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Abstract

I study the dynamics of asset prices in an economy in which investors choose whether

to hold diversified or levered concentrated portfolios of risky assets. The latter are valu-

able, as they increase the productivity of the corresponding enterprises. I capture the

tradeoff between risk sharing and productivity gains by introducing what I call “active

capital”: people who participate in such investments are restricted in their outside op-

portunities but receive extra compensation. In equilibrium, active and standard capital

coexist. The willingness to provide active capital is mainly determined by risk consid-

erations. Therefore, the quantity of active capital fluctuates jointly with risk premia,

amplifying their variations. As a consequence, the price of volatility risk exposure can be

large and return volatility is mainly induced by fluctuations in future expected returns.

These results are particularly strong when fundamental volatility is low, because at such

time, a large number of concentrated owners are likely to exit their positions and sell off

their assets.
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1 Introduction

A number of economic activities can run more efficiently if some agents invest a signif-

icant fraction of their wealth in the enterprise. The benefits of such positions are one

of the reasons advanced for stock-based compensation of executives and for why en-

trepreneurs keep a large equity stake in their businesses. The gains from concentrated,

levered ownership can also come from investors outside the firm, typically financial

institutions, exerting direct control or monitoring insiders. Venture capitalists and

private equity funds exemplify this type of behavior, but one can also think of the

activity of investment banks and hedge funds. A common feature of many of these

financing activities is a pattern of cyclical behavior linked in particular to fluctuations

in asset prices. For instance, broker-dealers (Adrian, Moench and Shin 2010), buy-

out funds (Haddad, Loualiche and Plosser 2011) and venture capitalists (Gompers,

Kovner, Lerner and Scharfstein 2008) diminish their activities in periods of high risk

premium, as can be seen on Figure 1. The financial crisis of 2007-2009 is such an

episode: business creation dropped and many leveraged financial institutions largely

reduced of or ceased completely their activities1 as asset prices dropped across markets.

These facts suggest incentives to take on concentrated investment vary with changes

in asset prices. As large quantities of concentrated investment affect aggregate risk

sharing, these fluctuations could feed back into asset prices. This paper investigates

how the aggregate quantity of concentrated investment is determined jointly with as-

set prices. In particular, I study how various sources of fundamental fluctuations are

transmitted to asset prices in the presence of such a form of investment.

I present a dynamic general equilibrium model with a role for concentrated invest-

ment. Agents are allowed to pick what I call “active capital” as an alternative form

of asset ownership. Active investors constrain themselves to a concentrated risky po-

sition in a firm, which makes the firm more productive. I represent this activity by

a constraint on the portfolio shares in risky assets for active agents. This constraint

reproduces the high portfolio leverage typical of these investors and is close to the

optimal contract as a solution of a moral hazard problem.2 This framework allows me

1Between December 2007 and March 2009, the hedge fund industry equity went from $1975bil-

lion to $973billion according to the Barclay Hedge database. For broker-dealers, He, Khang and

Krishnamurthy (2010) estimate a change of trading assets from $2601billion to $1810billion using

balance sheets of three pure broker-dealers. Private equity activity was also largely impaired for an

extended period of time: the CityUK report on global private equity reports a drop of funds raised

from $480billion in 2007 to $140billion in 2009.
2See Holmstrom (1979) for the original derivation and Holmstrom and Tirole (1997) for a general
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Figure 1: Financial activity and expected returns
Expected excess returns are for the CRSP value-weighted portfolio and are predicted for the two years following the current date using

d-p and cay for the quarter immediately prior. Broker dealer leverage is the standardized logarithm of the leverage of broker-dealers

using L.127 of the Flow of Funds (correlation of −.65 with expected returns). Buyout activity is the standardized number of buyout of

public firms each quarter (correlation −.42 with expected returns). The shaded areas correspond to the NBER recessions.

to study the joint determination of the quantity of active capital and asset prices in a

variety of stochastic structures. I show the effects of active capital on asset prices and

the real economy crucially depend on the nature of fundamental risk in the economy.

Active capital affects asset prices through two channels: distorted risk-sharing and

deleveraging risk. The static effect of active capital is a distortion of the risk-sharing

arrangement in the economy. Active agents hold a disproportionate fraction of the

risky assets. Therefore, the passive agents bear less risk in equilibrium. Consequently,

they require a lower risk premium for the asset. This channel tells us risks that can

be borne by active agents will tend to have a lower price than those for which there

is no active ownership. Diverging from the standard perfect risk sharing is optimal

in this framework as it improves the productivity of firms. I show, however, that a

competitive market yields an excess amount of active capital. Taxing firms that use

this source of capital raises the welfare of all agents by improving risk sharing.

The second channel, deleveraging risk, is driven by the dependence of the quantity of

active capital on economic fundamentals. For instance, if fundamental risk increases,

the quantity of active capital decreases. We observe a deleveraging episode: some

equilibrium application.
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active investors switch back to passive investments. This switch requires selling assets

to reduce their excess risky portfolio holdings. Existing passive agents have to absorb

these assets arriving on the market, which tends to lower prices further than the direct

impact of the increase in risk. In this sense, active capital amplifies the fundamental

volatility risk. Ex ante, this effect will tend to increase the price of this risk. The

general finding is that shocks that affect the supply or demand of active capital are

amplified and become more costly.

The determination of the quantity of active capital is key to understanding char-

acteristics of these two effects. Equilibrium in the active capital market equates the

quantity of active capital firms demand with the number of investors willing to accept

this particular portfolio. Firms demand active owners because they increases cash flow.

They trade off these productivity gains with the extra cost of active capital. I assume

the gains per fraction of active capital are independent of the state of the economy.

Therefore, the demand curve for active capital is constant over time. On the other

hand, the supply of active capital is endogenously determined. Because all agents are

ex-ante identical, the extra returns paid to active capital must exactly compensate

active agents for the extra risk they bear. The required compensation (cost of active

capital) depends positively on risk aversion, the riskiness of the asset, and the size of

the deviation from the optimal portfolio. This result points at two shocks that shift

the amount of active capital: volatility and risk aversion shocks.

In general equilibrium, asset prices change with different levels of active capital.

Market clearing implies that with more active agents, passive agents hold a smaller

quantity of risky assets. For this condition to be consistent with optimization by

passive agents, the asset must be more expensive. Therefore, the portfolio of active

agents becomes more costly and they ask for more compensation for their activity. This

feedback of activity on risk sharing makes the supply of active capital an increasing

function of its price. Because deleveraging risk plays a role through variations in the

quantity and not the price of active capital, the effects are more dramatic when the

demand and supply are more elastic and when supply is more responsive to economic

conditions.

My analysis provides a framework for understanding a number of asset-pricing facts.

I show risk premia and the quantity of active capital are negatively related. This re-

lation is consistent with the findings of Adrian et al. (2010): they show the aggregate

risk premium covaries negatively with the balance sheet of financial intermediaries.

Similarly, Haddad et al. (2011) find fluctuations in buyout activity are strongly nega-

tively correlated with a dynamic measure of the equity risk premium. In my model,
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fluctuations in risk premium are a priced risk. Therefore, covariance with shocks to the

quantity of active capital, as a measure of exposure to this risk, should help rational-

ize the cross-section of expected return. Adrian, Etula and Muir (2011) confirm this

result: loadings on shocks to the leverage of broker-dealers explain the cross-section

of equity expected returns. The model also provides insights regarding the sources of

variation in prices. Since the “excess volatility puzzle” of Shiller (1981) and Campbell

and Shiller (1988), understanding the link between fundamental fluctuations and price

fluctuations has been problematic. I show changes in the quantity of active capital

amplify the impact of some shocks (i.e., volatility) on prices. For the price of risks, the

role of active capital can go in two directions: the prices of shocks that do not affect

its quantity are lower relative to the standard endowment economy, whereas those that

affect it can be larger. As cash-flow shocks fall in the first category, the model has the

potential to explain the relative lack of success of approaches using measures of cash-

flow risk to determine expected returns. Conversely, mild shocks to volatility can have

a large impact on prices and command a high risk price, as they generate variation in

the supply of active capital.

After discussing related work, section 2 presents a simple case of the model showing

how equilibrium in the active capital market is determined. I detail the general model

in section 3. Section 4 focuses on the pricing implications of the presence of active

capital in an economy with changes in uncertainty and growth prospects. Finally, I

discuss extensions of the model in section 5.

Related Literature

This paper fits in the literature studying the interaction of financing frictions and het-

erogeneous ownership of assets in general equilibrium. Following the Great Depression,

a large body of work studied how financial contracts respond to economic fluctuations.3

Fisher (1933) explains how deflation feeds back into more expensive nominal debt, and

therefore tighter credit constraints, further depressing economic activity. Kiyotaki and

Moore (1997) focus on the feedback of asset prices into collateral constraints.

I focus on the role of equity constraints on agents linked to particular firms for asset-

pricing dynamics. Bernanke and Gertler (1989) derive such constraints as the solution

of an agency problem due to costly state verification. They study how fluctuations in

the net worth of entrepreneurs creates persistence in economic shocks. Carlstrom and

Fuerst (1997) provides a quantitative exploration of this model. Bernanke, Gertler and

3Brunnermeier, Eisenbach and Sannikov (2010) survey extensively this literature.
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Gilchrist (1999) obtain amplification through technological illiquidity. An alternative

approach to the costly state verification as a motivation for these constraint is the

standard moral hazard problem of Holmstrom (1979). Holmstrom and Tirole (1997)

provide a static general equilibrium model featuring such a friction, and emphasize how

changes in the supply of entrepreneurs or monitors can affect equilibrium investment

and prices. He and Krishnamurthy (2008a) solves the contracting problem in a dynamic

framework. Closest to my paper are Brunnermeier and Sannikov (2010), and He and

Krishnamurthy (2008b). They both study the dynamics of asset prices in models with

an equity constraint. Related is Danielsson, Shin and Zigrand (2009): they study

volatility dynamics in the presence of a Value At Risk constraint.

Brunnermeier and Sannikov (2010) focus on the interaction of exogenous fluctua-

tions in net worth with precautionary motives of entrepreneurs. They show this inter-

action generates substantial nonlinearities not captured by log-linear approximations

used in the previous literature. In particular, they find that deleveraging following neg-

ative shocks creates instability in the economy. This instability is akin the deleveraging

risk in my model. However, they generate this effect through precautionary motives

rather than risk aversion. Therefore, because agents are risk-neutral, no risk premium

is present in the model.

He and Krishnamurthy (2008b) features risk averse agents, and therefore can study

the dynamics of the risk premium. Compared to my model, passive and active investors

play a different role. Their active investors are intermediary, the only agents marginal

in asset markets, and are constrained to hold a fraction of the total supply of risky

assets. Following negative shocks, they have low net worth and the constraint becomes

binding. Because they cannot sell their assets, the price must adjust and the risk

premium must increase. This is symmetric to my model where in poor economic

times, active investors sell off their assets and passive investors, who are marginal in

asset markets, have to bear more risk. Therefore, although they obtain similar asset

pricing implications as my model, they find an opposite relation between risk premium

and leverage.

Another important difference of my approach relative to these other models is the

focus on the entry and exit decision in active investment. Indeed, most papers in this

literature take as given the sets of active and passive investors. This ex-ante segmen-

tation makes the net worth of active investors an important state variables. Following

losses, because their wealth loads disproportionately on aggregate risk, active agents

represent a lower fraction of the economy. By assumption, new active agents cannot

enter, and therefore a lack of active investment is present and affects the economy. I
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shut down this channel and focus on how variations in economic conditions affect the

incentives to provide active capital.

Another model featuring endogenous segmentation is Rampini (2004). He generates

variations in entrepreneurial activity through the interaction of decreasing absolute

risk aversion and variations in productivity. My model focuses on variations in the

uncertainty of the economy. Another important difference is that he focuses on a

planner problem, and therefore, is unable to study asset prices.

The tractability of the model allows me to study asset pricing frictions in the con-

text of rich asset-pricing models. Indeed, most of the previous literature has focused

on a single shock to economic conditions, affecting the level of output. I am able to

study economies with a variety of shocks, in particular to the long-run growth rate

and the volatility of the economy. The diversity of priced shocks is a recurrent theme

of the finance literature, see Fama and French (1993) for instance. In particular there

is a debate in the macro-finance literature on the sources of fluctuations in risk pre-

mium. Campbell and Cochrane (1999) argue that habit preferences can explain these

fluctuations whereas Bansal and Yaron (2004) obtain them by assuming a combina-

tion of recursive preferences and changes in the long-run volatility of consumption. I

study the effect of the financing friction in the framework of Bansal and Yaron (2004)

and show that the friction amplifies fluctuations in expected returns due to volatility

shocks through deleveraging. In this literature, the role of market incompleteness has

been studied, for instance in Heaton and Lucas (1996). Most of these studies focus on

an exogenous, constantly present source of incompleteness. I argue that an important

source of variation in prices is due to dynamic changes in risk-sharing.

Other sources of heterogeneity in the behavior of agents have been pointed at as

potential sources of fluctuations in risk premia. Dumas (1989) shows that even with

i.i.d. dynamics, heterogeneity in risk aversion can generate fluctuations in expected

returns. Most of the above papers also assume some degree of preference heterogeneity,

either in risk aversion or time discount. Some other sources of heterogeneity have been

shown to interact with financing constraints. Gennaioli, Shleifer and Vishny (2011)

study the implications of neglected risks for deleveraging and asset prices. Geanakoplos

(2009) focuses on how belief heterogeneity interacts with margins. These assumptions

might not be innocuous for asset prices. I assume ex-ante identical agents, thereby

focusing solely on the financing friction.
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2 Basic Model

In this section, I present a case of my model with constant economic conditions to illus-

trate how the quantity of concentrated capital and asset prices are jointly determined in

equilibrium. I study an infinite horizon, continuous-time economy. I first explain how

I model the role of concentrated positions in increasing productivity. Then I move on

to determining the equilibrium of the model and emphasize properties of prices in my

economy that will drive the results in the general model with time-varying conditions.

I depart from the standard framework by relaxing the assumption that the pro-

duction outcomes of firms are independent of their ownership structure. In a Wal-

rasian equilibrium, ownership is determined only by concerns of consumption smooth-

ing across time and states of the world; having agents that influence the production of

the firm own it provides no benefit. Many (e.g., Berle and Means (1932)) have argued

the development of larger firms and financial markets causing more diffuse ownership,

has led this model to be an increasingly accurate representation of the world. How-

ever, this argument is at odds with the data. Holderness, Kroszner and Sheehan (1999)

find the mean percentage of common stock held by a firm’s officers and directors for

exchange-listed firms actually increased from 13% in 1935 to 21% in 1995. Additionally,

private firms still represent a large fraction of the economy and most of their equity

is owned by their workers. I capture the particular role of concentrated ownership by

introducing the notion of active investors: agents that concentrate their asset holdings

in a given firm increase its productivity.

I do not explicitly model the labor and production decisions, but rather focus on

the implications of an exogenously specified constraint for asset allocation. Specifically,

each firm can choose to pay some agents to actively invest in it. Firms thereby trade

off the cost of hiring these agents with the additional productivity they provide. The

additional productivity is proportional to the fraction of capital active investors own,

where the marginal return λ is exogenously specified. Agents, on the other hand,

choose whether to allocate their wealth optimally without focusing on any precise firm

or investing actively in a given firm. An agent investing actively must allocate a fraction

θ̄ > 1 exogenously specified of his wealth in claims to the output of the firm, financing

this position by taking up risk-free debt. The motive to concentrate holdings is that

the firm in which an agent invests actively will compensate him in addition to the

regular asset returns.

Similar to this is the decision of inside ownership by firms. They can choose whether

to provide their employees with fixed or stock-based compensation. Conversely, people
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can choose “safe” career paths that do not link their labor decision4 to their wealth-

allocation decisions, or to concentrate their wealth in one firm where its evolution

depends on the enterprise’s performance. However, note that many other forms of

active investment exist. For instance, entrepreneurs usually keep a large stake in the

firms they create. Active investment also does not need to come from agents working

directly inside the firm. Holmstrom and Tirole (1997) emphasize that outside investors

can affect a firm’s outcomes through their monitoring activity. Typical of such activity

are private equity funds and venture capitalists, whether they fund new projects or

buy out firms, but one can also think of the investment activities of a number of hedge

funds or investment banks.

2.1 The hiring decision of firms

I assume a continuum of identical firms indexed by j ∈ [0, 1]. Firms can go on the

occupation market and hire the services of active investors in order to increase their

productivity. Let mj
t be the fraction of total firm value held by active agents at time

t. The evolution of the firm cash flow Dj
t is given by:

(2.1)
dDj

t

Dj
t

= (µD + λmj
t)dt+ σDdZt.

The parameters µD and σD control the fundamental drift and volatility of cash-

flow growth and {Zt} is a univariate brownian motion. Active investment increases

cash-flow growth, with a marginal return λ. Such an effect is similar to the effect of

investment in a standard q-theory framework. For instance, active investors can help

the firm make better decisions or work harder, thereby increasing productivity while

they are at the firm and permanently increasing the scale of production.

Firms have to pay active investors for their services. I assume the payment takes

the form of a fee ftdt per unit of capital. This fee is determined by the competitive

equilibrium of the occupation market, and the firm takes it as given. Denoting P j
t as

the market value of the firm, the total payment to active investors at time t is ftm
j
tP

j
t dt.

Equivalent to a direct payment, ft can be thought of as a rate of share issuance: for

each unit of capital they provide, active investors receive ftdt extra shares. As this

payment is infinitesimal, whether investors receive it before or after the resolution of

uncertainty is irrelevant.

4I only focus on the active capital friction. In particular, I assume the wealth of all other agents is

perfectly liquid and tradable at all times.
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The firm chooses how many investors, as a fraction of its capital, it hires in order

to maximize its share value. The firm takes the process for the stochastic discount

factor {Sτ} and the fee {fτ} as given. As in the standard investment theory, the

firm faces a static tradeoff between productivity increase and the fee payment. The

marginal benefit of increasing mj
t is a gain in scale generating a value λP j

t dt, whereas

the marginal cost is the payment ftP
j
t dt. As neither the marginal benefit nor the cost

depend on mj
t , we obtain a perfectly elastic demand for active capital from the firm:

mj
t = 1 if λ > ft,

mj
t ∈ [0, 1] if λ = ft,

mj
t = 0 if λ < ft.

In the case of an interior equilibrium, λ = ft, cost and benefit exactly cancel each

other out. Firms are indifferent between any level of active capital. Their valuation

does not depend on the level they choose; that is, the valuation is the same as that

of a firm without active capital. In section 3, I provide a more complete derivation of

this result and justify the time consistency of the policy function, even though the cost

depends on the value the firm is optimizing.

2.2 The occupation decision of agents

I assume a continuum of ex-ante identical agents indexed by i ∈ [0, 1]. They value

risky consumption plans with the standard power utility function:

U ({Cτ}∞τ=t) = Et
[∫ ∞

0

e−βτ
Cγ
t+τ

γ
dτ

]
,

where β is the rate of time discount and Γ = 1− γ is the relative risk aversion. Agents

are all endowed with an equal fraction of all firms at time 0. Let W i
t be their wealth

at time t. At each point in time, agents can choose to be either a passive or active

investor. If they decide to be passive, they can also choose their portfolio. They make

this decision in order to maximize their lifetime utility, taking asset returns and the

fee for active capital as given.

Practically, most forms of active investment have some degree of illiquidity. Com-

pensation contracts often involve some long-term relation, at least at the yearly fre-

quency with the annual payment of bonuses. Similarly, entrepreneurs cannot always

liquidate their firms on short notice. My model does not feature this long-run illiquid-

ity, but captures the idea that at any point in time, some agents decide to take on or
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leave active investments. Indeed, we observe a lot of mobility in the workforce, and

the landscape of firms is constantly changing.5

Passive investors are standard neoclassical agents. Let this (endogenous) subset of

investors at time t be P∗t They have unrestricted access to the asset markets: they can

buy and sell claims to any payoff. I note θi,j∗t as the number of shares of firm j bought

by agent i, and µjR,t and σjR,t as the drift and volatility of these shares’ returns. The

wealth evolution for a passive agent is then

(2.2)

dW i
t =

(
W i
t

(∫ 1

0

θi,j∗t (µjR,t − rf,t)dj + rf,t

)
− Ct

)
dt+W i

t

(∫ 1

0

θi,j∗t σjR,tdj

)
dZt.

Active investors (set Aj∗t for firm j and A∗t in aggregate) focus on a single firm j

and help increase its productivity. I assume a fraction θ̄ > 1 of shares of firm i financed

by risk-free borrowing must comprise the investors’ portfolios. The assumption that

θ̄ > 1 implies aggregate risk is concentrated in the hands of active investors.6 As

a compensation for focusing on firm j, they receive an extra return ft per unit of

investment. The wealth evolution for an active agent investing in firm j is therefore

(2.3) dW i
t =

(
W i
t ( θ̄ (µjR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt+W i

t θ̄ σ
j
R,tdZt.

This constraint departs from the standard optimal contract in the presence of moral

hazard(Holmstrom 1979) in three ways: no benchmarking of aggregate risk, contract

on market price rather than actual output, and constraint proportional to wealth.7

The standard theory predicts the contract should only take into account a measure of

the idiosyncratic part of cash flow, not an overall stock position. However, in prac-

tice, equity-based compensation is widely used and little evidence points to relative-

performance evaluation.8 The concentrated positions even seem to make agents bear

an excessive amount of aggregate risk.9 One could argue agents can go on markets

and choose whether to hedge any excess exposure to aggregate risk. To my knowl-

edge of the literature, little evidence supports that agents engage in such shorting of

5Puri and Zarutskie (2011) find that about 3 million firms are created in any 5-year period between

1981 and 2005.
6It is easy to check that an inequality constraint of θ ≥ θ̄ would always bind. If θ̄ ≤ 1 with an

inequality constraint, the constraint would always be slack.
7The first two are common assumptions of the literature on the macroeconomic role of financial con-

straints and are present in Bernanke et al. (1999), He and Krishnamurthy (2008a) and Brunnermeier

and Sannikov (2010).
8Janakiraman, Lambert and Larcker (1992) and Aggarwal and Samwick (1999) do not find signif-

icant evidence in favor of relative performance evaluation for firms’ executives.
9Moreira (2009) finds small-business owners’ income loads excessively on aggregate risk.
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aggregate risk. This lack of hedging might be due to a limited ability to take short

positions. My results still hold if agents cannot hedge as much as they would like to.

In this case θ̄ becomes the loading on risk after all possible hedging is done. Whether

compensation should be commensurate with changes in stock prices or proportional to

the percentage change is ambiguous from the theoretical point of view. Empirically,

percentage-percentage measures appear to give more sensible results and are more

stable across firms.10

When choosing his occupation, an agent faces a tradeoff between optimizing his

portfolio and receiving the fee ft. As passive agents are unconstrained, without the

fee, the utility of a passive investor would be smaller than that of an active investor.

Concentrating a portfolio on a levered position in one firm would serve no purpose.

To solve for the optimal decision of an agent, we can make a few simplifying remarks.

First note that because all firms are identical, they all have the same return and

volatility, µjR,t and σjR,t, so I drop the superscript j and note θi∗t as the optimal risky

position of agent i if he is passive. Also note the opportunity set of agents is linear

in their wealth and independent of their past occupation, preferences are homogenous

of degree γ, and the opportunity set of a firm is linear in its current size. The model

is therefore stationary, and no endogenous state variable is present. In particular, the

utility level of each agent as a function of wealth does not depend on i and t. It is

given by

U it =
(W i

t )
γ

γ
G,

for some endogenous constant G.

We can then focus on the Hamilton-Jacobi-Bellman equation, determining the util-

ity of an agent starting with one unit of wealth:
0 = max{HJBP ,HJBA}

HJBA = supc c
γ − βG+ γG(θ̄(µR − rf ) + rf + θ̄ft − c) + 1

2
γ(γ − 1)Gθ̄2σ2

R

HJBP = supc,θ c
γ − βG+ γG(θ(µR − rf ) + rf − c) + 1

2
γ(γ − 1)Gθ2σ2

R,

where the first maximization corresponds to the occupation choice and the next two

correspond to the consumption and portfolio choices of an agent in each occupation.

The first-order condition with respect to consumption is the same for both occupations.

10The seminal paper of Jensen and Murphy (1990) finds an apparently small dollar-dollar sensitivity

of 0.3% for CEOs. Edmans, Gabaix and Landier (2009) propose a model predicting percentage-

percentage pay. They find empirically this measure is 9 on average and is stable across different sizes

of firms.
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It tells us that if both occupations occur in equilibrium, the consumption-wealth ratio

of all agents will be the same, equal to

c = G
1

γ−1 .

The other first-order condition is the portfolio choice of a passive investor. Because a

passive investor is just a regular investor with power utility, we obtain the standard

Merton formula:

θ∗ =
µR − rf

(1− γ)σ2
R

.

The two HJB are the same linear-quadratic function of the portfolio share, with the

exception of the fee θ̄f . Depending if the fee exceeds the quadratic cost of deviating

from the optimal portfolio, agents will choose one or the other activity. Agents are

indifferent between occupations if:

(2.4) θ̄f =
1

2
(1− γ)(θ̄ − θ∗)2σ2

R.

If the left-hand side is larger than the right-hand side, all agents are active; if the

right-hand side is larger, all agents are passive. The supply of active capital, taking

asset prices as given, is therefore perfectly elastic.

The cost of deviating from the optimal portfolio is proportional to relative risk

aversion (1−γ), return volatility σ2
R, and the distance between the active portfolio and

the optimal one. Note this cost is not a measure of the absolute excessive risk taken

by an active investor, but rather of how far is his portfolio is from that of the optimal

one in terms of risk.

2.3 Equilibrium

We can now turn to the determination of the equilibrium. To do so, I add market-

clearing conditions to the problems of agents of firms. I generalize the standard Wal-

rasian equilibrium by adding a market for active investment where firms and agents are

price takers. This market structure represents the idea that firms compete for hiring

active investors, and investors compete for the active positions.

Definition 2.1. Given θ̄A and λ, an equilibrium constitutes θi,jt , cit, a partition Aj∗t
and P∗t , mj

t , St, and ft for i, j ∈ [0, 1] and t ∈ [0,∞) such that

(i) The portfolio choices of active investors satisfy the equity constraint:

∀t ∈ [0,∞),∀j ∈ [0, 1],∀i ∈ Aj∗t , θ
i,j
t = θ̄ and ∀j′ 6= j, θi,j

′

t = 0.
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(ii) Occupation Ot(Aj if i ∈ Aj∗t , P if i ∈ P∗t ) portfolio, and consumption choices

are feasible and maximize utility given aggregate prices, the active fee f , and the

wealth evolutions (2.2) and (2.3).

max
Ot,Ct,{θi,j}t

Et
[∫ ∞

0

e−βτ
Cγ
t+τ

γ
dτ

]
such that

dW i
t =

(
W i
t

(∫ 1

0

θi,j∗t (µjR,t − rf,t)dj + rf,t

)
− Ct

)
dt

+W i
t

(∫ 1

0

θi,j∗t σjR,tdj

)
dZt if Ot = P

dW i
t =

(
W i
t ( θ̄ (µjR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt

+W i
t θ̄ σ

j
R,tdZt if Ot = Aj

Wt, Ct ≥ 0, ∀t

(iii) Levels of active investment maximize firm value:

∀t ∈ [0,∞),∀j ∈ [0, 1],

{mj
τ} ∈ arg max

{mτ}
Pt = arg max

{mτ}
Et
[∫

St+τ
St

Dt+τ − ft+τmt+τPt+τdτ

]
given the cash-flow evolution (2.1).

(iv) The occupation market clears:

∀j ∈ [0, 1],mj
tP

j
t =

∫
Aj∗t

θi,jt W
i
t di.

(v) The market for assets clears:

∀j ∈ [0, 1], P j
t =

∫ 1

0

θi,jt W
i
t di.

(vi) The market for goods clears: ∫ 1

0

Ci
tdi =

∫ 1

0

Dj
tdj.

Some of the integrals in the definition above are a slight abuse of notation in order

to keep clarity. Indeed, individual passive investors’ stock positions in a given firm

will typically be negligible compared to those of active investors. These problems
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disappear once we aggregate across firms. To do so, let Pt =
∫ 1

0
P j
t dj be the price of

the aggregate endowment. It is equal to the aggregate wealth Wt =
∫ 1

0
W i
t di. We can

note the aggregate fraction of active capital as Mt =
∫ 1

0
mj
tP

j
t /Ptdj. Finally, let θ∗t be

the portfolio of a passive agent, as we saw they all make the same choice. Combining

the market-clearing conditions for the occupation and the asset markets, we obtain the

following market-clearing condition:

(2.5)
Mt

θ̄
+

1−Mt

θ∗t
= 1.

This condition is summarized in Figure 2. All wealth is owned either by active

investors, who have in total a fraction Mt of risky assets by each taking a position θ̄

or passive investors, who have in total a fraction 1 −Mt of risky assets by taking a

position θ∗t .

Agents Shares 

Active M 

Passive 1-M 

Active 

Passive 
  

Own 

Own !

! *

M /!

(1!M ) /! *

Figure 2: Market clearing condition

This market-clearing condition, combined with the individual supply of active cap-

ital (2.4), determines the aggregate supply of active capital. This function, linking the

quantity M to the price f , is increasing. Indeed, as M increases, the fraction of risky

asset owned by active investors increases. The market-clearing condition (2.5) shows

that as passive agents have to sell risky assets to the new active investors, their port-

folio share θ∗ decreases. This change in positions increases the distance between the

active and passive portfolios and, as shown by the individual supply (2.4), increases

the fee required by agents to invest actively.

To determine the equilibrium of the active capital market, it suffices to equate the

aggregate supply to the perfectly elastic demand of firms at the fee level λ. Figure 3
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M 

f 

Demand λ   

Supply 

Figure 3: Equilibrium of the active capital market

illustrates this equilibrium, which corresponds to the quantity M such that

λ =
1
2
(1− γ)(θ̄ − θ∗)2σ2

R

θ̄
.

This equilibrium pins down the portfolio share θ∗ of passive agents and therefore

the level of active capital. We obtain directly the following comparative statics:

Proposition 2.2. The portfolio share of passive agents θ∗ and the fraction of passive

capital 1−M are

(i) increasing in return volatility σD and,

(ii) increasing in relative risk aversion 1− γ.

2.4 Asset prices

Let us turn to the behavior of asset prices. Because of the absence of state variables,

we can start by noticing the price–cash-flow ratio is constant. This result implies the

volatility of return will exactly equal the volatility of cash-flow σD. The active capital

market does not affect price volatility in this setting. The price–cash-flow ratio satisfies

the standard Gordon growth formula:

V = (rf + σDrp− µD)−1,

where rp is the risk price of the innovation dZ of cash flow and rf the risk-free rate.

To determine these quantities, note that passive investors are standard investors à la
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Merton. Therefore, the stochastic discount factor corresponds to the marginal utility

of these agents. In particular, using the first-order condition of the portfolio decision,

we obtain the risk price:

rp = (1− γ)σDθ
∗.

This formula helps us detail the two main effects of the active capital market: distorted

risk sharing and deleveraging risk.

Distorted risk sharing. Because θ∗ < 1, we can conclude the risk price is lower

than in an economy without active capital (which corresponds to θ∗ = 1). Active in-

vestors hold a disproportionate share of the aggregate risk of the economy; therefore,

in equilibrium, passive investors have to bear less risk. The risk active investors take

does not affect the risk price. Indeed, though investors take asset prices into account

in their occupation choice, active investors are not marginal in the asset market: their

portfolio is constrained to take the value θ̄. Of course, they are compensated for taking

this risk by the fee f 11. The importance of the distortion in risk sharing is clearly

linked to the fraction M of active investors. As shown by proposition 2.2, risk prices

will be relatively lower in economies with low fundamental volatility and populated by

agents with low risk aversion.

Deleveraging risk. This dependency with respect to risk conditions yields the second

main effect of active capital: deleveraging risk. As the quantity of active capital is

sensitive to risk, fluctuations in risks will generate large fluctuations in prices and

risk premium. I illustrate this effect here as a comparative static. I detail it in a

completely dynamic model in section 4. Figure 4 represents the equilibrium changes

after an increase in fundamental volatility σD. First, on the right panel, we see the

demand for risky assets decreases: passive agents ask a higher risk price. This effect

is standard in an economy without active capital. To hold the same quantity of a

more risky asset, agents demand a larger compensation. Therefore, we move vertically

from the initial demand curve to the new one. But this change is not the only one:

the relative cost of providing active capital increases. We can see this increase on the

first panel: the supply curve for active capital shifts left. As the demand is perfectly

elastic, this shift results in a lower quantity M of active capital. As active agents sell

off their assets, passive agents have to hold more risky assets. The middle panel shows

11The fee f cannot exactly be interpreted as a different expected return incentivizing active agents

to take on a portfolio θ̄. One can prove active agents, even in presence of the fee, would always choose

a lower share of risky assets if relieved of the constraint.
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Figure 4: Deleveraging following an increase in volatility

this move along the market-clearing condition. Finally, returning to the right panel,

we move along the demand curve of passive agents having to hold more risky assets

and therefore, asking for a larger risk price.

Another way to look at this phenomenon is to consider the elasticity of the risk

price with respect to volatility or relative risk aversion; the results are the same. In the

standard model without active capital, the risk price is proportional to volatility and

therefore the elasticity is 1. With active capital, as the amount of risk as well as the

quantity of risky assets held by passive agents increase, this elasticity is larger than 1:

∂ log(rp)

∂ log(σD)
= 1 +

∂ log(θ∗)

∂ log(σD)
> 1

= 1 +
θ̄ − θ∗

θ∗
.

This elasticity indicates the determinant of the magnitude of the deleveraging effect.

The deleveraging effect is proportional to the leverage of the active investors’ risky

position relative to that of passive investors. For instance, if θ̄ > 2 this effect is always

more important that the standard quantity of risk effect. When the quantity active

capital in the economy is large, the price of risk is more sensitive to volatility, as θ∗

gets smaller.

On the other hand, no such deleveraging occurs following shocks to the level of

cash flow, as shown by the constant equilibrium fraction of active capital M . As

a comparative static, changes in future expected cash flow, created by a change in

fundamental growth rate µD, also do not yield any change in the fraction of active
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capital. These results point to the key idea that shocks to uncertainty or risk aversion

interact strongly with the fraction of active capital, whereas shocks to the level of

present or future cash-flow do not. This difference confers a particular importance of

changes in volatility and expected returns to explain asset price volatility and expected

returns once we turn to the fully dynamic model.

3 General model

I now turn to the general case of the model. I characterize Markov equilibria in the

general case of Duffie-Epstein-Zin preferences and an arbitrary Markov diffusion for

cash-flow growth. I then explain how to obtain all quantities of the model from the

solution of a single partial differential equation. The dimension of the equation corre-

sponds to the number of state variables determining fundamental dynamics. Finally, I

discuss some properties of the wealth distribution in equilibrium.

3.1 Firms

The aggregation results regarding firms derived in the previous section still hold as I

maintain linear dynamics in the size of firms for cash flow. Therefore, I focus on a

representative firm. The evolution of its cash flow is given by

dDt

Dt

= (µD(st) + λmt)dt+ σD(st)dZt,

where {Zt} is now a multivariate brownian motion of dimension K. Aggregate condi-

tions are characterized by {st}, a set of S state variables following a Markov diffusion:

dst = µs(st) + σs(st)dZt.

As before, firms choose their fraction of active capital mt dynamically, taking the

process for the active fee {ft} and the stochastic discount factor {St} as given. The

firms maximize the net present value Pt of their payoffs after payment of the active

fee. This decision corresponds to the following problem:

Pt = sup
{mt+τ}0≤τ<∞

Et
[∫ ∞

0

St+τ
St

(Dt+τ − ft+τmt+τPt+τ )dτ

]
s.t.

dDt+τ

Dt+τ

= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ .
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The linearity of both the objective function and the dynamics in the current level

of cash flow implies the value function is linear in the level of cash flow and the optimal

policy does not depend on this level. In other words, Pt/Dt and m∗t are deterministic

functions of st. By abuse of notation, P/D(st) = V (st) and m(st), respectively, in the

remainder of the paper.

Though the payments of the fee depend of current and future values of the price

Pt, this problem is time consistent. To see this result, we can rewrite ∀t < T :

Pt
Dt

= sup
{mt+τ}0≤τ<T−t

Et
[∫ T−t

0

St+τ
St

(
Dt+τ

Dt

− ft+τmt+τ
Pt+τ
Dt

)
dτ +

ST
St

DT

Dt

ṼT

]
s.t.

dDt+τ

Dt+τ

= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ , 0 ≤ τ ≤ T − t

ṼT = sup
{mt+τ}0≤τ<∞

ET

[∫ ∞
0

ST+τ
ST

(
DT+τ

DT

− fT+τmT+τ
ṼT+τ

ṼT

)
dτ

]
s.t.

dDT+τ

DT+τ

= (µD(sT+τ ) + λmT+τ ) dt+ σD(sT+τ )dZT+τ , 0 ≤ τ <∞,

where ṼT+τ for τ > 0 is defined similarly to ṼT . Examining the problems for {ṼT+τ}0≤τ<∞
shows it exactly corresponds to the problem for {PT+τ/DT+τ}0≤τ<∞, which confirms

time consistency.

The recursive structure of the problem allows us to write it in the form of a

Hamilton-Jacobi-Bellman equation, as can be seen in appendix A.1. As is standard

for this type of investment model, the choice of optimal active capital turns out to

be static. The first-order condition to have an interior optimum is, as it was for the

stationary case,

λ = ft.

This condition pins down the fee paid to active capital but not individual policies.

The indeterminacy can generate ex-post heterogeneity in the size of firms. However,

because the dynamics of cash-flow are linear in the current level, and the way mj

aggregates to M , one can see aggregate dynamics are invariant to the distribution of

individual firms’ policies.

Another implication of this first-order condition, which is also derived in appendix,

is that the price of the firm is the same as that of an identical firm without active
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capital:

Pt = Et
[∫ ∞

0

St+τ
St

Dt+τdτ

]
s.t.

dDt+τ

Dt+τ

= µD(st+τ )dt+ σD(st+τ )dZt+τ .

In particular, any difference in the price of the firm compared to an economy without

active capital must come from different processes for the stochastic discount factor.

In this sense, my model emphasizes that fluctuations in the quantity of active capital,

even if they do not affect the payoffs to passive investors, affect asset prices through

the changes in the valuation of this cash flow.

3.2 Asset markets

Because there are always some passive agents that are marginal in complete asset

markets, we know there are no arbitrage opportunities. Therefore, a stochastic discount

factor exists. It follows a diffusion given by:

dSt
St

= −rf,tdt− rptdZt,

where rf is the risk-free rate and rp is the vector of risk prices of the K shocks.

Without loss of generality, I assume a set of K assets are available to investors.

The first one is a share of any of the firms. As noted previously, they all have the same

price and cash-flow evolution, so their shares have the same returns. The other K − 1

asset returns are in zero net supply, have unit variance, and complete the market.

Their expected excess returns can directly be inferred from the stochastic discount

factor {St}, as they correspond to the risk prices. I note µR,t as the vector of expected

returns and σR,t as the vector of volatility of these assets. The risk-free asset is in zero

net supply. In equilibrium, all these quantities are deterministic functions of the state

st of the economy.

3.3 Agents

Agents now rank consumption streams according to the stochastic differential utility of

Duffie and Epstein (1992). It is a continuous-time version of the recursive preferences

of Epstein and Zin (1989). Let Ut be the utility of the agent at time t and f(C,U) the

aggregator. The utility value Ut is defined recursively by:

Ut = Et
[∫ ∞

t

g(Cs,Us)ds
]
.
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For the aggregator g, I use the standard function:

g(C,U) = β
γ

ρ
U
[

Cρ

γ
ρ
γU

ρ
γ

− 1

]
.

β is the rate of time preference. Γ = 1 − γ is the relative risk aversion (RRA) of

the agent. ψ = 1
1−ρ is the intertemporal elasticity of substitution (IES). When Γ = 1

ψ
,

or, equivalently, γ = ρ, the utility function reduces to the standard power utility

specification of section 2. This utility function is homogenous of degree γ and therefore

preferences are homothetic. An important motivation for using these preferences, in

addition to the fact that they have proven useful in obtaining good quantitative results

for asset-pricing models, is that they generate a volatility risk premium.

Agents can choose whether they are active or passive investors. Let A∗t and P∗t these

sets of investors at each time. Agents can move freely between occupations. They can

choose their consumption Ct without any constraint.

Passive investors choose freely their portfolio θ∗t across all assets. Their wealth

evolution is then

dW i
t =

(
W i
t (θ

∗ ′ (µR,t − rf,t) + rf,t)− Ct
)
dt+W i

t θ
∗ ′ σRdZt.

Active investors are constrained to choose a portfolio θ̄ = [θ̄, 0, . . . , 0] that only

consists of a position in shares of the firm. Again, I assume θ̄ > 1. This assumption

constrains them to hold more of the asset than anybody would hold in a world without

active investors. Additionally, they cannot hedge the risk coming from changes in the

state variables. As a compensation for accepting this constraint, they receive the fee

ftdt for each unit of capital of the firm in which they invest. The evolution of their

wealth is driven by

dW i
t =

(
W i
t ( θ̄

′
(µR,t − rf,t) + rf,t + θ̄Aft)− Ct

)
dt+W i

t θ̄
′
σRdZt.

Because all these dynamics are linear in wealth and the homogeneity of utility

functions, one can see all agents will face the same tradeoff, irrespective of their current

wealth, when choosing their occupations. Additionally, agents in each occupation will

all have the same consumption-wealth ratio, written as cit = Ci
t/W

i
t . To have an

interior equilibrium for the level of active capital, agents, given their wealth, have to

be indifferent between activities at each point in time. Let Gt/γ be the utility of an

agent with wealth one at date t. The utility of an agent with wealth W i
t is then

Ut =
(W i

t )
γ

γ
Gt,
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where Gt is a deterministic function of the state variables I note as G(st). In particular,

G(.) must be the value function of an agent being active or passive for some interval

of time. The following proposition formalizes this idea.

Proposition 3.1. The fee ft is such that the value function per unit of wealth G(st)

solves the Hamilton-Jacobi-Bellman problems:

(i) Passive investor:

0 = max
c≥0,θ∈RK

g(γ1/γc,G) +
E [d (W γG)]

W γdt

s.t. dWt = (Wt(θ
′ (µR,t − rf,t) + rf,t)− Ct) dt+Wt θ

′ σRdZt.

(ii) Active investor:

0 = max
c≥0

g(γ1/γc,G) +
E [d (W γG)]

W γdt

s.t. dWt =
(
Wt( θ̄

′
(µR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt+Wt θ̄

′
σRdZt.

I derive these problems in appendix A.2.1. This proposition helps us sidestep an

issue with the continuous-time model: a few of the agents switch often. The aggregate

level of active capital is a function of the state variables. As they follow a diffusion,

the fraction of active agents will also follow a diffusion. For instance, one can prove it

is impossible all agents follow stopping-time strategies to change their activities. This

problem is not present in the discrete-time version of the model. Proposition 3.1 holds

in the limit of the discrete-time case, as it characterizes agents indifference, not their

actual occupation trajectory.

Examining the problems of proposition 3.1, we can derive the consumptions and

portfolios of agents as well as the activity fee:

Proposition 3.2. At equilibrium:

(i) All agents (active and passive) have the same consumption-wealth ratio, deter-

mined by:

c = β
−1

(ρ−1)G
ρ

(ρ−1)γ .

(ii) The portfolio θ∗ of passive agents is:

θ∗ =
1

1− γ
(σRσ

′
R)
−1

(µR − rf ) +
1

1− γ
(σRσ

′
R)−1σRσ

′
sGs.
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(iii) The activity fee f is given by:

θ̄f =
1

2
(1− γ)

(
θ̄ − θ∗

)′
σRσ

′
R

(
θ̄ − θ∗

)
.

The proof is in appendix A.2.2. Points (i) and (ii) are the standard portfolio results

for a passive agent with recursive preferences. Note that active agents do not choose

a consumption policy distinct from that of passive agents. The reason for this result

is that the only determinant of consumption is the marginal utility of wealth. It has

to be the same, active or passive, as agents are indifferent between occupations at all

levels of wealth.

The formula for the fee ft is similar to the stationary case, proportional to relative

risk aversion and the volatility of the portfolio θ̄−θ∗. One can note that it is purely a

compensation for risk taken as a departure from the optimal portfolio. In particular,

it does not depend on the covariance of returns with the state variables, because, in a

diffusion framework, hedging demands are linear in the amount of risk. Therefore the

already larger returns from the levered position exactly offset the additional loading

on the state variables the agent has to take.

3.4 Equilibrium

As in the stationary model, the demand of active capital from firms pins down the

fee to be constant, equal to the marginal productivity: f(st) = λ. Note that because

hedging assets are in zero net supply and all passive investors take the same position,

this position has to be zero. The optimal portfolio takes the form θ∗ = [θ∗, 0, . . . , 0] in

equilibrium. We can therefore simplify the supply of active capital to obtain

(3.1) λ =
1

2θ̄
(1− γ)(θ̄ − θ∗)2σ2

R,1.

In the stationary model, this condition was sufficient to pin down the equilibrium

portfolio θ∗, because the volatility of returns corresponded to the fundamental volatility

σD. Now, because time-varying conditions are present, this quantity is endogenous and

depends on the quantity of active capital. To see this result, first apply Ito’s lemma to

the asset returns:

(3.2)
dR

R
=
Dt

Pt
dt+

dDt

Dt

+
dVt
Vt

+
< dDt, dVt >

Pt

The volatility comes from fluctuations in cash flow dDt as well as fluctuations in the

price–cash-flow ratio dVt. Any changes in the properties of the stochastic discount
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factor or in expected future cash flow affect this valuation ratio. Fluctuation in the

fraction of active investors amplifies these changes. To see this effect, consider, for

instance, a change tomorrow in the volatility of cash flow. If we happen to be in a

high-volatility state, the price will be lower than in a low-volatility state for three

reasons. First, future cash flows are riskier and as such are discounted more. Second,

because the environment is more risky, the risk price for cash-flow shocks is larger.

Finally, because the environment is more risky, less active capital will be present,

therefore the risk price will be even larger as passive investors bear more of the risk.

This third channel, present only with an active sector, creates additional price volatility.

Going back to equation (3.1), we can see, however, this endogenous channel creates

an important self-limiting force on the development of the active investment sector. If

the active sector is developed and is at risk of fluctuations, returns are more volatile.

Therefore, agents are less willing to provide this large quantity of active capital in the

first place.

Finally, the market-clearing conditions for the occupation and asset markets can

be combined to pin down the fraction of active capital:

M

θ̄
+

1−M
θ∗

= 1

3.5 Solving for the equilibrium

In the determination of the equilibrium, we must simultaneously solve three dynamic

problems: the valuation of the firm, the utility maximization of passive agents, and

the utility maximization of active agents. In this section, I show how to combine them

to obtain only one problem, represented by a single partial differential equation. To

obtain this result, I focus on the determination of the price–cash-flow ratio V (st) of

the firm.

First, remember all agents have the same consumption-wealth ratio. Total wealth

corresponds to the market value of the firm and total consumption must equal the cash

flow of the firm. Therefore, the consumption-wealth ratio c is equal to the inverse of

the price–cash-flow ratio V . The valuation ratio also determines the normalized value

function G of agents from the first-order condition for consumption:

1

V
= c = β

−1
(ρ−1)G

ρ
(ρ−1)γ

Then, using formula (3.2), we can see the the only endogenous parts of the volatility

of the share returns σR,1 are the elasticities of V with respect to the state variables.
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Using this result, we can directly obtain the optimal portfolio share θ∗ from the equi-

librium of the active capital market (3.1). Inverting this equation in closed form is

trivial.

Turning to the optimization problem of active agents, first note expected excess

returns are the product of the known volatilities of returns and the unknown risk

prices. As we derived θ∗ and the value function Gs, the first-order condition for the

portfolio of agents in proposition 3.2 becomes a linear system of equations pinning down

the risk prices. The last part of the stochastic discount factor, the risk-free rate rf ,

can be obtained by plugging in all the quantities just determined in the HJB equation

of the passive agent.

We have now seen all endogenous quantities of the model are closed-form functions

of V . Now V can be directly determined by the pricing HJB:

0 =
1

V
+

E[d(SDV )]

SDV dt
,

which is a second-order partial differential equation in V , as the dynamics of the cash

flow D are exogenous and those of the stochastic discount factor S are known functions

of V . In the stationary case of section 2, there are no state variables: this equation

determines the number V . With only one state variable, this equation is an ordinary

differential equation of degree 2.

3.6 Individual policies and the wealth distribution

Before studying the asset-pricing implications of the model with changing fundamental

conditions, let us consider possible wealth distribution evolutions in the population.

Let us first recapitulate properties of wealth trajectories and then examine a couple of

possible implementations of the equilibrium.

At each point in time, active investors receive on average a higher wealth increase

than passive investors. This difference comes through two channels: they take on more

leverage and therefore receive extra asset returns, and they receive the fee. Active

investors are also more exposed to shocks than passive investors. Therefore, when

returns are good, active investors gain relatively more wealth; when returns are bad,

active investors lose relatively more wealth. These differences in wealth evolution

will create dispersion in wealth across agents. However, because agents can choose

their occupation at each point in time, and preferences are homothetic, this wealth

26



heterogeneity does not create a related heterogeneity in behavior. The individual

policies are not pinned down by the equilibrium conditions, and many occupation-

choice trajectories are consistent with the evolution of aggregate quantities. To get

a better idea of how much switching is necessary at equilibrium, consider two simple

implementations.

Remember we have a continuum of agents indexed by i on [0, 1], and note wit =

W i
t /Wt their fraction of total wealth at time t. A fraction M(st)/θ̄ must be in the

active sector. A first implementation is that the agents with the lowest indices are

active. To determine which agents are active, define implicitly the threshold It by∫ It

0

witdi =
M(st)

θ̄
.

A unique solution to this equation always exists, as all individual wealth fractions wit
clearly stay strictly positive and integrate to 1, which is strictly larger than the right-

hand side. Also, because all individual wealth fractions wti and M(st) follow a diffusion,

It does as well. Using properties of diffusion processes, we can derive local properties

of career dynamics in this implementation:

Proposition 3.3. At each point in time t:

(i) For almost every agent i, ε > 0 almost surely exists such that i does not change

occupation in [t, t+ ε),

(ii) Agent It, for any interval [t, t+ ε), almost surely changes occupation an uncount-

able set of times, without isolated points.

This proposition is a direct consequence of the properties of the zeros of the Brow-

nian motion found, for instance, in Morters and Peres (2010). In other words, the

proposition tells us most agents do not change jobs on any finite interval. Only the

agents at the border will go back and forth an infinite number of times. Because these

agent only represent an infinitesimal fraction of aggregate wealth, their back-and-forth

do not affect aggregate dynamics. This implementation of the equilibrium has the un-

desirable effect of not allowing a stationary distribution of wealth. To see this result,

consider the wealth of agent 0 relative to any other agents. Because he is always active,

his wealth has a larger drift than that of any other agent; therefore, the ratio of his

wealth relative to any other agent tends to increase, and in the limit diverges to infinity

almost surely.
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An alternative implementation that insures the wealth distribution does not diverge

is to make the group of active agents change over time. For instance, given ζ > 0, we

can choose the subset [ζt, ζt+ I ′t] mod 1, where I ′t is now defined by:∫ ζt+I′t

ζt

w
(i mod 1)
t di =

M(st)

θ̃A
.

As the group of active agents cycles through the population, no individual wealth can

drift permanently over that of the rest of the population. Relative to proposition 3.3,

we now have two agents switching occupation at each point in time. Agent ζt mod 1

becomes passive, and agent (ζt+ I ′t) mod 1 switches an infinite number of times.

Finally, note that in both implementations considered here, neither the wealth

distributions nor the threshold It are deterministic functions of the state st. Indeed,

past shocks affect the relative wealth evolutions of the two groups and modify the

fraction of agents to include in order to obtain the equilibrium fraction of active capital.

4 Asset-pricing implications

I now turn to the asset-pricing implications of the model. In particular, I focus on

the consequences of fluctuations in the quantity of active capital for the volatility of

returns and the price of various sources of risk.

4.1 Setup

I study a continuous time version of the long-run risk model of Bansal and Yaron

(2004), as in Hansen, Heaton, Lee and Roussanov (2007). There are two state variables:

st = (Xt, σ
2
t ). The dynamics of cash-flow growth are given by

dDt

Dt

= (µD +Xt + λmt)dt+ σtdZ
D
t

dXt = −κXXtdt+ φσtdZ
X
t

dσ2
t = −κ(σ2

t − σ2
0)dt+ νσtdZ

σ
t ,

where ZD, ZX , and Zσ are independent brownian motions. The variable Xt controls

the persistent component of cash-flow growth and σt the volatility of shocks. For σ2
t to

stay positive, I impose the parameter restriction 2κσ2
0 > ν2.

To illustrate the theoretical results, I follow the calibration of Bansal and Yaron

(2004) I report in table 1. All parameters are at the monthly frequency. An important
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feature of this calibration is that the intertemporal elasticity of substitution is larger

than 1, making the price increasing in expected cash flow. For the active investment

parameters, I use θ̄ = 1.1 and and λ = µD.

Preferences Consumption State Variables

β RRA IES µD σ0 κX κσ φX ν

0.0013 10 1.5 0.13% 0.79% 0.0212 0.0131 5.64 0.0003

Table 1: Preferences and consumption dynamics

I compare the solution of my model to the case of no active capital, which is

equivalent to set θ∗ = 1 and m = 0 in all previous calculations. I call the latter model

the baseline model.

4.2 Price–cash-flow ratio and quantity of active capital

First, note the price is always larger with active capital than without. Indeed, the first-

order condition of passive agents for consumption tells us the utility level is increasing

in the price. Agents in the economy can choose at any moment to use their shares of

risky assets to finance the consumption plan they would have in an economy without

active capital. Indeed, we proved the price of the risky asset is the same as that of a

firm employing no active investors, which is the output consumed in the baseline case.

The fact that agents choose not to do this trade tells us they are better off in this

equilibrium.

I now look separately at the asset price and the quantity of active capital along

changes in the two state variables.

4.2.1 Role of the fundamental growth rate

As shown in the stationary case, the growth rate of cash flow does not affect active

capital, because the growth rate of cash flow does not affect the volatility of returns.

This property still holds approximately in the long-run risk model. Bansal and Yaron

(2004) obtain this property exactly in their log-linear approximation, and the result

is fairly robust in this parameter region. The reason changes in growth rate do not

change the volatility is that the corresponding changes in the timing of risk are small.
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The absence of an impact of the growth rate on return volatility translates into an

absence of dependence on Xt of the portfolio of passive agents. Figure 5 confirms this

result. This figure represents, for various levels of the volatility state, the portfolio of

passive agents as a function of the growth rate Xt.

4.2.2 Role of the fundamental volatility

Fundamental volatility has a much more important impact on the active capital market.

On figure 6, we see important variations in the portfolio of passive agents with changes

in volatility. This result corresponds to the idea that fundamental volatility is reflected

in the volatility of returns and subsequently in the supply of active capital. When

volatility is low, agents are more willing to supply active capital relative to passive

investment. These active agents buy a larger fraction of the assets, and the remaining

agents are left holding less risky assets.

Interestingly, we observe that θ∗ is a concave function of σt. The portfolio of passive

agents changes more in response to a volatility change at lower levels of fundamental

volatility than at higher levels. This result corresponds to the idea that the economy

is more susceptible to large waves of deleveraging when large amounts of concentrated

investments are present. Naturally, this deleveraging affects prices. Figure 7 shows the

price–cash-flow ratio V as a function of fundamental volatility σt for the model and the
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Figure 6: Optimal portfolio of passive agents θ∗ as a function of σ2 (X = 0)

baseline case. As volatility increases and active capital disappears, the price converges

to the baseline case. Though risky allocations are the same in both models when θ∗

reaches 1, the two prices are not equalized. Indeed, risky allocations will depart from

each other when mean-reversion and shocks brings σt down. Corresponding to the

concavity of θ∗, the price converges in a concave way to that in the baseline model.

However, when reaching very low volatility states, because passive agents do not bear

little risk, the price becomes less sensitive to changes in volatility.

4.3 Return volatility and fundamental volatility

As fluctuations in active capital impact prices, they create additional volatility for the

asset. The risky-asset returns dynamics are:

dRt

Rt

= µR(st)dt+ σtdZ
D + φσt

∂ log V

∂X
(st)dZ

X
t + νσt

∂ log V

∂σ2
(st)dZ

σ.

The volatility of returns comes from the three shocks affecting the economy: the

instantaneous cash-flow shock dZD, the shock to expected cash-flow growth dZX , and

the shock to uncertainty dZσ. First note that direct shocks to cash flow, as in the

baseline model, are directly transmitted to returns. They do not affect the active

capital market; therefore, their impact on prices is left unchanged. Similarly, because

the sensitivity of the valuation ratio to the growth rate is unchanged, the volatility

from changes in future expectations of cash flow is the same as in the baseline model.
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Figure 7: Price–cash-flow ratio as a function of volatility σ2 (X = 0)

Finally, the volatility shock now has a larger effect on prices: the sensitivity

∂ log V/∂σ2 is larger than in the baseline case. This larger volatility comes through

the deleveraging effect. When volatility increases, the asset becomes less attractive to

passive agents, and they must absorb the assets sold off by active agents who change

occupations. From these results, we see active capital not only increases the volatility

of returns but also changes the composition of its sources. In particular, it puts rela-

tively less weight on cash-flow shocks than to volatility shocks. Figure 8 illustrates this

effect. We can see the volatility shocks explain a larger part of returns variance. Ad-

ditionally, as we noticed for the sensitivity of prices, this distortion of the composition

of risk is larger in low-volatility states.

The source of return volatility has been a puzzle for the asset-pricing literature since

Campbell and Shiller (1988). They point out the volatility of returns appears to be

too large relative to the volatility of cash flow. The long-run risk model of Bansal and

Yaron (2004) explains this puzzle by the presence of small persistent shocks affecting

consumption growth that have a large impact on the utility of agents with recursive

preferences. However, Beeler and Campbell (2009) point out that the model still

generates a counter-factual level of cash-flow predictability. In other words, it creates

too tight a link between prices and expected cash-flow. Volatility shocks do not affect

the level of future cash flows but create variation in prices through variation in discount

rates and therefore have the potential to explain return volatility. Bansal, Kiku and
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Figure 8: Decomposition of the volatility of returns as a function of σt (X = 0;

left panel: active capital; right panel: baseline case)

Yaron (2007) present a calibration of the long-run risk model in which volatility shocks

are extremely persistent, and avoid the excess cash-flow predictability. My model offers

an endogenous channel that gives more importance to volatility shocks. This effect

comes through the endogenous variation in risk-sharing between active and passive

investors. In particular, we should observe that variations in prices, due to changes

in risk premia, coincide with variation in the quantity of active capital. In a similar

vein, Adrian et al. (2010) find that intermediary leverage is negatively related to the

macroeconomic risk premium. Also, Haddad et al. (2011) find the quantity of leveraged

buyouts, a transaction concentrating ownership of risky assets, is strongly negatively

correlated with a measure of the equity risk premium.

4.4 Price of risks

As we saw when examining the firm problem, the price of the risky asset is equal to that

of a similar firm employing no active capital. Because active capital has no effect on

payoff of the risky asset in equilibrium, all changes in valuation relative to the baseline

model must come through changes in the stochastic discount factor, particularly risk

prices. For these, the two effects described in section 2 play a role.

The risk prices for the three shocks are
rpD = (1− γ)θ∗σt

rpX = φσt
∂ log V
∂X

[(1− γ)θ∗ − γρ
1−ρ ]

rpσ = νσt
∂ log V
∂σ2 [(1− γ)θ∗ − γρ

1−ρ ].
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The first effect is risk dampening. In equilibrium, passive agents hold fewer risky

assets than in the baseline model: θ∗ < 1. Because agents hold less risk, they require a

lower compensation for marginal risk. The dampening is direct for the instantaneous

shock price rpD. For the other two shocks, the dampening is less important, because

γρ/(1−ρ) < 0. The reason for this property is that with recursive preferences, the long-

run impact of shocks on utility affects risk prices. The first term in brackets for rpX and

rpσ comes from the instantaneous loading on risk. Passive agents instantaneously bear

less risk than in the baseline case, causing dampening. However, at the next instant,

all agents are identical again. Therefore, they all have the same value functions and

all have to bear equally the long run consequences of shocks. The long-run component

of risk prices is not dampened.

The second effect is deleveraging risk. Shocks to fundamental volatility are more

risky, because they increase not only the riskiness of the asset, but the fraction of

risky assets passive agents hold. This extra risk corresponds to the larger sensitivity

∂ log V/∂σ2 relative to the baseline case. As for the volatility of returns, deleveraging

only occurs with volatility shocks and as such this amplification only affects the risk

price of volatility rpσ. A consequence of this phenomenon is a change in the relative

values of risk prices for the various sources of risk. Active capital affects not only

the price of shocks, but the nature of priced shocks as well. The volatility risk price

becomes relatively more important than the other two risk prices.

These last results have implications for understanding the cross-section of expected

returns. Indeed, though I assume firms are identical, in reality, they have different

loadings on the various sources of risk. If the volatility risk price is relatively large,

exposure to volatility risk is likely to be an important determinant of the cross-section.

Ang, Hodrick, Xing and Zhang (2006) find exposure to shocks to aggregate volatility

lines up with expected returns. Additionally, because conditional expected returns

move in tandem with volatility in this model, measuring exposure to shocks to ex-

pected returns should provide a good proxy for exposure to this long-run volatility

shock. Kozak and Santosh (2012) confirm this result using a model-free measure of

expected returns: stocks that covary positively with aggregate expected returns earn

lower average returns.

The specific prediction of this model is that the shocks to volatility correspond to

changes in the quantity of levered investors. Larger exposure to measures of leveraged

investment should correspond to larger expected returns. Adrian et al. (2011) measure

covariance of returns with the leverage of broker-dealers and find this exposure is able

to predict returns.
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5 Extensions

In this section, I present a few extensions of the model. First I discuss the efficiency

of the equilibrium. I show that taxing firms for the use of active capital increases

welfare in a static framework. Then I discuss the effect of changes in the productivity

of active investment. To do so, I relax two assumptions: constant returns to scale and

no dependence on the state variables. Finally, I show how to incorporate idiosyncratic

risk and investment in physical capital.

5.1 Tax on active capital

One can wonder whether the equilibrium allocation of this model is efficient. In-

deed, the presence of the portfolio constraint for active investors is a source of market

incompleteness. In such frameworks, pecuniary externalities are generically sources

of externality. Changing asset prices affects different agents differently and generate

redistribution. Gromb and Vayanos (2002) study such welfare implications in an ex-

ogenously segmented market framework.

I focus on the following intervention: a tax on firms per unit of active capital, given

back to them as a lump sum payment. This is equivalent to reducing the fee paid by

firms to active investors. An interesting aspect of this policy is that it does not affect

the agents side of the markets. In particular, agents in the two categories still have

to be indifferent. This way, the policy will be unambiguously Pareto ranked with the

market equilibrium. I only look at the first-order effect of an increase in tax from the

market equilibrium. Additionally I focus on a small interval dt of the stationary model.

The tax affects the conditions of the agents’ problem in three ways: a direct effect of

reduction of the fee f and indirect effects on the relative valuation of risky and risk-free

payoffs and on the cash flow of the firm through a different level M of active capital.

This last effect has no first-order impact as in the market equilibrium, the fee f and

the marginal productivity λ cancel out. The effect of the reduced fee is to increase

the utility of passive investors and reduce that of active investors. To equate the two

utilities again, the relative price of risky assets has to decrease. Indeed passive agents,

as sellers of risky assets, lose from this change and active agents, as buyers of risky

assets, gain. If markets were complete, as marginal rates of substitutions are equalized

across agents, the total first-order effect of all these changes would be exactly zero.

This can alternatively be seen as a direct consequence of the first welfare theorem.

In our incomplete market framework, as active agents are constrained to own more
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risky assets than they would desire, they value risky assets relatively less than passive

agents. Thus, the effect of a change in the fee relative to a change in the relative

price of risky assets is larger for passive agents than active agents. The net effect is

an increase of the utility level of both agents. The first unit of tax creates welfare;

therefore, too much active capital is present in the market equilibrium.

This conclusion is specific to the stationary model where there is no intertemporal

link in the decision to provide active investment. In the general case, future changes

in the level of active capital affects the present decision to enter active investment,

potentially creating other inefficiencies. Another concern before taking this result as

a policy implication is the exogeneity of the contract. Practically, policy interventions

could affect the contracts offered on markets.

5.2 Time-varying productivity of active capital

Similarly to this concern, the productivity of active capital could change over time.

I study two sources for this variation: decreasing returns to scale and exogenously

time-varying productivity.

5.2.1 Decreasing returns to active capital

Up until now, I have assumed active capital exhibits constant returns to scale. How-

ever, as the number of active investors increases, their quality could decrease, and the

opportunities to create value are lower. A way to model this is to assume decreasing

returns to scale at the firm level. This approach complicates the resolution of the

model as it creates surplus at the firm level: the residual payoff increases from the use

of active capital.

To avoid this issue, we can use decreasing returns to scale at the aggregate level,

but constant returns at the individual level. This corresponds to a decrease in the

quality of active capital when more firms use it. At the firm level, there is no difference

in returns as a function of the individual quantity it uses.12 This model corresponds

to the following dynamics of cash-flow

dDt

Dt

= (µD(st) + λ(Mt)mt)dt+ σD(st)dZt,

where λ(.) is a decreasing function. This specification leaves the individual demand of

firms perfectly elastic, but makes the aggregate demand a decreasing function, given

12Empirically, the evidence is mixed. Some have argued the impact of active capital on firm value

is hump shaped.
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by the first-order condition of the individual firm problem:

λ(Mt) = f.

The decreasing aggregate demand mitigates deleveraging. When the supply of active

capital is lowered, both a decrease in the quantity and an increase in the fee for active

investment absorb this change. Fluctuations in the fee have no impact on risk sharing

and therefore do not affect risk premia. Panels (a) and (b) of Figure 9 show the effect

of an increase in volatility in the standard model and in the decreasing returns case,

respectively The more inelastic the aggregate demand for active capital is, the smaller

the fluctuations in the quantity of active capital are. The limiting effect of productivity

increase on the deleveraging decision can be seen for instance in the Q1:2009 letter to

investors of Pershing Square Capital, a large activist hedge fund. They explain that

they exited some of their positions due to their “inability to accurately forecast with

confidence the duration and depth of the current recessionary environment”. However,

they note: “the fact that a number of our competitors have closed their doors or with-

drawn from an activist approach obviously makes for a less competitive environment

for the surviving participants.[...] Judged by these standards, the ingredients for prof-

itable shareholder activism are more present than ever before, and we continue to be

highly capable of implementation.”

5.2.2 Dependence on state-variables

Alternatively, the productivity of active capital varies in and of its own or with economic

conditions. It corresponds to assuming marginal productivity is a function λ(st) of the

state variables. This assumption does not affect the resolution of the model. If λ(st)

changes independently from other conditions, it corresponds to shifts in the demand

for active capital. The fee is always equal to the marginal productivity and quantity

changes along the supply curve clear the market. When the productivity increases,

the fee and the fraction of active capital increase. When active capital becomes more

productive, its quantity increases, more agents lever up and risk prices decrease. Such

fluctuations would be priced in equilibrium.

If λ(st) is correlated with economic conditions, the corresponding demand shocks

can amplify or dampen the endogenous fluctuations in supply. If λ(st) is negatively

related to fundamental volatility, deleveraging cycles are amplified. In times of high

volatility, neither agents are willing to provide active capital nor firms demand it either.

This case corresponds to panel (c) of Figure 9. However, if the relation is positive and
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Figure 9: Changes in active capital market equilibrium following an increase

in volatility (a: standard model; b: decreasing returns; c: negative relation of λ and

σ; d: positive relation)

active capital is more effective in volatile periods, deleveraging is dampened. If the

productivity gains are large enough, they could suppress deleveraging altogether or

even create more active capital in volatile times (panel (d) of Figure 9). Empirically,

the sign of this correlation is an open question.

5.3 Idiosyncratic risk

Another important feature left out is idiosyncratic risk. Indeed, firms’ output does

not depend only on aggregate conditions, but on individual level shocks. A simple

way to modify the model is to introduce firm-specific shocks to cash-flow growth. This

assumption corresponds to changing the dynamics of the static model to

dDj
t

Dj
t

= (µD + λmt)dt+ σDdZ
D + σjdZ

j,

where Zj is a brownian motion specific to firm j, independent from all other shocks

of the economy. Idiosyncratic shocks do not affect the price–cash-flow ratio; they are

directly reflected into returns. The supply of active capital is then

θ̄f =
1

2
(1− γ)(θ̄ − θ∗)2(σ2

D + σ2
j ).
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We see idiosyncratic risk causes agents to require a larger compensation than in the

basic model. In equilibrium, the lower supply generates a decrease in the quantity of

active capital. Because there is less active capital, and active capital is less sensitive

to aggregate conditions at low levels, the excess sensibility to the level of volatility

will be milder. However, empirically, idiosyncratic volatility correlates positively with

aggregate volatility, as showed by Campbell, Lettau, Malkiel and Xu (2001). In this

case, fluctuations in the two types of volatility concur and increase the magnitude of

fluctuations in the level of active capital.

5.4 Physical investment

A last extension is to include physical investment in the model. We can introduce

physical investment without loosing tractability of the mode. To do so, I introduce

a CES aggregator of active investment and physical investment in the the cash-flow

dynamic:
dDt

Dt

= (µD + λ(mt, it)) dt+ σDdZ
D
t

λ(m, i) = λ0(am
r + (1− a)ir)

1
r ,

where it is the level of physical investment. The investment it is directly taken out of

the cash flow of the firm. The first-order conditions of the firm problem become: ∂λ
∂m

(m, i) = f

∂λ
∂i

(m, i) = 1/V.

Because λ is homogenous of degree 1, only the ratio of active capital to physical in-

vestment is pinned down by these conditions. Also, as in the standard model, this

homogeneity implies all gains are used to pay for the two resources: active capital and

investment goods. The price of the firm does not depend on the scale of its investment

and all effects of active capital come through changes in the stochastic discount factor.

This model naturally generates comovement between active capital and physical

investment. The elasticity of substitution between m and i is 1/(1 − r). If they are

complements, active investment and physical investment can both decrease in periods

of high volatility. The decrease in physical investment now has two rationales. First,

the standard q-theory one: in times of high uncertainty, valuations are low, investment

is not valuable. This effect can be seen in the first condition of the firm. Second,

in times of high uncertainty, little active investment is used and therefore physical

investment is less valuable.
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6 Conclusion

In this paper, I introduced a tractable model of asset pricing in the presence of con-

centrated ownership. In particular, I showed the price of risky assets and the provision

of active capital are strongly tied. Variations in risk premia affect the supply of ac-

tive capital, thereby generating the documented negative relation between expected

returns and the amount of active capital. The quantity of active capital feeds back

into aggregate risk sharing. As active investors deleverage to get out of their positions

in times of high volatility, passive investors must bear the risk exactly when they do

not want to. This feedback is a source of amplification for shocks to risk premium.

On the other hand, cash flow shocks, because they are borne by active agents, are less

costly for passive investors and command a lower risk premium. This mechanism can

help us understand why cash flow shocks are not necessarily the key determinant of

expected returns. On the other hand, fluctuations in risk premium might command

a higher risk price than the standard model, due to their amplification because they

cause variations in the quantity of active capital. Similarly, a large fraction of the

volatility of asset prices might be due to fluctuations in fundamental volatility.

These qualitative predictions call for a more quantitative exploration. The main

obstacle in this task is to measure the quantity of active capital. Because active capital

takes many forms, inside and outside the firm, building aggregate measures of it in order

to study its dynamics is an important challenge. For this task, a better understanding of

the heterogeneity in sources of active capital is necessary. These sources present various

levels of leverage or of productivity gains. An interesting direction along those lines is to

take a more detailed look at how the structure of financing interacts with the investment

policy. I have sketched a way to introduce physical investment into the model, and some

work at the microeconomic level addresses how ownership and investment interact.

Aggregating these results at the macroeconomic level is a challenge.

Another interesting avenue of study would be the development of the active tech-

nology at a lower frequency. For instance, the last few decades have seen an important

expansion of the financial industry at the same time as a lowering of fundamental

volatility. Some have argued a financial volatility has replace fundamental volatility.

Again, to understand how changes in the financing of firms and in technology inter-

act, a better understanding of the role of physical investment in the model would be

necessary.
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A Proofs for the general model

A.1 Firm problem

The sequence problem for the valuation of the firm is:

Pt = sup
{mt+τ}0≤τ<∞

Et
[∫ ∞

0

St+τ
St

(Dt+τ − ft+τmt+τPt+τ )dτ

]
s.t.

dDt+τ

Dt+τ
= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ .

Because of the homogeneity of the problem, the price–cash-flow ratio Vt = Pt/Dt is just a function

V (st) of the state variables st. We can transform the sequence problem in a HJB equation. After

dividing by StDtVt, we get:

0 = max
m

1

V
− fm+

E[d(SDV )]

SDV dt
.

Expanding, we obtain:

0 = max
m

1

V
− fm+

E[dS]

Sdt
+

E[dD]

Ddt
+

E[dV ]

V dt

+
< dS, dV >

[SV dt]
+
< dS, dD >

[SDdt]
+
< dD, dV >

[DV dt]
.

The activity level only appears in the flow term 1/V − fm and the drift of the size of the firm

E[dD]/Ddt = µD(s) + λm. The optimization in m is therefore linear. This linearity gives us two key

implications in the case of an interior optimum. First the slope of the equation in m has to be 0; this

relation links the equilibrium fee for active capital to its productivity:

(A.1) f(s) = λ.

Second, has the slope is zero, all terms in m cancel out in the HJB. The equation determining V

corresponds to:

0 = max
m

1

V
+

E[dS]

Sdt
+

E[dD̃]

D̃dt
+

E[dV ]

V dt

+
< dS, dV >

[SV dt]
+
< dS, dD̃ >

[SD̃dt]
+
< dD̃, dV >

[D̃V dt]
,

where
dD̃t+τ

D̃t+τ

= µD(st+τ )dt+ σD(st+τ )dZt+τ .

This equation corresponds to the price of a firm that never uses any amount of active capital.

A.2 Agent problem

A.2.1 Rescaling the HJB

The HJB equation determining the value function of an agent in any equation is the standard formu-

lation for recursive preferences:

0 = max
C≥0,θ∈Θ

g(C,U) + E(dU)/dt.
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First, using the homogeneity of the utility function and the linearity of wealth dynamics, we can

express U as a separated function of wealth and the state variables:

U =
(W i

t )
γ

γ
G(st).

Then, using the homogeneity of the aggregator g, we simplify:

0 = max
c≥0,θ∈RK

f(γ1/γc, F )
W γ

γ
+ E

[
d

(
W γ

γ
F

)]
/dt.

Dividing, by W γ gives directly the equations of Proposition 3.1.

A.2.2 Solving for consumption and the fee

First compute the various derivatives of the value function U :

U =
W γ

γ
G, UW = γ

W γ−1

γ
G, UWW = γ(γ − 1)

W γ−2

γ
G, and UWs = γ

W γ−1

γ
Gs.

Let us focus first on the HJB of the passive agent:

0 = max
C,θ

g(C,U) +
E[dU ]

dt
.

Expanding gives:

0 = max
C,θ

g(C,U) + UW [W (θ′(µR − rf ) + rf )− C] + U ′sµs

+
1

2
UWWW

2θ′σRσ
′
Rθ +Wθ′σRσ

′
sUWs +

1

2
(σ′sσs) ∗ Uss,

where ∗ is the elementwise multiplication. The first-order condition for consumption is:

gC(C,U) = UW .

The first-order condition for the portfolio share is:

θ∗ = − UWW
UWWW 2

(σRσ
′
R)−1(µR − rf )− (σRσ

′
R)−1σRσS

UWsW

UWWW 2
.

Plugging in using the formulas for the derivatives, we get:

c = C/W = β
−1

(ρ−1)G
ρ

(ρ−1)γ

θ∗ =
1

1− γ
(σRσ

′
R)
−1

(µR − rf ) +
1

1− γ
(σRσ

′
R)−1σRσ

′
sGs.

These formulas are the first two points of Proposition 3.2. Now we can turn to the problem of the

passive agent. It is:

0 = max
C

f(C,U) + UW
[
W (θ̄′(µR − rf ) + rf + θ̄f)− C

]
+ U ′sµs

+
1

2
UWWW

2θ̄′σRσ
′
Rθ̄ +W θ̄′σRσ

′
sUWs +

1

2
(σ′sσs) ∗ Uss.
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The first order condition for consumption is clearly the same as for the active agent which proves that

they pick the same consumption wealth ratio. To solve for the fee, just substract this HJB from that

of the passive investor. It gives:

UW θ̄f =

[
UWW θ∗ ′ (µR − rf ) +

1

2
UWWW

2 θ∗ ′ σRσ
′
Rθ
∗ +W θ∗ ′ σRσ

′
sUWs

]
−
[
UWW θ̄′(µR − rf ) +

1

2
UWWW

2θ̄′σRσ
′
Rθ̄ +W θ̄′σRσ

′
sUWs

]
.

The right-hand side is the difference of two values of an affine-quadratic form where one of the

evaluation points is the optimum. It is therefore exactly quadratic, and equal to, after dividing by

UW :

θ̄f =
1

2
(1− γ)(θ∗ − θ̄)′σRσ

′
R(θ∗ − θ̄)

which concludes the proof.

B Solving the model of section 4

Stochastic discount factor

The stochastic discount factor evolution is given by

dSt
St

= −rf (st)− rpD(st)dZ
D
t − rpX(st)dZ

X
t − rpσ(st)dZ

σ
t .

Firm problem

The HJB detemining the price–cash-flow ratio V (s) is

0 =
1

V
+

E[d(SDV )]

SDV dt
.

Expanding, we obtain:

− 1

V
=
E[dS]

Sdt
+

E[dD]

Ddt
+

E[dV ]

V dt
+
< dS, dD >

SDdt
+
< dS, dV >

SV dt

=− rf + µD − κXXt
VX
V
− κσ(σ2

t − σ2
0)
Vσ
V

+
1

2
ν2σ2

t

Vσσ
V

+
1

2
φ2σ2

t

VXX
V

− rpDσt − rpXφσt
VX
V
− rpσνσt

Vσ
V
.

To obtain a single partial differential equation in V , we need to express the risk-free rate and all

three risk prices as functions of V and the state variables. To do so, we first use the optimal portfolio

of the passive agent
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Stock return

The stock return for the firm’s share is given by:

dR

R
=

(
1

V
+ µD − κX

VX
V
Xt − κσ

Vσ
V

(σ2
t − σ2

0) +
1

2

VXX
V

φ2σ2
t +

1

2

Vσσ
V

ν2σ2
t

)
dt

+ σt

(
dZD + φ

VX
V
dZX + ν

Vσ
V
dZσ

)
.

The expected return is:

Et
[
dR

Rdt

]
=

1

V
+ µD − κX

VX
V
Xt − κσ

Vσ
V

(σ2
t − σ2

0) +
1

2

VXX
V

φ2σ2
t +

1

2

Vσσ
V

ν2σ2
t

= rf + rpDσt + rpXφσt
Vσ
V

+ rpσνσt
VX
V
.

Return dynamics for state variable insurance claims

The other two assets of the economy are zero-cost assets that pay off rpXdt+ dZX and rpσdt+ dZσ

We need to check that their price is indeed zero. For the volatility shock insurance this corresponds

to

E
[
St+dt
St

Xt+dt

]
= E [Xt+dt] + E

[
dSt
St

Xt+dt

]
= rpσdt− rpσdt = 0.

Portfolio problem of a passive agent

We can directly replace by the results of the general model.

Consumption-wealth ratio c:

Market-clearing imposes the consumption-wealth ratio to equal the cash-flow–price ratio:

1

V
= c = β

−1
(ρ−1)G

ρ
γ(ρ−1) .

Volatility insurance position θσ:

In equilibrium, agents do not take any position in the insurance claims.

0 = γrpσ + γ(γ − 1)θ∗ν
Vσ
V
σt + γ

Gσ
G
νσt

rpσ = νσt

[
(1− γ)θ∗

Vσ
V
− Gσ

G

]
= νσt

Vσ
V

[
(1− γ)θ∗ − γρ

1− ρ

]
,

where the last equality is obtained by using the market-clearing condition for consumption linking V

and G.

Growth-rate insurance position θX :

Similarly, we obtain:

rpX = φσt
VX
V

[
(1− γ)θ∗ − γρ

1− ρ

]
.
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Stock position θ∗

We invert the formula for the optimal position θ∗ to find the risk price of the shock dZD.

0 = (µR − rf ) + (γ − 1)

[
θ∗σ2

t + θ∗ν2

(
Vσ
V

)
+ θ∗φ2

(
VX
V

)2

σ2
t

]
+ φ2GX

G

VX
V
σ2
t + ν2Gσ

G

Vσ
V
σ2
t .

Plugging in for µR − rf as a function of risk premia and recognizing the formulas for the other risk

prices, we obtain:

rpD = (1− γ)θ∗σt.

Risk-free rate

The risk-free rate rf is obtained by plugging in all the quantities just derived in the HJB of the

passive agent.

At this stage, we have expressed all the risk prices and the risk-free rate as functions of V (st) and

the optimal portfolio θ∗(st). The equilibrium of the market for active capital provides us this last

quantity.

Market clearing in the active capital market

From the firms’ FOC, we know the fee f must equal the marginal productivity of active capital λ.

Equating this with the indifference condition between agents of different occupations gives:

θ̄λ =
1

2
(1− γ)(θ̄ − θ∗)2σ2

t

[
1 + ν2

(
Vσ
V

)2

+ φ2

(
VX
V

)2
]

The only unknown quantity is therefore V (st). It is determined by the valuation equation of the

firm.
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