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Abstract

This paper studies the informational effi ciency of over-the-counter markets. We

consider an over-the-counter market where dealers trade an asset with a stochastic

payoff. Trade is bilateral, and each dealer can simultaneously participate in multi-

ple transactions. The value of the asset is interdependent, and dealers are privately

informed about it. Dealers learn additional information from the prices in the trans-

actions they engage in. We show that although dealers trade strategically, the infor-

mation that is revealed through trading is only distorted by the pattern of bilateral

trades. Moreover, information diffuses through the network of trading links, such

that the price in any bilateral transaction partially incorporates the private signals

of all dealers in the market. In the common-value limit, over-the-counter markets

are nearly as informationally effi cient as centralized markets. Finally, our compara-

tive static exercises illustrate the implications of these findings for intermediation and

price dispersion in over-the-counter markets.

JEL Classifications: G14, D82, D85

Keywords: information aggregation; bilateral trading; demand schedule equilib-

rium
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1 Introduction

A large proportion of assets is traded in over-the-counter (OTC) markets. The disruption

of several of these markets (e.g. credit derivatives, asset backed securities, and repo

agreements) during the financial of 2008, has highlighted the role that OTC trades play

in the financial system. Typically, OTC markets are strongly concentrated. That is, in

nearly every transaction one of the counterparties is one of a handful of large investment

banks. Moreover, OTC trades are usually bilateral. This makes it possible for an asset

to be traded at different prices at the same time, while market participants observe only

a subset of all transaction prices. For this reason, OTC markets are often labeled as

opaque. In this context, several important questions arise: How much private information

is channeled into prices in this decentralized and non-competitive setting? To what extent

participants can learn the private information of others whom they are not trading with?

How sensitive the informational properties of OTC markets are to tense market conditions?

To address these questions, in this paper we present a novel way to model trade and

information diffusion in OTC markets. In our model, agents trade bilaterally the same

risky asset and each agent can participate in multiple transactions with a given subset of

other dealers. Trading links connect dealers in a network. Quantities and prices in each

bilateral transaction are determined in the equilibrium of a game in which agents take

decisions simultaneously and their trading strategies are generalized demand functions.

Our approach has several attractive features. First, just as in reality, in our set-up a

dealer can trade any quantity of the asset she finds desirable, and understands that her

trade may affect transaction prices. Moreover, she can decide to buy a certain quantity

at a given price from one counterparty and sell a different quantity at a different price

to another. Second, we show that the outcome of the one-shot game corresponds to the

steady-state of a dynamic protocol reminiscent of the real world bargaining process in

OTC markets.

This structure allows us to derive a number of important analytical results. We show

that prices reveal information that is only distorted by the structure of trading links.

That is, although dealers understand that their trades affect the equilibrium prices and
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allocations, their strategic trading behavior does not affect the informational content of

prices. Furthermore, information diffuses through the network, such that the equilibrium

price in each transaction partially aggregates the private information of all agents in the

economy. When each dealer trades with all the other dealers, over-the-counter markets are

as informationally effi cient as centralized markets. Finally, we illustrate through various

comparative static exercises the implications of these findings for intermediation and price

dispersion in over-the-counter markets.

In our main specification, there are n risk-neutral dealers organized in a dealer net-

work. Intuitively, a link between i and j indicates that they are potential counterparties

in a trade. There is a single risky asset in zero net supply. The final value of the asset is

uncertain and interdependent across dealers1. Each dealer observes a private signal about

her value, and all dealers have the same quality of information. Since values are interde-

pendent, inferring each others’signals is valuable. Values and signals are drawn from a

known multivariate normal distribution and, for simplicity, we assume that the pairwise

correlation of any values and signals is the same. In a network, dealers simultaneously

choose their trading strategy, taking the other dealers’ strategies as given. A dealer’s

trading strategy is a generalized demand function specifying the quantity of the asset she

is willing to trade with each of her potential counterparties depending on the prices that

prevail in the transactions she participates in. In each transaction the two dealers trade

against an exogenous demand curve. The interpretation is that dealers trade on their own

account, as well as on behalf of an uninformed costumer base.2 After all bilateral markets

clear, the value of the asset for each dealer is realized. We refer to this structure as the

OTC game. The OTC game is, essentially, a generalization of the Vives (2011) variant of

Kyle (1989) to networks.3 The main results in the OTC game apply to any network.4

1 In OTC markets, agents may value the same asset differently depending, for instance, on how they
use it as collateral, on which techonologies to repackage and resell cash-flows they have, or on what risk-
management constraints they face. Moreover, differences in asset valuations vary across markets and
states.

2As we will explain, costumers, that is, the exogenous demand curve, plays a technical role in our
analysis; it ensures the existence of the equilibrium. This is the same solution as in Vives (2011) and it’s
alternative is to introduce noise traders as in Kyle (1989).

3A useful property of this variant is that were dealers trade on a centralized market, prices would be
privately fully revealing. This provides a clear benchmark for our analysis.

4We use specific examples only to illustrate how the structure of the dealer network affects the trading
outcome.
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In real world OTCmarkets there is no market clearing mechanism which could instantly

yield the equilibrium prices and quantities of the OTC game. However, we justify our

approach by constructing a quasi-rational, but realistic bargaining dynamic protocol, as

follows. Every period each dealer sends a message to her potential counterparties. In each

subsequent period, a dealer can update her message given the set of messages she has

received in the previous round. Messages can be interpreted, for instance, as quotes that

dealers exchange with their counterparties. Upon receiving a set of quotes, a dealer might

decide to contact her counterparties with other offers, before trade actually occurs. A

rule, that is common knowledge among dealers, maps messages into prices and quantities

for each pair of connected dealers. Trade takes place when no dealer wants to significantly

revise her message based on the information she receives.

Our main results in the OTC game build on the following key insight. Equilibrium

beliefs, prices and quantities in the OTC game are determined in three steps. First, we

work-out the equilibrium beliefs in the OTC game. For this, we specify an auxiliary

game in which dealers, connected in the same network as in the OTC game, make a best

guess of their own value conditional on their signals and the guesses of the other dealers

they are connected to. That is, each dealer’s strategy specifies her guess as a function

of her neighbors’guesses. We label this structure as the conditional-guessing game and

show that an equilibrium in linear strategies exists for any connected network. Given the

equilibrium in the conditional-guessing game, we then provide simple conditions for the

existence of the equilibrium in the OTC game. When an equilibrium exists, we establish

an equivalence between the beliefs in the OTC game and the beliefs in the conditional-

guessing game. Second, we show that the price in a transaction between dealers i and j

must be a weighted average of the expectations of i and j, where the weights depend on

the position of these agents in the network. Finally, we derive the equilibrium quantities

traded across each link given the distribution of prices and the slope of the exogenous

demand.

In addition, we show that the dynamic protocol leads to the same traded prices and

quantities as in the one-shot OTC game, when dealers use as an updating rule the equi-

librium strategy in the conditional-guessing game, and the rule that maps messages into
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prices is the same as the one that maps expectations into prices in the OTC game. Inter-

estingly, even if the updating rule is not necessarily optimal each round it is used in, we

show that when trade takes place, dealers could not have done better.

Our model provides testable empirical predictions. For instance, our findings suggest

that the information of dealers that are more central in the network of trades affects

everyone’s belief more strongly, and that correlation across dealers’beliefs decreases with

their distance in the network. This has immediate implications for cross-sectional price

dispersion. Furthermore, we can use our framework to distinguish between two possible

mechanisms of distress in OTC markets. We compare the case when dealers’valuations

are more divergent with the case when dealers are more uncertain about their value. Our

comparative statics indicate that as dealers are more heterogeneous in their values, prices

are less informative, but profits are larger and there is more intermediation and high vol-

ume of trading. In contrast, as uncertainty increases and information becomes less precise,

prices are less informative, profits decrease and there is less intermediation as volume goes

down. Another thought-exercise we can perform to analyze the effect of distressed market

conditions on the OTC structure, is to check how the equilibrium is affected by removing

a single link from the network. To make this exercise as transparent as possible, we simply

compare the circle network with the line network of equal number of dealers. We illustrate

that while even those agents learn less who are far from the broken link, the loss in informa-

tion decreases with the distance from that point. Consistently, with the results before, the

broken link has very small effect when the OTC market is close to the common value limit.

Related literature

Most models of OTC markets are based on search (e.g. Duffi e, Garleanu and Ped-

ersen (2005); Duffi e, Gârleanu and Pedersen (2007), Lagos, Rocheteau and Weill (2008),

Vayanos and Weill (2008), Lagos and Rocheteau (2009), Afonso and Lagos (2012), and

Atkeson, Eisfeldt and Weill (2012)). The majority of these models do not analyze learning

through trade. Important exceptions are Duffi e, Malamud and Manso (2009) and Golosov,

Lorenzoni and Tsyvinski (2009). Their main focus is the time-dimension of information

diffusion either between differentially informed agents, or from homogeneously informed
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to uninformed agents. A key assumption in these models is that there exists a continuum

of atomistic agents on the market. This assumption implies that as an agent infers her

counterparties’ information from the sequence of transaction prices, she does not have

to consider the possibility that any of her counterparties traded with each other before.

Thus, in these models agents can infer an independent piece of information from each

bilateral transactions.5 In contrast, in our model all the meetings take places between a

finite set of strategic dealers, but are collapsed in one period. Our results are a direct con-

sequence of the fact that each dealer understands that her counterparties have overlapping

information as they themselves have common counterparties, or their counterparties have

common counterparties, etc. Our argument is that this insight is potentially crucial for

the information diffusion in OTC markets where typically a small number of sophisticated

financial institutions are responsible for the bulk of the trading volume. Therefore, we

consider that search models and our approach are complementary.

Decentralized trade that takes place in a network has been studied by Gale and Kariv

(2007), and Gofman (2011) with complete information and by Condorelli and Galeotti

(2012) with incomplete information. These papers are in interested in whether the presence

of intermediaries affects the effi cient allocation of assets, when agents trade sequentially

one unit of the asset. Intermediation arises in our model as well. However, we allow a

more flexible structure as dealers can trade any quantity of the asset they wish, given the

price. Moreover, neither of these papers addresses the issue of information aggregation

through trade (Condorelli and Galeotti, 2012, consider a pure private value set-up), which

is the focus of our analysis.

Finally, we would like to mention contemporaneous work by Malamud and Rostek

(2012) who also use a multi-unit double-auction setup to model a decentralized market.

Malamud and Rostek (2012) study allocative effi ciency and asset pricing with risk-averse

dealers with homogeneous information; their framework allows for trading environments

intermediate between centralized and decentralized. In contrast, we study how informa-

5An interesting example of a search model where repeated transactions play a role is Zhu (2012) who
analyzes the price formation in a bilateral relationship where a seller can ask quotes from a set of buyers
repeatedly. In contrast to our model, Zhu (2012) considers a pure private value set-up. Thus, the issue
of information aggregation through trade, which is the focus of our analysis, cannot be addressed in his
model.
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tion about an asset diffuses through trading with differentially informed, but risk-neutral

dealers.

The paper is organized as follows. The following section introduces the model set-up

and the equilibrium concept. In Section 3, we describe the conditional-guessing game,

and we show the existence of the equilibrium in the OTC game. We characterize the

informational content of prices in Section 4. Section 5 provides dynamic foundations for

our main specification. In section 6 we illustrate the properties of the OTC game with

some simple examples and discusses potential applications.

2 A General Model of Trading in OTC Markets

2.1 The model set-up

We consider an economy with n dealers which develops over two periods (t = 0, 1). There

are two assets: a risky asset and money, and both are redeemable against the only con-

sumption good in the economy. In the first period agents have the opportunity to trade

bilaterally, as we describe below. In the second period each dealer consumes the return

realized from her portfolio.

Dealers’preferences are represented by the following utility function

Ui(qi) = θiqi. (1)

where qi is the the quantity of the risky asset that the dealer holds at the end of the

trading period. Each dealer is uncertain about the value of the asset. This uncertainty is

captured by θi, referred to as dealer i’s value. We assume that θi is normally distributed

with mean 0 and variance σ2θ. Moreover, we consider that values are interdependent across

dealers. In particular, V(θi, θj) = ρσ2θ for any two agents i and j, where V (·, ·) represents

the variance-covariance operator, and ρ ∈ [0, 1]. Differences in dealers’values reflect, for

instance, differences in usage of the asset as collateral, in technologies to repackage and

resell cash-flows, in risk-management constraints.

We assume that each dealer receives a private signal, si = θi + εi, where εi ∼
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IIDN(0, σ2ε) and V(θj , εi) = 0. Note that, for simplicity, we assume that each signal

has the same precision.

Dealers seek to maximize their expected utility by trading assets through bilateral

transactions. At date t = 0, each dealer i can engage in bilateral trades with a subset gi

of other dealers. Let |gi| = mi be the number of trading counterparties that agent i has in

the network g. The set of bilateral trades can be represented through a network g in which

a link ij represents a transaction between dealers i and j. Each network is characterized

by an adjacency matrix, which is a n× n matrix

A = (aij)ij∈{1,...,n}

where aij = 1 if i and j have a link and aij = 0 otherwise. While our main results hold for

any network, throughout the paper, we illustrate the results using two types of networks

as examples.

Example 1 The first type of networks is the family of circulant networks. In an (n,m)

circulant network each dealer is connected with m/2 other dealers on her left and m/2 on

her right. Note that the (n, 2) circulant network is the circle and the (n, n− 1) circulant

network is the complete network. (A (9, 4) circulant network is shown panel (a) of Figure

1.)

Example 2 The second type of networks is the family of core-periphery networks. In

an (n, r) core-periphery network there are r fully connected agents (the core) each of them

with links to n−r
r dealers (the periphery) and no other links exist. Note that the (n, 1)

core-periphery network is an n-star network where one dealer is connected with n−1 other

dealers. (A (9, 3) core periphery network is shown in panel (b) of Figure 1.)

These two types of simple networks allow us to isolate the effect of different features

of OTC markets in trade and information diffusion. In a circulant network, we isolate

the effects of network density and of distance between dealers in a symmetric setting. In

contrast, in a star network, we capture information asymmetries that arise among dealers

due to their position in the network.
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Figure 1: This figures shows two examples of networks. Panel (a) shows a (9, 4) circulant
network. Panel (b) shows a (9, 3) core-periphery network.

The strategy of a dealer i is a map from the signal space to the space of generalized

demand functions. For each dealer i with signal si, a generalized demand function is a

continuous function Qi : Rmi → Rmi which maps the vector of prices, pgi = (pij)j∈gi ,

that prevail in the transactions that dealer i participates in network g into vector of

quantities she wishes to trade with each of her counterparties. The j-th element of this

correspondence, Qji (si; pgi), represents her demand when her counterparty is dealer j, such

that

Qi(si; pgi) =
(
Qji (si; pgi)

)
j∈gi

.

The final holding of a dealer i is given by

QT
i (si; pgi)1. (2)

This representation of dealers’demand functions captures an important characteristic of

the OTC markets. Namely, the price and the quantity traded in a bilateral transaction

are known only by the two counterparties involved in trade and are not revealed to all

market participants.

In addition, for each transaction between i and j there exists an exogenous downward
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sloping demand

D(p) = βijp, (3)

where βij < 0. The interpretation is that dealers trade on their own account, as well as on

behalf of an uninformed costumer base. In our analysis costumers play a technical role in

our analysis: the exogenous demand (3) ensures the existence of the equilibrium. This is

the approach that Vives (2011) takes as well, and it is an alternative to introducing noise

dealers as in Kyle (1989). As we show below, while the slope of the exogenous supply

affects the equilibrium allocation, it does not have an affect on the equilibrium beliefs, nor

the equilibrium prices.

The expected payoff for dealer i with signal si corresponding to a given strategy profile

{Qi (si; pgi)}i∈{1,...,n} is

E

∑
j∈gi

Qji (si; pgi) (θi − pij) |si


where pij are the elements of the bilateral clearing price vector p defined by the smallest

element of the set

P
(
{Qi (si; pgi)}i , s

)
≡
{

p
∣∣∣ Qji (si; pgi) +Qji

(
sj ; pgj

)
+ βijpij = 0, ∀ ij ∈ g

}
by lexicographical ordering6, if P is non-empty. If P is empty, we say the the market

brakes down and all dealers’payoff is zero. A linear strategy profile insures that the price

map P (·, s) defines a unique market clearing price vector.

2.2 Equilibrium Concept

The environment described above represents a Bayesian game, henceforth the OTC game.

The risk-neutral utility and normal information structure allows us to search for a linear

equilibrium of this game defined as follows.

6To be more precise, we order the links first by i and then by j and order the market clearing price
vectors first by their first element, if it happens to be equal by the second element etc. Whether we choose
the smallest or any other element by this ordering, or we use an other way to sellect a unique price vector
is immaterial. We just have to ensure that our game is well defined even for strategies which are allowed,
but never part of the equilibrium.
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Definition 1 A Linear Bayesian Nash equilibrium of the OTC game is a vector of linear

generalized demand functions {Q1(s1; pg1),Q2(s2; pg2), ...,Qn(sn; pgn)} such thatQi(si; pgi)

solves the problem

max
(Qji )j∈gi

E


∑
j∈gi

Qji (si; pgi) (θi − pij)

 |si
 (4)

subject to p = P (·, s) or, such that

Qji (si; pgi) +Qij(sj ; pgj ) + βijpij = 0. (5)

for any i and j that have a link in the network g.

A dealer i chooses a demand function for each transaction ij, in order to maximize

her expected profits, given her information, si, and given the demand functions chosen

by the other dealers. Moreover, as in Klemperer and Meyer (1989), her demand must

be optimal for each realization of the uncertainty in her residual demand in transaction

ij,
(
−Qij(sj ; pgj )− βijpij

)
. From i’s perspective, the uncertainty in the residual demand

arises from the other dealers’signals, as they are reflected in the price vector pgi .

Then, an equilibrium of the OTC game is a fixed point in demand functions.

3 The Equilibrium

In this section, we show existence and characterize the equilibrium in the OTC game. The

key insight in this section is that equilibrium beliefs, prices and quantities in the OTC game

can be determined in three steps. First, we determine the equilibrium beliefs in the OTC

game. For this we introduce an auxiliary game, the conditional-guessing game, in which

dealers simply aim to guess their valuation θi, without any trade taking place. We then

establish an equivalence between the equilibrium beliefs in the conditional-guessing game

and the equilibrium beliefs in the OTC game. Second, we derive the equilibrium demand

functions of each dealer for each link from the first-order conditions in the OTC game.

Finally, we use the bilateral clearing conditions to show that in any linear equilibrium of

the OTC game, the price in a transaction between dealers i and j must be a weighted
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average of dealers’i and j expectations of their values θi and θj , where the weights depend

on the position of these agents in the network.

The conditional guessing game is also a useful benchmark to measure how much in-

formation is revealed through trading in the OTC market. In the OTC game, prices play

a dual role: on the one hand prices regulate the allocation of the asset among dealers,

on the other hand they convey information. Dealers’market power interacts with the

allocative function of prices, but not with the information transmission role. Indeed, as

the equivalence between beliefs in the OTC game and conditional-guessing game shows,

the network structure influences beliefs only to the extent that some agents do not directly

learn about the expectation of everyone else.

When describing the conditional-guessing game, we keep the same notation as above.

Throughout the paper, we relegate the proofs to the Appendix.

3.1 The formation of beliefs: The conditional-guessing game

The conditional guessing game is the non-competitive counterpart of the OTC game.

The main difference is that instead of choosing quantities and prices to maximize trading

profits, each agent aims to guess her value as precisely as she can. Importantly, agents are

not constrained to choose a scalar as their guess. In fact, each dealer is allowed to choose

a conditional-guess function which maps the guess of each of her neighbors, into the her

guess.

Formally, we define the game as follows. Consider a set of n agents that are connected

in a network g. The payoff of an agent i depends on the realization of the asset value θi.

Each agent has private information about her value, si = θi + εi. The joint distribution

of signals and values is the same as in the OTC game. Before the uncertainty is resolved,

each agent i makes a guess, ei, about the value of the asset, θi. Her guess is the outcome

of a function that has as arguments the guesses of other dealers she is connected to in

the network g. In particular, given her signal, dealer i chooses a guess function, Ei, which

maps the vector of guesses of her neighbors, egi , into a guess ei. When the uncertainty is

resolved, agent i receives a payoff

− (θi − ei)2 .
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Definition 2 An equilibrium of this game is given by a strategy profile (E1, E2, ..., En) such

that each agent i chooses strategy Ei : R × Rmi → R in order to maximize her expected

payoff

max
Ei

{
−E

(
(θi − ei)2 |si

)}
,

where ei is the guess that prevails when

ei = Ei (egi) (6)

for all i ∈ {1, 2, ..., n}.

An agent i chooses a guess function that maximize her expected profits, given her

information, si, and given the guess functions chosen by the other agents evaluated at the

fixed point determined by the set of conditions (6). Moreover, her guess function must be

optimal for each realization of the other dealers’signals sj , as it is reflected in the vector

of guesses egi . Therefore, her optimal guess is then given by

ei = E (θi|si, egi) . (7)

We assume that if a fixed point in (6) does not exist, then dealers don’t make any guesses

and their profits are zero. Essentially, the set of conditions (6) is the counterpart in the

conditional-guessing game of the market clearing condition in the OTC game. Then, an

equilibrium of the conditional guessing game is the fixed point in guess functions.

In the next proposition, we state that the guessing game has an equilibrium in any

network. We also point out some properties which later will turn out to be useful.

Proposition 1 In the conditional-guessing game, for any network g, there exists an equi-

librium in linear guess functions, such that

Ei (si, egi) = ȳisi + z̄Tgiegi

for any i, where ȳi is a scalar and z̄gi = (z̄ij)j∈gi is a vector of length mi.
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Figure 2: The plot shows the correlation of equilibrium expectations of dealer 1 and dealer

i,
V(E(θ1|s1,eg1),E(θi|si,egi))√
V(E(θ1|s1,eg1))V(E(θi|si,egi))

, in each of the (11,m)-circulant networks.

Furthermore, whenever ρ < 1

1. Ȳ ∈ (0, 1]n×n,

2. limn→∞ Z̄n = 0 and
(
I − Z̄

)
is invertible, and

3. e =
(
I − Z̄

)−1
Ȳ s,

where e = (ei)i∈{1,2,...,n}, Ȳ is a matrix with elements ȳi on the diagonal and 0 other-

wise, and Z̄ is a matrix with elements z̄ij, when i and j(6= i) have a link and 0 otherwise.

As an illustration, Figure 2 depicts the correlation of equilibrium expectations of dealer

1 and dealer i,
V (E (θ1|s1, eg1) , E (θi|si, egi))√
V (E (θ1|s1, eg1))V (E (θi|si, egi))

in each of the (11,m)-circulant networks where dealers are ordered by i. It is apparent

that while the correlation is always positive, it decreases with the distance from dealer

1, but increases with the number of links starting from each dealer. This is so, because
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dealers learn more when they can condition their guess in more other dealers. In extreme

case when the network is complete, the correlation across each dealers’equilibrium beliefs

is the same. As we show in the proof of Proposition 1, this indicates that each dealer

learns all the useful information that exists in the economy. We return to this issue in the

following section.

3.2 The OTC game: Equilibrium existence and characterization

In this section we show how we can derive an equilibrium in the OTC game, given the

equilibrium of the conditional-guessing game. Our derivation follows Kyle (1989) and

Vives (2011) with the necessary adjustments.

We conjecture an equilibrium in demand functions, where the demand function of

dealer i in the transaction with dealer j is given by

Qji (si; pgi) = bjisi +
(
cji

)T
pgi (8)

for any i and j, where (cji) = (cjik)k∈gi .We consider that the demand function of an agent

i, when trading with agent j, depends not only on the price pij in the transaction between

i and j, but also on the prices in the other transactions that i participates in. This

specification allows a dealer to adjust the quantity she wishes to trade in each transaction

conditional on all the prices she can trade at. Hence, a dealer is, for instance, able to buy

a given quantity at a given price from one counterparty and sell a different quantity at a

different price to another.

As it is standard in similar models, we simplify the optimization problem of (4) which

is defined over a function space, to finding the functions Qji (si; pgi) point-by-point. That

is, for each realization of the signals, s, we solve for the optimal quantity qji that each

dealer i demands when trading with a counterparty j. The idea is as follows. Given the

conjecture (8) and market clearing (5), the residual inverse demand function of dealer i in

a transaction with dealer j is

pij = −
bijsj +

∑
k∈gj ,k 6=i c

i
jkpjk + qji

ciji + βij
. (9)
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Denote Iji ≡ −
(
bijsj +

∑
k∈gj ,k 6=i c

i
jkpjk

)
/
(
ciji + βij

)
and rewrite (9) as

pij = Iji −
1

ciji + βij
qji .

The uncertainty that dealer i faces about the signals of others is reflected in the random

intercept of the residual inverse demand, Iji , while her capacity to influence the price is

reflected in the slope −1/
(
ciji + βij

)
. Thus, the price pij is informationally equivalent to

the intercept Iji . This implies that finding the vector of quantities qi = Qi(si; pgi) for one

particular realization of the signals, s, is equivalent to solving

max
(qji )j∈gi

E

∑
j∈gi

qji

(
θi +

1

ciji + βij
qji + Iji

)
|si,pgi


or

max
(qji )j∈gi

∑
j∈gi

qji

(
E (θi|si,pgi) +

1

ciji + βij
qji + Iji

)
.

From the first order conditions we derive the quantities qji for each link of i and for each

realization of s as

2
1

ciji + βij
qji = − 1

ciji + βij
Iji − E (θi|si,pgi) .

Then, using the definition of Iji from above, we can find the optimal demand function

Qji (si; pgi) = −
(
ciji + βij

)
(E(θi |si,pgi )− pij) (10)

for each dealer i when trading with dealer j.

For our later results, the chain structure embedded in the definition of Iji is critical.

The price pij gives information on I
j
i which embeds information on the prices agent j

trades at in equilibrium. For example, if agent j trades with agent k then pjk affects

pij . By the same logic, pjk in turn is affected by the prices agent k trades at with her

counterparties, etc. Therefore, pij will aggregate the private information of signals of

every agent, dealer i is indirectly connected to, even if this connection is through several

other dealers. At the same time, this information aggregation is not perfect. The exact
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nature of this process is in the focus of our analysis.

It is clear that conjecture (8) together with the market clearing condition (4) imply

that any market clearing price vector has to be a linear combination of signals, hence,

jointly normally distributed. This implies that conditional expectations are linear. In

particular, for each agent i there exists a scalar yi and a vector zgi such that

E(θi |si,pgi ) = yisi + zTgipgi . (11)

where zgi = (zij)j∈gi .Substituting in (11) into (10) and comparing it to conjecture (8)

determines the relationship that exists in equilibrium between the coeffi cients yi and zij

in the expectation (11) and the coeffi cients in the demand functions (8). The following

Lemma summarizes these relationships.

Lemma 1 Suppose that there exists an equilibrium in the OTC game. Then the equilib-

rium demand functions

Qji (si; pgi) = bjisi +
(
cji

)T
pgi

must be such that
bji = −βij

2−zji
zij+zji−zijzji yi

cjij = −βij
2−zji

zij+zji−zijzji (zij − 1)

cjik = −βij
2−zji

zij+zji−zijzji zik.

This lemma has interesting implications for the market liquidity of the asset, as it is

captured by the slope cjij of dealer’s i demand when trading with dealer j. A higher value

of cjij can be interpreted as the possibility of dealer i to take a larger position when trading

with dealer j, without having a too large price impact. In our specification, dealer’s i price

impact in a transaction depends on whom he is trading with. Even in very symmetric

structures, such as the family of circulant networks, the relative position of the dealers in

the network affects the sensitivity of their demands to the price, as shown in Figure 3.7

In particular, the demand of a dealer is less responsive to price changes when she trades

with a counterparty with whom she has more information in common. For instance, this

7 In figure 3, for simplification, we normalize the slope with the size of outside demand and plot cjij/βij ,
as this ratio is independent of βij .
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Figure 3: The figure shows the slope,
cj1j
β1j

of the demand curve, Qj1 submitted by agent 1 for

the trade where the counterparty is j in the (11,m) circulant networks. Other parameters
are σ2ε = σ2θ = 1, ρ = 0.5.

can arise when two dealers have common neighbors. This suggests that the liquidity of

asset that is traded over the counter depends on the particular pair of dealers that are

transacting.

The following proposition states the main result of this section.

Proposition 2 Let Ȳ and Z̄ be the matrices that support an equilibrium in the conditional-

guessing game and let ei = E(θi |si, egi ) the corresponding equilibrium belief of agent i.

Then, in the OTC game prices and quantities at link ij are given by

pij =
(2− zji) ei + (2− zij) ej

4− zijzji
(12)

Qji (si; pgi) = − 2− zji
zij + zji − zijzji

βij (ei − pij) (13)

and expectations are given by

E(θi |si,pgi ) = ei = E(θi |si, egi ) (14)
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whenever ρ < 1 and the following system

yi(
1−

∑
k∈gi

zik
2−zki
4−zikzki

) = ȳi (15)

zij

2−zij
4−zijzji(

1−
∑
k∈gi

zik
2−zki
4−zikzki

) = z̄ij ,∀j ∈ gi

admits a solution for each i ∈ {1, ..., n} such that zij ∈ (0, 2).

This proposition provides a simple procedure to characterize the equilibrium of the

OTC game, given the equilibrium of the conditional guessing game. First, each dealer’s

expectation about the value of the asset in the OTC game is the same as her expectation

in the conditional guessing game. Then, given the coeffi cients z̄ij and ȳi that define the

equilibrium expectation in the guessing game, we can calculate the coeffi cients zij and yi

that define the equilibrium expectation in the OTC game from (15). Finally, given these

coeffi cients, we can calculate the equilibrium prices and quantities by (12)-(13).

The intuition behind the equivalence of the two games is simple. On the one hand,

it is easy to check that given the equivalence of expectations, (14), prices and quantities

(12)-(13) are consistent with the first order condition (10) and market clearing conditions

(5). On the other hand, each dealer i understands that the equilibrium price when trading

with dealer j is a weighted average of their beliefs. Therefore, she can infer the belief of

her counterparty from the price, given that she knows her own belief. When choosing her

generalized demand function, she essentially conditions her expectation about the asset

value on the expectations of the other dealers she is trading with. This explains why

the equilibrium beliefs in the OTC game are the same as the equilibrium beliefs in the

conditional-guessing game.

Proposition 2 proves existence of an equilibrium in the OTC game conditional on the

existence of a solution to the system (15). While we do not have reasons to doubt that a

solution of this system exists for any connected network, we do not have yet a general proof.

The corollary below shows the proof of existence for the special cases of our examples.
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Corollary 1 There exists an equilibrium in the OTC game for any network in the circu-

lant and the core-periphery family.

We defer the discussion about the equilibrium features to Section 6, where we illustrate

numerically what the model implies about intermediation and profits.

4 Price Informational Effi ciency

In this section we discuss what the model implies about the informational content of prices.

We relate our findings to two benchmarks that we introduce below.

Benchmark 1: Centralized markets

The centralized market version of our model is the risk-neutral version in Vives (2011).

The main difference in his model compared to ours is that in a centralized market agents

submit simple demand functions to a market maker and the market clears at a single price.

For completeness, we summarize the properties of the equilibrium in centralized markets

in the following proposition, but let the reader find the proof in the original version.

Proposition 3 Let be ρ < 1. In a centralized market there is a linear demand function

equilibrium if and only if

n− 2 <
nρσ2ε

(1− ρ)
(
σ2ε + (1 + (n− 1) ρ)σ2θ

) (16)

where demand functions has the form of

Qi(si; p) = bsi + cp.

The price is fully privately revealing in the sense of

V (θi|si, p) = V (θi|s) .
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Benchmark 2: Non-strategic information sharing

In the non-strategic information sharing of our model, any two dealers that have a link,

instead of trading, simply exchange their respective signals. This implies that the posterior

belief of a dealer i that has mi links in network g is given by

E
(
θi|si, (sj)j∈gi

)
=

(1− ρ)σ2θ(
σ2ε + (1− ρ)σ2θ

)
si +

ρσ2ε
(1− ρ)

(
σ2θ (1 +miρ) + σ2ε

) ∑
j∈gi∪i

sj

 .
This specification is an adaptation of the information percolation models to our setting

(see Duffi e, Malamud and Manso (2009)). While the assumptions that justify non-strategic

information sharing in these models (such as the assumption that the market is populated

by a continuum of traders) do not apply in our case, we nevertheless consider that this is

a useful benchmark to compare our results against.

Next, we return to the analysis of the OTC game. The first implication of our model

concerns the role of prices in aggregating information.

Proposition 4 Suppose that there exists an equilibrium in the OTC game, and let ρ < 1.

Then, in any connected network g

(
I − Z̄

)−1
Ȳ > 0,

and each bilateral price is a linear combination of all signals in the economy, with a positive

weight on each signal.

The intuition for this result is as follows. The price in a bilateral transaction between

two dealers is a weighted average of their respective beliefs. Furthermore, the equilibrium

belief of each agent depends on her signal and on the prices she can trade at. Thus, any

information that is incorporated in the price between dealer i and dealer j, is further

reflected (with the adequate weights) in the prices in the transactions between dealer i
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Figure 4: The plot compares the maximal dispersion in prices (as measured by the minimal
pairwise correlation across prices) across the star network (solid line) and the circulant net-
work family (dotted lines, thicker lines correspond to larger m values). Other parameters
are n = 11, σ2ε = σ2θ = 1.

and her counterparties and dealer j and her counterparties, respectively. This process

continues, and information diffuses through the trading network.

An equivalent way of stating the result in Proposition 4 is that each dealer’s equilibrium

belief depends on the private signal of all the other dealers, regardless whether she trades

with those dealers or not. In contrast, the belief of a dealer in the non-strategic information

sharing benchmark depends only on the private signals of the other dealers with whom

she has a link. In this sense, information diffusion is fast in our set up as the information

of each dealer reaches all other dealers at least to some extent.

An important observation that follows from this proposition is that different dealers

will likely pay different prices for the same asset at the same time. Figure 4 illustrates the

maximal price dispersion, measured as the minimal correlation between prices, in each of

the (11,m)-circulant networks.

The second implication of our model that we emphasize is related to the revelation of

information into prices. We know from Vives (2011) that in a centralized market the price
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is fully privately revealing. We show that the equilibrium in the OTC game has a similar

property. This follows from Proposition 2, which shows that the equilibrium beliefs in

the OTC game are the same as the equilibrium beliefs in the conditional-guessing game.

The equivalence of expectations implies that the information revealed through trading is

distorted by the structure of trading links, but not by the dealers’market power.

This property of the equilibrium does not imply that dealers learn all the relevant

information in the economy, as it happens in a centralized market. In particular, it follows

from Proposition 4 that in a network g, a dealer i can use mi linear combinations of the

vector of signals, s, to infer the the other (n− 1) signals apart from her own. Except if

she has mi = n − 1, this is generally not suffi cient for the dealer to learn all the relevant

information in the economy. However, when the network is complete, for instance, each

dealer learns as much information as if they were trading in a centralized market. In

addition, as the following proposition shows, each agent learns (almost) all the valuable

information in the market at the common value limit, regardless of the network.

Proposition 5 If ρ→ 1, then in the OTC game prices are privately fully revealing as

lim
ρ→1

(V (θi|si,pgi)− V (θi|s)) = 0.

The intuition behind the result is as follows. When values are perfectly correlated,

the equilibrium expectation in the conditional-guessing game is the same for each dealer,

and is proportional to the average of the n private signals. This is an equilibrium because

when each dealer faces the same uncertainty about the value of the asset, the average of

all signals is the best possible guess for everyone. Hence, conditional on her neighbors’

guesses, a dealer arrives to the same guess. While the equilibrium in the OTC game

collapses when ρ = 1 (a manifestation of the well-known Grossman paradox), we show

that the equilibrium beliefs converge to the average of all signals as the correlation across

values approaches 1.

We use the result in this proposition to argue in section 6.2 that under normal economic

conditions OTC markets are informationally close to their centralized counterpart, while

under market stress the information loss due to the decentralized structure is perhaps
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much more significant.

5 Dynamic Foundations

In real world OTC markets there is no market clearing mechanism which could instantly

produce the equilibrium prices and quantities from the complex generalized demand func-

tions of the OTC game. In this section we introduce a quasi-rational, but realistic bar-

gaining dynamic protocol producing the same outcome than our OTC game.

Suppose that time is discrete, and in each period there are two stages: the morning

stage and the evening stage. In the evening, each dealer i sends a message, hi,t, to

all counterparties she has in the network g. In the morning, each dealer receives these

messages. In the following evening, a dealer can update the message she sends, possibly

taking into account the information received in the morning. Messages can be interpreted,

for instance, as quotes that dealers exchange with their counterparties. Upon receiving

a set of quotes, a dealer might decide to contact her counterparties with other offers,

before trade actually occurs. The protocol stops if there exists an arbitrarily small scalar

δi > 0, such that |hi,t − hi,tδ | ≤ δi for each i, in any subsequent period t ≥ tδ. That, is

the protocol stops when no dealer wants to significantly revise her message in the evening

after receiving information in the morning.

Importantly, there exists a rule that maps messages into prices and quantities for each

pair of dealers that have a link in the network g, and this rule is common knowledge for

all dealers. When the protocol stops, trading takes place at the prices determined by

this rules,and quantities are allocated accordingly. No transactions take place before the

protocol stops.

Suppose that there exists an equilibrium in the one-shot OTC game. Let dealers use

their equilibrium strategy in the conditional guessing game to update each evening the

messages they send based on the messages they receive in the morning, such that

hi,t = ȳisi + z̄Tgihgi,t−1, ∀i

where hgi,t = (hj,t)j∈gi , and ȳi and z̄ij have been characterized, for any i and j ∈ gi, in
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Proposition 1. Further, consider a rule based on (12) that determines the price between a

pair of agents ij that have a link in the network g as follows

pij,t =
(2− zji)
4− zijzji

hi,t +
(2− zij)
4− zijzji

hj,t,

where the relationship between zij and z̄ij has been characterized in Proposition 2. Given

the prices, the quantity that agent i would receive in the transaction with j is qji,t(si,pgi,t),

where the the function has been characterized in Corollary 1. As before, agents seek to

maximize their expected utility, given their private signal, and the messages they observe.

Proposition 6 Let ht = (hi,t)i∈{1,2,...,n} be the vector of messages sent at time t, and

µ = (µi)i∈{1,2,...,n} be a vector of IID N(0, σ2µ) random normal variables. Suppose that

ρ < 1. Then

1. If ht =
(
I − Z̄

)−1
Ȳ s, then ht+1 =

(
I − Z̄

)−1
Ȳ s, for any t.

2. If ht0 =
(
I − Z̄

)−1
Ȳ (s + µ), then there exists a vector of arbitrarily small scalars

δ = (δi)i∈{1,2,...,n} such that trading takes place in period tδ and

∣∣∣htδ − (I − Z̄)−1 Ȳ s
∣∣∣ < 1

2
δ.

3. If ht0 =
(
I − Z̄

)−1
Ȳ (s + µ), then there exists a vector of arbitrarily small scalars

δ = (δi)i∈{1,2,...,n} such that trading takes place in period tδ and

|E (θi|si,hgi,t0 ,hgi,t0+1, ...,hgi,tδ)− E (θi|si,pgi)| <
1

2
δ,

where pgi are the equilibrium prices in the one-short OTC game.

Thus, this dynamic protocol leads to the same traded prices and quantities, indepen-

dently from which vector of messages we start the protocol at. Interestingly, even if this

updating rule is not necessarily optimal in every round when it is used, we show that

ex-post, when transactions occur, dealers could not do better.
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6 Discussion

In this section, we illustrate the properties of the OTC game with some simple examples.

In the first part, we compare the outcome of the game when it is played in variants of the

circulant network or when it is played in a star network.8 Then, in the second part, we

highlight the insights our set-up provides about OTC markets in periods of distress.

6.1 Example

In this part, we compare trading and information diffusion in the two simplest possible

examples of networks. In particular, we compare the equilibrium when seven dealers with

the same realizations of signals trade in a (7,2)-circulant network (i.e. a circle) versus in

a 7-star. We use Figure 5 and Table 1 to illustrate the analysis.

In this example, the realization of the value of each of the 7 dealers is θi = 0, but they

receive the signals

si = i− 4.

That is, their signals are ordered as their index is, dealer seven is the most optimistic, dealer

1 is the most pessimistic and dealer 4 is just right. To visualize this, in Figure 5 nodes

corresponding to pessimist (optimist) dealers are blue (red). For illustrative purposes, we

placed pessimists and optimists on nodes in a way that sometimes dealers with very large

informational differences trade. The price, pij of each transaction is in the rhombi on the

link. The quantities traded by each of the counterparties, qjj , q
i
j and the corresponding

profits a given trader makes on the given transaction are in the rectangles near the links.

Profits are in brackets. Each number is rounded to the nearest decimal.

For example, when dealers 6 and 3 trade in a circle network, dealer 6 takes the long

position of q36 = 2.3 at price p36 = 0.1 leading to the loss of

q36 (θ6 − p36) = (0− 0.1) (2.3) ≈ −0.2

8Note, that Proposition gives a simple numerical procedure finding the equilibrium for any network
very fast. (The code is available on request and will be posted on authors’websites soon.) We use this
simple examples, not because of computational contraints, but to keep the discussion as intuitive as we
can.
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Figure 5: The two graphs illustrate the equlibrium of the OTC game in a (7, 2) circulant
network (panel (a)) and in a 7−star network (panel (b)). In each case, θi = 0 for each
dealer and si = i − 4, thus blue (red) nodes denote pessimist (optimist) dealers. Values
in the rhombi on each edge are equilbrium prices. The quanty qij and the corresponding
profit earned (in brackets) by a given dealer in a given trade are in the rectangles. Other
parameter values are ρ = 0.5, σ2θ = σ2ε = 1, βij = −10.
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si E (θi|si,pgi) 1Tqi 1T |qi| 1Tqi (θi − pgi)
Dealer circle star circle star circle star circle star

3 −1 −0.5 −0.3 −1.3 −5.4 2.9 12.7 0.8 4

1 −3 −1.2 −1.3 −4.3 −3.4 4.3 3.4 −2.7 −2.5

4 0 −0.1 −0.1 0.1 0.4 3.3 0.4 1.6 0.1

7 3 1 1.1 4.8 4.3 4.8 4.3 −1.5 −1.4

2 −2 −0.4 −0.9 −3.7 −2.1 3.7 2.1 0.6 −1.2

5 1 0.5 0.3 1.4 1.7 1.6 1.7 0 0

6 2 0.7 0.7 3.1 3 3.1 3 −0.6 −0.5

Table 1: The table summarizes the signal, the expectation, the net position, the gross
position and the total profit if each dealer in the two cases when they arranged into a
(7,2)-circle network and a 7-star network.

While dealer 3 takes the short position of q13 = 0.8 at the same price leading to a profit of

0.6.

In Table 1, we summarize the signal, the expectation, the net position, the gross

position and the total profit if each dealer. Looking at the Figure 5 and Table 1, we can

make several intuitive observations.

First, while in most transactions one of the counterparties gain and the other loose,

the profits and quantities do not add up to zero. It is because the excess demand or supply

is the quantity βijpij bought by the consumers.

Second, when a dealer has counterparties both whom are more and less optimistic

than her, this dealer will intermediate trades between them. That is, the size of her gross

positions will be larger than the size of her net positions. This is the case of dealer 3, 4 and

5 in the circle network. In the star network, dealer 3 is in an ideal position to intermediate

trades. This is explains her enormous gross position compared to others in that network.

Third, the profits dealer make, apart from the accuracy of their information, depends

heavily on their position in the network. For example, dealer 4 is very lucky in the circle

network not only, because her information is accurate, but also because she turns out to

be connected with two dealers of extreme opinion. So she can take both a large long and

a large short position of almost equal sizes and make a large profit on both. That explains

why she makes the largest profit in the circle network. However, in the star network her

profit is much smaller than the profit of the central dealer 3, even if the guess of dealer 3
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is less accurate.

Forth, the after-trade expectation of each dealer depends both on the shape of the

network and her position in it. That is apparent in Table 1 by comparing E (θi|si,pgi)

across networks. In general, the extent of adjustment of their post trade expectations

compared to their pre-trade expectations depends on the degree of pessimism and optimism

of their counterparties and also on how much their counterparties know. For example,

dealer 6 arrives to the same expectation in the two networks because the effect of learning

from more agents in the circle network is offset by the effect of learning from the better

informed dealer 3 in the star network.

6.2 Comparative statics

In this part, we focus on two comparative statics exercises. The scope of the first exercise

is to see whether we can use our framework to study different channels that drive changes

in volume or price dispersion. For this, as an illustration, we contrast the effect of the

information uncertainty, σ2ε, and the effect of the correlation across values, ρ. With our

second exercise we aim to gain insights on how much the performance of OTC markets

deteriorates under market stress. For this, we look at the effect of breaking a single link

in the network.

6.2.1 Value interdependence and information uncertainty

First, we asses in parallel the effect of information uncertainty, as captured by changes

in σ2ε, and the effect of heterogeneity in dealers’values, as captured by changes in ρ. In

our framework, the correlation between values, ρ, plays a dual role. On the one hand, it

captures the extent of gains from trade, and, consequently the level of adverse selection

in the OTC market. On the other hand, it captures how relevant a dealer finds the

information of others for estimating her valuation. In other words, the higher ρ is the more

dealers learn about fundamentals by trading. Thus, dealers have improved information

if either the precision of information is high (σ2ε is low), or they are able to infer from

trading the signals of other when ρ is high.

Figure 6 compares the expected dispersion in prices (measured as E
(∑

ij∈g(pij−paverage)
2

(mn/2)

)
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in the upper panels) and the fraction of information revealed through trading (mea-

sured as
V(θi|si,pgi)
V(θi|s) in the bottom panels) for the circulant network family (dotted lines,

thicker lines correspond to larger m values) for various levels of ρ (left two panels) and σ2ε

(right two panels). Other parameters are n = 11, σ2ε = σ2θ = 1 for the comparative statics

on ρ, and n = 11, σ2θ = 1, ρ = 0.5 for the comparative statics on σ2ε.

When ρ is very low, a dealer finds that the signals of other dealers are not very

informative for her own value. Therefore, a dealer relies mostly on her signal to estimate

her value, which increases price dispersion. As ρ increases, our measure of the fraction of

information revealed through trading declines initially, indicating that the rate at which

information becomes relevant for dealers is lower than the rate at which prices reveal

information. However, when the correlation across values is close to 1, prices are fully

revealing and price dispersion goes down. This is in line with the result from Proposition

5. Both effects are larger for less dense networks as our comparison across circulant

networks shows.

As the information uncertainty increases, our measures for price dispersion and for

information revelation move in the same direction as when ρ decreases. This seems counter-

intuitive. However, as σ2ε increases, the signals become so noisy that even access to all the

information in the economy does not reduce the uncertainty about θi for any dealer i. In

other words, V(θi|s) converges to σ2θ. Prices in this economy are equally uninformative,

which explains why fraction of information revealed through trading goes up. At the

same time, when σ2ε is small, the information that a dealer has is very precise and will

have a higher weight in her belief relative to the other dealers’signals. In this case, price

dispersion is high. As, σ2ε increases and agents no longer find the signals useful, price

dispersions goes down.

Finally, we check how the total expected profit and expected intermediation changes

with the level of correlation across values in networks with different shape and density. The

bottom panels in Figure 7 show expected total profit in the (11,m)-circulant networks as

ρ changes (right panel) and as σ2ε increases (left panel).
9 Expected profits tend to decrease

9We keep the sum ΣiΣgiβij constant. Intuitively, this is equivalent of dividing a constant mass of
consumers across the various links in different networks. We do this to make sure that it is not the
increasing number of consumers drive the results.
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with the correlation across values, and when the information uncertainty is higher.

The reason is that as correlation decreases (the information uncertainty increases), agents

are less (more) worried about adverse selection and trade more (less) aggressively. This

enforces the intuition of section 6.1 that intermediating trades is extremely profitable. To

see this point better, the top panels show the expected intermediation, that is, the ratio

of absolute net positions to total gross positions,

E


∣∣∣∑j∈gi q

j
i

∣∣∣∑
j∈gi

∣∣∣qji ∣∣∣
 ,

for each of these networks. The smaller is this measure, the larger is the intermediation

level. As we see, intermediation increases in m in the (n,m) circulants. The reason is

that even in the complete network prices for each transaction are different, and as agents

are better informed, they take larger positions. Intermediation levels are relatively high

for intermediate level of ρ. However, intermediation decreases as σ2ε increases, which is

consistent with the drop in trading activity during the financial crisis.

6.2.2 Breaking a link

In our second exercise, we asses how information revelation changes when a single link is

broken. To keep the exercise simple, we take the example of an 11-circle and brake the

link between the first and the last agent. Thus, the circle becomes a line.

Figure 8 shows the fraction each agent learns after the brake compared to the amount

they learned before the break. That is, our measure is

V (θi|si,pgi) |line
V (θi|si,pgi) |circle

.

Consistently to Proposition 5 there is almost no effect when ρ is close to 1. In this case,

dealers learn it all independently of the shape of the network. However, when ρ is at an

intermediate level, the effect of the break is large. Furthermore the effect is much smaller

for those who are far from the break-point. Under our interpretation of ρ, this suggests

that OTC markets are much more resilient in normal times than in bad times.
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Figure 8: The plot shows the proportion of information revealed in a line-network com-
pared to the corresponding circle network for each agent i, and various correlations across
agent signals, ρ. Parameter values are σ2θ = σ2ε = 1 and n = 7.

7 Conclusion

In this paper we present a model of strategic information diffusion in over-the-counter

markets. In our set-up a dealer can trade any quantity of the asset she finds desirable,

and understands that her trade may affect transaction prices. Moreover, she can decide to

buy a certain quantity at a given price from one counterparty and sell a different quantity

at a different price to another.

We show that the equilibrium price in each transaction partially aggregates the private

information of all agents in the economy. In this economy, prices reveal as much informa-

tion as the structure of trading links allows it. The informational effi ciency of prices is

the highest in networks where each agent trades with every other agent, or in the common

value limit, regardless of the network structure.
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A Appendix

Throughout several of the following proofs we often decompose θi into a common value

component, θ̂, and a private value component, ηi, such that

θi = θ̂ + ηi

and

si = θ̂ + ηi + εi

with θ̂ ∼ N(0, σ2
θ̂
), ηi ∼ IID N(0, σ2η) and V

(
ηi, ηj

)
= 0. This implies that

(1− ρ)σ2θ = σ2η

Further, we generalize the notation V to be the variance-covariance operator applied

to vectors of random variables. For instance, V(x) represents that variance-covariance

matrix of vector x, and V(x,y) represents the covariance matrix between vector x and y.

Lemma 2 Consider the jointly normally distributed variables (θi, s). Let an arbitrary

weighting vector ω > 0. Consider the coeffi cient of si in the projection of E (θ|si). Adding

ωT s as a conditioning variable, additional to si, decreases the coeffi cient of si, that is,

∂E
(
θi|si,ωT s

)
∂si

<
∂E (θi|si)

∂si

Proof. From the projection theorem

E
(
θi|si,ωT s

)
= E (θi|si) +

V
(
θi,ω

T s|si
)

V (ωT s|si)
(
ωT s− E

(
ωT s|si

))
consequently

∂E
(
θi|si,ωT s

)
∂si

=
∂E (θi|si)

∂si
−
V
(
θi,ω

T s|si
)

V (ωT s|si)
V
(
si,ω

T s
)

V (si)
.

Thus, it is suffi cient to show that V
(
ωT s, si

)
> 0 and V

(
θi,ω

T s|si
)
> 0. For the former,
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we know that

V
(
ωT s, si

)
= ωi

(
σ2ε + (1− ρ)σ2θ

)
+ ρσ2θω

T1 > 0

Then, we use the projection theorem to show that

V
(
θi,ω

T s|si
)

=

 σ2θ σ2θω
T1

σ2θω
T1 V

(
ωT s

)


− 1

σ2θ + σ2ε

 σ2θ(
ωi
(
σ2ε + (1− ρ)σ2θ

)
+ ρσ2θω

T1
)
( σ2θ

(
ωi
(
σ2ε + (1− ρ)σ2θ

)
+ ρσ2θω

T1
) )

implying that

V
(
θi,ω

T s|si
)

= σ2θω
T1−

(
ωi
(
σ2ε + (1− ρ)σ2θ

)
+ ρσ2θω

T1
)
σ2θ

σ2θ + σ2ε
= σ2θ

σ2ε + (1− ρ)σ2θ
σ2θ + σ2ε

(
ωT1− ωi

)
> 0.

Lemma 3 Take the jointly normally distributed system

 θ̂

x

 where x = θ̂1 + ε′ + ε′′,

with the following properties

• E

 θ̂

x

 = 0, V
(
θ̂, ε′

)
= 0 and V

(
θ̂, ε′′

)
= 0;

• V (ε′) is diagonal, and V (x) ≥ V
(
θ̂1 + ε′

)
.

Then the vector ω defined by

E
(
θ̂|x
)

= ωTx

has the properties that ωT1 <1 and ω ∈ (0, 1)n .

Proof. By the projection theorem, we have that

ωT = V
(
θ̂,x
)

(V (x))−1 .
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Then

V
(
θ̂,x
)

(V (x))−1≤V
(
θ̂, θ̂1 + ε′ + ε′′

)(
V
(
θ̂1 + ε′

))−1
= V

(
θ̂, θ̂1

)(
V
(
θ̂1 + ε′

))−1
.

The inequality comes from the fact that both V (x) and V
(
θ̂1 + ε̂

)
are positive definite

matrixes and that V (x) ≥ V
(
θ̂1 + ε̂

)
. (See Horn and Johnson (1985), Corollary 7.7.4(a)).

Since

V
(
θ̂, θ̂1

)(
V
(
θ̂1 + ε′

))−1
1 = 1−

1
σ2
θ̂

1
V(ε′)1+ 1

σ2
θ̂

< 1,

then

ωT1 <1

which implies that

ω ∈ (0, 1)n .

Lemma 4 For any network g, define a mapping F : Rn×n → Rn×n as follows. Let V be

an n× n matrix with columns vj and

ej= vTj s

for each j = 1, ...n. The mapping F (V) is given by


E (θ1|s1, eg1)

E (θ2|s2, eg2)

...

E (θn|sn, egn)

 = F (V) s.

Then, the mapping F is a continuos self-map on the space [0, 1]n×n .

Proof. Let

v0j =
(
v0j1 v0j2 ... v0jn

)T
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and consider that

ej =
(
v0j
)T

s

=
(
v0j
)T (

θ̂1 + ε+ η
)

where

η =
(
η1 η2 ... ηn

)T
and

ε =
(
ε1 ε2 ... εn

)T
Let

êj =
ej(

v0j

)T
1

= θ̂ +

 v0j(
v0j

)T
1


T

(ε+ η)

and

êgi = (êj)j∈gi

To prove the result, we apply Lemma 3 for each E (θi|si, egi). In particular, for each

i, we construct a vector ε′gi with the first element (εi + ηi) and the j-th element equal to
v0jj

(v0j)
′
1

(
εj + ηj

)
with j ∈ gi, and a vector ε

′′
gi with the first element 0 and the j-th element

equal to
(

v0j

(v0j)
T
1

)T (
ε+ η−

(
εj + ηj

)
1j
)
with j ∈ gi (1j is a column vector of 0 and 1 at

position j). Then, we have that

 si

êgi

 = θ̂1T+ε′gi + ε
′′
gi

Below, we show that the conditions in Lemma 3 apply.

First, by construction, ε′gi has a diagonal variance-covariance matrix. Next, we also
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show that V

 si

êgi

 ≥ V (θ̂1T+ε′gi

)
element by element. Indeed

V (êj) = σ2
θ̂

+

 v0jj(
v0j

)T
1


2 (
σ2ε + σ2η

)
+

 v0j(
v0j

)T
1


T

V
(
ε+ η−

(
εj + ηj

)
1j
) v0j(

v0j

)T
1


T

+
v0jj(

v0j

)T
1

 v0j(
v0j

)T
1


T

V
((
εj + ηj

)
,
(
ε+ η−

(
εj + ηj

)
1j
))

and

V (êj , êk) = σ2
θ̂

+
v0kk(

v0k
)T

1

 v0j(
v0j

)T
1


T

V
(
(εk + ηk) ,

(
ε+ η−

(
εj + ηj

)
1j
))

+
v0jj(

v0j

)T
1

(
v0k(

v0k
)T

1

)T
V
((
εj + ηj

)
, (ε+ η− (εk + ηk) 1j)

)

+

 v0j(
v0j

)T
1


T

V
((
ε+ η−

(
εj + ηj

)
1j
)
, (ε+ η− (εk + ηk) 1j)

)( v0k(
v0k
)T

1

)
,

which implies that

V (êj) > σ2
θ̂

+

 v0jj(
v0j

)T
1


2 (
σ2ε + σ2η

)
(17)

and

V (êj , êk) > σ2
θ̂
. (18)

This is because

V
((
εj + ηj

)
,
(
ε+ η−

(
εj + ηj

)
1j
))

= 0

and

V
(
ηi, ηj

)
= 0 and V (εi, εj) = 0 ∀i, j.
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Moreover,

V (si, êj) = σ2
θ̂

+
v0ji(

v0j

)T
1

(
σ2ε + σ2η

)
> σ2

θ̂
. (19)

From (17), (18), and (19), it follows that V

 si

êgi

 ≥ V (θ̂1T+ε′gi

)
. Then, for

each i there exists a vector ωgi = (ωij)
T
j∈{i∪gi}with the properties that ω

′
gi1 < 1 and

ωgi∈ (0, 1)mi+1, such that

E
(
θ̂|si, êgi

)
= ωTgi

 si

êgi

 .

It is immediate that

E (θi|si, egi) = E (θi|si, êgi) = E
(
θ̂|si, êgi

)
+ E (ηi|si)

where

E (ηi|si) =
σ2η

σ2
θ̂

+ σ2η + σ2ε
si.

Then, from Lemma 2,

vii = ωii +
∑
k∈gi

ωik
v0ki(

v0k
)T

1
+

σ2η
σ2
θ̂

+ σ2η + σ2ε
=
∂E (θi|si, egi)

∂si
<
∂E (θi|si)

∂si
< 1 (20)

and

vij =
∑
k∈gi

ωik
v0kj(

v0k
)T

1
<
∑
k∈gi

ωik < 1, ∀j ∈ gi. (21)

Thus far, we have used only that v0ij ≥ 0 (and not that v0ij ∈ [0, 1]). This implies that

if v0ij ≥ 0, then vij ∈ [0, 1]. Then it must be true also that ∀v0ij ∈ [0, 1], then vij ∈ [0, 1].

This concludes the proof.
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Proof of Proposition 1.

An equilibrium exists if there exists a matrix V such that

V s =
(
Ȳ + Z̄V

)
s,

and there exist matrices Ȳ and Z̄ such that

F (V ) s =
(
Ȳ + Z̄V

)
s,

where F (·) is the mapping introduced in Lemma 4. The first condition insures that

e = V s

is a fixed point in (6), and the second condition insures that first order conditions (7) are

satisfied.

We construct an equilibrium for ρ < 1 and for ρ = 1 as follows.

Case 1: ρ < 1

By Brower’s fixed point theorem, the mapping F (·) admits a fixed point on [0, 1]n×n.

Let V ∗ ∈ [0, 1]n×n be a matrix such that

F (V ∗) = V ∗.

Let Ȳ be a diagonal matrix with elements

ȳi = ωii +
σ2η

σ2
θ̂

+ σ2η + σ2ε

and let Z̄ have elements

z̄ij=


ωij

(v∗j )
T
1
, if ij ∈ g

0, otherwise

where ωii and ωij have been introduced the proof above. Both matrices Ȳ ≥ 0 and Z̄ ≥ 0.
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Substituting V ∗ in (20) and (21), it follows that

V ∗ = Ȳ + Z̄V ∗,

and since F (V ∗) = V ∗, then

F (V ∗) = Ȳ + Z̄V ∗.

Next we show properties 1-3.

1. From (20) it also follows that

ȳi <
∂E (θi|si, egi)

∂si
< 1.

Moreover, as ρ < 1, then σ2η > 0, which implies that ȳi > 0. It follows that Ȳ is

invertible.

2. We first show that matrix V ∗ is nonsingular. For this we construct a matrix W ∗ =

Ȳ −1
(
I − Z̄

)
and show that W ∗V ∗ = I. Indeed, the element on the position (i, i) on

the diagonal of W ∗V ∗ is equal to

1

ȳi

v∗ii −∑
k∈gi

z̄ikv
∗
ki

 =
1

ȳi

ωii +
∑
k∈gi

ωik
v∗ki(

v∗k
)T

1
+

σ2η
σ2
θ̂

+ σ2η + σ2ε
−
∑
k∈gi

ωik(
v∗k
)T

1
v∗ki


=

1

ȳi

(
ωii +

σ2η
σ2
θ̂

+ σ2η + σ2ε

)
= 1

while the element on the position (i, j) off the diagonal of W ∗V ∗ is equal to

1

ȳi

v∗ij −∑
k∈gi

z̄ikv
∗
kj

 =
1

ȳi

∑
k∈gi

ωik
v∗kj(

v∗k
)T

1
−
∑
k∈gi

ωik(
v∗k
)T

1
v∗kj

 = 0

where we used again the fact that V ∗ is a fixed point in (20) and (21).
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Since V ∗ is nonsingular, then
(
I − Z̄

)
is also nonsingular as

(
I − Z̄

)
= Ȳ (V ∗)−1 .

Given that Z̄ ≥ 0 this implies, as shown in Meyer (2000), that the largest eigenvalue

of Z̄ is strictly smaller than 1. This is a useful result, as it is suffi cient to show that

lim
n→∞

Z̄n = 0n×n

and that (
I − Z̄

)−1
=

∞∑
n=1

Z̄n.

(For both claims see Meyer (2000) pp. 620 & 618.)

3. The equilibrium outcome guess vector is, by construction

e = V ∗s

which implies that

e =
(
I − Z̄

)−1
Ȳ .

Case 2: ρ = 1

Let Ȳ = 0 and Z̄ have elements z̄ij if ij ∈ g, and 0 otherwise, with
∑
j∈gi

z̄ij = 1. Let

V ∗ be a matrix with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

for any i and j.

It is straightforward to see that

V ∗ = Z̄V ∗.

Next we show that

F (V ∗) = V ∗.
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Next, we show that the matrix V ∗ with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

for any i and j satisfies

F (V ∗) = V ∗.

By definition, matrix V ∗ with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

is a fixed point of the mapping F (·), if

ei = v∗
n∑
i=1

sj , ∀i ∈ {1, 2, ..., n}

then

E (θi|si, egi) = v∗
n∑
j=1

sj , ∀i ∈ {1, 2, ..., n} .

As ρ = 1, then θi = θ̂ for any i and

E (θi|si, egi) = E

(
θ̂|v∗

n∑
i=1

si

)

=
1

v∗
σ2
θ̂

nσ2
θ̂

+ σ2ε
v∗

n∑
i=1

si

= v∗
n∑
i=1

si.

It follows that

F (V ∗) = Z̄V ∗.

This concludes the proof.

Proof of Lemma1. Taking into account that agents’beliefs have an affi ne structure as

in (11) and identifying coeffi cients in (10) we obtain that

bji = −
(
ciji + βij

)
yi

cjij = −
(
ciji + βij

)
(zij − 1)

cjik = −
(
ciji + βij

)
zik

46



for any i and j ∈ gi. Therefore, for any pair ij that has a link in the network g, the

following two equations must hold at the same time

cjij = −
(
ciji + βij

)
(zij − 1)

ciji = −
(
cjij + βij

)
(zji − 1) .

which implies that

cjij =
(zij − 1) (zji − 2)

zij + zji − zijzji
βij

ciji =
(zji − 1) (zij − 2)

zij + zji − zijzji
βij .

A simple manipulations shows that

ciji + βij =
2− zji

zij + zji − zijzji
βij

and (
ciji + βij

)
ciji + cjij + 3βij

=
2− zji

4− zijzji
.

The latter relationship we have used in the proof of Proposition 2.

Proof of Proposition 2. We will show that given an equilibrium of the conditional-

guessing game and the conditions of the proposition, we can always construct an equilib-

rium for the OTC game where beliefs are the same, in particular,

E(θi |si,pgi ) = E(θi |si, egi ).

To see this, suppose that

ei = E(θi |si, egi ) = vis

for each i is the linear combination of signals which gives the equilibrium guess in the

47



conditional-guessing game. Then

E(θi |si, egi ) = ȳisi +
∑
k∈gi

z̄ikE(θk |sk, egk )

for every i. If the system (15) has a solution, then

E(θi |si, egi ) =
yi(

1−
∑
k∈gi

zik
2−zki
4−zikzki

)si +
∑
k∈gi

zij

2−zij
4−zijzji(

1−
∑
k∈gi

zik
2−zki
4−zikzki

)E(θk |sk, egk )

(22)

holds for every realization of the signals, and for each i. Using that from Lemma 1

2− zki
4− zikzki

=

(
ciki + βik

)
ciki + ckik + 3βik

,

we can rewrite (22) as

E(θi |si, egi ) = yisi +
∑
k∈gi

zik

(
ciki + βik

)
E(θi |si, egi ) +

(
ckik + βik

)
E(θk |sk, egk )

ciki + ckik + 3βik
.

Now we show that picking the prices and demand functions

pij =

(
ciki + βik

)
E(θi |si, egi ) +

(
ckik + βik

)
E(θk |sk, egk )

ciki + ckik + 3βik
(23)

Qji (si; pgi) = −
(
ciji + βij

)
(E(θi |si, egi )− pij) (24)

is an equilibrium of the OTC game.

First note that this choice implies

E(θi |si, egi ) = yisi +
∑
k∈gi

zikpij = E(θi |si,pgi ). (25)

The second equality comes from the fact that the first equality holds for any realization

of signals and the projection theorem determines a unique linear combination with this

property for a given set of jointly normally distributed variables. Thus, (24) for each

ij link is equivalent with the corresponding first order condition (10). Finally, (25) also
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implies that the bilateral clearing condition between a dealer i and dealer j that have a

link in network g

−
(
ciji + βij

)
(E(θi |si,pgi )− pij)−

(
cjij + βij

) (
E(θj

∣∣sj ,pgj )− pij
)

+ βijpij = 0

is equivalent to (23). That concludes the statement.

Proof of Corollary 1.

Case 1: Circulant networks

In circulant networks, we search for equilibria such that beliefs are symmetric, that is

zij = zji

for any pair ij that has a link in network g. The system (15) becomes

yi(
1−

∑
k∈gi

zik
2−zik
4−z2ik

) = ȳi

zij

2−zij
4−z2ij(

1−
∑
k∈gi

zik
2−zik
4−z2ik

) = z̄ij

for any i ∈ {1, 2, ..., n}. Working out the equation for zij , we obtain

zij
2 + zij

= z̄ij

1−
∑
k∈gi

zik
2 + zik


and summing up for all j ∈ gi

∑
j∈gi

zij
2 + zij

=
∑
j∈gi

z̄ij

1−
∑
k∈gi

zik
2 + zik

 .
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Denote

Si ≡
∑
k∈gi

zik
2 + zik

.

Substituting above and summing again for j ∈ gi

Si

1 +
∑
j∈gi

z̄ij

 =
∑
j∈gi

z̄ij

or

Si =

∑
j∈gi

z̄ij(
1 +

∑
j∈gi

z̄ij

) .
We can now obtain

zij =
2z̄ij (1− Si)

1− z̄ij (1− Si)

and

yi = ȳi (1− Si) .

Case 2: Core-periphery networks

There exist at least one equilibrium of the conditional guessing game such that for all

i, j in the core

z̄ij = z̄ji = z̄c (26)

and for all player i in the periphery

z̄ij = z̄p

z̄ji = z̄cp (27)
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Then the system (15) becomes

yc

1− (r − 1)zc
2−zc
4−z2c

− n−r
r zcp

2−zp
4−zcpzp

= ȳc (28)

zc

2−zc
4−z2c

1− (r − 1)zc
2−zc
4−z2c

− n−r
r zcp

2−zp
4−zcpzp

= z̄c (29)

zcp

2−zcp
4−zczcp

1− (r − 1)zc
2−zc
4−z2c

− n−r
r zcp

2−zp
4−zcpzp

= z̄cp (30)

for agents in the core and

yp

1− zp 2−zcp
4−zpzcp

= ȳp (31)

zp

2−zp
4−zpzcp

1− zp 2−zcp
4−zpzcp

= z̄p (32)

for agents in the periphery.

From equation (32) it is easy to see that

zp = 2z̄p (33)

Substituting this back to the equations (29) and (30) we get

zc
2− zc
4− z2c

= z̄c

(
1− (r − 1)zc

2− zc
4− z2c

− n− r
r

zcp
2− 2z̄p

4− 2zcpz̄p

)
(34)

zcp
2− zcp

4− 2zcpz̄p
= z̄cp

(
1− (r − 1)zc

2− zc
4− z2c

− n− r
r

zcp
2− 2z̄p

4− 2zcpz̄p

)
(35)

From (34)

zc
2− zc
4− z2c

=
z̄c(4− 2zcpz̄p)− n−r

r zcpz̄c(2− 2z̄p)

(1 + (r − 1)z̄c)(4− 2zcpz̄p)
(36)

Substituting this back to (35) one gets

(1 + (r − 1)z̄c)z
2
cp +

(
z̄cp(2z̄p − 2)

n− r
r
− 2− 2z̄pz̄cp − 2(r − 1)z̄c

)
zcp + 4z̄cp = 0 (37)

what has got real solution if the discriminant is non-negative for any z̄p, z̄c, z̄cp ∈ [0, 1], so
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when

(
z̄cp(2z̄p − 2)

n− r
r
− 2− 2z̄pz̄cp − 2(r − 1)z̄c

)2
− 16z̄cp − 16(r − 1)z̄pz̄cp ≥ 0 (38)

Note that for r = 1 this is the discriminant of the n-star case. This discriminant is

decreasing in z̄p if z̄p ∈ [0, 1] and non-negative for z̄p = 1 therefore the equation has real

solution.

Then substituting the solution zcp back to (36) is linear in zc and after the solutions

for (28) and (31) follow immediately.

Proof of Proposition 4. Suppose network g is connected. This implies that between

any two agents i and j, there exists a sequence of dealers {i1, i2, ..., ir} such that ii1 ∈ g,

ikik+1 ∈ g, and irj ∈ g for any k ∈ {1, 2, ..., r}. The sequence {i1, i2, ..., ir} forms a path

between i and j. The length of this path, r, represents the distance between i and j.

Suppose that an equilibrium exists. From Proposition 1 we know that in equilibrium

e =
(
I − Z̄

)−1
Ȳ s.

and from Proposition 1 we know that

(
I − Z̄

)−1
Ȳ = V ∗.

Suppose that there exists an equilibrium

v∗ij = 0

for some i and j at distance r from each other. Then from (21) if follows that

∑
k∈gi

ωik
v∗kj(

v∗k
)T

1
= 0,
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and, since ωik > 0 for ∀i, k ∈ {1, 2, ..., n}, then it must be that

v∗kj = 0, ∀k ∈ gi.

This means that all the neighbors of agent i place 0 weight on j’s information. Further,

this implies ∑
l∈gk

ωil
v∗lj(

v∗l
)T

1
= 0,

and

v∗lj = 0, ∀l ∈ gk.

Hence, all the neighbors and the neighbors of the neighbors of agent i place 0 weight on j’s

information. We can iterate the argument for r steps, and show that it must be that any

agent at distance at most r from i places 0 weight on j’s information. Since the distance

between i and j is r, then

v∗jj = 0,

which is a contradiction, since (20) must hold and ρ < 1 (σ2η > 0). This concludes the

proof.

Proof of Proposition 5.

As ρ→ 1, we show that there exists an equilibrium such that

lim
ρ→1

E (θi|si,pgi) = v∗
n∑
i=1

si, ∀i ∈ {1, 2, ..., n}

where v∗ =
σ2θ

nσ2θ+σ
2
ε
.

If there exists an equilibrium in the OTC game, then it follows from the proof of

Proposition 1 that

E(θi |si,pgi ) = ȳisi +
∑
k∈gi

z̄ikE(θk |sk,pgk ).

or

E(θi |si, egi ) = ȳisi +
∑
k∈gi

z̄ikE(θk |sk, egk ).
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Taking the limit as ρ→ 1, and using Lemma 5, we have that

lim
ρ→1

E (θi|si,pgi) =
σ2θ

nσ2θ + σ2ε

n∑
i=1

si.

Given that

lim
ρ→1

E (θi|si,pgi)

The conditional variance is

V (θi|si,pgi) = σ2θ − V (E (θi|si,pgi))

and taking the limit ρ→ 1, we obtain

lim
ρ→1
V (θi|si,pgi) = σ2θ −

(
σ2θ

nσ2θ + σ2ε

)2
n
(
σ2ε + nσ2θ

)
.

and

lim
ρ→1
V (θi|s) = σ2θ − V

(
E
(
θ̂|s
))

= σ2θ −
(

σ2θ
nσ2θ + σ2ε

)2
n
(
σ2ε + nσ2θ

)
= σ2θ

σ2ε
nσ2θ + σ2ε

Proof of Proposition 6.

Dealers revise their messages according to the rule that

hi,t = ȳisi + z̄Tgihgi,t−1, ∀i.

or, in matrix form

ht+1 = Ȳ s + Z̄ht.
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1. Since ht0 =
(
I − Z̄

)−1
Ȳ s, then

ht0+1 = Ȳ s + Z̄ht0

= Ȳ s + Z̄
(
I − Z̄

)−1
Ȳ s

= Ȳ s +
(
I −

(
I − Z̄

)) (
I − Z̄

)−1
Ȳ s

= Ȳ s +
(
I − Z̄

)−1
Ȳ s− Ȳ s

=
(
I − Z̄

)−1
Ȳ s

It follows straightforwardly, from an inductively argument that

ht =
(
I − Z̄

)−1
Ȳ s.

2. From

ht0+1 = Ȳ s + Z̄ht0

it follows that

ht0+n =
(
I + Z̄ + ...+ Z̄n−1

)
Ȳ s+Z̄nht0

In the limit as n→∞, from Proposition 1 we know that

lim
n→∞

ht0+n =
(
I − Z̄

)−1
Ȳ s.

This implies that for any vector γ ∈ Rn+, there exists an nγ such that

∣∣∣ht0+n − (I − Z̄)−1 Ȳ s
∣∣∣ < γ, ∀n ≥ nγ .

Fix an arbitrarily small vector γ. Then

−γ <
(
I − Z̄

)−1
Ȳ s− ht0+nγ < γ

and

−γ < ht0+n −
(
I − Z̄

)−1
Ȳ s < γ,∀n ≥ nγ .
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Adding up these two inequalities we have that

−2γ < ht0+n − ht0+nγ < 2γ,∀n ≥ nγ .

This shows that there exists δ = 2γ and tδ = t0 + nγ such that

|ht − htδ | < δ,∀t ≥ tδ.

which implies that the protocol stops at tδ.

3. We start by observing that

E (θi|si,hgi,t0 ,hgi,t0+1, ...,hgi,t0+n) = E (θi|si,hgi,t0+n) , ∀n ≥ 0.

Further, in the limit n→∞, we have that

lim
n→∞

ht0+n =
(
I − Z̄

)−1
Ȳ s = e,

and subsequently

lim
n→∞

hgi,t0+n = egi ,∀i.

Then

lim
n→∞

E (θi|si,hgi,t0+n) = E (θi|si, egi) = E (θi|si,pgi) .

As above, we can construct tδ such that protocol stops and show that

|E (θi|si,hgi,t0+n)− E (θi|si,pgi)| <
1

2
δ.
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