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1 Introduction

Global warming has by now become an issue of tantamount importance. If the “busi-
ness as usual” scenario (thereafter BAU ) prevails in the near future, expected damage
could reach up to 13,8 % of GDP by 2200.1 Because the corresponding distribution
of costs and (possible) benefits is non-trivial, reaching an agreement among sovereign
countries over the design of environmental policies that would slow down this process
is a formidable challenge.

Economists taking a Coasian perspective would nevertheless suggest a strikingly
simple solution. Under strong assumptions - complete information, absence of transac-
tion costs, perfect enforceability of contractual arrangements- efficient outcomes should
emerge from environmental negotiations whatever the distribution of current emis-
sions to which countries might be entitled. The record of recent negotiations from
Montreal, to Kyoto, Copenhagen, Cancun and Rio meetings and their repeated fail-
ures demonstrate that efficiency remains in fact by and large out of reach. Uncertainty
on the physical processes behind global warming, conflicting views and private infor-
mation on its local costs and benefits, limited ability of countries to commit to a path of
emissions reductions are all ingredients that might significantly hinder this optimistic
Coasian scenario.

To understand how those impediments to efficient negotiations might be circum-
vented, this paper takes a mechanism design perspective. We study the optimal design
of environmental treaties when sovereign countries have private information on their
abatement costs and must voluntary abide to the agreement, possibly under enforce-
ment or commitment constraints. This analysis offers a number of important and novel
insights that have no counterpart in a Coasian setting.

Two free-riding problems. In the context of a multilateral externalities problem as
global warming, private information is of course the source of free riding at the intensive
margin. Indeed, each privately informed country that participates to an agreement
may exaggerate abatements costs, undersupply effort towards depollution and leave
most of the burden of cost abatements on others. Such free riding has already received
much attention in the mechanism design literature, noticeably in pure public good
settings, and it is well known that its source is the possible conflict between incentive
compatibility, participation constraints and budget balance.2

However, as pointed out by Chander and Tulkens (2008), free riding also bites,
and it is more specific to environmental negotiations, at the extensive margin. Indeed,

1See Stern (2006).
2See Laffont and Maskin (1982) and Mailath and Postlewaite (1990) in general environments. Rob

(1989), Neeman (1999) and Baliga and Maskin (2003) have developed specific applications targeted to
environmental economics.
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sovereign countries may also opt out of the negotiation and still enjoy the benefits
of the agreement ratified by others. Note that when considering such deviation, a
country forms conjectures on how others react which in turn determines its payoff of
not joining. Should the remaining coalition disband with all countries adopting their
BAU emissions or should ratifying countries stick to some restricted and conditional
treaty? Incentives to free-ride by not participating to an agreement certainly depend
on those conjectures. From a mechanism design perspective, those conjectures impact
thus on the participation constraints that apply to the design problem; an ingredient
absent from the received mechanism design literature on public goods provision.

The central case that we will consider below is the BAU scenario, i.e. the situation
where everyone conjectures that, if any country refuses to participate, others follow
theirBAU policy. When all countries must therefore agree to enforce a mechanism, and
for a sufficiently significant externality, efficiency is obtained even under asymmetric
information. Otherwise, effort levels always lie somewhere in between theirBAU level
and the first best in order to curb free riding at the intensive margin. At the same time,
and still as a means to prevent incentives to free-ride, inefficient countries that choose
emissions which are too close to their BAU level are also asked to contribute to a fund.
This fund is then used to subsidize the most efficient countries which instead expand
their effort so as to better internalize the externality they exert on others.

Contributions to this fund cannot be too large without inducing countries with
the highest opportunity costs of effort to leave the agreement. This important insight
points at the existence of a trade-off between solving free riding at the intensive and
at the extensive margins. Inefficient countries end up being indifferent between join-
ing in or not, in which case they exert their BAU efforts while paying the expected
externality they enjoy from the greater effort exerted by the most efficient parties.

Commitment and Enforcement problems. Barrett (2003) reports that the Kyoto Proto-
col suffers from (at least) two flaws.3 First, countries could refuse to ratify without fur-
ther being punished. Second, the protocol did not incorporate any compliance mech-
anism for ratifying countries. This suggests that the design of an agreement should
also account for two further constraints, namely the impossibility to credibly commit
to punish non-ratifiers and the difficulty in enforcing the agreement for ratifiers.

Looking first at the commitment problem, we analyze different conjectures on the
credibility of the punishments that the coalition may impose on non-participating coun-
tries. Two polar cases are studied. When the mechanism does not stipulate any pun-
ishment, free riding at the extensive margin takes an extreme form and no incentive
compatible allocation may outperform the BAU outcome. On the contrary, if partic-
ipants to the treaty can minmax non-ratifiers (which of course requires non-credible

3On this issue, see also Aldy and Stavins (2007).
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threats) the first best can always be implemented, an optimistic albeit unrealistic sce-
nario.

Turning to the enforcement problem, we argue that what can be achieved by a treaty
depends on the collective ability to guarantee that each ratifying country abides to the
rule of the game once accepted. This is true even though internal political pressures at
reelections time, lobbying, and incentives to foster short-term growth may push gov-
ernments to renege on international agreements. Introducing an explicit enforcement
constraint (harder to satisfy than the pure participation constraints) exacerbates ineffi-
ciencies. The set of inefficient countries which are just indifferent between joining in or
not expands and less funds are available to subsidize efforts by the most efficient ones.
Difficulties in enforcement make the BAU option more attractive.

Approximate implementation. Proposing a handy set of instruments that could be
put into place to implement good climate-change policies is high on the practitioners’
agenda.4 In this respect, we also investigate how the optimal mechanism can be imple-
mented or, at least, approximated in practice. Our analysis reveals that a simple two-
items menu that specifies either a fixed contribution or a Pigovian subsidy per unit of
effort cum a stronger contribution may perform quite well to approximate the optimal
mechanism. Countries are then split into two groups. Efficient ones take the incentive
option while inefficient ones just contribute a fixed amount to the fund. Numerical
simulations testify that this menu reaches most of the welfare gains under asymmet-
ric information. This might leave an optimistic view on the possibility of solving the
climate-change problem even in non-Coasean environments.

Literature review. The existing literature on climate negotiations has insisted on the
possible failures in reaching global agreements. The focus is on conditions for reach-
ing efficiency while at the same time requiring the worldwide coalition to be robust to
secessions. To tackle those issues, Chandler and Tulkens (1995, 1997) introduce the no-
tion of γ-core for economies with multilateral externalities. They defined the worth of a
coalition, assuming that countries outside the coalition play individual best responses.
They demonstrated that the grand-coalition is feasible despite individual incentives to
free ride at the extensive margin. Under complete information, efficiency may be com-
patible with a worldwide coalition. We borrow from this contribution an important
concern on the role played by conjectures on how stringent participation constraints
are. Under asymmetric information, efficiency is nevertheless far less easy to reach. To
the best of our knowledge, there has been almost no work addressing the multilateral
externality problems in climate agreement taking a mechanism design perspective. An
exception is Helm and Wirl (2011) who consider a two-country version of this problem
where bargaining power is asymmetrically distributed and the uninformed country

4See for instance Bradford (2008) and Guesnerie (2008) among others.
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designs a mechanism controlling collective emissions. Our paper significantly differs
from this one by taking a more normative approach in a framework with multiple pri-
vately informed countries and a more even distribution of bargaining power.

Another important line of research (Carraro and Siniscalco 1993, 1995, Barrett 1994)
has instead focused on incentives to form coalitions by imposing external and inter-
nal stability criterions similar to those developed in earlier cartel theory. Subsequent
research in the field (Carraro, 2005) has then stressed the importance of various in-
stitutional rules to ensure participation, stability, and solve the free-riding problem.
There, institutional constraints are imposed at the outset and not derived from primi-
tives. This stands in sharp contrast with the mechanism design approach that precisely
derives optimal institutions from primitives - well-specified informational constraints
and strategic behavior.5 This approach is, by tradition, more normative and, by con-
struction, does not care much on details of the negotiation process.

Another route away from the Coasean scenario which is complementary to ours
consists in introducing commitment problems in dynamic games of complete infor-
mation. In that vein, Beccherle and Tirole (2011), Battaglini and Harstad (2012) and
Harstad (2012a, 2012b) analyze models where countries can limit global warming ei-
ther by decreasing consumption or making some non-verifiable investments in abate-
ment technologies. Countries may refrain from investing today as it would trigger less
investment and more pollution from others tomorrow. Becherelle and Tirole (2011)
show how today investments affect threat points in future negotiations and are thus
chosen strategically in an incomplete contracting framework. Harstad (2012b) shows
that short-term agreements can be worse than no contract at all from a welfare view-
point. Harstad (2012a) derives optimal dynamic contracts when renegotiation allows
to reach efficient outcomes.

At a more theoretical level, our paper also contributes on the mechanism design
front. The mechanism design approach for public good provision6 assumes that all
participating agents have veto power, i.e., the fall-back option if anyone disagrees is
no provision of the public good at all with zero payoffs. This assumption seems in-
adequate to tackle the specificities of environmental negotiations between sovereign
countries, especially when various conjectures may be entertained on the commitment
ability of coalitions and individual countries. This paper revamps the conflict between
individual incentives, budget balance and participation constraints when those par-
ticipation constraints explicitly take into account such conjectures. From a technical
viewpoint, the characterization of such regime is complexified by the addition of type-
dependent participation constraints to a mechanism design problem under budget bal-

5This stability program was developed in a complete information framework and often assumed
away the possible heterogeneity between countries. On the difficulties in reaching agreements among
heterogenous countries in a complete information setting, see Thoron (2008).

6See references above.
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ance. We rely on and adapt techniques developed in Martimort and Stole (2011) to
tackle those issues.

Organization of the paper. Section 2 presents the model. Section 3 first describes
incentive feasible allocations. Focusing on the BAU scenario as the fall-back option,
we delineate conditions for inefficient effort provision under asymmetric information.
Finally, we analyze those inefficiencies and the properties of the nonlinear contribu-
tion schedule that implements second-best efforts. Section 4 investigates the impact
of varying the commitment ability of the coalition to enforce punishments on non-
ratifiers. Section 5 studies the enforcement problem. Finally, Section 6 analyzes the
performances of simple policy instruments. Section 7 discusses the robustness of our
findings and highlights a few alleys for further research. Proofs are in an Appendix.

2 The Model

Preferences and technology. Let consider a continuum of countries of unit mass which
undertake activities that mitigate pollution emissions. By exerting a non-negative ef-
fort ei, country i generates two kinds of benefits. The first benefits of size αei (where
α ∈ [0, 1)) are purely local and accrue only to country i.7 The second sort of benefits
are instead global, worth (1 − α)ei and accrue to all countries worldwide. As α varies
from zero to one, efforts go from having pure global to pure local consequences. Even
though this modeling is consistent with αei being the pure local benefits of a clean en-
vironment,8 a broader interpretation of this modeling is that the adoption of policies
against global warming might have a more general positive economic impact at the
local level (maybe by fostering growth through innovation in green technologies) but,
as we will see below, these efforts are too low from a worldwide welfare point of view.

Countries are heterogeneous in terms of their marginal cost of exerting effort. For
tractability, we adopt a quadratic formulation and assume that the disutility of effort
writes as C(ei, θi) =

e2i
2θi

, where θi is an efficiency parameter. Those costs should be un-
derstood in a broad sense, including not only technological but also opportunity costs
(those possibly being associated to internal politics)9 necessary to reach a given effort
target. With that latter interpretation in mind, developed countries (at least some of
them like the U.S.) may be considered as the least efficient ones while developing ones
might actually face lesser internal constraints in adopting stringent regulations. Cost

7It will appear clearly in the sequel that the case α = 1 is degenerate. There is no externality in that
unlikely case and BAU is trivially optimal, a theoretical case that has no practical relevance.

8For instance, CO2 is known as having a global impact whereas other greenhouse gazes like SO2 or
NOx have also significant local impacts.

9Helm, Hepburn and Mash (2005) study the incentives of governments to implement lax carbon
policies because of electoral concerns.
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convexity captures the fact that emissions cannot be reduced too much without im-
pairing the basic functioning of the economy by, for instance, imposing technological
changes and adjustments that are increasingly harder to implement as efforts increase.
Country i’s payoff can be written as:

Ui = ti + αei + (1− α)E − e2
i

2θi
.

E represents the “aggregate” effort taken worldwide.10 The payment ti stands for any
financial compensation (taxes or subsidies) that this country may receive for under-
taking the requested effort. The possibility of including monetary contributions into
environmental treaties is indeed often explicit. For instance, Article 11 of the Kyoto
Convention allows for the possibility of transfers from developed to developing coun-
tries under the aegis of an International Green Fund.11

Information. The efficiency parameters θi are independently drawn from the same
cumulative distribution F (·) with support Θ = [θ, θ̄] (with θ > 0) and everywhere pos-
itive and atomless density f(θ) = F ′(θ). Let denote by Eθ(·) the expectation operator
with respect to θ.

The following monotonicity condition will ensure monotonicity of effort at the op-
timal mechanism under asymmetric information:

Assumption 1
d

dθ

(
1− F (θ)

θf(θ)

)
≤ 0 ∀θ ∈ Θ.12

Country i has private information on its efficiency parameter θi while its effort in
mitigating pollution is observable.13 Countries cannot receive payments conditional
on the realization of this efficiency parameter although efforts can be contractually
specified and subsidized. In that respect, our model can also be applied when costs

10An alternative formulation of the objective would be ti + αei + βE − e2i
2θi

for some non-negative α
and β. Normalizing by α+β and changing θi into θi(α+β) gives us our posited formulation. The latter
has the benefit of keeping the first best fixed as α changes. This simplifies comparative statics.

11Contributions may also be given a broader interpretation and be viewed as the benefits or costs that
countries withdraw when climate negotiations are linked to negotiations on other issues such as R&D
technology transfers, sovereign debt and trade agreements. (On this, see Barrett 2005.) Of course, those
costs and benefits may entail deadweight losses that are abstracted away.

12Distributions (uniform, exponential, truncated normal...) satisfying the more common monotonicity
of the hazard rate d

dθ

(
1−F (θ)
f(θ)

)
≤ 0 (Bagnoli and Bergstrom, 2005) also satisfy the weaker Assumption 1.

13That efforts in curbing pollution emissions are publicly observable is actually a mild assumption.
Indeed, much attention has recently been devoted by practitioners on this issue and they agree that
a worldwide system of satellite observations to measure local emissions is technically feasible. Tirole
(2008) forcefully recognizes this point.
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are common knowledge but discriminatory mechanisms conditional on the countries’
exact identity are banned.14

Finally, the following assumption requires that the externality is not too strong rel-
ative to the informational problem. We will show below that when the externality is
large enough, an efficient allocation can still be implemented even under asymmetric
information.

Assumption 2

α > α1 =
θ

2Eθ̃(θ̃)− θ
∈ (0, 1).

Assumption 2 certainly holds when the parameter α is close enough to one (the case
of a weak externality) or when uncertainty on the productivity type θ is large enough
so that Eθ̃(θ̃) is sufficiently above θ.

Mechanisms and incentive compatibility. Because efforts are publicly observable, a
mechanism stipulates levels of compensation and effort for each country. However,
the fact that countries are privately informed on their opportunity costs of exerting
effort implies that payments and effort levels must be incentive compatible. We now
turn to the description of such incentive compatibility allocations. By the Revelation
Principle, there is no loss of generality in considering direct and truthful revelation
mechanisms of the form {t(θ̂), e(θ̂)}θ̂∈Θ. Those mechanisms determine compensations
and effort levels as a function of a country’s announcement θ̂ on its own type. In
particular, those mechanisms replace any nonlinear contribution schedule T (e) that
would map observable effort levels into compensations. For technical reasons, we will
assume that efforts and payments belong to a sufficiently large compact set; formally,
(e, t) ∈ [0,M ]× [−T, T ] for M and T large enough.

This mechanism design approach relies implicitly on the use of a mediator (or and
international external agency) who monitors and enforces, possibly under some ob-
servability constraints, the efforts made by treaty members.15,16

Following a truthful strategy, a type θ country exerts an effort e(θ). We rely on
the Law of Large Numbers to identify the average global benefits of the countries’

14Such anonymous design was forcefully advocated by the Bush administration to justify its with-
drawal from the 2001 Kyoto protocol when calling the treaty “unfair” for industrialized countries.

15This external party is often referred to in the informal literature. For instance Guesnerie (2008)
has proposed mechanisms to trade pollution permits that also heavily rely on an International Bank for
Emissions Allowance Acquisition.

16Of course, the solution to this mechanism design problem gives us an upper bound on aggregate
welfare. More decentralized bargaining procedures may fail to reach the frontier of the set of incentive-
feasible allocations under asymmetric information. See for instance Martimort and Moreira (2010) for a
result along these lines in the context of public good provision.
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efforts with its expected value, i.e., (1−α)E ≡ (1−α)Eθ̃(e(θ̃)). We may then define the
equilibrium payoff U(θ) of a country with type θ as:

U(θ) = t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ)

2θ
.

Incentive compatibility implies:

U(θ) = max
θ̂∈Θ

t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−
e2(θ̂)

2θ
. (1)

In the sequel, we shall repeatedly use a more compact (dual) characterization of incen-
tive compatibility by using the rent U(θ) instead of the payment t(θ) together with an
effort level. An allocation is thus a pair (U(θ), e(θ)).

Budget balance. Assuming that no external source of funds is available, i.e., the mech-
anism must be self-financed, the following budget balance condition must also hold:

Eθ̃(t(θ̃)) ≤ 0.

It will be often useful to rewrite this constraint as:

Eθ̃

(
e(θ̃)− e2(θ̃)

2θ̃

)
≥ Eθ̃

(
U(θ̃)

)
. (2)

The overall expected surplus generated by the countries’ efforts should be at least
equal to their overall expected payoff. Of course, this constraint is binding (no waste
of resources) for optimal mechanisms under all circumstances below.

Participation constraints. Finally, the mechanism must satisfy a set of participation
constraints to ensure that all countries join the agreement. Those participation con-
straints depend on the commitment ability of the coalition to enforce actions in case
any country deviates and does not join in. In the sequel, we will bear particular at-
tention to the BAU outcome that is achieved when the whole coalition breaks down as
soon as any of the countries refuses to participate to the mechanism.17

The corresponding fall-back option is thus the (symmetric) Bayesian-Nash equilib-
rium where countries non-cooperatively choose their efforts. Let denote by UN(θ) the
payoff of a type θ country in such equilibrium. We have

UN(θ) = max
e
αe− e2

2θ
+ (1− α)Eθ̃(eN(θ̃))

where the Bayesian-Nash level of effort eN(θ̃) is

eN(θ) = arg max
e
αe− e2

2θ
+ (1− α)Eθ̃(eN(θ̃)) = αθ.18

17Sections 4 and 5 develop alternative specifications of those participation constraints.
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This immediately leads to the following expression of payoffs under BAU :

UN(θ) =
α2

2
θ + (1− α)αEθ̃(θ̃).

Since countries know their types when deciding whether to join the treaty or not,
the corresponding ex post participation constraints are written as:

U(θ) ≥ UN(θ) ∀θ ∈ Θ. (3)

Complete information benchmark. Suppose that the countries’ efficiency parameters
are common knowledge. Type-dependent instruments can be used to fix efforts at their
target levels and compensate countries for those efforts according to the exact cost they
incur. Ex post participation constraints (3) are easily satisfied. Of course, worldwide
welfare is maximized for the first-best level of effort

eFB(θ) = θ ∀θ ∈ Θ.

Because a given country does not internalize the impact of its own effort on other
countries’ welfare, efforts are too low under BAU .

3 Asymmetric Information and Second-Best Mechanisms

3.1 Incentive Compatibility

Consider now the case where the countries’ efficiency parameters are private informa-
tion. Incentive compatibility constraints should now be added to characterize feasible
allocations. Next lemma describes incentive compatible allocations.

Lemma 1 An allocation (U(θ), e(θ)) is incentive compatible if and only if:

1. U(θ) is absolutely continuous with at each point of differentiability (i.e., almost every-
where)

U̇(θ) =
e2(θ)

2θ2
. (4)

2. e(θ) is non-decreasing.

18Thanks to our separability assumption between returns from local and global benefits, non-
deviating countries choose the same effort level whatever their beliefs on the deviant (and negligible)
country as long as they revert to a non-cooperative behavior.
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By mimicking a slightly less efficient type θ − dθ, a type θ country can exert the
same effort level but at a lower marginal cost. The marginal gains from doing so is ap-
proximatively e2(θ−dθ)

2θ2
dθ ≈ e2(θ)

2θ2
dθ. To induce information revelation, the most efficient

type must pocket an extra reward U(θ) − U(θ − dθ) ≈ U̇(θ)dθ that is precisely worth
these marginal gains as shown in (4). From Lemma 1, it immediately follows that an
incentive compatible mechanism must give greater payoffs to the most efficient coun-
tries. Presumably, these countries are also those which may get more by entering the
agreement than by opting for their fall-back option.

It is standard to neglect the monotonicity condition on e(·) and obtain a relaxed
optimization problem whose solution satisfies that extra condition when Assumption
1 holds. We will follow that approach in the remainder of the paper. Adopting ex ante
efficiency as an optimization criterion, the so relaxed second-best optimization problem
consists in finding an (absolutely continuous) profile U(·) that solves:

(PSB) : max
U(·),e(·)

Eθ̃(U(θ̃)) subject to (2), (3) and (4).

3.2 Conditions for Efficiency

As a preliminary step, we investigate under which conditions efficiency might still be
compatible with asymmetric information.

Proposition 1 Under asymmetric information and when the fall-back option is BAU , the
first-best allocation cannot be implemented if and only if Assumption 2 holds.

To understand this result, one must figure out the impact of α on both participation
and incentives. Consider first the participation problem. When the parameter α is
small, positive externalities are significant and the cost of disagreement is high. This
relaxes participation constraints and makes cooperation more attractive. However, on
the incentives side, countries do not care much about the local impact of their effort
and the incentives to free-ride by reducing efforts are large. Avoiding such free riding
requires large compensations to stimulate provision. When α is small enough, the
gains from cooperation are sufficiently large to compensate for the incentive cost. The
first-best allocation can still be implemented.

When α is instead large enough, the global impact of each countries’ individual ef-
fort is less significant. Countries choose efforts close to the first best even when they do
not cooperate. By the same token, the gains from cooperation are also small. Although
there is less free riding in effort provision, the gains from cooperation are too small to
compensate for the incentive problem and allow efficiency.

10



3.3 Two Free-Riding Problems

We now characterize second-best allocations with BAU as the fall-back option. In-
efficiencies depend on the tension between incentive compatibility, participation and
budget balance. In this respect, we will distinguish two scenarios. In the first one, all
countries except the less efficient ones strictly gain from joining the mechanism. Effort
levels always remain above BAU . These weak distortions arise when the gains from
cooperation are rather large. In the second scenario, i.e., for strong distortions, ineffi-
ciencies are more pronounced. Only the most efficient countries strictly prefer joining
in. Less efficient ones keep on exerting their BAU effort level.

To describe more precisely those scenarios, a detour consisting in defining a few
auxiliary variables is useful. Consider an effort schedule ē(θ, ζ) and a critical type θ∗(ζ)

both parameterized by some parameter ζ ≥ 1

ē(θ, ζ) =
θ

1 + ζ−1
ζ

1−F (θ)
θf(θ)

(5)

and {
1−F (θ∗(ζ))
θ∗(ζ)f(θ∗(ζ))

= 1−α
α

ζ
ζ−1

if ζ ≥ ζ∗(α) (strong distortions)
θ∗(ζ) = θ if ζ ∈ [1, ζ∗(α)) (weak distortions)

(6)

where
ζ∗(α) =

1

1− 1−α
α
θf(θ)

. (7)

Anticipating on our findings below, ē(θ, ζ) will actually be the second-best effort
level when ζ = ζ̂ is the Lagrange multiplier for an aggregate feasibility constraint ob-
tained by consolidating incentive, participation and budget-balance constraints alto-
gether. All types which are less efficient than the critical type θ∗(ζ) (when interior) are
just indifferent between exerting the BAU effort and the second-best effort level, i.e.,
ē(θ∗(ζ̂), ζ̂) = eN(θ∗(ζ̂)). More generally, the parameter ζ measures how the strength of
distortions.

With these notations in mind, we derive this aggregate feasibility constraint as:∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− ē2(θ, ζ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ + UN(θ∗(ζ))(1− F (θ∗(ζ))). (8)

Condition (8) simply expresses the fact that total welfare has to be fully redistributed
among countries participating to the mechanisms while keeping incentive compatibil-
ity. Incentive compatibility explains the extra informational distortion (proportional
to 1−F (θ)

θf(θ)
on the left-hand side of (8)). Inducing effort profiles closer to the first best is

now costly because it exacerbates free riding at the intensive margin; the most efficient
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countries having then incentives to pretend being less so. Inducing participation im-
poses that feasible rent profiles must remain above their BAU level. We show below
that those constraints are actually binding on an interval Ωc = [θ, θ∗(ζ)] (which might
be reduced to a single point in the case of weak distortions). The BAU effort and rent
profiles are then found respectively both on the left-hand side of condition (8) which
evaluates total welfare and on the right-hand side which measures expected payoffs.

Observe that ζ∗(α) is decreasing with α and that 1− 1−α
α
θf(θ) > 0 (hence ζ∗(α) > 1

holds) when

α > α2 =
1

1 + 1
θf(θ)

. (9)

Assumption 3 below (which is for instance satisfied by the uniform distribution to
which we will refer later on) simplifies the analysis without losing any insight:

Assumption 3

α2 ≤ α1 ⇔ Eθ̃(θ̃) ≤ θ +
1

2f(θ)
.

This assumption allows us to have a clear separation between parameters constel-
lations where either strong or weak distortions arise.

Distortion regimes. We are now ready to describe the two distortion regimes, de-
pending on the value of the multiplier ζ̂ which is obtained as the unique solution to
the aggregate feasibility condition (8).19

Proposition 2 Suppose that the fall-back option is BAU and that Assumption 3 holds. There
exists α̂ ∈ (α1, 1) that defines two different profiles of payoffs at the optimal mechanism.

1. Weak distortions. For α ∈ [α1, α̂], ζ̂ ∈ (1, ζ∗(α)].

2. Strong distortions. For α ∈ (α̂, 1), ζ̂ > ζ∗(α).

The intuition for those distortions is better understood when thinking of α as being
close enough to α1, i.e., small enough while Assumption 2 being still satisfied. In that
case, the efficiency gains from coordinating effort levels are rather strong but yet not
large enough to allow efficiency. Nevertheless, we expect rather small allocative dis-
tortions. More formally, the multiplier ζ̂ should be close to one so that effort is almost
efficient. When α increases, the gains from coordination are lower and asymmetric
information has more bite. Distortions are stronger and ζ̂ increases.

Rents profile. Depending on the scenario, the rents profile has different shapes which
are described in the next proposition.

19The proof of uniqueness can be found in the Appendix.
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Proposition 3 Suppose that the fall-back option is BAU and that Assumptions 1, 2 and 3
hold together. The second-best profile of rents Ū(θ) is such that the participation constraint (3)
is binding

1. only at θ when ζ̂ ≤ ζ∗(α) (weak distortions);

2. on an interval Ωc = [θ, θ∗(ζ̂)] with non-empty interior when ζ̂ > ζ∗(α) (strong distor-
tions).

Efforts profile. Turning now to the characterization of effort levels, we get:

Proposition 4 Suppose that the fall-back option is BAU and that Assumptions 1, 2 and 3
hold together. The second-best profile of effort levels ē(θ) is continuous, increasing in θ, greater
than the BAU level but downward distorted below the first best everywhere except at θ̄.

1. If θ = θ∗(ζ̂) (weak distortions), then

ē(θ) = ē(θ, ζ̂) > eN(θ) ∀θ ∈ Θ; (10)

2. If θ < θ∗(ζ̂) (strong distortions), then

ē(θ) =

{
ē(θ, ζ̂) > eN(θ) if θ ∈ Ω = (θ∗(ζ̂), θ̄]

eN(θ) if θ ∈ Ωc = [θ, θ∗(ζ̂)].
(11)

When Assumption 2 holds, we already know that efficiency cannot be achieved.
One cannot find incentive compatible payments that implement efficient effort levels
and that give all types strictly more than their BAU payoffs. The participation con-
straint (3) must be binding somewhere.

Under asymmetric information, the most efficient types (such that θ ∈ Ω = (θ∗(ζ̂), θ̄])
have now some incentives to claim being less efficient and produce less effort than re-
quested by the mechanism. Those efficient types want to free ride by exerting less
effort even when ratifying the mechanism. By doing so, they still earn some rent above
BAU .

To limit those incentives to free ride at the intensive margin, the optimal mecha-
nism plays both on effort targets and compensations. First, effort is reduced below
the first best for all types (except the most efficient one). This first distortion reduces
how much can be saved by the most efficient types by mimicking slightly less efficient
ones. Second, the mechanism also asks for a greater contribution from the least effi-
cient types to make their allocation less attractive. This second distortion might push
the least efficient types to opt out of the mechanism. It thus exacerbates free riding at
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the extensive margin. To avoid such possibility, the inefficient countries’ contributions
are limited so that participation constraints are binding on the lower tail of the types
distribution. This is so either at a single point or on a whole interval depending on
whether distortions are weak or strong.

Summarizing, there is a trade-off between the free-riding problems at the intensive
and at the extensive margins. Asymmetric information introduces a conflict between
the most efficient countries’ incentives to truthful reveal and the least efficient types’
incentives to participate.

Contributions. Observe that at any point of differentiability of the payment sched-
ule, the incentive compatibility condition (1) also implies the following relationship
between payments and efforts:

˙̄t(θ) =
˙̄e(θ)

θ
(ē(θ)− eN(θ)) . (12)

From Proposition 4, it follows that t̄(·) is strictly increasing on (θ∗(ζ̂), θ̄] and constant
on [θ, θ∗(ζ̂)] if such interval has a non-empty interior. From the fact that the budget-
balance constraint (2) is binding at the optimum, it also follows that

t̄(θ) < 0 < t̄(θ̄).

Inefficient countries always pay for joining the coalition even though they get the same
payoff in and out. They are ready to pay exactly the benefit they receive from the
greater effort exerted by those efficient types who produce above the BAU level. More
precisely, for large inefficiencies (i.e., when ζ̂ > ζ∗), a country with a type in the interval
[θ, θ∗(ζ̂)] contributes a fixed amount which is the expected (positive) externality it enjoys
from the agreement:

t̄(θ) = −(1− α)

∫ θ̄

θ∗(ζ̂)

(ē(θ)− eN(θ))f(θ)dθ < 0.

Indeed, when such inefficient country deviates and opts out of the coalition, the most
efficient countries with types θ ∈ (θ∗(ζ̂), θ̄] react by producing their BAU effort level
which is strictly less than that requested by the mechanism. This punishment reduces
the overall payoff of the deviating country by an amount which is equal to its contri-
bution:

(1− α)

∫ θ̄

θ∗(ζ̂)

(ē(θ)− eN(θ))f(θ)dθ.

The optimal allocation can be implemented by means of a convex nonlinear contri-
bution schedule. To show this, first observe that ē(θ) is an increasing function of θ when
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Assumption 1 holds. Hence, we may define the inverse mapping θ̄(e) on the relevant
interval and a nonlinear payment schedule that implements the optimal allocation as:

T (e) = t̄(θ̄(e)) =

∫ θ̄(e)

θ

ē2(x)

2x2
dx− αe+

e2

2θ̄(e)
− (1− α)Eθ̃(ē(θ̃)).

Proposition 5 T (e) is flat for e ≤ eN(θ∗(ζ̂)), strictly increasing and convex for e > eN(θ∗(ζ̂)).

Observe that T ′(ē(θ̄)) = 1 − α ≥ T ′(ē(θ)) for all θ. Indeed, the most efficient coun-
tries fully internalize the impact of their effort on global welfare since they receive a
Pigovian (marginal) subsidy for doing so. Less efficient types are less rewarded at the
margin and do not expand effort as much.

We will use this convexity later to derive simple(r) instruments which are able to
efficiently approximate the optimal allocation.

4 Commitment Issues

We now investigate the properties of agreements under various scenarios on the com-
mitment ability of the parties. Indeed, ratifying countries may not always be able to
specify threats of retaliation on non-ratifiers. The two commitment scenarios that are
considered below correspond to polar fall-back payoffs for a country that chooses not
to ratify the mechanism. Those scenarios entail participation constraints in the mech-
anism design problem which are more or less stringent. That, in turn, affects the ef-
ficiency of the mechanism. The analysis unveils how the ability of treaty members to
punish non-ratifiers is key to move away from the BAU outcome.

4.1 No Commitment

Suppose first that the mechanism cannot credibly impose any threat on non-ratifiers.
Ratifying countries keep on playing the mechanism even after having contemplated
a deviation from a country opting out. A non-ratifying country still chooses an effort
level eN(θ) while ratifiers keep on choosing the effort levels requested by the mecha-
nism. The participation constraint becomes:

U(θ) ≥ α2

2
θ + (1− α)Eθ̃(e(θ̃)), ∀θ ∈ Θ. (13)

By refusing to abide to the agreement, a deviating country does not affect the ag-
gregate effort but avoids paying any contribution on its own. Of course, this scenario
leads to an extreme form of free riding at the extensive margin.20

20Those strong incentives to free-ride arise because each country is infinitely small in the world as
a whole. This is itself a strong assumption that could be relaxed by considering the case of a limited
number of countries (or few blocks of countries).
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Proposition 6 When any commitment to inefficient threats is not possible, the only feasible
allocation is BAU .

It is therefore impossible to achieve any positive results beyond BAU when the
mechanism is not contingent on the participation of all countries. To improve on BAU ,
a treaty must stipulate obligations/commitments of the ratifying members which de-
pend on the behavior of all countries. Interestingly, the Kyoto protocol included such
contingent restrictions as it required the ratification by countries representing 55% of
worldwide emissions to bring the treaty into force.

4.2 Worst Punishments

Let us consider now the opposite polar case where coalition members can collectively
punish non-ratifiers. This is of course an extreme and unrealistic assumption that im-
plies commitment to inefficient threats, more precisely zero effort by non-deviating
countries to minimize the deviation payoff for such non-ratifier. Even though choos-
ing an effort level eN(θ) remains optimal for such country, the worst punishment yields
a payoff from not joining in which is now given by:

UW (θ) =
α2

2
θ.

Inducing participation requires:

U(θ) ≥ UW (θ) ∀θ ∈ Θ. (14)

Proposition 7 The first-best allocation can always be implemented when the fall-back option
is the Worst-Punishment outcome.

Because the fall-back option entails zero effort by non-deviating countries, the gains
from cooperation increase. It allows to implement the first best even when incentive
constraints matter.21

5 Limits on Enforcement

Section 3.3 has featured the different shapes that an optimal mechanism may take with
a sole focus on incentive constraints as an impediment to efficiency. Environmental
treaties may on top also face enforcement problems.

In this respect, the optimal mechanism characterized in Section 3.3 has some sur-
prising features, especially when the participation constraint is binding on a non-
empty interval Ωc = [θ, θ∗(ζ̂)] (the case of strong distortions). Indeed, types in that

21This result is reminiscent of other works in Bayesian environments with a finite number of players
(Makowski and Mezzetti 1994 among others).
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interval exert their BAU effort whether they join the mechanism or not. This makes
the mechanism particularly vulnerable to an enforcement problem if contributions are
paid once the countries’ efforts are already sunk. Once those indifferent types have
already chosen their effort, they could just choose not to contribute and free ride on
the most efficient ones. This perverse possibility brought by such timing is indeed par-
ticularly relevant in the case of the 1997 Kyoto protocol where the 38 most developed
countries (the so-called Annex I) committed themselves to a certain level of emissions
before any system of contributions were established.

We model this enforcement problem by viewing the countries’ decision to comply
with the mechanism as a moral hazard variable: A given country abides to the mech-
anism if it finds it optimal to obey the course of actions it requests.22 Otherwise, other
countries retaliate.23 To capture the idea that international mechanisms are only en-
forced imperfectly, we assume that, whenever a country does not comply, it is only
punished with some exogenous probability δ < 1 by compliant countries. At this pun-
ishment stage, those countries return to their BAU effort levels while the deviating
country itself reduces its own effort down to its BAU level. With probability 1− δ, the
deviating country is not punished, keeps the effort requested by the mechanism but
does not pay. Therefore, a country with type θ abides to the mechanism whenever the
following enforcement constraint holds:24

U(θ) ≥ (1− δ)
(
−e

2(θ)

2θ
+ αe(θ) + (1− α)Eθ̃(e(θ̃))

)
+ δUN(θ). (15)

This enforcement constraint (15) can also be written as:

t(θ) ≥ δ

1− δ
(UN(θ)− U(θ)). (16)

Contributions cannot be too large without impairing the play of the mechanism. On
the other hand, the enforcement constraint certainly holds for the most efficient coun-
tries which are subsidized by the mechanism, receive positive transfers and get more
than their BAU payoff.

22To motivate this approach, observe that, in an international context, any mechanism between
sovereign countries may lack of the perfect enforceability technology that is available when private
parties contract under the aegis of a Court of Law.

23Laffont and Martimort (2002, Chapter 9) present a related model of enforcement in a static principal-
agent relationship whereas Levin (2003) and Athey, Bagwell and Sanchirico (2004) study enforcement
issues in other specific dynamic contexts.

24Although our analysis does not rely on a full-fledged dynamic modeling, this enforcement con-
straint admits an interpretation in terms of repeated games. Everything happens as if parties were
committed to a stationary mechanism that covers an infinite number of periods with a discount factor
δ. Types are stationary and drawn once for all. (See Baron and Besanko, 1984, for such information
structure.) The mechanism defines a repeated game with per-period payoff U(θ) and a discount factor
δ. Whenever a country does not contribute, non-deviating ones play trigger strategies and BAU follows
in the continuation.
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Under limited enforcement, the optimization problem becomes:

(PE) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (4) and (15).

In a first pass to assess the new inefficiencies involved, we may first investigate
conditions under which the first-best levels of effort are no longer implementable.

Proposition 8 The first-best allocation cannot be implemented under limited enforcement when

α > α1(δ) = α1 −
2(1− δ)(Eθ̃(θ̃)− θ)
δ(2Eθ̃(θ̃)− θ)

. (17)

Because the enforcement constraint (15) is stronger than (3), it becomes harder to
implement the efficient level of effort and α1(δ) ≤ α1.

From a technical viewpoint, the enforcement constraint (15) is complex for two rea-
sons. First, it is a mixed constraint of the kind g(U(θ), e(θ), Eθ̃(e(θ̃)), θ) ≥ 0, involving
both the state variable U(θ), the control e(θ) and its average value Eθ̃(e(θ̃)). Second,
g(·) so defined is neither quasi-concave nor does it satisfy standard constraints qual-
ification conditions. Henceforth, standard sufficiency theorems from optimal control
cannot be applied to characterize an optimal mechanism.25 To avoid those technical
difficulties without loss in terms of economic insights, we will now replace (15) with
the more stringent state-dependent constraint :

U(θ) ≥ UN(θ) + (1− δ)(1− α)(Eθ̃(e(θ̃))− Eθ̃(eN(θ̃))) ∀θ. (18)

This condition is more stringent because the right-hand side of (15) is maximized for
e(θ) = eN(θ) and thus always less than that of (18). However, next lemma shows that,
for strong distortions where (15) binds on an interval with non-empty interior, replacing
(15) with (18) entail no loss for mechanisms that implement efforts above BAU .

Lemma 2 Optimal mechanisms with strong distortions where (15) is binding on an interval
Ωc with non-empty interior and such that e(θ) ≥ eN(θ) for all θ satisfy (18).

Equipped with Lemma 2, we define a new mechanism design problem where the
“type-dependent” constraint (18) replaces the more complex “mixed-constraint” (15):

(PE) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (4) and (18) .

Solving this problem offers a characterization of regimes with strong distortions.
25The fact that g(·) is not quasi-concave in (U, e) precludes the use of sufficiency results of the Man-

gasarian type (Seierstad and Sydsaeter, 1987, Chapter 6, p. 358). Moreover, as we will show in Lemma
2, whenever g(U(θ), e(θ), Eθ̃(e(θ̃)), θ) = 0 on an interval with non-empty interior, we have e(θ) = eN (θ)

and ∂g
∂e (U(θ), eN (θ), Eθ̃(e(θ̃)), θ) = 0 at such θ which means that constraint qualification fails and Arrow-

type sufficiency results (Seierstad and Sydsaeter, 1987, Chapter 6, p. 368) cannot be used either.
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Proposition 9 Assume that (17) holds. Under limited enforcement, an optimal mechanism
with strong distortions is such that there exists ζ̂ > 1 such that (15) is binding on an interval
Ωc = [θ, θ∗(ζ̂)] with θ∗(ζ̂) > θ solving:

1− F (θ∗(ζ̂))

θ∗(ζ̂)f(θ∗(ζ̂))
=

1− α
α

(
ζ̂

ζ̂ − 1
− 1 + δ

)
. (19)

The effort profile is then:

ē(θ) =


(

1− ζ̂−1

ζ̂
(1− δ)(1− α)

)
θ

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

> eN(θ) if θ ∈ Ω = (θ∗(ζ̂), θ̄]

eN(θ) if θ ∈ Ωc = [θ, θ∗(ζ̂)].
(20)

Comparing (20) with (10) shows that reducing the effort level of the most efficient
countries towards the BAU level relaxes the enforcement constraint (18).26 Comparing
(19) and (6), we observe also that θ∗(ζ̂) is greater when Assumption 1 holds. In other
words, the area where the enforcement constraint binds is larger than with the weaker
participation constraint. Distortions are more pronounced under limited enforcement.

6 Approximate Implementation

The convexity of the nonlinear contribution schedule T (e) found in Proposition 5 sug-
gests that this schedule could be conveniently approximated by a pair of simple linear
schemes.27 To replicate the flat part of T (e) and approximate the optimal mechanism
for lower levels of effort, the first option within this menu has countries paying up-
front a fixed amount T and still exerting their BAU effort. Only the least efficient
countries choose that scheme. The second linear option entails both a greater up-front
contribution T > T but also a Pigovian subsidy 1−α per unit of effort so that the first-
best effort is exerted by the more efficient types opting for that scheme. This option
is meant to capture the properties of the optimal mechanism for the highest levels of
effort.28 Finally, budget balance holds when the fixed contributions from both groups
cover the needed subsidies.

Let us denote by θ∗ the cut-off type who is just indifferent between those two op-
tions. By incentive compatibility and single-crossing, types below θ∗ choose theirBAU
effort while those above choose the efficient effort. This leads us to the following indif-
ference condition for θ∗:

αeFB(θ∗)− (eFB(θ∗))2

2θ∗
− T + (1− α)

(∫ θ∗

θ

eN(θ̃)dθ̃ +

∫ θ̄

θ∗
eFB(θ̃)dθ̃

)
26Of course, the values of the multiplier ζ̂ differ in the two scenarios.
27This insight is well-known in the procurement/regulation literature (Rogerson 2003, Wilson 1993).
28Observe that all countries taking such linear scheme equalize their opportunity costs of effort so that

re-trading among them won’t be a valuable option.
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= αeN(θ∗)− e2
N(θ∗)

2θ∗
− T + (1− α)

(∫ θ∗

θ

eN(θ̃)dθ̃ +

∫ θ̄

θ∗
eFB(θ̃)dθ̃

)
.

Simplifying, we obtain:

T = T + (1− α2)
θ∗

2
. (21)

To ensure participation of the least efficient countries, their upfront contribution
must just balance the externality gain created by the extra effort of countries with types
above θ∗. This extra effort being eFB(θ)− eN(θ) = (1− α)θ, the expected externality on
types below θ∗ becomes (1− α)2

∫ θ
θ∗
θf(θ)dθ. This gives the following expression for T :

T = (1− α)2

∫ θ

θ∗
θf(θ)dθ. (22)

Finally, the menu must be budget balanced, where the expenses are the subsidies
per unit of effort given to the most efficient agents and the resources are the lump-sum
contributions paid by both groups, namely:

F (θ∗)T + (1− F (θ∗))T = (1− α)

∫ θ

θ∗
θf(θ)dθ. (23)

Using the expressions of T and T drawn from (21) and (22) and inserting into (23),
θ∗ is implicitly defined as a solution to the following equation (for α < 1):

J (θ∗) =
θ∗

2
(1− F (θ∗))(1 + α)− α

∫ θ

θ∗
θf(θ)dθ = 0. (24)

Remark first that θ∗ = θ is a solution and that J ′(θ) < 0. Moreover, Assumption 1
implies that J (·) is quasi-concave and there are thus at most two solutions to (24).
More precisely, note that J (θ) > 0 if and only if α ≤ α1. Therefore, for α ≤ α1, θ∗ = θ,
the first best is always implemented with a single linear contract of slope 1−α and we
recover our previous findings. On the contrary, for α > α1, we then have θ∗ ∈ (θ, θ),
and the type space is split into two connected subsets taking different contracts.

Simulations. One may now wonder how significant is the welfare loss from using
the simple two-item menu above instead of the optimal nonlinear mechanism. As the
following numerical simulations show, the loss is surprisingly small and therefore the
two-item menu turns to be a good approximation of the optimal mechanism.

Let us characterize the optimal contract and its two-item approximation for a uni-
form distribution on Θ = [1, 2]. For this particular specification, we find α1 = α2 = 0.5.
Moreover, tedious computations show that α̂ = 0.726. Following the insights of Propo-
sition 2, we will take α = 0.65 and α = 0.85 to respectively illustrate the cases of weak
and strong distortions.
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• For weak distortions, i.e., α = 0.65, we know that θ∗(ζ̂) = θ = 1. Moreover, computa-
tions lead to ζ̂ = 1.397 so that the optimal effort is everywhere given by

ē(ζ̂ , θ) =
θ2

0.792θ + 0.416
.

From this, we compute that the aggregate welfare under the optimal mechanism is
roughly equal to 0.367. In this example, the first-best welfare would be equal to 0.75.
Observe that the second-best outcome is relatively far away from the first best, half of
the overall surplus being lost due to informational constraints.

If a two-item menu is instead offered, (24) yields θ∗ = 1.300, i.e., the thirty percent
least efficient countries pay the lower amount T . Equations (21) and (22) yield then

T = 0.190 and T̄ = 0.565.

Finally, the aggregate welfare achieved with such menu is roughly worth 0.328.
Comparing with the optimal mechanism, the relative welfare loss from using the sim-
ple menu instead of the optimal mechanism is 10.7 percent.This is admittedly small,
especially compared to the size of surplus lost from informational constraints even
with the optimal mechanism. Of course, that mild loss must be put beside the signifi-
cantly simpler design of the two-item menu compared with the optimal mechanism.

• For strong distortions, i.e., α = 0.85, we know that θ∗(ζ̂) > 1. Computations lead to
ζ̂ = 1.779 and θ∗(ζ̂) = 1.425. The optimal effort is everywhere given by

ē(ζ̂ , θ) =

{
θ2

0.557θ+0.886
if θ ∈ (1.425, 2]

0.85θ if θ ∈ [1, 1.425].

This corresponds to a value of the aggregate welfare under the optimal mechanism
which is now roughly equal to 0.380.

If a two-item is instead offered, (24) yields θ∗ = 1.700, i.e., the thirty percent most
efficient countries pay the higher contribution T and receive the Pigovian subsidies per
unit of efforts. Equations (21) and (22) yield then

T = 0.012 and T̄ = 0.247.

It is worth noticing that the contribution asked from the least efficient countries is
rather small in that case.

The aggregate welfare achieved with such menu is approximatively equal to 0.373.
Now, the relative welfare loss from using the menu instead of the optimal mechanism
is less than 2 percent; a surprisingly small loss indeed.

Even though our simple menu above does not perfectly fit any existing real-world
mechanism, it lends itself into a nice and realistic interpretation. Suppose that devel-
oping countries face lower marginal opportunity costs of reducing pollution because
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they just do not produce as much as developed countries. Those countries self-select
on a scheme with a subsidy. They exert first-best efforts, get subsidized for that, but
contribute to fund this program by giving back large fixed contributions. A contrario,
the more developed countries face higher opportunity costs and do not expand effort
beyond BAU . Per capita, those countries contribute less to the global funding of the
system but, as our numerical examples illustrate, the fraction of countries that self-
select by choosing a fixed payment may be significant.

Finally, our mechanism bears some strong resemblance with another proposal, the
so-called Global Public Good Purchase pushed forward by Bradford (2008). In Bradford’s
(complete information) mechanism, countries make a set of voluntary contributions
to an International Agency; this agency buys then any reduction below the BAU al-
lowances. In our mechanism, countries choose between only two possible levels of
their initial contributions that are pocketed by an agency. Some countries choose a
larger contribution but also receive a subsidy for any effort made in reducing pollu-
tion. Instead, others do not receive any subsidy and keep on exerting their BAU effort.

7 Final Remarks

In practice, climate-change policies are implemented by means of markets for pollu-
tion permits (or quotas). A key feature of such mechanism is to allow further rounds
of decentralized trade if some countries (reps. firms within those countries) want to
trade quotas beyond their initial allocation. In the framework of our model, one may
wonder what could be the impact of allowing resale of “effort” quotas. The answer is
immediate. Opening markets for trading effort quotas would just drive all participat-
ing countries to equalize their opportunity costs to the prevailing market price. This
feature stands in sharp contrast with the strict convexity of the optimal mechanism
which implies that those countries which exert more effort than in the BAU scenario
do so at different rates. In other words, allowing decentralized trade would under-
mine the screening properties of the mechanism. A contrario, the approximate mecha-
nism sketched in Section 6 is robust to such trades, at least as far as the most efficient
countries are concerned. Indeed, those countries all get the same Pigovian subsidy and
would not gain from further trading quotas.

The main thrust of our analysis is also robust to the introduction of some redistribu-
tive concerns although some effects may be magnified. Ex ante efficiency is only one
possibility (among a whole continuum) for choosing a normative criterion to assess
the performances of climate-change policies. Adopting the definition of interim effi-
cient allocations given by Holmström and Myerson (1983), we could as well consider a
welfare criterion attributing type-dependent non-negative social weights to each pos-
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sible type. To understand how the optimal mechanism would be modified with such
redistributive concerns, suppose for instance, that ethic considerations lead to give
to low-income countries (presumably those with the lowest opportunity costs of ex-
erting depolluting efforts) a slightly greater weight in the objective. Effort for those
most efficient types should not be so distorted away from the first best. Those efficient
countries end up significantly above their BAU payoffs. For the least efficient types
instead, effort distortions are exacerbated and the effort profile may severely drop off
as costs increase. In terms of the payoffs profile, while the most efficient countries end
up much above the BAU level, more countries might just be also indifferent between
joining the agreement or not. Of course, such features are also reflected into the ap-
proximate menu that could be used in practice. The incentive option is taken by fewer
efficient countries but, for those countries, the lump-sum contributions also diminish.

We deliberately chose to study a very parsimonious model to highlight the trade-off
between the various forms of free-riding in the most illuminative way. More detailed
modelings of the production processes in each country and of the intertemporal im-
pact of investments would lead to more complex analysis but the very same economic
insights are much likely to pertain. As long as the BAU outcome leads to excessively
low effort levels compared to the socially optima, a mechanism with two options (the
first with incentive properties and the second being only a fixed contribution) would
certainly perform pretty well.

Finally, one may wonder whether our model which, for tractability reasons, adopted
the short-cut of viewing the world as made of a continuum of countries could say any-
thing on the case of big actors (China, U.S., India...) whose strategic behavior might sig-
nificantly impact aggregate emissions. One way of addressing this “size” issue would
be to introduce atoms with positive masses in the types distribution. Although, we
shall leave for further research the complete analysis of such cases, it is worth pointing
out a few directions in which our results might be modified. First, the presence of an
atom in the middle of the types distribution certainly violates Assumption 1. Bunching
in the optimal allocation will arise, with types nearby the atom being all given the same
effort target. The nonlinear contribution schedule that implements such allocation will
then exhibit a kink at the bunch, while preserving enough convexity. This convexity
is enough to again justify an approximate implementation by a menu of two options.
The point is that the presence of a non-atomistic player modifies the identity of the
marginal type which is indifferent between the flat and the incentive option.

Equipped with the mechanism design methodology developed in this paper, we be-
lieve that a number of other important questions could be addressed in future research.
A first important extension should consider the design of dynamic mechanisms. In
particular, one may want to assess the performance of menus of linear contracts in
those dynamic environments. A second extension would be to go more deeply into the
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analysis of the relationship between local politics and international agreements. The
analysis of such two-tier mechanism design problem will be particularly fruitful to un-
derstand institutional design behind the climate-change problem.29 At last and taking
a broader perspective, our methodology and the workhorse model we have proposed
could certainly be also useful to analyze how sovereign countries deal with other mul-
tilateral externalities problems such as fiscal fraud, fight against global terrorism or
global health problems.

References

Aldy, J., and R. Stavins (ed.), 2007, Architectures for Agreement: Address-
ing Global Climate Change in the Post-Kyoto World, Cambridge University
Press.

Athey, S., K. Bagwell and C. Sanchirico, 2004, “Collusion and Price Rigid-
ity,” Review of Economic Studies, 71: 317-349.

Bagnoli, M. and T. Bergstrom, 2005, “Log-Concave Probability and its Ap-
plications,” Economic Theory, 26: 445-469.

Baliga, S. and E. Maskin, 2003, “Mechanism Design for the Environment,”
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Appendix

Proof of Lemma 1. Define f(t, e, θ, E) = t+αe+(1−α)E− e2

2θ
.Observe that f(t, e, E, θ) is

differentiable and absolutely continuous in θ since θ ≥ θ > 0 for any (t, e, E). Moreover,
|fθ(t, e, E, θ)| = e2

2θ2
is bounded by some integrable function M2

2θ2
when e ∈ [0,M ]. From

Theorem 2 and Corollary 1 in Milgrom and Segal (2002), it follows immediately that
U(θ) is absolutely continuous and thus almost everywhere differentiable with:

U(θ) = U(θ) +

∫ θ

θ

e2(x)

2x2
dx. (A1)

Condition (4) follows at any point of differentiability.
Incentive compatibility implies for any pair (θ, θ̂):

t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ̂)

2θ
≥ t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−

e2(θ̂)

2θ
,

Reversing the role of θ and θ̂ and summing both sides of the inequalities so obtained,
using the fact that − e2

2θ
satisfies increasing differences, and simplifying yields immedi-

ately e(θ) ≥ e(θ̂) for θ ≥ θ̂. e(·) is non-decreasing and thus a.e. differentiable.
Reciprocally, since U(·) is absolutely continuous and satisfies everywhere (A1), we

have:

U(θ) +

∫ θ

θ

e2(x)

2x2
dx = t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−

e2(θ)

2θ
.

From this, incentive compatibility immediately follows since:

t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ)

2θ
−

(
t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−

e2(θ̂)

2θ

)

=

∫ θ

θ̂

e2(x)− e2(θ̂)

2x2
dx ≥ 0

when e(·) is non-decreasing.

Proof of Propositions 1 and 7. An important step of the analysis consists in consol-
idating the incentive compatibility constraint (4) and the feasibility condition (2). In
this respect, let define a critical type θ∗ as:

θ∗ = max arg min
θ∈Θ

U(θ)− Ul(θ)

where l = N,W . Of course, such critical type depends on the choice of the mechanism
since it affects the profile of implementable rent U(θ). From continuity of U(θ)− Ul(θ)
and compactness of Θ, such θ∗ necessarily exists for any implementable profile U(θ).
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Note that satisfying the participation constraint (3) at θ∗ is enough to have it satis-
fied for all θ. Hence, a necessary and sufficient condition for (3) to hold is that

U(θ∗) ≥ Ul(θ
∗). (A2)

Using again (A1) yields

U(θ) = U(θ∗) +

∫ θ

θ∗

e2(x)

2x2
dx. (A3)

Integrating by parts on each interval [θ, θ∗] and [θ∗, θ̄], we finally obtain the following
expression of the average payoff of countries:

Eθ̃(U(θ̃)) = U(θ∗) + Eθ̃

(
(1θ̃≥θ∗ − F (θ̃))e2(θ̃)

2θ̃2f(θ̃)

)

where 1θ̃≥θ∗ =

{
1 if θ̃ ≥ θ∗

0 otherwise.
Finally, the feasibility condition can be rewritten as

Eθ̃

(
e(θ̃)− e2(θ̃)

2θ̃

)
≥ U(θ∗) + Eθ̃

(
(1θ̃≥θ∗ − F (θ̃))e2(θ̃)

2θ̃2f(θ̃)

)
. (A4)

Notice that any rent profile for a mechanism that implements the first-best effort
level eFB(θ) is such that θ is the critical type since U(θ)−Ul(θ) (for l = N,W ) is increas-
ing (U̇(θ)− U̇l(θ) = 1−α2

2
> 0 when α < 1). Hence, a necessary and sufficient condition

for the participation constraint (3) to hold everywhere is that it holds at θ. That remark
being made, the feasibility constraint and the critical type’s participation constraint are
altogether satisfied when:

Eθ̃

(
eFB(θ̃)− (eFB(θ̃))2

2θ̃

)
≥ Ul(θ) + Eθ̃

(
(1− F (θ̃))(eFB(θ̃))2

2θ̃2f(θ̃)

)
.

This amounts to check

Eθ̃

(
eFB(θ̃)− (eFB(θ̃))2

2θ̃

(
1 +

1− F (θ̃)

θ̃f(θ̃)

))
=

1

2

∫ θ̄

θ

(θf(θ)− 1 + F (θ))dθ ≥ Ul(θ)

⇔

{
θ
2
≥ α2

2
θ + (1− α)αEθ̃(θ̃) if l = N

θ
2
≥ α2

2
θ if l = W.

(A5)

Hence, when l = N , we get an impossibility if Assumption 2 holds. Instead, when
l = W , (A5) holds and one can find budget-balanced transfers that ensure that the first
best is implemented.
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Proofs of Propositions 3 and 4. We first characterize the optimal mechanism when
Assumption 2 holds. The proof of Propositions 3 and 4 is a direct consequence of this
characterization.

Neglecting the monotonicity condition on e(·) that will be checked ex post; we first
rewrite the so relaxed optimization problem under asymmetric information as:

(PSB) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (3) and (4)

where W (Θ) is the set of absolutely continuous arcs on Θ.
(PSB) is a generalized Bolza problem with an isoperimetric constraint (2) and a

state-dependent constraint (3). We denote by ζ the non-negative multiplier of the for-
mer constraint. This allows us to write the Lagrangian for this problem as:

L(θ, U, e, ζ) = f(θ)

(
U + ζ

(
e− e2

2θ
− U

))
.

Let then define the Hamiltonian as

H(θ, U, e, ζ, q) = L(θ, U, e, ζ) + q
e2

2θ2
.

This Hamiltonian is linear in U and strictly concave in e when

q ≤ ξθf(θ). (A6)

This latter condition is checked below for the optimal profile.

Following Galbraith and Winter (2004), the necessary optimality conditions that are
satisfied by a normal extremum (Ū(θ), ē(θ)) can be written as follows.

Proposition A.1 Necessary conditions (Galbraith and Winter, 2004). There exists an abso-
lutely continuous function p(θ), a function q(θ), and a non-negative measure µ(dθ) which are
all defined on Θ such that:

−ṗ(θ) =
∂H

∂U
(θ, Ū(θ), ē(θ), ζ, q(θ)), (A7)

ē(θ) ∈ arg max
e≥0

H(θ, Ū(θ), e, ζ, q(θ)), (A8)

q(θ) = p(θ)−
∫ θ−

θ

µ(dθ), ∀θ ∈ (θ, θ̄], (A9)

supp{µ} ⊂ {θ s.t. Ū(θ) = UN(θ)} = Ωc, (A10)
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p(θ) = −p(θ̄) +

∫ θ̄

θ

µ(dθ) = 0. (A11)

Sufficient conditions. Those necessary conditions are also sufficient (Martimort and Stole,
2011, Appendix B).

Condition (A7) describes how the costate variable p(·) evolves whereas (A8) is the
optimality condition for the control. Some explanations for the other conditions are in
order. From (A9), the left-side limit of q(·) at any θ is the costate variable deflated by
a term related to the measure w.r.t. µ of the open interval [θ, θ).30 This costate variable
measures the distortions induced by asymmetric information. From (A10), the sup-
port of the measure µ is contained in the subset of types for which the participation
constraint (3) is binding. Together, with (A8), it implies that distortions due to asym-
metric information are less significant on intervals where the participation constraint
is binding. Sufficiency is obtained by adapting the same Arrow-type argument as in
Martimort and Stole (2011, Appendix B). Conditions (A7) to (A11) are also sufficient
for (Ū(θ), ē(θ)) to be an optimum.

Let us rewrite some of these optimality conditions. First, observe that (A7) can be
transformed as

−ṗ(θ) = f(θ)(1− ζ). (A12)

From (A11), we get

p(θ̄) =

∫ θ̄

θ

µ(dθ). (A13)

We may rewrite (A12) as

p(θ) = p(θ̄) + (1− ζ)(1− F (θ)). (A14)

Second, (A8) yields the first-order condition

ζf(θ)

(
1− ē(θ)

θ

)
= −q(θ) ē(θ)

θ2
. (A15)

In the sequel, we consider two possibilities for the subset of types where the par-
ticipation constraint (A2) is binding. In Case 1 (strong distortions) below, this partici-
pation constraint is binding on an interval Ωc = [θ, θ∗] with non-zero measure. Case 2
(weak distortions) deals with the case where Ωc = {θ}.

Case 1. Ωc = [θ, θ∗], with θ∗ > θ.

Analysis of the set of types Ωc where the participation constraint (3) is binding. 31 Several
facts immediately follow from the optimality conditions.

30Such formulation is made necessary to take into account the fact that µ may be singular at θ.
31From the sufficiency conditions in Proposition A.1, finding a vector (p, q, e) that induces such allo-

cation and satisfies the necessary conditions (A7) to (A11) validates this “guess and try” approach.
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• Since µ = 0 on Ω = (θ∗, θ̄], (A13) implies that

p(θ̄) =

∫ θ∗

θ

µ(dx). (A16)

• Consider now Ω = (θ∗, θ̄] (with non-zero measure) where (A2) is slack, i.e., Ū(θ) >

UN(θ). On the interior of such interval, µ = 0 and (A9) implies that

q(θ) = p(θ)−
∫ θ∗

θ

µ(dx). (A17)

Using (A14), (A16) and (A17) yields

q(θ) = (1− ζ)(1− F (θ)). (A18)

Finally inserting (A18) into (A15) yields the expression optimal effort level ē(θ, ζ)

given by (5) (where we make the dependence on ζ explicit for further references).

• Consider now an interval Ωc = [θ, θ∗] with non-zero measure where (A2) is bind-
ing, i.e., Ū(θ) = UN(θ). Differentiating with respect to θ in the interior of Ωc =

[θ, θ∗] yields
˙̄U(θ) = U̇N(θ)⇔ ē(θ) = eN(θ).

Therefore, (A15) becomes now:

q(θ) = −
(

1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗). (A19)

From (A9), (A14) and (A19), we deduce that∫ θ−

θ

µ(dθ) = p(θ̄) + (1− ζ)(1− F (θ)) +

(
1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗)

or, using (A16)

−
∫ θ∗

θ−
µ(dθ) = (1− ζ)(1− F (θ)) +

(
1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗). (A20)

Let us look for a positive measure µ that is absolutely continuous with respect to
the Lebesgue measure on (θ, θ∗] and so writes as µ(dθ) = g(θ)dθ for some mea-
surable and non-negative function g(·) on this interval.

Before studying further the properties of g(·), we prove the following Lemma:

Lemma A.1 Assume that Assumption 1 holds. Take k ≤ 1
θf(θ)

and define uniquely
θ∗ ∈ [θ, θ̄] as the solution to

k =
1− F (θ∗)

θ∗f(θ∗)
> 0. (A21)
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Then, we have
d

dθ
(1− F (θ)− kθf(θ)) ≤ 0 ∀θ ∈ [θ, θ∗]. (A22)

Proof. Observe that Assumption 1 can be rewritten as

0 ≥ d

dθ

(
1− F (θ)

θf(θ)

)
= −1

θ
−(1− F (θ))

θ2f 2(θ)

d

dθ
(θf(θ))⇔ −(1−F (θ))

d

dθ
(θf(θ)) ≤ θf 2(θ).

From this, it follows that

d

dθ
(1− F (θ)− kθf(θ)) = −f(θ)− k d

dθ
(θf(θ)) ≤ f(θ)

(
−1 + k

θf(θ)

1− F (θ)

)
.

Using the definition of k from (A21) and again Assumption 1, we get:

k ≤ 1− F (θ)

θf(θ)
∀θ ≤ θ∗

Therefore, we get

d

dθ
(1− F (θ)− kθf(θ)) = −f(θ)− k d

dθ
(θf(θ)) ≤ 0 ∀θ ≤ θ∗

which yields (A22).

Consider now k = ζ(1−α)
(ζ−1)α

and observe that k ≤ 1
θf(θ)

when ζ > ζ∗ where ζ∗ is
defined in (7).

Differentiating (A20) with respect to θ yields

g(θ) = (1− ζ)

(
−f(θ)− k d

dθ
(θf(θ))

)
∀θ ∈ (θ, θ∗). (A23)

From Lemma A.1, applied to such k, g(·) is indeed non-negative on [θ, θ∗] if ζ > 1.
More precisely, when ζ > 1, we get:

g(θ) = (1− ζ)
d

dθ
(1− F (θ)− kθf(θ)) ≥ 0 ∀θ ∈ (θ, θ∗). (A24)

By construction, µ has no mass point at θ∗. This implies that ē(θ∗, ζ) = eN(θ∗) and
θ∗(ζ) is thus defined by (6) when interior.

Note also that putting altogether (A16) and (A24) implies that

p(θ̄) = µ({θ}) + (1− ζ)

∫ θ∗

θ

d

dθ
(1− F (θ)− kθf(θ)) dθ
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where µ({θ}) is the mass that the measure µ charges at θ. Using (A21), this latter
equation can be rewritten as:

p(θ̄) = µ({θ})− (1− ζ)− 1− α
α

ζθf(θ). (A25)

But from (A11) and (A12), we get

p(θ) = p(θ̄) + 1− ζ = 0. (A26)

Inserting into (A25) yields

µ({θ}) =
1− α
α

ζθf(θ) > 0 (A27)

which shows that µ has a mass point at θ.

Concavity of H(θ, U, e, ζ, q) in e. Observe that, for θ ∈ Ωc, q(θ) as defined by (A19) is
negative and thus (A6) holds where q = q(θ). For θ ∈ Ω, we deduce from (A18) that
q(θ) < 0 and thus (A6) again holds.

Continuity of ē(·) at θ∗. This continuity immediately follows from the fact that µ has no
charge at θ∗. This implies “smooth-pasting” of the rent profile with:

U(θ∗) = UN(θ∗) and U̇(θ∗) = U̇N(θ∗).

Monotonicity of ē(·). It immediately follows from the fact that ē(·) is everywhere contin-
uous and, trivially increasing on Ωc but also on Ω from Assumption 1.

Case 2. Ωc = {θ}. Observe that k = ζ(1−α)
(ζ−1)α

> 1
θf(θ)

when ζ ≤ ζ∗. In that case, the
participation constraint (A2) is binding at θ only. From (A27), the measure µ has a
charge at θ only. When ζ ≥ 1, we have

µ({θ}) =
1− α
α

ζθf(θ) ≥ (ζ − 1)
ζ∗

ζ∗ − 1
≥ 0. (A28)

The optimal effort is still given by (5) on the whole interval [θ, θ̄].

Proof that ζ̂ > 1. Observe that, when binding, (2) can be rewritten as:∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− ē2(θ, ζ)

2θ

)
f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
UN(θ∗(ζ)) +

∫ θ

θ∗(ζ)

ē2(ξ, ζ)

2ξ2
dξ

)
f(θ)dθ (A29)
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where we make explicit the dependence of ē(·) and θ∗ on ζ as specified in (5) and (6) to
express the left-hand side and where we use (A3) to rewrite the right-hand side.32

Let denote respectively by L(ζ) and R(ζ) the left-hand and right-hand sides of
(A29). The following observations are readily made.

1. L(ζ)−R(ζ) is strictly increasing. First, observe that

∂ē

∂ζ
(θ, ζ) = −

1−F (θ)
f(θ)(

ζ + (ζ − 1)1−F (θ)
θf(θ)

)2 < 0. (A30)

Using the fact that ē(θ, ζ) is continuous at θ = θ∗(ζ), i.e., ē(θ∗(ζ), ζ) = eN(θ∗(ζ)),
we have:

L′(ζ) =

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

(
1− ē(θ, ζ)

θ

)
f(θ)dθ = (ζ−1)

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ.

(A31)

Using the fact that UN(θ, ζ) is continuous at θ = θ∗(ζ), we have

R′(ζ) = θ̇∗(ζ)

∫ θ̄

θ∗(ζ)

(
U̇N(θ∗(ζ))− ē2(θ∗(ζ), ζ)

2(θ∗(ζ))2

)
f(θ)dθ+

∫ θ̄

θ∗(ζ)

∫ θ

θ∗(ζ)

∂ē

∂ζ
(ξ, ζ)

ē(ξ, ζ)

ξ2
f(θ)dξdθ.

Using that U̇N(θ∗(ζ)) =
e2N (θ∗(ζ))

2(θ∗(ζ))2
, and continuity of ē(·, ζ) at θ = θ∗(ζ), i.e., ē(θ∗(ζ), ζ) =

eN(θ∗(ζ)), we get

R′(ζ) =

∫ θ̄

θ∗(ζ)

(∫ θ

θ∗(ζ)

∂ē

∂ζ
(ξ, ζ)

ē(ξ, ζ)

ξ2
dξ

)
f(θ)dθ.

Integrating by parts yields

R′(ζ) =

∫ θ̄

θ∗(ζ)

(1− F (θ))
∂ē

∂ζ
(θ, ζ)

ē(θ, ζ)

θ2
dθ =

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

ζ 1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ.

(A32)

Using (A31) and (A32) we finally get

L′(ζ)−R′(ζ) = −
∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ > 0.

2. Notice that when ζ = 1, θ∗(ζ) = θ and L(1) < R(1) indeed amounts to (2).

3. We have
32Observe that this formula encompasses both Case 1 which applies for ζ ≥ ζ∗ and Case 2 which

applies for ζ ∈ [1, ζ∗].
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Lemma A.2
lim

ζ→+∞
L(ζ)−R(ζ) > 0. (A33)

Proof. Consider the following problem:

VM = max
e(·),θ∗

∫ θ∗

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗

(
e(θ)− e2(θ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

−
∫ θ∗

θ

UN(θ)f(θ)dθ − UN(θ∗)(1− F (θ∗)). (A34)

First, observe that VM ≥ 0. Indeed, taking e(θ) = eN(θ) and θ∗ = θ̄ obviously yields 0
for the maximand.

The above maximum is achieved for (ē∞(θ), θ∗∞) where

ē∞(θ) =
θ

1 + 1−F (θ)
θf(θ)

(A35)

and {
1−F (θ∗∞)
θ∗∞f(θ∗∞)

= 1−α
α

if 1−α
α

< 1
θf(θ)

θ∗∞ = θ if 1−α
α
≥ 1

θf(θ)
.

(A36)

Condition 1 ensures that θ∗∞ ∈ (θ, θ̄) always exists whenever (9) holds. That VM > 0

immediately follows from observing that VM is not achieved for eN(θ) and θ∗ = θ̄. Fi-
nally, this strict inequality amounts to (A33).

From Items [1.], [2.] and [3.] above, there exists ζ̂ > 1 such that

L(ζ̂) = R(ζ̂).

Integrating by parts and manipulating finally yields (8).

Proof of Proposition 2. Because Assumption 3 holds, we have 1 > 1−α
α
θf(θ) > 0 and

thus ζ∗(α) > 1 for any α ≥ α1 ≥ α2. A first implication is that, for ζ ≤ ζ∗(α), we get
θ∗(ζ) = θ. Because L(·)−R(·) is strictly increasing as shown above, we have ζ̂ ≤ ζ∗(α)

if and only if
L(ζ∗(α)) ≥ R(ζ∗(α))⇔ J(α) ≥ UN(θ, α) (A37)

where

J(α) =

∫ θ̄

θ

(
ē(θ, ζ∗(α))− ē2(θ, ζ∗(α))

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

and where, for future reference, we make explicit the dependence of UN(·) on α.
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We compute:

J ′(α) =
∂ζ∗

∂α
(α)

∫ θ̄

θ

∂ē

∂ζ
(θ, ζ∗(α))

(
1− ē(θ, ζ∗(α))

θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ̄

θ

θf(θ)(1− F (θ))2

θf(θ)

((1− α)θf(θ)− α)(
α + (1− α) (1−F (θ))θf(θ)

θf(θ)

)3dθ.

We have J ′(α) ≤ 0 for any α ≥ α2 (with equality only at α = α2).
Moreover, for α = 1, we have ζ∗(1) = 1 and ē(θ, ζ∗(1)) = eFB(θ). Therefore, we get:

J(1) =

∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ =

θ

2
= UN(θ, 1). (A38)

We also find:

J ′(1) = −θf(θ)

∫ θ̄

θ

(1− F (θ))2

θf(θ)
dθ.

From Assumption 1, we immediately derive the inequality

(1− F (θ))2

θf(θ)
≤ 1− F (θ)

θf(θ)

with an equality only at θ = θ. Therefore, we get:

−J ′(1) <

∫ θ̄

θ

(1− F (θ))dθ = Eθ(θ)− θ = −U ′N(θ, α)|α=1. (A39)

It follows from J(·) and UN(θ, ·) continuity, that there exists α3 < 1 such that

J(α) < UN(θ, α) ∀α ∈ (α3, 1). (A40)

Moreover, Assumption 3 implies that ζ∗(α1) > 1. Therefore, we get ē∞(θ) ≤ ē(θ, ζ∗(α1)) ≤
ē(θ, 1) = eFB(θ) (with an equality only at θ̄). Since ē∞(θ) is a pointwise maximizer of
the concave function e− e2

2θ

(
1 + 1−F (θ)

θf(θ)

)
, we have:

J(α1) >

∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ =

θ

2
= J(1) = UN(θ, α1)

(A41)
where the last equality follows from observing that UN(θ, α1) = UN(θ, 1) and that (A38)
amounts to J(1) = UN(θ, α) for α = α1. We deduce from this and the fact that J(·) and
UN(θ, ·) are continuous that necessarily α3 ∈ (α1, 1).

From (A37) and (A40), we also get:

ζ̂ > ζ∗(α) ∀α ∈ (α3, 1).
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From (A37) and (A41), we deduce that there exists α4 ∈ (α1, α3] such that

J(α) ≥ UN(θ, α) ∀α ∈ [α1, α4]. (A42)

Finally, we get
ζ̂ ≤ ζ∗(α) ∀α ∈ [α1, α4].

We now prove that α3 = α4. Let denote by α̂ this common value. Observe that:

d

dα

(
J ′(α)

(1− α)θf(θ)− α

)
= −3

∫ θ̄

θ

θf(θ)(1− F (θ))2

θf(θ)

(
1− (1−F (θ))θf(θ)

θf(θ)

)
(
α + (1− α) (1−F (θ))θf(θ)

θf(θ)

)4dθ < 0

where this inequality follows from the fact that the numerator in the integrand is non-
negative when Assumption 1 holds. Similarly, we compute:

d

dα

(
U ′N(θ, α)

(1− α)θf(θ)− α

)
=
θf(θ)(θ − Eθ̃(θ̃)) + Eθ̃(θ̃)

((1− α)θf(θ)− α)2
> 0

where the last inequality follows from the fact that Assumptions 2 and 3 altogether
imply

θf(θ)(θ − Eθ̃(θ̃)) + Eθ̃(θ̃) ≥ Eθ̃(θ̃)−
θ

2
> 0.

Define now $(α) =
J ′(α)−U ′N (θ,α)

(1−α)θf(θ)−α . This continuous function is decreasing over (α1, 1)

with $(α1) > 0 > $(1) where the first of these inequalities follows from J ′(α1) < 0 <

U ′N(θ, α1) and the second from (A39). Because (1 − α)θf(θ) − α < 0 for α ≥ α1 > α2,
we deduce that J ′(α)−U ′N(θ, α) is non-positive on [α1, α̃] and non-negative on [α̃, 1] for
some α̃ ∈ (α1, 1). From (A38) and (A41), it follows that J(α) − UN(θ, α) is decreasing
and then increasing on [α1, 1] with a unique α̂ on the decreasing part such that:

J(α̂) = UN(θ, α̂).

Proof of Proposition 5. From (12), we immediately get:

T ′(ē(θ)) =
ē(θ)

θ
− α =


1

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

− α if ē(θ) > eN(θ)⇔ θ > θ∗(ζ̂)

0 if ē(θ) = eN(θ)⇔ θ ≤ θ∗(ζ̂)

where the first equality follows from (5). Note that T ′(e) is continuous at ē(θ∗(ζ̂)) (such
that ē(θ∗(ζ̂) = eN(θ∗(ζ̂)) if it is interior. Differentiating once more, we get:

˙̄e(θ)T ′′(ē(θ)) =

−
ζ̂−1

ζ̂

d
dθ (

1−F (θ)
θf(θ) )(

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

)2 > 0 if ē(θ) > eN(θ)

0 if ē(θ) = eN(θ).
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Hence, T (e) is convex and strictly so if and only if e > eN(θ∗(ζ̂)). It is flat when
e ≤ eN(θ∗(ζ̂)).

Proof of Proposition 6. Observe that the budget balance condition (2) altogether with
the participation constraints (13) yield the following simpler inequality:∫ θ

θ

(
αe(θ)− e2(θ)

2θ

)
f(θ)dθ ≥ α2

2

∫ θ

θ

θf(θ)dθ. (A43)

The pointwise maximum of the left-hand side is eN(θ) = αθ and then the left- and
right-hand sides of (A43) are both equal. Therefore, the optimal mechanism robust to
any individual deviation consists in proposing the BNE outcome which is, by defini-
tion, also incentive compatible.

Proof of Proposition 8. The first best eFB(θ) = θ is implementable when (15) holds for
all θ, i.e., when there exists a profile UFB(θ) such that U̇FB(θ) = (eFB(θ))2

2θ2
= 1

2
and:

UFB(θ) ≥ V FB(θ) = (1−δ)
(
−(eFB(θ))2

2θ
+ αeFB(θ) + (1− α)Eθ̃(e

FB(θ̃))

)
+δUN(θ) ∀θ.

(A44)
Observe that, with the first-best profile of effort, U̇FB(θ) = 1

2
> V̇ FB(θ) = δ α

2

2
− (1 −

δ)(1− α). Hence, (A44) holds for all θ if it holds at θ.
Mimicking the analysis in the Proof of Proposition 1, the first-best effort level is

thus implementable when:∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ ≥ V FB(θ).

Simplifying yields the condition:

θ

2
≥ δUN(θ) + (1− δ)

(
−
(

1

2
− α

)
θ + (1− α)Eθ̃(θ̃)

)
. (A45)

Simplifying further, (A45) does not hold when (17) holds.

Proof of Lemma 2. Let Ωc be an interval with non-empty interior where (15) binds. On
such interval, we have

U(θ) = (1− δ)
(
−e

2(θ)

2θ
+ αe(θ) + (1− α)Eθ̃(e(θ̃))

)
+ δUN(θ). (A46)

Differentiating w.r.t θ and taking into account (1), the following condition holds a.e.:

δ

(
e2(θ)

2θ2
− e2

N(θ)

2θ2

)
= (1− δ)

(
α− e(θ)

θ

)
ė(θ) (A47)
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which admits the solution e(θ) = eN(θ). This solution is the unique one that is non-
decreasing as requested by the monotonicity conditions for incentive compatibility.33

Whenever (15) is binding on an interval Ωc for the profile (U(θ), e(θ)), the simpler
constraint (18) is also binding. Indeed, inserting the condition e(θ) = eN(θ) which
holds on Ωc into (A46), we get that (18) holds as an equality.

Observe that (18) always implies (15). Indeed, using the definition of eN(θ), (18)
implies, that (15) holds since:

U(θ) ≥ (1− δ)
(
−e

2(θ)

2θ
+ αe(θ) + (1− α)Eθ̃(e(θ̃))

)
+ δUN(θ).

Denote

V (θ) = (1− δ)
(
−e

2(θ)

2θ
+ αe(θ) + (1− α)Eθ̃(e(θ̃))

)
+ δUN(θ).

Observe also that e(θ) ≥ eN(θ) and e(·) monotonically increasing imply:

U̇(θ) =
e2(θ)

2θ2
≥ U̇N(θ) =

α2

2
≥ V̇ (θ) = (1−δ)

(
ė(θ)

(
α− e(θ)

θ

)
+
e2(θ)

2θ2

)
+δ

α2

2
. (A48)

Denote by θ0 the highest bound of Ωc. By definition and continuity,

U(θ0) = UN(θ0) = V (θ0).

(A48) then implies that the property

U(θ) ≥ UN(θ) ≥ V (θ)

holds for all θ ≥ θ0 which yields the result.

Proof of Proposition 9. First, observe that, we may rewrite (18) as

U(θ) ≥ UN(θ) + (1− δ)(1− α)γ ∀θ (A49)

where
γ = Eθ̃(e(θ̃)− eN(θ̃)) (A50)

Neglecting as usual the monotonicity condition that e(·) is non-decreasing that will
be checked ex post; we define a mechanism design problem as:

(PEγ ) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (4), (A49) and (A50) .

(PEγ ) is again a generalized Bolza problem with two isoperimetric constraints (2) and
(A50) and a state-dependent constraint (A49). Our first step is to solve for such prob-
lem. The solution then defines a value function V E(γ). In a second step, optimizing in
γ yields then the optimal value γ̂.

33The other solution to the differential equation (A47) is indeed such that ė(θ) = − δ
2(1−δ)

(
e(θ)
θ + α

)
<

0 which violates the monotonicity condition.
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Denoting by ζ the non-negative multiplier of (2) and by κ the multiplier of (A50),
we write the Lagrangian for (PEγ ) as:

Lγ(θ, U, e, ζ, κ) = f(θ)

(
U + ζ

(
e− e2

2θ
− U

))
+ κ(γ − f(θ)(e− eN(θ))).

Let then define the Hamiltonian as

Hγ(θ, U, e, ζ, κ, q) = Lγ(θ, U, e, ζ, κ) + q
e2

2θ2
.

This Hamiltonian is linear in U and strictly concave in e when again (A6) holds. This
latter condition is again checked below for the optimal profile.

Necessary and sufficient conditions. We proceed as in the previous appendices to write
the conditions that a normal extremum (Ū(θ, γ), ē(θ, γ)) must satisfy. Optimality im-
plies that there exists an absolutely continuous function p(θ), a function q(θ), and a
non-negative measure µ(dθ) which are all defined on Θ such that:

−ṗ(θ) =
∂Hγ

∂U
(θ, Ū(θ, γ), ē(θ, γ), ζ, κ, q(θ)), (A51)

ē(θ, γ) ∈ arg max
e≥0

Hγ(θ, Ū(θ, γ), e, ζ, κ, q(θ)), (A52)

q(θ) = p(θ)−
∫ θ−

θ

µ(dθ), ∀θ ∈ (θ, θ̄], (A53)

supp{µ} ⊂ {θ s.t. Ū(θ, γ) = UN(θ) + (1− δ)(1− α)γ} = Ωc
γ, (A54)

p(θ) = −p(θ̄) +

∫ θ̄

θ

µ(dθ) = 0. (A55)

Let us rewrite some of these optimality conditions. First, observe that (A51) can be
transformed again into (A12) and then (A14). Using (A55), we again get (A13).

Second, (A52) yields the first-order condition

f(θ)

(
ζ − κ− ζ ē(θ, γ)

θ

)
= −q(θ) ē(θ, γ)

θ2
. (A56)

As before, we distinguish between two scenarios for the subset of types Ωc
γ where

the enforcement constraint (A49) is binding.

Case 1. Strong distortions. Ωc
γ = [θ, θ(γ, ζ, κ)] with θ < θ(γ, ζ, κ). Several facts imme-

diately follow.

• Equation (A13) implies again that p(θ̄) solves (A16).
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• Consider now the interval Ωγ = (θ(γ, ζ, κ), θ̄] where (A49) is slack, i.e., Ū(θ, γ) >

UN(θ) + (1− δ)(1− α)γ. On the interior of such interval, µ = 0 and (A53) implies
that again q(θ) is given by (A17).

Using (A14), (A16) and (A17) yields again that q(θ) solves (A18) on Ωγ . Finally
inserting (A18) into (A56) yields the following expression of the optimal effort
level ē(θ, γ, ζ, κ) (where we make the dependence on ζ and κ explicit for further
references):

ē(θ, γ, ζ, κ) =

(
1− κ

ζ

)
θ

1 + ζ−1
ζ

1−F (θ)
θf(θ)

. (A57)

Define θ(γ, ζ, κ) such that ē(θ(γ, ζ, κ), γ, ζ, κ) = eN(θ(γ, ζ, κ)), i.e.,

1− F (θ(γ, ζ, κ))

θ(γ, ζ, κ)f(θ(γ, ζ, κ))
=
ζ(1− α)

(ζ − 1)α
− κ

(ζ − 1)α
. (A58)

Assume for the time being that the right-hand side of (A58) is non-negative (this
will be the case for the optimal value γ̂ found below) and set θ(γ, ζ, κ) = θ when-
ever this right-hand side is greater than 1

θf(θ)
.

• Consider now the interval Ωc
γ = [θ, θ(γ, ζ, κ)] with non-zero measure where (A49)

is binding, i.e., Ū(θ, γ) = UN(θ) + (1− δ)(1− α)γ. Differentiating with respect to
θ in the interior of Ωc yields

˙̄U(θ, γ) = U̇N(θ)⇔ ēγ(θ) = eN(θ).

Therefore, (A56) becomes now:

q(θ) = −θf(θ)

(
1− α
α

ζ − κ

α

)
∀θ ∈ (θ, θ(γ, ζ, κ)). (A59)

From (A53), (A14), (A16) and (A59) we deduce that

−
∫ θ(γ,ζ,κ)

θ−
µ(dθ) = (1− ζ)(1− F (θ)) + θf(θ)

(
1− α
α

ζ − κ

α

)
∀θ ∈ (θ, θ(γ, ζ, κ)).

(A60)

Let us look for a positive measure µ that is absolutely continuous with respect to
the Lebesgue measure on (θ, θ∗] and so writes as µ(dθ) = g(θ)dθ for some mea-
surable and non-negative function g(·) on this interval.

Define k′ = ζ(1−α)
(ζ−1)α

− κ
(ζ−1)α

(and consider the case where k′ ≥ 0 from our assump-
tion made after (A58)). Differentiating (A20) with respect to θ yields

g(θ) = (1− ζ)

(
−f(θ)− k′ d

dθ
(θf(θ))

)
∀θ ∈ (θ, θ(γ, ζ, κ)). (A61)

From Lemma A.1 applied to such k′, g(·) is indeed non-negative on [θ, θ(γ, ζ, κ)]

if ζ > 1. Note that by construction, µ has no mass point at θ(γ, ζ, κ). This implies
that ē(·) is continuous at θ(γ, ζ, κ).
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Concavity of H(θ, U, e, ζ, q) in e. Observe that, for θ ∈ Ωc, q(θ) as defined by (A59) is
negative and thus (A6) holds where q = q(θ). For θ ∈ Ω, we deduce from (A18) that
q(θ) < 0. and thus (A6) again holds.

Monotonicity of ē(·). It immediately follows from the fact that ē(·) is everywhere contin-
uous and, trivially increasing on Ωc but also on Ω from Assumption 1.

Computing κ and ζ . Observe that the rent profile (making the dependence in (ζ, κ)

explicit) is defined as

Ū(θ, γ, ζ, κ) =

{
UN(θ(γ, ζ, κ)) + (1− δ)(1− α)γ +

∫ θ
θ(γ,ζ,κ)

ē2(x)
2x2

dx if θ ≥ θ(γ, ζ, κ)

UN(θ) + (1− δ)(1− α)γ if θ ≤ θ(γ, ζ, κ).

Therefore, we may rewrite (2) as∫ θ(γ,ζ,κ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ(γ,ζ,κ)

(
ē(θ, γ, ζ, κ)− ē2(θ, γ, ζ, κ)

2θ

)
f(θ)dθ

=

∫ θ(γ,ζ,κ)

θ

UN(θ)f(θ)dθ +

∫ θ(γ,ζ,κ)

θ

(
UN(θ(γ, ζ, κ)) +

∫ θ

θ(γ,ζ,κ)

ē2(x, γ, ζ, κ)

2x2
dx

)
f(θ)dθ

+(1− δ)(1− α)γ.

Or, integrating by parts,∫ θ(γ,ζ,κ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ+

∫ θ̄

θ(γ,ζ,κ)

(
ē(θ, γ, ζ, κ)− ē2(θ, γ, ζ, κ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ(γ,ζ,κ)

θ

UN(θ)f(θ)dθ + UN(θ(γ, ζ, κ))(1− F (θ(γ, ζ, κ))) + (1− δ)(1− α)γ. (A62)

The multipliers κ and ζ are thus solutions to the system defined by (A62) and

γ =

∫ θ̄

θ(γ,ζ,κ)

(ē(θ, γ, ζ, κ)− eN(θ))f(θ)dθ. (A63)

Case 2. Weak distortions. Ωc
γ = {θ}. Observe that k′ ≥ 1

θf(θ)
when ζ ≤ ζ∗(γ, ζ, κ)

where
1

θf(θ)
=
ζ∗(γ, ζ, κ)(1− α)

(ζ∗(γ, ζ, κ)− 1)α
− κ

(ζ∗(γ, ζ, κ)− 1)α
. (A64)

The enforcement constraint (A49) is then binding at θ only and the measure µ has a
charge at θ only. The optimal effort is still given by (A57) but on the whole interval
[θ, θ̄].

Optimal value γ̂. To compute the optimal value of γ, observe that raising γ by dγ raises
the whole profile of rents by (1 − δ)(1 − α)dγ which has a cost (ζ − 1)(1 − δ)(1 − α)dγ
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while at the same time, the benefit of such marginal increase is by definition κdγ. At
the optimum, γ̂ is found so that:

κ = (ζ − 1)(1− δ)(1− α) (A65)

Optimal values ζ̂ and κ̂. The value ζ̂ is obtained when (A65) is inserted into the system
(A62)-(A63). From this value, we then get κ̂ = (ζ̂−1)(1−δ)(1−α). Inserting (A65) into
(A57) and (A58) respectively then yields the expression of the optimal effort ē(θ, ζ̂) =

ē(θ, γ̂, ζ̂, κ̂) given by (20) and the expression of the optimal cut-off θ∗(ζ̂) = θ(γ, ζ̂, κ̂)

given by (19).
Define then ζ∗ such that

1− α
α

(
ζ∗

ζ∗ − 1
− 1 + δ

)
=

1

θf(θ)
.

Observe that, for ζ̂ ≤ ζ∗, we have θ∗(ζ̂) = θ and Case 2 (weak distortions) arises. For
ζ̂ > ζ∗, we have θ∗(ζ̂) > θ and Case 1 (strong distortions) arises.

With those notations at hands, ζ̂ solves the following equation in ζ :∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ

+

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− (ē(θ, ζ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ+

∫ θ̄

θ∗(ζ)

(1−δ)(1−α)(eN(θ)−ē(θ, ζ))f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ + UN(θ∗(ζ))(1− F (θ∗(ζ))). (A66)

Mimicking steps in the Proof of Propositions 3 and 4, let again denote respectively by
L(ζ) and R(ζ) the left-hand and right-hand sides of (A66).

Proof that ζ̂ > 1. When ζ = 1, we have θ∗(ζ) = θ, ē(θ, ζ) = eFB(θ) and L(1) < R(1)

indeed amounts to (17). Proceeding as in the Proof of Propositions 3 and 4, we show
that L(ζ)− R(ζ) is strictly increasing, and proceeding as in Lemma A.2, we show that
limζ→+∞ L(ζ)−R(ζ) > 0. Hence, (A66) admits a unique solution ζ̂ > 1.
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