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The resource literature has studied market and other equilibria extensively. Interac-

tion of supply and demand is a fundamental preliminary to the study of market equi-

librium. Yet no systematic synthetic treatment of non-renewable resource supply exists;

equilibrium analysis or welfare statements usually are carried out without any systematic

decomposition into supply and demand. In this note, we examine the supply decision of

individual resource suppliers facing given prices. We establish instantaneous restricted

and unrestricted supply functions and decompose the effect of a price change into an

intertemporal substitution effect and a stock compensation effect. The later arises when

the stock of reserves to be extracted is endogenous. We show that the substitution effect

always dominates so that a price increase at some date always causes supply to decrease

at all other dates. Thus, despite the formal resemblance of intertemporal resource supply

theory with the theory of the demand for many goods, there is no phenomenon similar

to the Giffen paradox in resource supply. Among other clarifications brought about by

this theory of non-renewable resource supply, it explains why the literature does not find

exceptions to the green paradox. It also shows how to avoid supply aggregation problems

that make several existing results questionable.

JEL classification: Q38; D21; D11

Keywords: Non-renewable resource supply; Price effect; Stock effect; Substitution effect;

Supply theory; Demand theory; Green Paradox.



1 Introduction

In this note, we formulate a simple theory of resource supply that extends the standard

microeconomic modeling of supply to non-renewable resources;1 we assume the path of

producer prices to be given and we study the effect of a price change. This new but highly

orthodox framework can be used to analyze the green paradox or other policy-induced

changes in extraction by the time-honored method of partial equilibrium analysis.

When total cumulative extraction is taken as given, an exogenous price change occur-

ring at any date modifies the relative marginal profit from extracting at that date relative

to other dates and thus entails a pure intertemporal substitution effect.2 A change in the

resource price path faced by producers may also affect ultimately exploited reserves, both

because some existing reserves may become economic or cease to be economic as a result

of the price change, and because exploration and discoveries as well as reserve develop-

ment are affected by the price change. We call this the stock effect and we show that

the substitution effect always dominates the stock effect. Consider an increase in price at

some particular date leaving prices at all other dates unchanged; the pure intertemporal

substitution effect increases supply at that date and reduces supply at all other dates;

the stock effect results in an increase in ultimately extracted reserves. It follows that

supply increases at the date of the price rise as the stock effect and the substitution effect

work in the same direction. At all other dates, since the substitution effect dominates

the stock effect, it follows that supply diminishes.

These results make so much sense that they appear trivial. Yet resource supply

differs from regular supply. Exhaustible resource supply presents an analogy with classical

demand theory: resource producers allocate a stock of resource to different dates in a way

that is comparable to the way consumers allocate their income to different expenditures

1In fact we are following up on a task first undertaken by Burness (1976); understanding and ex-
plaining the extraction path has been central to the resource literature ever since. Burness specifically
inquired about the effect on the extraction path of changing the exogenous price, assumed to be constant
throughout the extraction period.

2This is the essential cause of the green paradox as initially formulated (Sinn, 2008).



on different goods. The time space in resource supply plays a similar role as the good

space in demand, while the stock constraint in resource supply is not unlike the budget

constraint in demand theory. Yet the analogy is not an isomorphism. For example the

famous law of supply, which says that the supply of a good increases if its price rises3,

has no demand equivalent: a Giffen good is such that its demand increases if its price

rises, unlike ordinary goods. We show that there is no such paradox in resource supply:

the law of supply holds for all non-renewable resources. Another paradox of demand

is illustrated by inferior goods: their demand diminishes when income increases. Yet

no similar phenomenon arises with non-renewable resource supply: given a price path,

supply does not diminish at any date if reserves are exogenously increased.

The supply of a conventional good or service is independent from the price of another

good or service as long as their production costs are independent. The supply of a non-

renewable resource at one date is affected by its price at another date even when the cost

of extraction at one date is independent from the cost of extraction at all other dates. This

is because the so-called augmented marginal extraction cost includes a resource scarcity

rent, the opportunity cost of extracting the scarce resource, that connects extraction costs

at all dates to each other: a change in the price of the resource at any date affects the rent

at all dates, which in turn affects the supply at all dates. Questions about intertemporal

substitution and compensation effects do not arise in standard supply theory. In the case

of non-renewable resource, these questions have always been the subject of substantial

research efforts; currently, for example, much research activity revolves around the green

paradox, both at the policy and the theoretical levels.

Reserves to be used for extraction are produced by exploration and development

efforts in a way similar to the generation by labor of income or wealth to be allocated

to the demand for goods and services. This is an important aspect of resource supply.

We assume that the stock of reserves is produced prior to extraction via exploration and

3”The law of supply holds for any price change. Because, in contrast with demand theory, there is no
budget constraint, there is no compensation requirement of any sort...” (Mas-Colell et al., 1995, p. 138)
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development. Just as income is earned and fully used up in demand theory, reserves

are developed and then completely exhausted, as in Gaudet and Lasserre (1988) and

Fischer and Laxminarayan (2005).4 Exploration and development are sensitive to the

rent that accrues to the extractor during the exploitation of the resource. This rent is

affected by future supply prices and in turn determines the stock effect mentioned earlier.

Furthermore, the constitution of reserves is necessarily subject to decreasing returns to

scale as exploration prospects are finite. If such was not the case, non-renewable resources

would be indefinitely reproducible like conventional commodities in the long run; the

resource rent would reduce to the constant quasi-rent associated with expenditures in

exploration and reserve development; the intertemporal substitution effect of resource

supply would not materialize.

In Section 2, a parsimonious model of non-renewable resource supply illustrates how

the effect of a price change occurring over part of the extraction period can be decomposed

into a substitution effect and a stock compensation effect and allows us to show that the

substitution effect dominates the compensation effect. Section 2 also draws the distinction

between short term and long term, and adapts the well-known concepts of restricted

(McFadden, 1978) cost and supply functions to the case of resource supply.

It is customary to use the apparatus of supply and demand to study policies. This

is the realm of partial equilibrium analysis. Applying this apparatus to non-renewable

resource markets is simple but requires taking into account the intertemporal nature of

resource supply. This is outlined in Section 3 under perfect competition or in presence of

market power; technical details are relegated to the Appendix. As an example, we show

that the green paradox holds under very general conditions.

4Following Gordon (1967), Hoel (2010), Gerlagh (2011), van der Ploeg and Withagen (2012) and
Grafton, Kompas and Long (2012) in their analysis of the green paradox, consider that some part of
the resource may be left unexploited; the same is true of the Herfindahl-type model of Fischer and
Salant (2012, p. 17). This can be rational if no costs are experienced to develop the resource, or if
an unexpected change in the economics of extraction such as a drop in the price, makes extraction
uneconomic. By definition, while income is transformed into consumption at no cost, reserves are costly
to extract; however it would not be rational to incur costs for the development of reserves not to be
extracted.
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Non-renewable resources are heterogenous. In Section 3, with details in the Appendix,

we consider many heterogenous deposits with different costs of extraction and different

costs of exploration and development. The timing of deposit development and exploita-

tion is endogenous and part of the producer’s supply problem. The results of Section 2 are

confirmed. The multiple deposit model has the further advantage of avoiding aggregation

issues arising in the well-known Ricardian model initiated by Gordon (1967).

2 A synthetic theory of exhaustible resource supply

A quantity xt ≥ 0 of a non-renewable resource is supplied at each of a countable set of

dates t = 0, 1, 2, ... . The initial stock X > 0 of the resource is finite and treated as

exogenous at this stage, with
∑
t≥0

xt ≤ X . The producer price is denoted by pt ≥ 0. The

stream of prices p ≡ (pt)t≥0 is taken as given by the producers and treated as exogenous

at this stage.5 Net spot extraction revenues are denoted πt(xt, pt), where the function πt

may be time varying, is increasing in both arguments, is twice differentiable, and satisfies

∂2πt(.)

∂x2
t

< 0 and ∂2πt(.)
∂xt∂pt

> 0.6

The stock of reserves to be exploited by a mine does not become available without some

prior exploration and development efforts. Although exploration and exploitation often

take place simultaneously at the aggregate level (e.g. Pindyck, 1978, and Quyen, 1988; see

Cairns, 1990, for a comprehensive survey of related contributions), at the microeconomic

level of a deposit they occur in a sequence, as in Gaudet and Lasserre (1988) and Fischer

and Laxminarayan (2005). This way to model the supply of reserves is particularly

5We will show that the results extend to a partial equilibrium setting where prices are endogenously
determined on markets.

6As it depends on the output level, πt is clearly not a profit function, which would result from the
maximization of net revenues with respect to output, given output and factor prices (Varian, 1992, pp.
25, 26). However, it may be assumed that the cost of producing xt is minimized given factor prices, with
factor prices omitted from the notation: πt = ptxt − Ct(xt), where Ct is a cost function (p. 26); this

justifies assumptions ∂2πt(.)
∂x2

t

< 0 and ∂2πt(.)
∂xt∂pt

> 0. Some authors model extraction costs as dependent on

the stock of reserves to reflect the fact that increasing scarcity justifies incurring higher costs to reach
and extract the resource. This would imply here to define the cost function as a restricted or short-run
cost function Ct (xt, Xt), treating the stock of reserves Xt as a quasi-fixed input (p. 26). We discuss
this modeling and deal more explicitly with resource heterogeneity in Section 3, by allowing deposits of
different development and extraction costs to be developed and extracted at different periods.
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adapted to the problem under study because it provides a simple and natural way to

isolate the effect of an anticipated price change on the size of the exploited stock at the

firm level. Specifically, assume that the cost E(X) of developing an initial, exploitable

stock X at date 0 is twice differentiable, increasing, strictly convex, and satisfies E(0) = 0

and E ′(0) = 0. The property E ′(0) = 0 that the marginal cost of reserves development is

zero at the origin is introduced because it is sufficient to ensure that a positive amount

of reserves is developed. It thus rules out uninteresting situations where resource prices

do not warrant the production of any reserves.

For simplicity, we assume the rate of discount r ≥ 0 to be independent of time.7

Since the development of reserves is costly, the optimum plans of the producers will

always bind the exhaustibility constraint. In other words, leaving part of the developed

stock ultimately unexploited does not maximize cumulative net discounted revenues. For

a given price sequence p, the cumulative value function corresponding to a producer’s

optimum is

max
(xt)t≥0,X

∑

t≥0

πt(xt, pt)(1 + r)−t −E(X) (1)

subject to
∑

t≥0

xt = X. (2)

Denoting by λ the Lagrange multiplier associated with constraint (2), the necessary

first-order conditions characterizing the optimum extraction path at dates where extrac-

tion is strictly positive are8

∂πt(xt, pt)

∂xt

(1 + r)−t = λ, ∀t ≥ 0, (3)

and, for the choice of initial reserves,

E ′(X) = λ. (4)

7As spot revenues may be time-varying, the constancy of r amounts to a normalization without any
loss of generality.

8If the price is too low at some date, production may be interrupted before exhaustion, and start
again once prices are high enough. The first-order condition during production interruptions (it must

also hold after exhaustion) is ∂πt(0,pt)
∂xt

(1 + r)−t < λ.
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(3) is the Hotelling rule stating that the marginal profit from extraction must be constant

over time in present value, equal to λ, the unit present-value of reserves underground,

called the Hotelling scarcity rent. (4) is a standard supply relationship that sets marginal

cost equal to price. The price in this case is the unit scarcity rent and is defined implic-

itly; in other words reserves are the output of a production process whose technology is

described by the cost function E. However reserves are not like conventional goods that

can be produced under constant returns to scale, because of the scarcity of exploration

prospects. The supply of reserves is thus a strictly increasing function of the rent:9

X = X(λ) ≡ E ′−1(λ). (5)

(3) implicitly defines the solution xt as a function which is increasing in the current

price pt and decreasing in the rent λ:

xt = xt(pt, λ), ∀t ≥ 0. (6)

Combining all relations (6) into (2), we obtain that the rent is a function increasing in

all prices p ≡ (pt)t≥0 and decreasing in the stock X :

λ = λ(p,X). (7)

Substituting (7) into (6) gives the restricted supply functions, one at each date:

xt = x̃t(p,X) ≡ xt (pt, λ(p,X)) , ∀t ≥ 0. (8)

Conditional on the initial reserve stock X and given the sequence p of prices, these

functions determine how the suppliers allocate extraction from the stock to different

dates. Unlike the restricted supply of a conventional good which only depends on its

own price and on the quantity of some factor, the restricted resource supply function at t

further depends on resource prices at all other dates. This is so despite the fact that the

same standard technological assumptions hold: the extraction cost at one date does not

9The finiteness of exploration prospects amounts to a fixed factor being imposed on the production
process. Hence reserves are produced under rising marginal costs.
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depend on the extraction cost at another date, just as the cost of producing one good is

independent of the cost of producing another good.

Hotelling’s lemma is obtained by use of the envelope theorem for constrained problems.

That is, substituting (8) and (7) into the optimized Lagrangian function associated with

Problem (1) and differentiating with respect to pt, while holding the restricted level of

X and its multiplier as well as all extraction rates constant, gives the restricted supply

at t.10 Variable factor prices, that is the prices of the factors entering the extraction

technology, are omitted for simplicity.

The restricted supply function x̃t is strictly increasing in X ; holding the reserve level

unchanged, consider the partial effects of prices, that is the direct price effects. x̃t(p,X)

is strictly increasing in pt and strictly decreasing in any pT , T 6= t. This can be shown as

follows. By (8), ∂x̃t

∂pT
= ∂xt(pt,λ(p,X))

∂pT
+ ∂xt

∂λ

∂λ(p,X)
∂pT

, where the first term on the right is zero

unless T = t, as xt(pt, λ) is not directly dependent on prices other than the contemporary

price. The second term is clearly negative whether T = t or T 6= t since xt decreases in λ

while ∂λ(p,X)
∂pT

is clearly positive since a rise in the resource price at any date cannot reduce

the rent. It follows that ∂x̃t(p,X)
∂pT

is negative for T 6= t while a contemporary rise in price

involves two effects working in opposite directions. However, if extraction diminishes at

all dates t 6= T , it must increase at t = T for otherwise reserves would not be exhausted,

which would be suboptimal. Consequently, in case of a contemporary price rise, the direct

price effect given by the first term must dominate the second term that operates via the

resource rent.

Consider the choice of initial reserves. While (5) is a standard stock supply relation,

the price λ is not a standard exogenous price but an endogenous variable. To find

the supply of reserves as a function of exogenous prices, denote by X∗ the stock of

reserves at the producers’ optimum in Problem (1). The value of the unit rent at the

producers’ optimum is λ∗ = λ(p,X∗). By (5), the optimum amount of reserves satisfies

10Hotelling’s lemma is obtained similarly in the case of non-restricted supply functions defined further
below. The non-restricted profit function is obtained by replacing the restricted level of X and the rent
λ by their optimized values X∗ (p) and λ∗ (p) defined further below.
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X∗ = X(λ∗) = X
(
λ(p,X∗)

)
, which implicitly defines X∗ and λ∗ as functions of p:

X∗ = X∗(p) and λ∗ = λ∗ (p) ≡ λ (p,X∗ (p)) . (9)

Thus the supply of reserves depends on the whole sequence of resource prices, although

this can be summarized into one single rent. Here too factor prices are omitted for

simplicity: they are the prices of the factors entering the extraction process because they

affect the optimum rent, but also the prices of the factors entering the exploration and

development process which would otherwise be arguments of the E cost function.

Restricted supply or factor demand as well as restricted cost or profit functions are

usually interpreted as representations of the short run. In the long run, the restricted fac-

tor is variable. This interpretation is adequate here, exploration and reserve development

being analogous to capital investment. Just as capital goods are produced, reserves in (9)

are the outcome of a production process. Then they are used as a factor of production

in the resource production process that generates the restricted supply (8).

The optimal (unrestricted) resource supply levels and supply functions are defined as

x∗
t = x∗

t (p) ≡ x̃t

(
p,X∗(p)

)
, ∀t ≥ 0. (10)

Like the restricted resource supply, the (unrestricted) supply of a non-renewable resource

differs from a conventional supply function under identical standard technological as-

sumptions in that it not only depends on its own price, the current price, but also on the

prices at all other dates.

Let us study the effect of a change in price at date T on supply at date t. One must

distinguish between a change at the same date T = t and a change at T 6= t. From (10),

this can be decomposed into a direct price effect and a stock compensation effect :

dx∗
t

dpT
=

∂x̃t(.)

∂pT

∣∣∣∣
X=X∗

+
∂x̃t(.)

∂X

∂X∗(.)

∂pT
. (11)

When T = t, the total price effect may be called the own price effect ; since x̃t(.) is

increasing in both pt and X , and as resource prices always affect developed reserves
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positively, the own price effect is positive. Expression (11) when T = t illustrates the Le

Châtelier principle, which says that the long-run elasticity is higher than the short-run

elasticity.

When T 6= t, the direct price effect in (11) may be called the pure substitution effect as

it reflects the reallocation of an unchanged reserve stock to extraction at a date different

from T ; as (8) makes clear, this substitution effect only arises via the effect of the rent on

the xt function:
∂x̃t(.)
∂pT

∣∣∣
X=X∗

= ∂xt(.)
∂λ

∂λ(.)
∂pT

∣∣∣
X=X∗

. Also by (8), the stock compensation effect

can be itself decomposed into ∂x̃t(.)
∂X

∂X∗(.)
∂pT

= ∂xt(.)
∂λ

∂λ(.)
∂X

∂X∗(.)
∂pT

so that the total cross-price

effect can be factorized as follows:

dx∗
t

dpT
=

∂xt(.)

∂λ

( ∂λ(.)

∂pT

∣∣∣∣
X=X∗

+
∂λ(.)

∂X

∂X∗(.)

∂pT

)
, T 6= t, (12)

where the term between brackets turns out to be the total derivative of λ(p,X) with

respect to pT , decomposed into a direct price effect at constant initial reserves, and the

effect on the rent of the change in initial reserves induced by the price change. It can

be shown that resource prices at all dates affect the rent positively, i.e. dλ∗

dpT
≥ 0.11

Consequently,
dx∗

t

dpT
=

∂xt(.)

∂λ

dλ∗

dpT
≤ 0, ∀t 6= T, (13)

implying that the stock compensation effect never more than offsets the pure substitution

effect.12

Although reminiscent of the decomposition of Marshallian demand, the decomposi-

11Formally, the definition of X∗ = X (λ(p,X∗)) yields ∂X∗(.)
∂pT

=
X′(.) ∂λ(.)

∂pT

∣

∣

∣

X=X∗

1−
∂λ(.)
∂X

X′(.)
, implying that the

term between brackets in (12) can be factorized as dλ∗

dpT
= ∂λ(.)

∂pT

∣∣∣
X=X∗

(
1

1−∂λ(.)
∂X

X′(.)

)
, which is positive

since ∂λ(.)
∂X

is negative. By (9), it also follows that dX∗

dpT
is positive.

12We have assumed decreasing returns to the development of reserves – increasing marginal cost of
development, i.e. strict convexity of the cost function E. This assumption reflects the finiteness of
extraction and exploration prospects and is essential to the result.
Suppose on the contrary that the development of reserves were subject to constant returns to scale:

E(X) = eX . As before, λ would give the present value of each reserve unit so that λ = e. The rent, thus
determined by the technology, would then be insensitive to variations in prices p, and resource supply
at t would only depend on current resource price by (8). Constant returns to scale in the development
of X make all cross-price effects on extraction vanish, just like in the classical theory of supply under
separable cost.
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tion of the change in resource supply at t following a price change at T 6= t into a pure

substitution effect and a stock compensation effect is not isomorphic to the Slutsky de-

composition. The substitution effect and the stock compensation effect of a resource price

change are illustrated in Figure 1 for the case of two periods, which corresponds to the

two-good representation of demand theory. Assuming prices p0 and p1, point A = (x0, x1)

in Figure 1 depicts the producer optimum. Given a stock of reserves X , periods 0 and

1 extraction levels are chosen such that producers reach the highest possible two-period

iso-profit curve13 π. The optimum allocation (x0, x1) is thus at the point of tangency

between the π iso-profit curve and the exhaustibility constraint, the 45-degree line which

expresses the trade-off between quantities extracted in Period 1 and quantities extracted

in Period 2 in such a way that x0 + x1 = X . Unlike the case of Marshallian demand,

this linear constraint is not affected by changes in prices. Also, while prices do not affect

iso-utility curves, they affect the slope of iso-profit curves: iso-profit curves may cross at

different prices.

Consider a rise in p1 to p′1 > p1. The price change implies that all iso-profit curves

become flatter at any given feasible level of x0. If the stock of reserves remains unchanged

at X , the new tangency point is along the same exhaustibility constraint and along the

iso-profit curve of level π̃ > π, at point Ã above A, so that x̃0 < x0 and x̃1 > x1. The

move from A to Ã represents the substitution effect.

However the rise in price leads producers to increase reserve development to X ′.

Taking this stock effect into account brings the new optimum to A′. It is clear that

x′
1 > x̃1 > x1. Unlike the Slutsky decomposition, there is no possibility of a commodity

analogous to a Giffen good, whose supply would diminish as a result of a rise in its price.

Moreover, in the case of non-renewable resource supply, the substitution effect always

dominates the compensation effect, so that, by (13), x′
0 must be lower than x0 following

the rise in p1. There is no such thing as resource supply complements; quantities extracted

13In Figure 1, the iso-profit curves correspond to the two-period profit, conditional on X and before
deduction of the sunk exploration cost E (X): π = π0(x0, p0)+(1+r)−1π1(x1, p1). From the assumption
that the πt functions are concave in extraction flows, iso-profits curves are decreasing and convex.
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A

Ã

A′

x0 x0

x1

x1

x̃1

x′
1

x̃0 x′
0

π

π̃

π′

X

X ′

Figure 1: Price effect decomposition with p′1 > p1

at different dates are always substitutes.

3 Partial equilibrium and policy analysis, market power, heterogenous

resources, aggregation

Policy induced changes are more complex than the above analysis of supply for two

main reasons. First, policy-related price changes usually take place over an extended

period rather than at a single date; second, the policy usually affects prices indirectly,

because they affect the demand for the resource. For example the green paradox is often

described as the effect on current or near-future resource supply of policies reducing

resource demand over some extended future period via various forms of assistance to

alternative energy sources. Suppose that resource demand decreases at all dates T ∈ ∆,
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where ∆ is a strict subset of dates, and remains unchanged otherwise. The analysis just

presented allows a conventional partial equilibrium analysis to be performed by exploiting

the properties of resource supply derived from Section 2. The upward sloping supply

curve at t /∈ ∆ is negatively affected by prices at T ∈ ∆. Whether demand reductions

are unanticipated and not accompanied by any adjustment in the stock of reserves, or

anticipated and associated with a drop in developed reserves, the analysis of the previous

section carries over to each of the changes occurring at dates belonging to ∆. The price

parameters in (6) should simply be replaced by the inverse resource demand; reductions

in demand at T ∈ ∆ increase supply at all t /∈ ∆, confirming the validity of the green

paradox.14 A formalization of this partial equilibrium analysis is given in the Appendix.

Although convention has it that a monopoly has no supply curve, the partial equilib-

rium analysis approach applies to extractive firms with market power just as it does in

the static partial equilibrium analysis of monopoly. A firm that enjoys market power on

the market for the extracted resource solves Problem (1) subject to (2) except that it is

aware of the incidence on prices of its quantity decisions: marginal profits in (3) no longer

reflect the partial effect of quantities on revenues ∂πt(xt,pt)
∂xt

as under competition, but their

total effect dπt(xt,pt)
dxt

= ∂πt(xt,pt)
∂xt

+ ∂πt(xt,pt)
∂pt

dpt
dxt

. As long as producers’ profits are concave,

conditions similar to (6) govern extraction; they exhibit the same properties as above,

where pt is in general replaced with the inverse residual demand faced by the producer –

the inverse total demand in the monopoly case. The solution is then easily adapted to this

difference throughout the analysis. All results survive: the substitution effect dominates

the stock effect, and policy implications such as the green paradox remain true.

The analysis also applies if the extractive firm is not the owner of the raw resource

but has to buy the stock of initial reserves X at a unit supply price µ. At the producer’s

14If the change in demand affects a single date as in the analysis of Section 2, the drop in price
unambiguously causes a drop in supply at that date. More generally if ∆ contains more than a single
date, the reaction of resource supply at T ∈ ∆ depends on the magnitude of the price change occurring
at that date relative to the changes occurring at other dates T ′ ∈ ∆. However, the analysis of Section
2 indicates that cumulative extraction over ∆ is reduced. This is because X decreases while cumulative
supply at all dates t /∈ ∆ increases.
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optimum, the extraction rent λ then must equal the reserve supply price, which is given

by the inverse reserve supply function µ = E ′(X). The producer’s objective does not

directly internalize the exploration and development cost E(X), but does so via the

expenditure µX . Under perfect competition, this problem is isomorphic to the problem

treated in Section 2. If the resource extractor holds market power in the acquisition of

initial reserves, the price parameter µ in µX must be replaced with the relevant inverse

residual supply function – in the monopsony case, this is E ′(X)X , and X is chosen in

such a way that the marginal revenue E ′(X)+E ′′(X)X equals the shadow value λ. There

still exists a relation like (4) with the same properties as in Section 2; the analysis follows

through and the results are unchanged as long as the extractor’s problem is well-behaved,

i.e. as long as the marginal expenditure on resource acquisition is increasing.

Non-renewable resources are notoriously heterogenous. One popular way to model this

heterogeneity is due to Gordon (1967), has been further discussed or refined by Levhari

and Liviatan (1977) and Pindyck (1978), and was used recently by Hoel (2010), Gerlagh

(2011), van der Ploeg and Withagen (2012) and Grafton et al. (2012) in works related

to the green paradox. In that approach, the cost of extraction increases with cumulative

extraction under the rationale that least cost resources are used first. A substantial

literature studies and often questions this initial intuition of Herfindahl (1967). See,

e.g. Amigues et al. (1998), Gaudet and Lasserre (2011), or Salant (2012). As Slade

(1988) puts it ”The idea that the least-cost deposits will be extracted first is so firmly

embedded in our minds that it is an often-made but rarely tested assumption underlying

the construction of theoretical exhaustible-resource models.” (p. 189).

Despite its unreliable theoretical and empirical foundations, Gordon’s approach to

resource heterogeneity is a convenient way to model aggregate supply. However, by using

aggregate reserves or aggregate cumulative extraction as determinant of extraction cost,

it hides the fact that aggregate supply arises from the production of individual deposits

that come in a great variety of forms which differ by extraction costs, exploration and

development costs, location, etc. Under such circumstances, the existence of an aggre-
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gate supply depending on aggregate reserves rather than the whole vector of individual

reservoirs is questionable. When possible, a much better approach is to construct aggre-

gate supply as the sum of individual firms’ supplies. We do so in the Appendix, where

we consider a multiplicity of different deposits indexed by j, developed at endogenous

dates τ j , and contributing to the supply of a unique resource whose price is pt. Each

deposit is similar to the single deposit considered in Section 2. However deposits differ by

their size Xj, their geology, location and depth or quality, as reflected in the technologies

underlying both extraction πj
t (x

j
t , pt) and exploration Ej

t (X
j) as well as the evolution of

these technologies over time. In this highly general setup, the supply from all deposits

already developed at t diminishes as a result of a rise in price at any date T > t. The in-

tertemporal substitution effect dominates the reserve compensation effect for each active

deposit, hence at the aggregate level. This reduction in supply may be sharpened by the

postponement of some deposit developments. The green paradox is observed.
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APPENDIX

Partial equilibrium analysis

Suppose that prices are determined by the equilibrium of supply and demand where
supply is defined as above: taking prices p ≡ (pt)t≥0 as given, producers solve (1) subject
to (2). Equations (3)–(6) hold as before. Assume that the demand for the resource at
date t ≥ 0 only depends on the date, on the resource price at that date pt, and on the
stringency at date t of demand-reducing policies, synthesized by the index θt. Demand
may thus be written15 Dt(pt, θt) and assumed continuously differentiable and decreasing
in both arguments. The path of the policy stringency index Θ ≡ (θt)t≥0 is exogenously
given. The inverse demand function Pt(xt, θt) is continuously differentiable and decreasing
in its two arguments.

In equilibrium, it must be that xt = xt

(
Pt(xt, θt), λ

)
, where the function xt is de-

fined by (6). This implicitly defines the equilibrium quantity as a function φt which is
decreasing in its two arguments:

xt = φt(θt, λ), ∀t ≥ 0. (14)

The rest of the analysis follows the same steps as in Section 2, with the exogenous
index levels θt replacing the prices pt. Combining (2) with (14) gives the resource rent as
a function that is decreasing in all indices Θ and in the stock X ; to simplify notation we
redefine λ to be that equilibrium rent function:

λ = λ(Θ, X). (15)

Substituting (15) into (14) yields the equilibrium extraction flows, conditional on the
stock of reserves; redefining x̃t to denote that function, we have

xt = x̃t(Θ, X) ≡ φt

(
θt, λ(Θ, X)

)
, ∀t ≥ 0. (16)

Equilibrium extraction quantities are increasing in X and in θt′ , t′ 6= t. The partial
derivative of x̃t(.) with respect to θt is negative, for the same reasons that explain the
restricted supply to be increasing in the current price in Section 2.

Denote by Xe the equilibrium amount of reserves. The unit rent in equilibrium is
thus λe = λ(Θ, Xe). By (5), the equilibrium stock of reserves satisfies Xe = X(λe) =
X
(
λ(Θ, Xe)

)
, which implicitly defines Xe as a function of Θ only:

Xe = Xe(Θ). (17)

The equilibrium stock of initial reserves is decreasing in all θt, t ≥ 0. Finally, the
unrestricted equilibrium extraction flows xe

t are determined by

xe
t = xe

t (Θ) ≡ x̃t

(
Θ, Xe(Θ)

)
, ∀t ≥ 0. (18)

15A less synthetic demand function could be Dt(pt) ≡ ft(αt)dt(pt+βt, p
s
t −γt), where ft is decreasing,

dt is decreasing in its two arguments, and where (αt)t≥0, (βt)t≥0, (p
s
t )t≥0, (γt)t≥0 respectively denote

the given time paths of an index of demand-reducing technical progress, of a tax on resource extraction,
of the price of a substitute, and of a subsidy to this substitute. An increase in θt at any date t may then
reflect technical change, an increase in resource taxation, an increase in subsidies to substitutes, or any
combination of such resource demand-reducing policies.
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By (16), the effect of a change in the stringency of policies at T , on the equilibrium
extraction quantities xe

t at all dates t 6= T , can be decomposed into a substitution effect
and a reserve compensation effect as in (11). Obviously the substitution effect dominates
as in Section 2. Although demand-reducing policies at some dates result in lower total
cumulative extraction (the stock effect), they always lead to increased equilibrium ex-
traction flows at all dates where they have no effect on demand (the substitution effect
dominates). As argued in the main text, this is also true if the resource is supplied by a
monopoly or if the exploration sector is a monopsony.

Resource heterogeneity: multiple deposits

Let the various possible supply sources (deposits, developed or not) be identified by
j, j = 1, ..., J , and let resource supply at date t be

St =

J∑

j=1

xj
t , (19)

where xj
t ≥ 0 is the quantity of resource j supplied at date t. Net spot extraction revenues

are πj
t = πj

t (x
j
t , pt), with the same properties as in the single source case of Section 2.

Since xj
t may be zero, there is no loss of generality in assuming that the same countable

set of dates applies for all sources. Each source is constrained by its own finite reserve
stock. As the marginal reserve unit of any deposit will only be developed if it is to be
exploited, that constraint binds:16

∑

t≥0

xj
t = Xj , j = 1, ..., J. (20)

Each source is characterized by its own exploration and development cost Ej
t (X

j) whose
qualitative properties are the same as in the case of a single resource, with the following
minor difference. The property Ej′ (0) = 0 is replaced with Ej′

t (0) ≥ 0, so that a
resource whose marginal exploration and development is too high for profitability need
not be developed. However the same deposit that is not economic at date zero may be
developed when prices become higher and/or when the technologies encompassed in the
functions πj

t and Ej
t justify it.17 We assume that technological progress on exploration

and development is such that, for any date t′ > t and initial reserves Xj′ > Xj ,

Ej
t

(
Xj

)
≥ Ej

t′

(
Xj

)
and Ej

t

(
Xj′

)
− Ej

t′

(
Xj′

)
≥ Ej

t

(
Xj

)
− Ej

t′

(
Xj

)
, ∀ j. (21)

As before, it is supposed that exploration and development are instantaneous and
undertaken only once for each deposit; extraction may take place only after deposit

16If deposit j is never developed,
∑
t≥0

xj
t = 0 = Xj .

17It is well-known that, for some price and technology combinations, development occurs only at
τ = 0 if at all. Such is the case, for example, if prices are constant while extraction and development
technologies are stationary.
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development. All potential producers face the same given known price stream. For
source j, the producer solves

max
(xj

t )t≥0,X
j ,τ j

∑

t≥0

πj
t (x

j
t , pt)(1 + r)−t − (1 + r)−τ j Ej

τ j
(Xj) (22)

subject to (20) and to
xj
t = 0, t < τ j ,

where τ j ≥ 0 is the development date for deposit j. There is one specific resource rent
λj associated with each deposit. Suppose that τ j > 0. No production occurs before that
date, so that xj

t = 0, t < τ j . We further assume that the combination of resource price
changes and technological change affecting πj

t is such that, once initiated, production is
not interrupted until exhaustion.18 We also assume that the problem is well behaved in
the sense that the optima being characterized are global rather than local, at least in
the neighborhood of the price vector under consideration. This rules out jumps from one
local maximum to another local maximum as a result of a change in the price vector.
Clearly, the problems to be solved for each source are independent of each other. Thus
the sole difference with the one-resource case analyzed earlier is the fact that all resources
need not be developed at date zero if at all. Roughly, given a price path, resources whose
extraction cost is higher and/or whose cost of exploration and development is higher
will be developed later. We are interested in aggregate resource supply at dates t ≥ 0; in
particular we want to determine how supply St reacts to a change in price at T ≥ t. Since
each component xj

t of St is determined independently of the others, consider deposit j in
particular.

Suppose at this stage that the development date τ j is given. Then the derivations and
properties established in Section 2 for Problem (1) can be readily adapted to Problem
(22). If τ j = 0 the solution is identical to that of Section 2; if τ j > 0, xj

t = 0 when t < τ j

and, for t ≥ τ j , the first-order conditions for the choice of the optimum extraction path
and initial reserves are, instead of (3) and (4),

∂πj
t (x

j
t , pt)

∂xj
t

(1 + r)−t = λj, ∀ t ≥ τ j , (23)

and
Ej ′

τ j
(Xj) = (1 + r)τ

j

λj . (24)

where all values, including the unit Hotelling scarcity rent λj, are evaluated at date zero,
although development occurs at τ j rather than at zero.

All properties of the supply functions established in Section 2 apply for each deposit,
provided it is active at t. Still holding τ j constant, consider the effect of an increase in
price at date T on date-t supply, where T ≥ t. All deposits developed at or before t
contribute to St. Consequently the effect is the sum of the changes in the supply from

18This assumption greatly facilitates the analysis while it eliminates situations of only minor economic
interest. It is satisfied if prices do not diminish too fast and technological change is such that extraction
costs do not increase too fast over any part of the exploitation period.
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all deposits such that τ j ≤ t ≤ T : if t < T , an increase in pT reduces extraction from
all active deposits at t reducing total supply at t. If t = T , a rise in pT increases the
contribution from all deposits, thus increasing total supply at t.

Now allow optimal development dates to adjust to the price change. As in Section 2,
a ”∗” next to a variable or function refers to the optimal unrestricted level of the variable
or to the unrestricted function. The optimal development date τ j∗ (p) of deposit j may
be a corner solution τ j∗ (p) = 0 or, if it is an interior solution, it is an integer value
τ j∗ (p) > 0 within the set of possible dates. For an interior solution, the Lagrangian
L (xj∗, Xj∗, τ, λj∗) for Problem (22) must be bigger at τ j∗ (p) than at τ j∗ (p) − 1 and at
τ j∗ (p) + 1. The implied inequalities L (xj∗, Xj∗, τ, λj∗)− L (xj∗, Xj∗, τ − 1, λj∗) > 0 and
L (xj∗, Xj∗, τ, λj∗)− L (xj∗, Xj∗, τ + 1, λj∗) > 0 when τ = τ j∗ can be written as

rEj
τ−1(X

j∗) + Ej
τ−1(X

j∗)−Ej
τ (X

j∗) > πj
τ−1(x

j∗
τ−1, pt)(1 + r)− (1 + r)τ λj∗xj∗

τ−1,(25)
r

1 + r
Ej

τ+1(X
j∗) + Ej

τ (X
j∗)−Ej

τ+1(X
j∗) < πj

τ (x
j∗
τ , pt)− (1 + r)τ λj∗xj∗

τ . (26)

The assumption that the optimum is global further implies that the Lagrangian is in-
creasing in τ before τ j∗ − 1 and decreasing after τ j∗ + 1.

Consider a change in the price schedule from p to p′ where p′ departs from p because
of an increase in pT at some date T > τ = τ j∗ (p). We know that λj∗ (p′) > λj∗ (p). Then
since pt is unchanged at any t < T , the concavity of πj

t in xj
t implies that xj′∗

t < xj∗
t ,

∀t ∈ {τ j∗ (p′) , ..., T − 1} by (23). However, the fact that production from any existing
deposit j is diminished at dates t ∈ {τ j∗ (p′) , ..., T − 1} following the increase in pT is
not sufficient to conclude to a drop in production at these dates: it is also necessary that
no deposit comes into stream at the new price if it was not in production at the old price
vector at any of these dates. That is to say, if a deposit is developed at τ j∗ (p′) = t,
t ∈ {0, ..., T − 1}, it must be the case that it was under operation at, or before, t at the
old price vector: we must show that ∀j, τ j∗ (p′) ≥ τ j∗ (p).

Consider (25) and (26) at τ = τ j∗ (p) < T for any j when λj∗ (p) increases to λj∗ (p′).
The right-hand sides of both expressions are diminished. Since Xj∗ increases by (24) as
a result of the increase in λj∗, the monotonicity of Ej

t and Assumption (21) imply that
the left-hand sides of both expressions increase. This means that (25) remains satisfied
if τ j is not adjusted, while (26) may become violated; in such case, only an increase in
τ j can reestablish the optimality conditions. Consequently, τ j∗ (p′) ≥ τ j∗ (p), completing
the proof that, if t < T , an increase in pT not only reduces extraction from active deposits
but may also cause the development of some deposits at or before t to be postponed.

Similar arguments show that, if t = T , an increase in pT increases supply at t.
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