∆ui(µ, σ
∗
i ) = ui(µ, σ

∗
i ).

Define wi(r) = n[(1 − e−rc)/e−rc]∆ui(µ, σ∗i ) and vi = ui(µ, σ
∗
i ). Just as in the case

of punishments, the continuation rewards wi vanish as r → 0, which permits self-

generation for sufficiently small r > 0, as will be argued next.

As a final comment on rewards, notice that vi, which again does not depend on r > 0,

corresponds to the scheme by Kandori and Matsushima (1998) described in Section

2, since the tightest incentive constraint is the one associated with always deviating.

4.4 Main Result

Now we can state the main result of the paper, quite simply that the “equilibrium

threats” Folk Theorem holds as players’ patience increases without bound. We could

also prove the arguably stronger “minmax” Folk Theorem, but we would require

stronger assumptions. This issue is discussed later.

Theorem 1 (Folk Theorem). Under Assumptions 1 and 2, the Folk Theorem holds

in repeated games with frequent actions: for any payoff profile u in the interior of U0,

there is an interest rate r and a time step ∆ such that for all r ≤ r and all ∆ ≤ ∆

there exists a communication equilibrium whose payoff profile equals u.

Proof. Given the previous arguments, all that remains is to establish self-generation

for sufficiently small r > 0 and ∆. To this end, I will apply a simple extension of the

algorithm by Fudenberg and Levine (1994). For each ∆, the proof of Fudenberg and

Levine (1994) relied on establishing self-decomposability of smooth subsets. Let W be

such a smooth subset of int U0. We will show that, with punishments and rewards, W

is self-generated, therefore W is a subset of the set of equilibria of the repeated game

for some discount rate r > 0. We must show that W is self-decomposable on tangent

hyperplanes. For W in the interior, this is easy by using the correlated equilibrium

of the stage game in Assumption 1. Now suppose that v is on the boundary of W .

Let δ = δT = e−r∆T = e−rc, where T = c/∆. Pick any ε, ε′ > 0 small. Let λ be the

outward unit normal vector to W at v. If λi ≥ ε′ for all i then we can self-generate

v with unilateral punishments for every player, as in Figure 4 below, with a strictly

Pareto-improving µ. We can now self-generate v with such µ. Indeed, let c be large
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enough that vi = vi, and let r < r(c) = ϕ(zi
√
c)zi/c. Choose ∆ > 0 small enough

that wi(r)+ε satisfies the incentive constraint for punishments and wi(r)+ε satisfies

the incentive constraint for rewards for all ∆ ≤ ∆. The welfare loss associated with

these punishments clearly converges to zero as r → 0, and for sufficiently small r > 0,

continuation punishments clearly belong to W .

w	
  

v	
  

u	
  

Figure 4: Local self-decomposability for positive welfare weights: λi ≥ ε′ for all i.

Now, if all welfare weights are bounded above by ε′ then we can just use the static

equilibrium µ0 with payoffs u0 to self-generate v, as depicted in Figure 5 below.

u0	
  

v	
  
w	
  

u0	
  

v	
  
w	
  

Figure 5: Local self-decomposability for weights of opposite signs, |λi| ≥ ε′ for all i.

The left panel of Figure 5 shows how to self-generate v from u0 given interest rate r

when |λi| is large for all i. The right panel shows how u0 can be used to self-generate

v even when λi is positive for some i, as long as it is not too large. Any given ε′ > 0

sufficiently small implies a bound r > 0 such that self generation applies to λi ≤ ε′.

If some players have positive weights and others negative weights under λ, with

|λi| ≥ ε′ for each i, by Assumption 1(c) we may choose µ with full support such

that ∆ui(µ, σ
∗
i ) = vi for all i with negative weight. Therefore, we may apply rewards
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consistently: as long as v � u0, it is possible to self-generate v with some correlated

strategy µ together with punishments and rewards. For intuition, see Figure 6.

u	
  

v	
  

w	
  

Figure 6: Local self-decomposability for weights of opposite signs, |λi| ≥ ε′ for all i.

The last remaining case to self-generate is when λi > ε′ for some i and |λi| ≤ ε′ for

other i. Intuitively, Figure 7 shows how to self-generate such v. To show formally

that this works, suppose that λi = 1 for some fixed i and λj = 0 for all j 6= i. With

the equilibrium construction above, all that needs to be argued is that for sufficiently

small r > 0 the payments required to provide incentives eventually lie in the interior

of W . (This is not an issue for player i, of course.) Since W is smooth, so its boundary

is twice differentiable, it suffices to show that z (see Figure 7) goes to 0 faster than√
(1− e−rc)/e−rc ≈

√
rc as r → 0. But this is trivial: wj(r) = Kr for some constant

K > 0, which tends to zero linearly in r. This, of course, is much faster than r1/2.

The other cases are established either similarly or more easily, and hence omitted.
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w	
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v	
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Figure 7: Local self-decomposability when φi > ε′ and |λj| ≤ ε′ for some i and j.

Finally, since W is compact, and we established self-generation for a neighborhood
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of each v ∈ W and r > 0, i.e., an open cover of W ,5 it follows that there is a finite

sub-cover, hence an r > 0 for which every v ∈ W is self-generated. �

5 Examples

Below, I present two examples. The first is a Prisoners’ Dilemma that requires the

construction above for efficient outcomes to be attainable as players become patient.

The second example shows how it is possible for firms to collude in repeated Cournot

oligopoly, even when they have no capacity constraints.

5.1 Prisoners’ Dilemma without Monotonicity

Consider a version of the Prisoners’ Dilemma with imperfect public monitoring:

C D C D

C 1, 1 −1, 2 C 1 −1

D 2,−1 0, 0 D −1 0

Payoffs Drifts

Volatility parameters are constant, say 1. To illustrate, if ∆ = 1/9 then p(C,C) = 1
3
,

p(C,D) = p(D,C) = 2
3

and p(D,D) = 1
2
. The key feature of this game is that the

probability of good news is not increasing in the number of cooperators, unlike all

other invocations of the Prisoners’ Dilemma with imperfect monitoring.6 Rahman

and Obara (2010) show how such assumption is conceptually comparable to pairwise

identifiability by arguing that monotonicity makes it possible to identify obedient

agents. Also, in a sense public monitoring is especially challenging. Fong et al.

(2007) require “sufficiently private monitoring” in addition to every player being able

to detect everyone else’s deviation, so their model does not apply here.

Rahman and Obara (2010) cannot provide a Folk Theorem for this example either

because the signal structure above fails to identify obedient agents. Intuitively, there

5Although the statements above were made for each v rather than a neighborhood of each v, the

additional step is standard and immediate.
6This monotonicity is comparable to the first-order stochastic dominance assumptions usually

assumed in the literature on oligopoly with noisy prices, starting from Green and Porter (1984) and

Abreu et al. (1986) all the way to Harrington and Skrzypacz (2010).
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is a profile of deviations (e.g., for ∆ = 1/9, defecting if asked by the mediator to

cooperate and cooperating with probability 1
2

if asked to defect) that are profitable

“close to” mutual cooperation such that for any action profile, the change in signal

probabilities from a unilateral deviation is the same for every player: it could have

been anyone. Hence, to discourage a deviation in this profile, every player must be

punished on the path of play, leading to inefficiency.

Nevertheless, this inefficiency can be overcome with dynamic information manage-

ment. By Theorem 1, conic independence is all we need (since Assumption 1 clearly

holds), but this is easy to see. By Lemma 1, the vector x of drifts clearly satisfies (2),

as shown graphically in Figure 1. Indeed, for x(D, ·) = (−1, 0) and x(C, ·) = (1,−1),

there do not exist constants (α1, α2) such that x(D, ·) = x(C, ·) + α1(1, 1) and

x(C, ·) = x(D, ·) + α2(1, 1). Therefore, the Folk Theorem holds in this Prisoners’

Dilemma, using punishments and rewards as in the proof of Theorem 1.

Interestingly, the Folk Theorem holds even in some circumstances where (2) fails,

although using a different incentive scheme from the one in Theorem 1. Indeed,

suppose that the vector x has x(D,D) = −3 instead of 0. Now, it is clear that (2)

fails. However, it is possible to identify obedient agents: if players are recommended

to play an asymmetric profile, such as (C,D), one player (player 2) can only increase

the drift of the Brownian motion, whereas the other player can only decrease it (player

1). Therefore, it is possible to identify obedient agents, and give the right incentives

without value-burning with incentive schemes such as those proposed by Rahman

and Obara (2010, Example 1) and Rahman (2012b). Moreover, these incentives lead

to a Folk Theorem of the limiting game as ∆ → 0, i.e., every feasible, (strictly)

individually rational payoff profile is an equilibrium in the limit as r → 0.

5.2 Collusion with Flexible Production

I will streamline the model of Sannikov and Skrzypacz (2007) quite a bit, but will

otherwise stick to their notation and main assumptions (i.e., their stationary model).

Their model consisted of a standard repeated Cournot oligopoly, where firms were

able to produce any amount of a homogeneous good q ∈ [0, q], for some exogenous

capacity constraint q. Market prices are given by pt, where

pt = P (q1 + q2) + εt,
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P is the instantaneous demand curve, εt ∼ N(0, σ2/∆) is a random shock to prices,

σ2 is a variance parameter, and ∆ is the duration of time periods between which

production decisions are made. I assume, in line with Sannikov and Skrzypacz (2007),

that P has bounded steepness: there exists K > 0 with 0 ≥ P ′(Q) ≥ −K for all Q.

Let qm denote the monopoly quantity associated with P , and consider the following

mediated strategy. Fix µ > 0 small, to be specified later. With probability 1
2
, a

mediator selects one of the firms. If the selected firm is firm 1 then the mediator

recommends to firm 2 to shut down, i.e., produce 0. With conditional probability

1− µ, the mediator recommends to firm 1 to produce the monopoly output, qm, and

with conditional probability µ, the mediator recommends to firm 1 to produce at

capacity, i.e., q. If firm 2 was selected then the roles above are switched.

Rahman (2012b) shows that for this mediated strategy there exist continuation values

that describe a public communication equilibrium as ∆→ 0 without “burning value.”

Therefore, collusion can be mediated easily when there are capacity constraints, even

with flexible production. The key to the argument there is that sometimes one firm

shuts down while the other firm produces at capacity. This way, for any deviation

profile, it is possible to identify someone who did not deviate. If the price rises

stochastically relative to what the price should have been had nobody deviated, then

it must have likely been that a firm which was meant to produce at capacity decided

to decrease its output. Similarly, if the price drops then a firm scheduled to shut

down must have likely decided to sell some output.

Without capacity constraints, however, this argument breaks down, because both

firms could deviate by increasing their production, and then the identity of the de-

viator would not be inferred. Yet, using the construction of Section 4, there is a

way to still sustain some amount of collusion as long as firms are sufficiently patient.

Moreover, this amount of collusion increases unboundedly as r → 0.

Consider the following mediated strategy. Given µ > 0 small, with probability 1
2
(1−µ)

the mediator tells firm 1 to shut down and firm 2 to produce the monopoly output.

With probability 1
2
µ(1 − µ), the mediator tells firm 1 to shut down and firm 2 to

produce qµ, specified momentarily, and with probability 1
2
µ2 the mediator tells both

players to play qµ. For every asymmetric recommendation, all the roles above are

reversed with the same probabilities. Letting q∗ be each firm’s best response corre-

spondence, define qµ as the fixed point that solves qµ ∈ q∗((1 − µ)[0] + µ[qµ]).7 It is

7The notation [q] means Dirac measure at q. Here, I assume that such fixed point exists and be-
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easy to see that qµ < qm and qµ → qm as µ→ 0.

Punishments take the following form. Suppose that firm 1 was asked to shut down

(the case for firm 2 is symmetric). Firm 2’s continuation values will now not depend on

what happened previously. This is clearly incentive compatible because when a firm

is asked to produce either qµ or qm, there is no better “static” response. Therefore,

without loss we can construct the following punishment scheme that is only slightly

different from that of Theorem 1. Fix a price cutoff p ∈ R.8 If firm 2 was asked to

produce qµ then firm 1’s punishment score will increase by 1 unit if prices are low,

i.e., below p, whereas if firm 2 was asked to produce qm then firm 1’s punishment

score will increase by µ if prices are high, i.e., above p. Punishments take a slightly

different form to those of Theorem 1, but easily seen to apply to Theorem 1 because

when anything but shutting down is recommended to a firm, the firm is willing to

obey without any additional incentives. During a T -period block, a punishment score

accumulates over time as just described. At the beginning of the T -period block, the

mediator draws all recommendations and tells each firm how many times it will be

asked to shut down, call it τi. This way, we may ignore dynamic consistency for

not shutting down. At the end of the T -period block, the mediator chooses firm i

with probability 1/2, and firm i is punished if the chosen firm’s actual score ends up

exceeding π∗τi, where

π∗ = 1
2
µ(1− µ)[πd∗µ + (1− πd∗m)] < 1

2
µ(1− µ),

and πij is the probability of a low price (i.e., below p) if firm 1 produces qi units of

output and firm 2 produces qj units (and q0 = 0, of course), and qd∗ maximizes

∆R(0, d)
1
2
µ(1− µ)[(πdµ − π0µ) + (π0m − πdm)]

,

where ∆R(0, d) stands for the change in (expected) revenue between producing qd

and q0, and the denominator corresponds to the probabilistic change from producing

q0 to qd.

I sketch an argument that this is an equilibrium below. Let us first argue that the

scoring function above is consistent with Lemma 2 (modulo the minor caveat of the

previous page), that is, it satisfies γ-incentive compatibility and dynamic stability for

a positive weight γ given the recommendation q0. Thus, γ-incentive compatibility

haves well. This holds, for instance, if the profit function is concave and continuously differentiable.
8This cutoff renders firms’ relevant public information binary, in line with Theorem 1.
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amounts to the requirement that if firm 1 produces qd > 0 instead of q0 then

0 < γ∆R(0, d) ≤ 1
2
µ(1− µ)[(πdµ − π0µ) + (π0m − πdm)].

To see that the right-hand side is positive, notice that, even though πdj > π0j for all

qj, there exists p such that πdµ − π0µ > πdm − π0m, so γ > 0 exists to satisfy the

above constraints. To see this, just pick p to the right of P (qµ) such that the slope

of the normal density only diminishes to the right of p, i.e., p = P (qµ) +
√

2σ2. For

intuition, see Figure 8 below.

p

π dµ −π 0µ

π dm −π 0m

Figure 8: Differences in cutoff probability with respect to qµ and qm.

It is easy to see that the right hand side converges to a positive derivative times qd−q0

as qd → q0, and converges to a positive number as qd → ∞. As for the left-hand

side, by the bounded steepness assumption, it is clear that ∆R(0, d) converges to a

derivative times times qd − q0 as qd → q0, and converges to 0 as qd →∞. Therefore,

there exists γ > 0 to satisfy the inequality above for every qd.

Next, dynamic stability requires that

π̂[1
2
µ(1− µ)(1− πdµ) + 1

2
(1− µ)(1− πdm)] ≤ 1

2
µ(1− µ)(1− πdm), and

π̂[1
2
µ(1− µ)πdµ + 1

2
(1− µ)πdm] ≤ 1

2
µ(1− µ)πdµ.

Each of these clearly holds whenever µ > 0 is sufficiently small, which justifies the

punishment scheme. For the construction of Section 4 to apply, we must still argue

that a suitable rewards scheme delivers local self-decomposability when one firm has

positive weight and another has negative weight. A similar approach to the one above

is easily seen to work, so I omit this step, as it brings nothing really new.
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Finally, for Theorem 1 to apply, it remains to establish the following final details.

First, Assumption 1(a) and (b) immediate. To obtain (c), pick any coalition J ⊂ I

and let all players not in I produce so much that the best response to any player

in J is to almost shut down. Now make the strategy of players not in J have full

support but the high mean suggested above. The best-response profit of a player in

J is close to zero, significantly less than the Nash equilibrium profit. Therefore, (c)

holds. As for Assumption 2, it is not strictly necessary. What is necessary for the

logic of Theorem 1 to work is the existence of a punishment function like the one

above. This leads to the last detail. To apply the construction of Theorem 1, it is

easy to see that the binary signal structure with an up-jump every time the price

exceeds p and a down-jump every time it does not converges to a diffusion process

for which the results above apply.

Therefore, as in Theorem 1, at the limit of ∆→ 0, the collusive agreement described

above converges to perfect collusion as r → 0.

6 Discussion

In this section I comment on the model’s limitations and possible extensions. I begin

by discussing private monitoring, and then comment on the strengths and weaknesses

of relying on a mediator.

6.1 Private Monitoring and Private Information

The model above assumed public monitoring, partly to make the results more difficult

to obtain. With private monitoring it is even easier to obtain the model’s results.

This is because with private monitoring the mediator has more information at his

disposal to manage. Let us assume, as usual, full support. Players observe a private

signal every period that may be imperfectly correlated with others’ signals. The

information management protocol becomes slightly more sophisticated than before.

Now, the mediator not only makes confidential (still non-binding) recommendations

to players, but also asks players to confidentially report their observations. The

mediator then makes recommendations contingent not only on what he told players,

but also on what players told him. Notice that now the mediator is able to delay
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the arrival of two pieces of information: (i) others’ recommendations, and (ii) others’

reports. Therefore, as Rahman (2011) shows, the detectability requirements for the

construction of this paper to work become substantially weaker. In fact, they boil

down to precisely individual identifiability: every deviation being detectable suffices

for the construction of this paper to work in games with private monitoring and full

support.

Indeed, to see this, notice that the key step is to obtain a version of Lemma 2. With

private monitoring, the linear programming problem of Lemma 2 must include incen-

tive constraints that ensure players are willing to report their information honestly,

and the dynamic stability constraints can integrate out others’ signals. It is easy to

see that the corresponding “cone condition” that suffices for such a private-monitoring

version of Lemma 2 is the following:

Pr(si, ·|ai, ·) 6∈ cone {Pr(ri, ·|bi, ·) : (ri, bi) 6= (si, ai)} ∀(i, ai, si),

where Pr(s|a) is the probability of a profile (s1, . . . , sn) of up- and down-jumps for each

player’s private random walk given that everyone played the action profile (a1, . . . , an).

It is also easy to see that this condition is equivalent to every deviation being de-

tectable. Now, from the private-monitoring version of Lemma 2, the rest of the con-

struction of this paper follows. If players have payoff-relevant private information,

as is common in reputation models, a similar logic applies to the one just described,

with a similar, although slightly more general version of conic independence. For

details, see Rahman (2011).

6.2 Justifying the Mediator

There are several ways to justify studying mediated communication in dynamic

games. Below I discuss what in my opinion are the more compelling justifications.

Firstly, at worst mediated communication provides an important benchmark for the

study of repeated games in at least two ways. The first is in terms of communication.

Lots of work on repeated games, along the lines of belief-free equilibria by Ely et al.

(2005), has focused on the Folk Theorem without communication. Assuming that

players have unlimited communication possibilities is no more extreme than that they

have none whatsoever, and provides a benchmark for attainable outcomes. Second,

and perhaps more interestingly, is in terms of private strategies. The use of private
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strategies has been highlighted as a way for players to correlate their play (Lehrer,

1991; Mailath et al., 2002), so communication equilibrium provides an upper bound

for all Nash equilibria of a repeated game, including those with private strategies.

This is important because there is no known characterization of Nash equilibria with

private strategies. Communication equilibria can shed light on this question with a

sometimes tight, often tractable upper bound. At the same time, games where this

bound is not tight are ones with clear benefits to improved communication channels.

In other words, if players had access to specific, perhaps private communication

protocols, they might all be better off.

In some contexts, mediated communication is a realistic assumption. By Aumann’s

(1987) revelation principle, mediated communication can be considered shorthand for

a not-necessarily-public randomization device, or simply unlimited scope for possibly

secret communication (cheap talk), which is more than just plausible in many appli-

cations. Moreover, according to Forges (1990), any mediated communication protocol

can be decentralized with (i) at least four players and (ii) plain conversation—these

assumptions are also often reasonable in real-world applications.

Mediated communication is also arguably intrinsically interesting. Although some

authors eschew any communication other than through actions, others embrace it.9

Mediated communication specifically has not been studied in full generality, though,10

yet it is interesting in and of itself. Characterizing the set of communication equi-

librium payoffs in a repeated game, even as δ → 1, is still an open problem that is

drawing increased interest in the game theory community.11

Mediation can also sometimes deliver simple answers. Mediation permits simple

equilibria without arguably contrived constructions used to overcome having to com-

municate only through actions (e.g., Sekiguchi, 1997; Yamamoto, 2007; Sugaya, 2010;

Fong et al., 2007), which may be unrealistic, or at least undesirable if a much simpler

alternative is available.

Moreover, positive results are possible with a mediator in environments where with-

out one they would be impossible. For instance, much of the literature has focused on

9See Kandori and Matsushima (1998), Compte (1998), Kandori (2003), Obara (2009) and Tomala

(2009).
10Aoyagi (2005) looks at ε-perfect monitoring, Tomala (2009) focuses on public communication

equilibria, and Cherry and Smith (2010) do not fix the game’s information structure for their results.
11Renault and Tomala (2004) assume what could be called “δ = 1,” so are subject to the critiques

of Rahman (2012a).
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some form of mutual monitoring (e.g., Ben-Porath and Kahneman, 1996, 2003; Miya-

gawa et al., 2008, 2009; Fong et al., 2007; Sugaya, 2010), leading again to arguably

contrived constructions for “monitoring monitors” in games with private monitoring.

With a mediator, Rahman (2012a) shows that nobody needs to explicitly monitor a

single monitor, and efficiency is possible even with one-sided monitoring.

Finally, there is also the issue of purifiability. Equilibria with mediated commu-

nication can in some circumstances deliver strict incentives, unlike belief-free and

other equilibria. Therefore, they can be robust to Bhaskar’s (2000) critique (see also

Bhaskar et al., 2008), unlike the rest of the literature, such as Kandori (2003), Fong

et al. (2007) or Sugaya (2010).

On the other hand, the use of a mediator is not without weaknesses. To assume that

communication is completely costless, and that every kind of secret communication

is possible, although a useful benchmark, may be unrealistic in some circumstances.

Also, the fact that players can communicate freely might help them to coordinate

their deviations, which raises the issue of coalition proofness.

6.3 Dispensing with the Mediator

In many circumstances, the mediator can be dispensed with. For instance, players,

instead of taking recommendations, can simply report what they played, in line with

Kandori (2003). However, this approach is subject to Bhaskar’s (2000) critique. On

the other hand, there are games where detectability requires perfectly correlated

behavior by some players. In such games, it is unlikely that a mediator can be

dispensed with. For a detailed discussion of these and other related issues, as well as

an example of such a game, see Rahman (2012a).

Moreover, as was already mentioned, even if a mediator cannot be dispensed with,

at least it may be possible to decentralize it with plain conversation, as argued by

Forges (1990, 1986).

6.4 Conic Independence

Conic independence was shown above to be a sufficient condition on the probabilities

p for the constructions of Theorem 1 to apply. Sometimes, other stronger conditions
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may apply and more sophisticated incentives schemes may be used, such as ones

where punishments and rewards are correlated across players. Other times, the conic

independence condition may not hold, so the construction above may not apply.

However, conic independence is not strictly necessary for the above construction

to hold. Rather, it is the conclusion of Lemma 2 that is required for the above

construction. Even if the conclusion of Lemma 2 fails, it may be possible to provide

incentives to players in other ways. For instance, as was illustrated in the discussion

of the Prisoners’ Dilemma at the end of Section 5.1, it is possible that p fails conic

independence yet it can identify obedient agents, which allows for incentives to be

correlated across players.

Lemma 1 provided a sufficient condition on the drifts of Brownian motions that

imply conic independence for sufficiently small time intervals between interactions.

The condition of Lemma 1 is arguably quite strong. Indeed, it is not difficult to see

that it requires |Ai| ≤ |A−i| for all i for it to hold generically. On the other hand,

assumptions such as this one are not that uncommon in the literature.

6.5 Other Signal Structures

Relatedly, part of the reason why the condition of Lemma 1 is so strong is that the

information structure used to reach the continuous time limit is arguably sparse. As

shown by Fudenberg and Levine (2007, 2009), the kind of information structure used

to reach the continuous time limit can have crucial, result-changing consequences. In

this paper we decided to take the extreme case and make it as difficult as possible to

obtain our desired result. Specifically, to this end we assumed a binary signal-driven

random walk, where actions affect the drift but not the volatility of the limit diffusion

process. This is important because it is well known that volatility is effectively

observable, since it can be immediately inferred from a Brownian motion (Fudenberg

and Levine, 2007, 2009, and references therein).

At this point, I should report once again that if the limiting signal structure is Poisson,

rather than Brownian, it is easy to see that the impossibility results remain in the

“good news” case (i.e., the arrival of a signal has lower probability after a given

deviation) because there is no way of curtailing the associated implosion in likelihood

ratio. Indeed, in this case the likelihood ratio `− 1→ 0 at rate ∆, for which there is

no function T that survives the basic argument of Section 2. On the other hand, in
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the “bad news” case, the moderate inefficiency reported in Abreu et al. (1990) can

be easily eliminated, since there the likelihood ratio does not implode.

6.6 More Sophisticated Incentive Schemes

As a final comment, it is possible to provide more sophisticated incentives for fixed

r > 0. For instance, the timing of up and down jumps can be added to the incen-

tive scheme in order to make all the incentive constraints of Section 2 bind, not just

the first-period constraint. This allows for more efficient incentive provision. Also,

depending on the richness of the information structure, it may be possible to ex-

ploit additional information to improve incentives further. Finding the best incentive

schemes for fixed interest rate is an interesting topic for further research.

7 Conclusion

This paper derives a “possibility” result for repeated games with frequent actions,

showing how to sustain truly dynamic equilibria even with imperfect monitoring that

converges to Brownian motion. The approach developed above relies on the use of

a plausible generalization of private strategies, mediated strategies, which crucially

allow for the delay of the arrival of endogenous strategic information. These mediated

strategies may be thought of as dynamic information management institutions. The

dynamic equilibria derived in this paper reconcile the literature on repeated games in

discrete time and that in continuous time with a Folk Theorem that crucially depends

on players’ patience. The punishment schemes employed in this paper rely on carefully

designed empirical likelihood tests of obedience that not only apply to discrete-time

problems, but also to continuous-time problems. The results, despite having been

derived for the case of public monitoring, apply much more generally, including to

environments with private monitoring and private payoff-relevant information.

However, it is possible that continuous-time games may be intrinsically useful for

pointed analysis of games with fixed interest rates. It would be interesting in the

future to use the continuous-time limit to characterize the best forms of dynamic

incentives for such fixed interest rates.
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