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Abstract

In this paper we study the Gaussian quasi maximum likelihood estimator (QMLE) in
a linear panel regression model with interactive fixed effects for asymptotics where
both the number of time periods and the number of cross-sectional units go to
infinity. Under appropriate assumptions we show that the limiting distribution of
the QMLE for the regression coefficients is independent of the number of interactive
fixed effects used in the estimation, as long as this number does not fall below the
true number of interactive fixed effects present in the data. The important practical
implication of this result is that for inference on the regression coefficients one does
not need to estimate the number of interactive effects consistently, but can simply
rely on any known upper bound of this number to calculate the QMLE.
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1 Introduction

Panel data models typically incorporate individual and time effects to control for hetero-
geneity in cross-section and across time-periods. While often these individual and time
effects enter the model additively, they can also be interacted multiplicatively, thus giving
rise to so called interactive effects, which we also refer to as a factor structure. The multi-
plicative form captures the heterogeneity in the data more flexibly, since it allows for com-
mon time-varying shocks (factors) to affect the cross-sectional units with individual specific
sensitivities (factor loadings). It is this flexibility that motivated the discussion of inter-
active effects in the econometrics literature, e.g. Holtz-Eakin, Newey and Rosen (1988),
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Ahn, Lee, Schmidt (2001; 2007), Pesaran (2006), Bai (2009b; 2009a), Zaffaroni (2009),
Moon and Weidner (2010).

Analogous to the analysis of individual specific effects, one can either choose to model
the interactive effects as random (random effects/correlated effects) or as fixed (fixed ef-
fects), with each option having its specific merits and drawbacks, that have to be weighed
in each empirical application separately. In this paper, we consider the interactive fixed
effect specification, i.e. we treat the interactive effects as nuisance parameters, which are
estimated jointly with the parameters of interest.1 The advantages of the fixed effects
approach are for instance that it is semi-parametric, since no assumption on the distribu-
tion of the interactive effects needs to be made, and that the regressors can be arbitrarily
correlated with the interactive effect parameters.

Let R0 be the true number of interactive effects (number of factors) in the data, and
let R be the number of interactive effects used by the econometrician in the data analysis.
A key restriction in the existing literature on interactive fixed effects is that R0 is assumed
to be known,2 i.e. R = R0. This is true both for the quasi-differencing analysis in
Holtz-Eakin, Newey and Rosen (1988)3 and for the least squares analysis of Bai (2009b).
Assuming R0 to be known could be quite restrictive, since in many empirical applications
there is no consensus about the exact number of factors in the data or in the relevant
economic model, so that an estimator which is not robust towards some degree of mis-
specification of R0 should not be used. The goal of the present paper is to overcome this
problem.

For a linear panel regression model with interactive fixed effects we consider the Gaus-
sian quasi maximum likelihood estimator (QMLE),4 which jointly minimized the sum
of squared residuals over the regression parameters and the interactive fixed effects pa-
rameters (see Kiefer (1980), Bai (2009b), and Moon and Weinder (2010)). We employ an
asymptotic where both the number of cross-sectional and the number of time-serial dimen-
sions becomes large, while the number of interactive effects R0 (and also R) is constant.

The main finding of the paper is that under appropriate assumptions the QMLE of
the regression parameters has the same limiting distribution for all R ≥ R0. Thus, the
QMLE is robust towards inclusion of extra interactive effects in the model, and within the
QMLE framework there is no asymptotic efficiency loss from choosing R larger than R0.
This result is surprising because the conjecture in the literature is that the QMLE with
R > R0 might be consistent but could be less efficient than the QMLE with R0 (e.g., see
Bai (2009b)).5

The important empirical implication of our result is that as long as a valid upper
bound on the number of factors is known one can use this upper bound to construct the
QMLE, and need not worry about consistent estimation of the number of factors. Since

1Note that Ahn, Lee, Schmidt (2001; 2007) take a hybrid approach in that they treat the factors as non-
random, but the factor loadings as random. The common correlated effects estimator of Pesaran (2006) was
introduced in a context, where both the factor loadings and the factors follow certain probability laws, but also
exhibits some properties of a fixed effects estimator. When we refer to interactive fixed effects we mean that
both factors and factor loadings are treated as non-random parameters.

2In the literature, consistent estimation procedures for R0 are established only for pure factor models, not
for the model with regressors.

3Holtz-Eakin, Newey and Rosen (1988) assume just one interactive effect, but their approach could easily be
generalized to multiple interactive effects, as long as their number is known

4The QMLE is sometimes called concentrated least squares estimator in the literature.
5For R < R0 the QMLE could be inconsistent, since then there are interactive fixed effects in the residuals

of the model which can be correlated with the regressors but are not controlled for in the estimation.
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the limiting distribution of the QMLE with R > R0 is identical to the one with R = R0 the
results of Bai (2009b) and Moon and Weidner (2010) regarding inference on the regression
parameters become applicable.

In order to derive the asymptotic theory of the QMLE with R ≥ R0 we study the
properties of the profile likelihood function, which is the quasi likelihood function after
integrating out the interactive fixed effect parameters. Concretely, we derive an approx-
imate quadratic expansion of this profile likelihood in the regression parameters. This
expansion is difficult to perform, since integrating out the interactive fixed effects results
in an eigenvalue problem in the formulation of the profile likelihood. For R = R0 we show
how to overcome this difficulty by performing a joint expansion of the profile likelihood
in the regression parameters and in the idiosyncratic error terms. Using the perturbation
theory of linear operators we prove that the profile quasi likelihood function is analytic
in a neighborhood of the true parameter, and we obtain explicit formulas for the expan-
sion coefficients, in particular analytic expressions for the approximated score and the
approximated Hessian for R = R0.6

To generalize the result to R > R0 we then show that the difference between the profile
likelihood for R = R0 and for R > R0 is just a constant term plus a term whose depen-
dence on the regression parameters is sufficiently small to be irrelevant for the asymptotic
distribution of the QMLE. Due to the eigenvalue problem in the likelihood function, the
derivation of this last result requires some very specific knowledge about the eigenvectors
and eigenvalues of the random covariance matrix of the idiosyncratic error matrix. We
provide high-level assumptions under which the results hold, and we show that these high-
level assumptions are satisfied, when the idiosyncratic errors of the model are independent
and identically normally distributed. As we explain in section 4, the justification of our
high-level assumptions for more general distribution of the idiosyncratic errors requires
some further progress in the Random Matrix Theory of real random covariance matrices,
both regarding the properties of their eigenvalues and of their eigenvectors (see Bai (1999)
for a review of this literature).

The paper is organized as follows. In Section 2 we introduce the interactive fixed effect
model, its Gaussian quasi likelihood function, and the corresponding QMLE, and also
discuss consistency of the QMLE. The asymptotic profile likelihood expansion is derived in
Section 3. Section 4 provides a justification for the high-level assumptions that we impose,
and discusses the relation of these assumptions to the random matrix theory literature.
Monte Carlo results which illustrate the validity of our conclusion at finite sample are
presented in Section 5, and the conclusions of the paper are drawn in Section 6.

A few words on notation. The transpose of a matrix A is denoted by A′. For a column
vectors v its Euclidean norm is defined by ‖v‖ =

√
v′v . For the n-th largest eigenvalues

(counting multiple eigenvalues multiple times) of a symmetric matrix B we write µn(B).
For an m×n matrix A the Frobenius or Hilbert Schmidt norm is ‖A‖HS =

√
Tr(AA′), and

the operator or spectral norm is ‖A‖ = max06=v∈Rn
‖Av‖
‖v‖ , or equivalently ‖A‖ =

√
µ1(A′A).

Furthermore, we use PA = A(A′A)−1A′ and MA = 1−A(A′A)−1A′, where 1 is the m×m
identity matrix, and (A′A)−1 denotes some generalized inverse if A is not of full column
rank. For square matrices B, C, we use B > C (or B ≥ C) to indicate that B−C is positive
(semi) definite. We use “wpa1” for “with probability approaching one”, and A =d B to

6The likelihood expansion for R = R0 was first presented in Moon and Weidner (2009). We separate and
extend the expansion result from the 2009 working paper and present it in this paper. The remaining application
results of Moon and Weidner (2009) are now in Moon and Weidner (2010).
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indicate that the random variables A and B have the same probability distribution.

2 Model, QMLE and Consistency

A linear panel regression model with cross-sectional dimension N , time-serial dimension
T , and interactive fixed effects of dimension R0, is given by

Y =
K∑
k=1

β0
k Xk + ε , ε = λ0 f0 ′ + e , (2.1)

where Y , Xk, ε and e are N×T matrices, λ0 is a N×R0 matrix, f0 is a T×R0 matrix, and
the regression parameters β0

k are scalars — the superscript zero indicates the true value
of the parameters. We write β for the K-vector of regression parameters, and introduce
the notation β ·X ≡

∑K
k=1 βkXk. All matrices, vectors and scalars in this paper are real

valued. A choice for the number of interactive effects R used in the estimation needs to be
made, and we may have R 6= R0 since the true number of factors R0 may not be known
accurately. Given the choice R, the quasi maximum likelihood estimator (QMLE) for the
parameters β0, λ0 and f0 is given by7

(
β̂R, Λ̂R, F̂R

)
= argmin
{β∈RK , Λ∈RN×R, F∈RT×R}

∥∥Y − β ·X − ΛF ′
∥∥2

HS
. (2.2)

The square of the Hilbert-Schmidt norm is simply the sum of the squared elements of the
argument matrix, i.e. the QMLE is defined by minimizing the sum of squared residuals,
which is equivalent to minimizing the likelihood function for iid normal idiosyncratic errors.
The estimator is the quasi MLE since the idiosyncratic errors need not be iid normal and
since R might not equal R0. The QMLE for β0 can equivalently be defined by minimizing
the profile quasi likelihood function, namely

β̂R = argmin
β∈RK

LRNT (β) , (2.3)

where

LRNT (β) = min
{Λ∈RN×R, F∈RT×R}

1

NT

∥∥Y − β ·X − ΛF ′
∥∥2

HS

= min
F∈RT×R

1

NT
Tr
[
(Y − β ·X)MF (Y − β ·X)′

]
=

1

NT

T∑
t=R+1

µt
[
(Y − β ·X)′ (Y − β ·X)

]
. (2.4)

Here, we first concentrated out Λ by use of its own first order condition. The resulting
optimization problem for F is a principal components problem, so that the the optimal F is

7The optimal Λ̂R and F̂R in (2.2) are not unique, since the objective function is invariant under right-
multiplication of Λ with a non-degenerate R × R matrix S, and simultaneous right-multiplication of F with
(S−1)′. However, the column spaces of Λ̂R and F̂R are uniquely determined.
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given by the R largest principal components of the T ×T matrix (Y − β ·X)′ (Y − β ·X).
At the optimum the projector MF therefore exactly projects out the R largest eigenvalues
of this matrix, which gives rise to the final formulation of the profile likelihood function as
the sum over its T −R smallest eigenvalues.8

This last formulation of LRNT (β) is very convenient since it does not involve any explicit
optimization over nuisance parameters. Numerical calculation of eigenvalues is very fast,
so that the numerical evaluation of LRNT (β) is unproblematic for moderately large values
of T . The function LRNT (β) is not convex in β and might have multiple local minima,

which have to be accounted for in the numerical calculation of β̂R. We write L0
NT (β) for

LR0

NT (β), which is the profile likelihood obtain from the true number of factors. In order

to show consistency of β̂R we impose the following assumptions.

Assumption 1.

(i) ‖Xk‖ = Op(
√
NT ), k = 1, . . . ,K,

(ii) ‖e‖ = Op(
√

max(N,T )).

One can justify Assumption 1(i) by use of the norm inequality ‖Xk‖ ≤ ‖Xk‖HS and the
fact that ‖Xk‖2HS =

∑
i,tX

2
k,it = Op(NT ), where i = 1, . . . , N and t = 1, . . . , T , and the

last step follows e.g. if Xk,it has a uniformly bounded second moment. Assumption 1(ii)
is a condition on the largest eigenvalue of the random covariance matrix e′e, which is often
studied in the literature on random matrix theory, e.g. Geman (1980), Bai, Silverstein,
Yin (1988), Yin, Bai, and Krishnaiah (1988), Silverstein (1989). The results in Latala
(2005) show that ‖e‖ = Op(

√
max(N,T )) if e has independent entries with mean zero and

uniformly bounded fourth moment. Some weak dependence of the entries eit across i and
t is also permissible (see, e.g., Moon and Weidner (2010)).

Assumption 2.

(i) 1√
NT

Tr(Xke
′) = Op(1), k = 1, . . . ,K.

(ii) Consider linear combinations Xα =
∑K

k=1 αkXk of the regressors Xk with K-vector

α such that ‖α‖ = 1. We assume that there exists a constant b > 0 such that

min
{α∈RK , ‖α‖=1}

T∑
t=R+R0+1

µt

(
X ′αXα

NT

)
≥ b , wpa1.

Assumption 2(i) requires weak exogeneity of the regressors Xk. Assumption 2(ii) is a
generalization of the usual non-collinearity condition on the regressors. It requires X ′αXα

to be non-degenerate even after elimination of the largest R + R0 eigenvalues (the sum
in the assumption only runs over the smallest T − R − R0 eigenvalues of this matrix,
while running over all eigenvalues would give the trace operator, and thus the usual non-
colinearity condition). In particular, this assumption is violated if there exists a linear
combination of the regressors with ‖α‖ = 1 and rank(Xα) ≤ R + R0, i.e. the assumption
rules out “low-rank regressors” like time invariant regressors or cross-sectionally invariant

8Since the model is symmetric under N ↔ T , Λ↔ F , Y ↔ Y ′, Xk ↔ X ′k there also exists a dual formulation
of LR

NT (β) that involves solving an eigenvalue problem for an N ×N matrix.
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regressors. These low-rank regressors require a special treatment in the interactive fixed
effect model (see Bai (2009b) and Moon and Weidner (2010)), and we ignore them in
the present paper. If one is not interested explicitly in their regression coefficients, one
can always eliminate the low-rank regressors by an appropriate projection of the data,
e.g. subtraction of the time (or cross-sectional) means from the data eliminates all time-
invariant (or cross-sectionally invariant) regressors.

Theorem 2.1. Let Assumption 1 and 2 be satisfied and let R ≥ R0. For N,T →∞ we

then have
√

min(N,T )
(
β̂R − β0

)
= Op(1).

Remarks.

(i) The Theorem guarantees consistency of β̂R, R ≥ R0, in an arbitrary limit N,T →∞.
In the rest of this paper we consider asymptotics where N and T grow at the same
rate, i.e. N/T → κ2, for some positive constant κ. For these restricted asymptotics
the theorem already guarantees

√
N (or equivalently

√
T ) consistency of β̂R, which

is a useful intermediate result.

(ii) The
√

min(N,T ) convergence rate in Theorem 2.1 can be generalized further. If we
generalize Assumption 1(ii) and Assumption 2(i) to Assumption 1(ii∗) 1√

NT
‖e‖ =

Op(ξNT ), and Assumption 2(i∗) 1
NT Tr(Xke

′) = Op(ξNT ), k = 1, . . . ,K, where ξNT →
0, then it is possible to establish that

√
ξNT

(
β̂R − β0

)
= Op(1).

The proof of Theorem 2.1 is presented in the appendix. The theorem imposes no
restriction at all on f0 and λ0, apart from the condition R ≥ R0. To derive the results in
the rest of the paper we do however make the following strong factor assumption.9

Assumption 3.

(i) 0 < plimN,T→∞
1
N λ0′λ0 <∞,

(ii) 0 < plimN,T→∞
1
T f

0′f0 <∞.

The main result of this paper is that the inclusion of unnecessary factors in the esti-
mation does not change the asymptotic distribution of the QMLE for β0. Before deriving
this result rigorously, we want to provide an intuitive explanation for it. As already men-
tioned above, the estimator F̂R is given by the first R principal components of the matrix
(Y − β̂R ·X)′(Y − β̂R ·X). We have

Y − β̂R ·X = λ0f0′ + e− (β̂R − β0) ·X. (2.5)

For asymptotics, where N and T grow at the same rate, we find that Assumption 1 and
the result of Theorem 2.1 guarantee that ‖e − (β̂R − β0) · X‖ = Op(

√
N). The strong

factor assumption implies that the norms of the columns of λ0 and f0 each grow at a rate
of
√
N (or equivalently

√
T ), so that the spectral norm of λ0f0′ grows at the rate

√
NT .

The strong factor assumption therefore guarantees that λ0f0′ is the dominant component

9The strong factor assumption is regularly imposed in the literature on large N and T factor models, including
Bai and Ng (2002), Stock and Watson (2002) and Bai (2009b). Onatski (2006) discussed an alternative “weak
factor” assumption for the purpose of estimating the number of factors in a pure factor model, and a more
general discussion of strong and weak factors is given in Chudik, Pesaran and Tosetti ().
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of Y − β̂R ·X, which implies that the first R0 principal components of (Y − β̂R ·X)′(Y −
β̂R · X) are close to f0, i.e. the true factors are correctly picked up by the principal
component estimator. The additional R − R0 principal components that are estimated
for R > R0 cannot pick up anymore true factors and are thus mostly determined by
the remaining term e − (β̂R − β0) · X. Our results below show that β̂R is not only

√
N

consistent, but actually
√
NT consistent, so that ‖(β̂R − β0) ·X‖ = Op(1), which makes

the idiosyncratic error matrix e the dominant part of e − (β̂R − β0) ·X, i.e. the R − R0

additional principal components in F̂R are mostly determined by e, and more precisely
are close to the R−R0 principal components of e′e. This means that they are essentially
random and close to uncorrelated with the regressors Xk. Including unnecessary factors in
the QMLE calculation is therefore analogous to including irrelevant regressors in a linear
regression which are uncorrelated with the relevant regressors Xk. From the second line
in equation (2.4) we see that these additional random components of F̂R project out the
corresponding R − R0 dimensional subspace of the T -dimensional space spanned by the
observations over time, thus effectively reducing the number of time dimensions by R−R0.
This usually results in a somewhat increased finite sample variance of the QMLE, but has
no influence asymptotically as T goes to infinity, so that the asymptotic distributions of
β̂R0 and β̂R are identical for R ≥ R0.

3 Asymptotic Profile Likelihood Expansion

To derive the asymptotics of β̂R, we study the asymptotic properties of the profile likelihood
function LRNT (β) around β0. First we notice that the expression cannot easily be discussed
by analytic means, since there is no explicit formula for the eigenvalues of a matrix. In
particular, a standard Taylor expansion of L0

NT (β) around β0 cannot easily be derived.
In Section 3.1 we show how to overcome this problem when the true number of factors is
known, i.e. R = R0, and in Section 3.2 we generalize the results to R > R0.

When the true R0 is known, the approach we choose is to perform a joint expansion
in the regression parameters and in the idiosyncratic error terms. To perform this joint
expansion we apply the perturbation theory of linear operators (e.g., Kato (1980)). We
thereby obtain an approximate quadratic expansion of L0

NT (β) in β, which can be used to

derive the first order asymptotic theory of the QMLE β̂R0 .
To carry the results for R = R0 over to R > R0, we first note that equation (2.4)

implies that

LRNT (β) = L0
NT (β)− 1

NT

R∑
t=R0+1

µt
[
(Y − β ·X)′ (Y − β ·X)

]
. (3.1)

The extra term 1
NT

∑R
t=R0+1 µt

[
(Y − β ·X)′ (Y − β ·X)

]
is due to overfitting on the extra

factors. We show that the β-dependence of this term is sufficiently small, so that apart
from a constant the approximate quadratic expansions of LRNT (β) and L0

NT (β) around
β0 are identical. To obtain this result we first strengthen Theorem 2.1 and show that
β̂R converges to β0 at a rate of at least N3/4, so that we only have to discuss the β-
dependence of the extra term in LRNT (β) within an N3/4 shrinking neighborhood of β0.
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From the analysis of LRNT (β), we can then deduce the main result of the paper, namely

√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ op(1). (3.2)

This implies that the limiting distributions of β̂R and β̂R0 are identical, and that over-
estimating the number of factors results in no efficiency loss in terms of the asymptotic
variance of the QMLE.

3.1 When R = R0

We want to expand the profile likelihood L0
NT (β) simultaneously in β and in the spectral

norm of e. Let the K + 1 expansion parameters be defined by ε0 = ‖e‖/
√
NT and

εk = β0
k − βk, k = 1, . . . ,K, and define the N × T matrix X0 = (

√
NT/‖e‖)e. With these

definitions we obtain

1√
NT

(Y − β ·X) =
1√
NT

[
λ0f0′ + (β0 − β) ·X + e

]
=

λ0f0′
√
NT

+

K∑
k=0

εk
Xk√
NT

. (3.3)

According to equation (2.4) the profile likelihood L0
NT (β) can be written as the sum over

the T−R0 smallest eigenvalues of the matrix in (3.3) multiplied by its transposed. We con-
sider

∑K
k=0 εkXk/

√
NT as a small perturbation of the unperturbed matrix λ0f0′/

√
NT ,

and thus expand L0
NT (β) in the perturbation parameters ε = (ε0, . . . , εK) around ε = 0,

namely

L0
NT (β) =

1

NT

∞∑
g=0

K∑
k1,...,kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
, (3.4)

where L(g) = L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
are the expansion coefficients.

The unperturbed matrix λ0f0′/
√
NT has rank R0, so that the T −R0 smallest eigen-

values of the unperturbed T × T matrix f0λ0′λ0f0′/NT are all zero, i.e. L0
NT (β) = 0 for

ε = 0 and thus L(0)
(
λ0, f0

)
= 0. Due to Assumption 3 the R0 non-zero eigenvalues of the

unperturbed T × T matrix f0λ0′λ0f0′/NT converge to positive constants as N,T → ∞.
This means that the “separating distance” of the T − R0 zero-eigenvalues of the unper-
turbed T ×T matrix f0λ0′λ0f0′/NT converges to a positive constant, i.e. the next largest
eigenvalue is well separated. This is exactly the technical condition under which the per-
turbation theory of linear operators guarantees that the above expansion of L0

NT in ε exists

and is convergent as long as the spectral norm of the perturbation
∑K

k=0 εkXk/
√
NT is

smaller than a particular convergence radius r0(λ0, f0), which is closely related to the
separating distance of the zero-eigenvalues. For details on that see Kato (1980) and Ap-
pendix A.2, where we define r0(λ0, f0) and show that it converges to a positive constant
as N,T → ∞. Note that for the expansion (3.4) it is crucial that we have R = R0,
since the perturbation theory of linear operators describes the perturbation of the sum of
all zero-eigenvalues of the unperturbed matrix f0λ0′λ0f0′/NT . For R > R0 the sum in
LRNT (β) leaves out the R−R0 largest of these perturbed zero-eigenvalues, which results in
a much more complicated mathematical problem, since the structure and ranking among
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these perturbed zero-eigenvalues needs to be discussed.
The above expansion of L0

NT (β) is applicable whenever the operator norm of the pertur-

bation matrix
∑K

k=0 εkXk/
√
NT is smaller than r0(λ0, f0). Since our assumptions guar-

antee that ‖Xk/
√
NT‖ = Op(1), for k = 0, . . . ,K, and ε0 = Op(min(N,T )−1/2) = op(1),

we have
∥∥∥∑K

k=0 εkXk/
√
NT

∥∥∥ = Op(‖β − β0‖) + op(1), i.e. the above expansion is always

applicable asymptotically within a shrinking neighborhood of β0 — which is sufficient since
we already know that β̂R is consistent for R ≥ R0.

In addition to guaranteeing converge of the series expansion, the perturbation theory of
linear operators also provides explicit formulas for the expansion coefficients L(g), namely
for g = 1, 2, 3 we have L(1)

(
λ0, f0, Xk

)
= 0, L(2)

(
λ0, f0, Xk1 , Xk2

)
= Tr(Mλ0Xk1Mf0X ′k2

),

L(3)
(
λ0, f0, Xk1 , Xk2 , Xk3

)
= −1

3 [Tr
(
Mλ0Xk1MfX

′
k2
λ0(λ0′λ0)−1(f0′f0)−1f0′X ′k3

)
+ . . .],

where the dots refer to 5 additional terms obtained from the first one by permutation of
k1, k2 and k3, so that the expression becomes totally symmetric in these indices. A general
expression for the coefficients for all orders in g is given in Lemma A.1 in the appendix.
One can show that for g ≥ 3 the coefficients L(g) are bounded as follows

1

NT

∣∣∣L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣ ≤ aNT (bNT )g
‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

, (3.5)

where aNT and bNT are functions of λ0 and f0 that converge to finite positive constants
in probability. This bound on the coefficients L(g) allows us to derive a bound on the
remainder term, when the profile likelihood expansion is truncated at a particular order.
The likelihood expansion can be applied under more general asymptotics, but here we only
consider the limit N,T →∞ with N/T → κ2, 0 < κ <∞, i.e. N and T grow at the same
rate. Then, the relevant coefficients of the expansion, which are not treated as part of the
remainder term, are

L0
NT (β0) =

1

NT

∞∑
g=2

εg0L
(g)
(
λ0, f0, X0, X0, . . . , X0

)
=

1

NT

∞∑
g=2

L(g)
(
λ0, f0, e, e, . . . , e

)
,

Wk1k2 =
1

NT
L(2)

(
λ0, f0, Xk1 , Xk2

)
=

1

NT
Tr(Mλ0 Xk1 Mf0 X ′k2

) ,

C
(1)
k =

1√
NT

L(2)
(
λ0, f0, Xk, U

)
=

1√
NT

Tr(Mλ0 XkMf0 e′) ,

C
(2)
k =

3

2
√
NT

L(3)
(
λ0, f0, Xk, e, U

)
= − 1√

NT

[
Tr
(
eMf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+ Tr

(
e′Mλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ] . (3.6)

In the first line above we used the fact that L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
is linear in the

arguments Xk1 to Xkg and that ε0X0 = e. The K ×K matrix W with elements Wk1k2 is

the approximated Hessian of the profile likelihood function L0
NT (β). The K-vectors C(1)

and C(2) with elements C
(1)
k and C

(2)
k constitute the approximated score of L0

NT (β). From

9



the expansion (3.4) and the bound (3.5) we obtain the following theorem, whose proof is
provided in the appendix.

Theorem 3.1. Let Assumptions 1 and 3 be satisfied. Suppose that N,T → ∞ with

N/T → κ2, 0 < κ <∞. Then we have

L0
NT (β) = L0

NT (β0)− 2√
NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ L0,rem

NT (β),

where the remainder term L0,rem
NT (β) satisfies for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∣∣∣L0,rem
NT (β)

∣∣∣(
1 +
√
NT ‖β − β0‖

)2 = op

(
1

NT

)
.

Corollary 3.2. Let Assumptions 1, 2, and 3 be satisfied. Furthermore assume that C(1) =

Op(1). In the limit N,T →∞ with N/T → κ2, 0 < κ <∞, we then have

√
NT

(
β̂R0 − β0

)
= W−1

(
C(1) + C(2)

)
+ op(1) = Op(1).

Since the estimator β̂R0 minimizes L0
NT (β) it must in particular satisfy L0

NT (β̂R0) ≤
L0
NT

(
β0+W−1

(
C(1) + C(2)

)
/
√
NT

)
. The Corollary follows from applying Theorem 3.1 to

this inequality and using the consistency of β̂R0 . Details are given in the appendix. Using
Theorem 3.1, the corollary is also directly obtained from the results in Andrews (1999).
Our assumptions already guarantee C(2) = Op(1) and W−1 = Op(1), so that only C(1) =
Op(1) needs to be assumed explicitly in the Corollary.

Corollary 3.2 allows to replicate the result in Bai (2009b). Furthermore, the assump-
tions in the corollary do not restrict the regressor to be strictly exogenous, and the tech-
niques developed here are applied in Moon and Weidner (2009) to discuss pre-determined
regressors in the linear factor regression model with R = R0, in which case the score term
C(1) contributes an additional incidental parameter bias to the asymptotic distribution of
β̂R.

Remark. If we weaken Assumption 1(ii) to ‖e‖ = op(N
2/3), then Theorem 3.1 still

continues to hold. If we assume that C(2) = Op(1), then Corollary 3.2 also holds under
this weaker condition on ‖e‖.

3.2 When R > R0

We now extend the likelihood expansion to the case R > R0. Let λ̂(β) and f̂(β) be the
minimizing parameters in the first line of equation (2.4) for R = R0. These are the first R0

principal components of (Y − β ·X)(Y − β ·X)′ and (Y − β ·X)′(Y − β ·X), respectively.
For the corresponding orthogonal projectors we use the notation Mλ̂(β) ≡ Mλ̂(β) and

Mf̂ (β) ≡Mf̂(β). For the residuals after taking out these first R0 principal components we

write ê(β) ≡ Y − β ·X − λ̂(β)f̂ ′(β).

10



Analogous to the expansion of L0
NT (β) the perturbation theory of linear operators also

provides an expansion for Mλ̂(β), Mf̂ (β) and ê(β) in (β − β0) and ‖e‖, i.e. in addition

to describing the sum of the perturbed eigenvalues L0
NT (β) it also describes the structure

of the corresponding perturbed eigenvectors. For example, we have ê(β) = Mλ0eMf0 −∑
k(βk−β0

k)Mλ0XkMf0 +higher order terms. The details of these expansions are presented
in Lemma A.1 and A.2 in the appendix. These expansions are crucial when generalizing
the likelihood expansion to R > R0. Equation (3.1) can equivalently be written as

LRNT (β) = L0
NT (β)− 1

NT

R−R0∑
t=1

µt
[
ê′(β)ê(β)

]
. (3.7)

Here we used that ê′(β)ê(β) is the residual of (Y − β ·X)′ (Y − β ·X) after subtracting
the first R0 principal components, which implies that the eigenvalues of these two matrices
are the same, except from the R0 largest ones which are missing in ê′(β)ê(β). By applying
the expansion of ê(β) to this expression for LRNT (β) one obtains the following.

Theorem 3.3. Under Assumption 1 and 3 and for R > R0 we have

(i) LRNT (β) = L0
NT (β)− 1

NT

R−R0∑
t=1

µt [A(β)] + LR,rem,1
NT (β),

where A(β) = Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0,

and for any constant c > 0

sup
{β:
√
N‖β−β0‖≤c}

∣∣∣LR,rem,1
NT (β)

∣∣∣
√
N +

√
NT ‖β − β0‖

= Op
(

1

NT

)
.

(ii) LRNT (β) = L0
NT (β)− 1

NT

R−R0∑
t=1

µt
[
B(β) +B′(β)

]
+ LR,rem,2

NT (β),

where

B(β) = 1
2A(β)−Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′

+Mf0

[
(β − β0) ·X − e

]′
Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0

[
(β − β0) ·X

]
f0(f0′f0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0

+B(eeee) +Mf0B(rem,1)(β)Pf0 + Pf0B(rem,2)Pf0 ,
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and

B(eeee) = −Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0

− 1
2Mf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1(f0′f0)−1f0′e′Mλ0eMf0

+ 1
2Mf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0 .

Here, B(rem,1)(β) and B(rem,2) are T × T matrices, B(rem,2) is independent of β and

satisfies ‖B(rem,2)‖ = Op(1), and for any constant c > 0

sup
{β:
√
N‖β−β0‖≤c}

‖B(rem,1)(β)‖
1 +
√
NT ‖β − β0‖

= Op (1) ,

sup
{β:
√
N‖β−β0‖≤c}

∣∣∣LR,rem,2
NT (β)

∣∣∣
(1 +

√
NT ‖β − β0‖)2

= op

(
1

NT

)
.

Here, the remainder terms LR,rem,1
NT (β) and LR,rem,2

NT (β) stem from terms in ê′(β)ê(β)
whose spectral norm is smaller than Op(1) and op(1), respectively, within a

√
N shrink-

ing neighborhood of β after dividing by
√
N +

√
NT

∥∥β − β0
∥∥ and 1 +

√
NT

∥∥β − β0
∥∥,

respectively. Using Weyl’s inequality those terms can be separated from the eigenval-
ues µt [ê′(β)ê(β)]. The expression for B(β) looks complicated, in particular the terms
in B(eeee). Note however, that B(eeee) is β-independent and satisfies ‖B(eeee)‖ = Op(1)
under our assumptions, so that it is relatively easy to deal with these terms. Note fur-
thermore that the structure of B(β) is closely related to the expansion of L0

NT (β), since
by definition we have L0

NT (β) = (NT )−1Tr(ê′(β)ê(β)), which can be approximated by
(NT )−1Tr(B(β) +B′(β)). Plugging the definition of B(β) into (NT )−1Tr(B(β) +B′(β))
one indeed recovers the terms of the approximated Hessian and score provided by The-
orem 3.1, which is a convenient consistency check. We do not give explicit formulas for
B(rem,1)(β) and B(rem,2), because those terms enter B(β) projected by Pf0 , which makes
them orthogonal to the leading term A(β), so that they can only have limited influence on
the eigenvalues of B(β)+B′(β). The bounds on the norms of B(rem,1)(β) and B(rem,2) pro-
vided in the theorem are sufficient for all conclusions on the properties of µt [B(β) +B′(β)]
below. The proof of the theorem can be found in the appendix.

The first part of Theorem 3.3 is useful to show that β̂R converges to β0 at a rate of
at least N3/4. The purpose of the second part is to show that β̂R has the same limiting
distribution as β̂R0 . To actually obtain these two results one requires further conditions
on the β-dependence of the largest few eigenvalues of A(β) and B(β) +B′(β).

Assumption 4. For all constants c > 0

sup
{β:
√
N‖β−β0‖≤c}

∑R−R0

t=1

{
µt [A(β)]− µt

[
A(β0)

]
− µt

[
Ã(β)

]}
√
N +N5/4‖β − β0‖+N2‖β − β0‖2/ log(N)

≤ Op (1) ,

where Ã(β) = Mf0

[
(β − β0) ·X

]′
Mλ0

[
(β − β0) ·X

]
Mf0.
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Corollary 3.4. Let R > R0, let Assumptions 1, 2, 3 and 4 be satisfied and furthermore

assume that C(1) = Op(1). In the limit N,T → ∞ with N/T → κ2, 0 < κ < ∞, we then

have
N3/4

(
β̂R − β0

)
= Op(1).

The corollary follows from the inequality LRNT (β̂R) ≤ LRNT (β0) by applying the first
part of Theorem 3.3, Assumption 4, and our expansion of L0

NT (β). The justfication of

Assumption 4 is discussed in the next section. Knowing that β̂R converges to β0 at a rate
of at least N3/4 is a convenient intermediate result. It implies that we only have to study
the properties of LRNT (β) within a N3/4 shrinking neighborhood of β0, which is reflected
in the formulation of the following assumption.

Assumption 5. For all constants c > 0

sup
{β:N3/4‖β−β0‖≤c}

∣∣∣∑R−R0

t=1

{
µt [B(β) +B′(β)]− µt

[
B(β0) +B′(β0)

]}∣∣∣
(1 +

√
NT‖β − β0‖)2

= op(1).

Combining the first part of Theorem 3.3, Assumption 5, and Theorem 3.1, we find that
the profile likelihood for R > R0 can be written as

LRNT (β) = LRNT (β0)− 2√
NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ LR,rem

NT (β),

with a remainder term that satisfies for all constants c > 0

sup
{β:N3/4‖β−β0‖≤c}

∣∣∣LR,rem
NT (β)

∣∣∣(
1 +
√
NT ‖β − β0‖

)2 = op

(
1

NT

)
.

This result, together with N3/4-consistency of β̂R, gives rise to the following corollary.

Corollary 3.5. Let R > R0, let Assumptions 1, 2, 3, 4 and 5 be satisfied and furthermore

assume that C(1) = Op(1). In the limit N,T → ∞ with N/T → κ2, 0 < κ < ∞, we then

have √
NT

(
β̂R − β0

)
= W−1

(
C(1) + C(2)

)
+ op(1) = Op(1).

The proof of Corollary 3.5 is analogous to that of Corollary 3.2. The combination
of both corollaries shows that our main result in equation (3.2) holds, i.e. the limiting
distributions of β̂R and β̂R0 are indeed identical. What is left to do is to justify the
high-level assumptions 4 and 5.

4 Justification of Assumptions 4 and 5

We start with the justification of Assumption 4. We have A(β) = A(β0)+Ã(β)−Amixed(β),
where Amixed(β) = Mf0e′Mλ0

[
(β − β0) ·X

]
Mf0+ the same term transposed. By applying
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Weyl’s inequality10 we thus find

R−R0∑
t=1

{
µt [A(β)]− µt

[
A(β0)

]
− µt

[
Ã(β)

]}
≤

R−R0∑
t=1

µt [Amixed(β)]

≤ 2 (R−R0)K ‖e‖ ‖β − β0‖max
k
‖Mλ0XkMf0‖. (4.1)

For asymptotics with N and T growing at the same rate Assumption 1(ii) guarantees
‖e‖ = Op(

√
N). Using this and inequality 4.1, we find that ‖Mλ0XkMf0‖ = Op(N3/4)

is a sufficient condition for Assumption 4. This condition can be justified by assuming
that Xk = Γkf

0′ + X̃k, where Γk is an N × R0 matrix and X̃k is an N × T matrix with
‖X̃‖ = Op(N3/4), i.e. Xk has an approximate factor structure with the same factors
that enter into the equation for Y and an idiosyncratic component X̃k. Analogous to our
discussion of Assumption 1(ii) we can obtain the bound on the norm of X̃k by assuming
that its entries X̃k,it are mean zero, have bounded fourth moment and are only weakly
correlated across i and t.

We have thus provided a way to justify Assumption 4 without imposing any additional
condition on the error matrix e, but by restricting the data generating process for the
regressors Xk. Alternatively, one can derive the statement in the assumption by imposing
weaker restrictions on Xk, but making further assumptions on the error matrix e. An
example of this is provided by Theorem 4.1 below, where we only assume that Xk =
Xk + X̃k, with rank(Xk) being bounded, but without assuming that Xk is generated by
the factors f0.

The discussion of Assumption 5 is more complicated. By Weyl’s inequality we know
that the absolute value of µt [B(β) +B′(β)]−µt

[
B(β0) +B′(β0)

]
is bounded by the spec-

tral norm of B(β) + B′(β) − B(β0) − B′(β0), which is of order Op(N3/2)‖β − β0‖ +
Op(N2)‖β − β0‖2. This bound is obviously too crude to justify the assumption. What we
need here is a bound that not only takes into account the spectral norm of the difference
between B(β) + B′(β) and B(β0) + B′(β0), but also the structure of the eigenvectors of
the various matrices involved.

The assumption only restricts the properties of B(β) in anN3/4 shrinking neighborhood
of β0. In this shrinking neighborhood the dominant term inB(β)+B′(β) isMf0e′Mλ0eMf0 ,
since its spectral norm is of order N , while the spectral norm of the remaining terms, e.g.
Amixed(β) above, is at most of order N3/4. Our goal is to show that the largest few eigen-
values of B(β) +B′(β) only differ by op(1) from those of the leading term Mf0e′Mλ0eMf0 ,
within the shrinking neighborhood of β0. To do so, we first need to introduce some nota-
tion.

Let wt ∈ RT , t = 1, . . . , T −R0, be the normalized eigenvectors of Mf0e′Mλ0eMf0 with
the constraint f0′wt = 0, and let ρt, t = 1, . . . , T − R0, be the corresponding eigenvalues.
Let vi ∈ RN , i = 1, . . . , N − R0, be the normalized eigenvectors of Mλ0eMf0e′Mλ0 with
the constraint λ0′vi = 0, and let ρi, i = 1, . . . , N −R0, be the corresponding eigenvalues.11

10Weyl’s inequality says µm(G+H) ≤ µm(G) + µ1(H) for arbitrary symmetric n× n matrices G and H and
1 ≤ m ≤ n. Here, we refer to a generalization of this, which reads

∑m
t=1 µt(G+H) ≤

∑m
t=1 µt(G)+

∑m
t=1 µt(H).

These inequalities are standard results in linear algebra and are readily derived from the Courant-Fischer-Weyl
min-max principle.

11For T < N the vectors vi, i = T − R0 + 1, . . . , N − R0, correspond to null-eigenvalues, and if there are
multiple null-eigenvalues those vi are not uniquely defined. In that case we assume that those vi are drawn
randomly from the Haar measure on the unit sphere of the corresponding null-eigenspace. For T > N we assume
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We assume that eigenvalues are sorted in decreasing order, i.e. ρ1 ≥ ρ2 ≥ . . .. Note that
the eigenvalues ρt and ρi are identical for t = i. Let

d
(1)
NT = max

i,t,k
|v′iXkwt|, d

(2)
NT = max

i
‖v′iePf0‖, d

(3)
NT = max

t
‖w′te′Pλ0‖,

d
(4)
NT = N−3/4 max

i
‖v′iXkPf0‖, d

(5)
NT = N−3/4 max

t
‖w′tX ′kPλ0‖,

where i = 1 . . . N − R0, t = 1, . . . , T − R0 and k = 1 . . .K. Furthermore, define dNT =

max
(

1, d
(1)
NT , d

(2)
NT , d

(3)
NT , d

(4)
NT , d

(5)
NT

)
.

Theorem 4.1. Let assumptions 1 and 3 hold, let R > R0 and consider a limit N,T →∞
with N/T → κ2, 0 < κ < ∞. Assume that ρR−R0 > aN , wpa1, for some constant a > 0.

Furthermore, let there exists a series of integers qNT > R−R0 such that

dNT qNT = op(N
1/4) , and

1

qNT

T−R0∑
t=qNT

1

ρR−R0 − ρt
= Op(1) .

Then, for all constants c > 0 and t = 1, . . . , R−R0 we have

sup
{β:N3/4‖β−β0‖≤c}

∣∣µt (B(β) +B′(β)
)
− ρt

∣∣ = op(1),

which implies that Assumption 5 is satisified.

We can now justify Assumption 5 by showing that the conditions of Theorem 4.1 are
satisfied. The following discussion is largely heuristic. Since vi and wt are the normalized
eigenvalues of Mf0e′Mλ0eMf0 and Mλ0eMf0e′Mλ0 we expect them to be essentially un-
correlated with Xk and ePf0 , and therefore we expect v′iXkwt = Op(1), ‖v′iePf0‖ = Op(1),

‖w′te′Pλ0‖ = Op(1). We also expect ‖v′iXkPf0‖ = Op(
√
T ) and ‖w′tX ′kPλ0‖ = Op(

√
N),

which is different to the preceding terms with e, since Xk can be correlated with f0 and
λ0. In the definition of dNT the maxima over these terms are taken over i and t, so that
we anticipate some weak dependence of dNT on N (or equivalently T ). Note that we need
dNT = op(N

1/4) since otherwise qNT does not exist. The key to making this discussion
rigorous and show that indeed dNT = op(N

1/4), or smaller, is a good knowledge of the
properties of the eigenvectors vi and wt. If the entries eit are iid normal, then the matrix
of vi’s and wt’s is Haar-distributed (on the N − R0 and T − R0 dimensional subspaces
spanned by Mλ0 and Mf0). In that case the formalization of the above discussion becomes
relatively easy, and the result is summarized in Theorem 4.2 below.

The conjecture in the random matrix theory literature is that the limiting distribution
of the eigenvectors of a random covariance matrix is “distribution free”, i.e. is independent
of the particular distribution of eit (see, e.g., Silverstein (1990), Bai (1999)). However, we
are not aware of a formulation and corresponding proof of this conjecture that is sufficient
for our purposes.

the same for wt, t = N −R0, . . . , T −R0. This specification avoids correlation between Xk and those vi and wt

being caused by a particular choice of the eigenvectors that correspond to degenerate null-eigenvalues.
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The second condition in Theorem 4.1 is on the eigenvectors ρt of the random covari-
ance matrix Mf0e′Mλ0eMf0 . Eigenvalues are studied more intensely than eigenvectors in
the random matrix theory literature, and it is well-known that the properly normalized
empirical distribution of the eigenvalues (the so called empirical spectral distribution) of
an iid sample covariance matrix converges to the Marčenko-Pastur-law (Marčenko and
Pastur (1967)) for asymptotics where N and T grow at the same rate. This means that
the sum over the eigenvalues ρt in Theorem 4.1 asymptotically becomes an integral over
the Marčenko-Pastur limiting spectral distribution.12 To derive a bound on this sum, one
furthermore needs to know the asymptotic properties of ρR−R0 . For random covariance
matrices from iid normal errors, it is known from Johnstone (2001) and Soshnikov (2002)
that the properly normalized few largest eigenvalues converge to the Tracy-Widom law.13.

An additional subtlety in the discussion of the eigenvalues and eigenvectors of the ran-
dom covariance matrix Mf0e′Mλ0eMf0 are the projections with Mf0 and Mλ0 , which stem
from integrating out the true factors and factor loadings of the model. Those projectors are
not normally present in the literature on large dimensional random covariance matrices.
If the idiosyncratic error distribution is iid normal these projections are unproblematic,
since the distribution of e is rotationally invariant in that case, i.e. the projections are
mathematically equivalent to a reduction of the sample size by R0 in both directions.

Thus, if the eit are iid normal, then we can show that the conditions of Theorem 4.1
are satisfied, and we can therefore verify that the high-level assumptions of the last section
hold. This result is summarized in the following theorem.

Theorem 4.2. Let R > R0, let Assumption 3 hold and consider a limit N,T → ∞ with

N/T → κ2, 0 < κ <∞. Furthermore, assume that

(i) For all k = 1, . . . ,K we can decompose Xk = Xk + X̃k, , such that

‖X̃k‖ = Op(N3/4), ‖X̃k‖HS = Op(
√
NT ), ‖Xk‖ = Op(

√
NT ), rank(Xk) ≤ Qk,

where Qk is independent of N and T . For the K ×K matrix W̃ defined by W̃k1k2 =
1
NT Tr(X̃kX̃

′
k) we assume that plimN,T→∞Wk1k2 > 0. In addition, we assume that

E
∣∣(Mλ0XkMf0)it

∣∣24+ε
, E |(Mλ0Xk)it|6+ε and E

∣∣(XkMf0)it
∣∣6+ε

are bounded uniformly

across i, j, N and T for some ε > 0. .

(ii) The error matrix e is independent of λ0, f0, Xk and X̃k, k = 1, . . . ,K, and its

elements eit are distributed as iid N (0, σ2).

Then, the Assumptions 1, 2, 4 and 5 are satisfied and we have C(1) = Op(1). By Corol-

lary 3.2 and 3.5 we can therefore conclude
√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ op(1).

The proofs for Theorem 4.1 and Theorem 4.2 are provided in the supplementary mate-
rial to this paper. It seems to be quite challenging to extend Theorem 4.2 to non-iid-normal

12To make this argument mathematically rigorous one needs to know the convergence rate of the empirical
spectral distribution to its limit law, which is a ongoing research subject in the literature, e.g. Bai (1993), Bai,
Miao and Yao (2004), Götze and Tikhomirov (2010).

13To our knowledge this result is not established for error distributions that are not normal. Soshnikov (2002)
has a result under non-normality but only for asymptotics with N/T → 1.
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N = T = 50 N = T = 100

eit ∼ N (0, 1) eit ∼ t(5) eit ∼ N (0, 1) eit ∼ t(5)

bias std bias std bias std bias std

R = 0 0.42741 0.02710 0.42788 0.02699 0.42806 0.01890 0.42813 0.01884
R = 1 0.29566 0.05712 0.29633 0.05830 0.29597 0.03725 0.29541 0.03717
R = 2 0.00047 0.02015 0.00175 0.02722 0.00005 0.00974 0.00057 0.01296
R = 3 0.00046 0.02101 0.00139 0.02693 0.00007 0.00993 0.00062 0.01314
R = 4 0.00051 0.02183 0.00140 0.02792 0.00010 0.01012 0.00062 0.01335
R = 5 0.00042 0.02259 0.00137 0.02888 0.00011 0.01028 0.00061 0.01361

Table 1: Simulation results for the bias and standard error (std) of the QMLE β̂R for different value of R,
two different sample sizes N and T , and the two different specifications for eit. The data generating process is
described in the main text, in particular the true number of factors here is R0 = 2. We used 10, 000 repetitions
in the simulation.

eit, given the present status of the literature on eigenvalues and eigenvectors of large di-
mensional random covariance matrices, and we would like to leave this as a future research
topic.

5 Monte Carlo Simulations

Here, we consider a panel model with one regressor (K = 1), two factors (R0 = 2) and the
following data generating process (DGP)

Yit = β0Xit +
2∑
r=1

λirftr + eit, Xit = 1 + X̃it +
2∑
r=1

(λir + χir)ftr, (5.1)

where i = 1, . . . , N and t = 1, . . . , T . The random variables X̃it, λir, ftr, χir and eit
are mutually independent, X̃it is distributed as iidN (1, 1), and λir, ftr and χir are all
distributed as iidN (1, 1). For eit we also assume that it is iid across i and t, but we
consider two different specifications for the marginal distribution, namely either N (0, 1)
or a Student’s t-distribution with 5 degrees of freedom. We choose β0 = 1, and use 10, 000
repetitions in our simulation. For each draw of Y and X we compute the QMLE β̂R
according to equation (2.3) for different values of R.

Table 1 reports the bias and standard error of β̂R for sample sizes N = T = 50 and
N = T = 100. For R = 0 (OLS estimator) and R = 1 we have R < R0, i.e. less factors
are used in the estimation than are present in the DGP. As a result of this, the QMLE is
heavily biased for these values of R, since the factor structure in the DGP is correlated
with the regressors, but is not controlled for in the estimation. In contrast, for all values
R ≥ R0 the bias of the QMLE is negligible compared to its standard error. Furthermore,
the standard error remains almost constant as R increases beyond R = R0; concretely
from R = 2 to R = 5 it increases only by about 7% for N = T = 50 and only by 5% for
N = T = 100.

Table 2 reports quantiles of the appropriately normalized QMLE for R ≥ R0 and
N = T = 100. One finds that the quantiles remain almost constant as R increases. In
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Quantiles of
√
NT

(
β̂R − β0

)
eit ∼ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

N (0, 1)

R = 2 -1.903 -1.598 -1.239 -0.643 0.008 0.663 1.240 1.616 1.916
R = 3 -1.977 -1.625 -1.253 -0.650 0.011 0.658 1.276 1.650 1.952
R = 4 -1.998 -1.664 -1.275 -0.666 0.016 0.682 1.296 1.694 1.992
R = 5 -2.041 -1.672 -1.284 -0.682 0.019 0.698 1.328 1.723 2.000

t(5)

R = 2 -2.537 -2.095 -1.614 -0.807 0.072 0.935 1.716 2.188 2.573
R = 3 -2.550 -2.116 -1.642 -0.817 0.071 0.946 1.757 2.206 2.626
R = 4 -2.592 -2.147 -1.653 -0.829 0.067 0.961 1.796 2.259 2.664
R = 5 -2.652 -2.181 -1.688 -0.854 0.071 0.972 1.805 2.296 2.720

Table 2: Simulation results for the quantiles of
√
NT

(
β̂R−β0

)
for N = T = 100, the two different specifications

of eit, different values of R, and the data generating process as described in the main text with R0 = 2. We used
10, 000 repetitions in the simulation.

particular, the differences in the quantiles for different values of R are relatively small
compared to the differences between the quantiles, so that the size of a test statistics that
is based on β̂R is essentially independent of the choice of R ≥ R0.

The findings of the Monte Carlo simulations described in the last two paragraph hold
just as well for the specification with normally distributed as for the specification where
eit has Student’s t-distribution. From this finding one may conjecture that Theorem 4.2
also holds for more general error distributions.

6 Conclusions

In this paper we showed that under certain regularity conditions the limiting distribution
of the QMLE of a linear panel regression with interactive fixed effects does not change when
we include redundant factors in the estimation. The important empirical implication of
this result is that one can use an upper bound of the number of factors in the estimation
without asymptotic efficiency loss. For inference on the regression coefficients one thus
need not worry about consistent estimation of the number of factors in the model. As
regularity conditions we mostly impose high-level assumptions, and we verify that these
hold under iid normal errors. Our simulation results suggest that normality of the error
distribution is not necessary. Along the lines of the arguments presented in Section 4,
we expect that progress in the literature on large dimensional random covariance matrices
will allow verification of our high-level assumptions under more general error distributions.
This is a vital and interesting topic for future research.

A Appendix

A.1 Proof of Consistency

Proof of Theorem 2.1. We first establish a lower bound on L0
NT (β). Consider the last

expression for L0
NT (β) in equation (2.4) and plug in Y =

∑
k β

0
kXk+λ0f0′+e, then replace
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λ0f0′ by λf ′, and minimize over the N ×R0 matrix λ and the T ×R0 matrix f . This gives

L0
NT (β) ≥ 1

NT
min
F̃

Tr

[(∑
k

(β0
k − βk)Xk + e

)
MF̃

(∑
k

(β0
k − βk)Xk + e

)′]
,

≥ b ‖β − β0‖2 +Op

(
‖β − β0‖√
min(N,T )

)
+

1

NT
Tr
(
ee′
)

+Op
(

1

min(N,T )

)
. (A.1)

where in the first line we minimize over all T × (R + R0) matrices F̃ , and to arrive at
the second line we decomposed the expression in the component quadratic in (β − β0),
linear in (β− β0) and independent of (β− β0) and applied Assumption 1 and 2. Next, we
establish an upper bound on L0

NT (β0). We have

L0
NT (β0) =

1

NT

T∑
t=R+1

µt

[(
λ0f0′ + e

)′ (
λ0f0′ + e

)]
≤ 1

NT
Tr
(
e′Mλ0e

)
=

1

NT
Tr
(
ee′
)

+Op
(

1

min(N,T )

)
. (A.2)

Further details regarding the derivation of the bounds (A.1) and (A.2) are presented in
the supplementary material. Since we could choose β = β0 in the minimization of β, the
optimal β̂ needs to satisfy L0

NT (β̂) ≤ L0
NT (β0). With the above results we thus find

b ‖β̂ − β0‖2 +Op

(
‖β̂ − β0‖√
min(N,T )

)
+Op

(
1

min(N,T )

)
≤ 0 . (A.3)

From this it follows that ‖β̂ − β0‖ = Op
(
min(N,T )−1/2

)
, which is what we wanted to

show. �

A.2 Proof of Likelihood Expansion

Definition 1. For the N ×R matrix λ0 and the T ×R matrix f0 we define

dmax(λ0, f0) =
1√
NT

∥∥λ0f0′∥∥ =

√
1

NT
µ1(λ0′f0f0′λ0) ,

dmin(λ0, f0) =

√
1

NT
µR(λ0′f0f0′λ0) , (A.4)

i.e. dmax(λ0, f0) and dmin(λ0, f0) are the square roots of the maximal and the minimal
eigenvalue of λ0′f0f0′λ0/NT . Furthermore, the convergence radius r0(λ0, f0) is defined by

r0(λ0, f0) =

(
4dmax(λ0, f0)

d2
min(λ0, f0)

+
1

2dmax(λ0, f0)

)−1

. (A.5)

Lemma A.1. If the following condition is satisfies

K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

< r0(λ0, f0) , (A.6)
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then

(i) the profile quasi likelihood function can be written as a power series in the K + 1
parameters ε0 = ‖e‖/

√
NT and εk = β0

k − βk, namely

L0
NT (β) =

1

NT

∞∑
g=2

K∑
k1=0

K∑
k2=0

. . .

K∑
kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
,

where the expansion coefficients are given by14

L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
= L̃(g)

(
λ0, f0, X(k1

, Xk2 , . . . , Xkg)

)
=

1

g!

[
L̃(g)

(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
+ all permutations of k1, . . . , kg

]
,

i.e. L(g) is obtained by total symmetrization of the last g arguments of 15

L̃(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νp = g
m1+. . .+mp+1 = p−1
2 ≥ νj ≥ 1 , mj ≥ 0

Tr
(
S(m1) T (ν1)

k1...
S(m2) . . . S(mp) T (νp)

...kg
S(mp+1)

)
,

with

S(0) = −Mλ0 , S(m) =
[
λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′]l , for m ≥ 1,

T (1)
k = λ0 f0′X ′k +Xk f

0 λ0′ , T (2)
k1k2

= Xk1 X
′
k2
, for k, k1, k2 = 0 . . .K ,

X0 =

√
NT

‖e‖
e , Xk = Xk , for k = k = 1 . . .K .

(ii) the projector Mλ̂(β) can be written as a power series in the same parameters εk
(k = 0, . . . ,K), namely

Mλ̂ (β) =
∞∑
g=0

K∑
k1=0

K∑
k2=0

. . .
K∑

kg=0

εk1 εk2 . . . εkg M
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
,

where the expansion coefficients are given by M (0)(λ0, f0) = Mλ0, and for g ≥ 1

M (g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
= M̃ (g)

(
λ0, f0, X(k1

, Xk2 , . . . , Xkg)

)
=

1

g!

[
M̃ (g)

(
Xk1 , Xk2 , . . . , Xkg

)
+ all permutations of k1, . . . , kg

]
,

14Here we use the round bracket notation (k1, k2, . . . , kg) for total symmetrization of these indices.
15One finds L̃(1)

(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
= 0, which is why the sum in the power series of L0

NT starts from
g = 2 instead of g = 1.

20



i.e. M (g) is obtained by total symmetrization of the last g arguments of

M̃ (g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νp = g
m1 + . . .+mp+1 = p
2 ≥ νj ≥ 1 , mj ≥ 0

S(m1) T (ν1)
k1...

S(m2) . . . S(mp) T (νp)
...kg

S(mp+1) ,

where S(m), T (1)
k , T (2)

k1k2
, and Xk are given above.

(iii) For g ≥ 3 the coefficients L(g) in the series expansion of L0
NT (β) are bounded as

follows

1

NT

∣∣∣L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣
≤ Rg d2

min(λ0, f0)

2

(
16 dmax(λ0, f0)

d2
min(λ0, f0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

.

Under the stronger condition

K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

<
d2

min(λ0, f0)

16 dmax(λ0, f0)
, (A.7)

we therefore have the following bound on the remainder when the series expansion
for L0

NT (β) is truncated at order G ≥ 2:∣∣∣∣L0
NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
≤ R (G+ 1)αG+1 d2

min(λ0, f0)

2(1− α)2
,

where

α =
16 dmax(λ0, f0)

d2
min(λ0, f0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 .

(iv) The operator norm of the coefficient M (g) in the series expansion of Mλ̂ (β) is bounded
as follows, for g ≥ 1∥∥∥M (g)

(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∥∥∥ ≤ g

2

(
16 dmax(λ0, f0)

d2
min(λ0, f0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

.

Under the condition (A.7) we therefore have the following bound on operator norm
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of the remainder of the series expansion of Mλ̂ (β), for G ≥ 0∥∥∥∥Mλ̂ (β) −
G∑
g=0

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg M
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

) ∥∥∥∥
≤ (G+ 1)αG+1

2(1− α)2
.

The proof of the preceding lemma is presented in the supplementary material.

Proof of Theorem 3.1. The R0 non-zero eigenvalues of the matrix λ0′f0f0′λ0/NT are
identical to the eigenvalues of the R0 ×R0 matrix (f0f0′/T )−1/2(λ0λ0′/N)(f0f0′/T )−1/2,
and Assumption 3 guarantees that these eigenvalues, including dmax(λ0, f0) and dmin(λ0, f0)
converge to positive constants in probability. Therefore, also r0(λ0, f0) converges to a pos-
itive constant in probability.

Assumptions 1 and 3 furthermore imply that in the limit N,T →∞ with N/T → κ2,
0 < κ <∞, we have

‖λ0‖√
N

= Op(1) ,
‖f0‖√
T

= Op(1) ,

∥∥∥∥∥
(
λ0′λ0

N

)−1
∥∥∥∥∥ = Op(1) ,

∥∥∥∥∥
(
f0′f0

T

)−1
∥∥∥∥∥ = Op(1) ,

‖Xk‖√
NT

= Op(1) ,
‖e‖√
NT

= Op
(
N−1/2

)
. (A.8)

Thus, for
∥∥β − β0

∥∥ ≤ cNT , cNT = o(1), we have α → 0 as N,T → ∞, i.e. the condition
(A.7) in part (iii) of Lemma A.1 is asymptotically satisfied, and by applying the Lemma
we find

1

NT
(ε0)g−rL(g)

(
λ0, f0, Xk1 , . . . , Xkr , X0, . . . , X0

)
= Op

((
‖e‖√
NT

)g−r)
= Op

(
N−

g−r
2

)
,

(A.9)

where we used ε0X0 = e and the linearity of L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
in the ar-

guments Xk. Truncating the expansion of L0
NT (β) at order G = 3 and applying the

corresponding result in Lemma A.1(iii) we obtain

L0
NT (β) =

1

NT

K∑
k1,k2=0

εk1εk2L
(2)
(
λ0, f0, Xk1 , Xk2

)
+

1

NT

K∑
k1,k2,k3=0

εk1εk2εk3L
(3)
(
λ0, f0, Xk1 , Xk2 , Xk3

)
+Op

(
α4
)

=L0
NT (β0) − 2√

NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ L0,rem

NT (β) , (A.10)
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where, using (A.9) we find

L0,rem
NT (β) =

3

NT

K∑
k1,k2=1

εk1εk2ε0L
(3)
(
λ0, f0, Xk1 , Xk2 , X0

)
+

1

NT

K∑
k1,k2,k3=1

εk1εk2εk3L
(3)
(
λ0, f0, Xk1 , Xk2 , Xk3

)

+Op

( K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)4
−Op [( ‖e‖√

NT

)4
]

=Op
(
‖β − β0‖2N−1/2

)
+Op

(
‖β − β0‖3

)
+Op

(
‖β − β0‖N−3/2

)
+Op

(
‖β − β0‖2N−1

)
+Op

(
‖β − β0‖3N−1/2

)
+Op

(
‖β − β0‖4

)
. (A.11)

Here Op
[(

‖e‖√
NT

)4
]

is not just some term of that order, but exactly the term of that order

contained in Op(α4) = Op
[(∑K

k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+ ‖e‖√
NT

)4
]
. This term is not present

in L0,rem
NT (β) since it is already contained in L0

NT (β0).16 Equation (A.11) shows that the
remainder satisfies the bound stated in the theorem, which concludes the proof. �

Proof of Corollary 3.2. Using Assumption 2(ii) we find for R = R0

W ≥ µK(W ) = min
{α∈RK ,‖α‖=1}

α′Wα = min
{α∈RK ,‖α‖=1}

1

NT
Tr
(
Mf0X ′αMλ0XαMf0

)
≥ 1

NT

T∑
t=2R0+1

µt
(
X ′αXα

)
≥ b2 , wpa1, (A.12)

and therefore W−1 ≤ 1/b2 wpa1. Using Assumption 1 we find

|C(2)
k | ≤

9R0

2
√
NT
‖e‖2‖Xk‖

∥∥λ0 (λ0′λ0)−1 (f0′f0)−1 f0′∥∥ = Op (1) , (A.13)

and therefore γ ≡ W−1
(
C(1) + C(2)

)
/
√
NT = Op(1/

√
NT ). Applying Theorem 3.1 to

the inequality L0
NT (β̂R0) ≤ L0

NT

(
β0 + γ

)
then gives(

β̂R0 − β0 − γ
)′
W
(
β̂R0 − β0 − γ

)
≤ L0,rem

NT (γ)− L0,rem
NT (β̂R0)

= op

(
1

NT

)
− L0,rem

NT (β̂R0) . (A.14)

From this and consistency of β̂R0 it follows that
√
NT (β̂R0 − β0) = Op(1), since otherwise

the inequality is violated asymptotically due to the bound on L0,rem
NT (β̂R0). From

√
NT

consistency of β̂R0 it now follows that L0,rem
NT (β̂R0) = op(1/NT ), and using this the above

16Alternatively, we could have truncated the expansion at order G = 4. Then, the term Op

[(
‖e‖√
NT

)4]
would

be more explicit, namely it would equal 1
NT ε

4
0L

(4)
(
λ0, f0, X0, X0, X0, X0

)
, which is clearly contained in L0

NT (β0).
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inequality yields
√
NT (β̂R0 − β0 − γ) = op(1), which proves the corollary. �

Lemma A.2. Under the assumptions of Theorem 3.1 we have

ê(β) = Mλ0 eMf0 + ê(1)
e + ê(2)

e −
K∑
k=1

(
βk − β0

k

) (
ê

(1)
X,k + ê

(2)
X,k

)
+ ê(rem)(β) ,

where the N × T matrix valued expansion coefficients read

ê
(1)
X,k = Mλ0 XkMf0 ,

ê
(2)
X,k = −Mλ0XkMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′ −Mλ0eMf0X ′kλ

0(λ0′λ0)−1(f0′f0)−1f0′

− λ0(λ0′λ0)−1(f0′f0)−1f0′X ′kMλ0eMf0 − λ0(λ0′λ0)−1(f0′f0)−1f0′e′Mλ0XkMf0

−Mλ0Xkf
0(f0′f0)−1(λ0′λ0)−1λ0′eMf0 −Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′XkMf0 ,

ê(1)
e = −Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

ê(2)
e = Mλ0eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

−Mλ0eMf0 e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′

−Mλ0eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ef0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0ef0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0eMf0

− λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′Mλ0eMf0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0eMf0 ,

and the remainder term satisfies for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∥∥ê(rem)(β)
∥∥

N‖β − β0‖2 + ‖β − β0‖ +N−1
= Op (1) .

Proof. The general expansion of Mλ̂(β) is given in Lemma A.1, and the analogous expan-
sion for Mf̂ (β) is obtained by applying the symmetry N ↔ T , λ ↔ f , e ↔ e′, Xk ↔ X ′k.
Lemma S.1 in the supplementary material provides a more explicit version of these pro-
jector expansions. For the residuals ê(β) we have

ê(β) = Mλ̂(β) (Y − β ·X) Mf̂ (β) = Mλ̂(β)
[
e−

(
β − β0

)
·X + λ0f0′] Mf̂ (β) , (A.15)

and plugging in the expansions of Mλ̂(β) and Mf̂ (β) it is straightforward to derive the

expansion of ê(β) from this, including the bound on the remainder. �

Proof of Theorem 3.3. The terms inB(β)+B′(β) in addition to A(β) all have a spectral
norm of order Op(

√
N) for

√
N‖β − β0‖ ≤ c. Thus, the first part of the Theorem directly

follows from the second part by applying Weyl’s inequality. What is left to show is that the
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second part holds. Applying the expansion ê(β) in Lemma A.2 together with ‖Mλ0eMf0‖ =

Op(
√
N), ‖ê(1)

e ‖ = Op(1), ‖ê(2)
e ‖ = Op(N−1/2), ‖ê(1)

k ‖ = Op(N) ‖ê(2)
k ‖ = Op(

√
N) and the

bound on ‖ê(rem)‖ given in the Lemma we obtain

ê′(β)ê(β) = B(β) +B′(β) + T (rem)(β) , (A.16)

where the terms B(rem,1)(β) and B(rem,2) in B(β) are given by

B(rem,1)(β) = Mf0 [(β − β0 ·X)]′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′

+Mf0e′Mλ0 [(β − β0 ·X)]Mf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′

+Mf0e′Mλ0eMf0 [(β − β0 ·X)]′λ0(λ0′λ0)−1(f0′f0)−1f0′

+Mf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Pf0 ,

B(rem,2) = 1
2Pf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Pf0

= f0(f0′f0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′, (A.17)

and for
√
N‖β − β0‖ ≤ c (which implies ‖ê(β)‖ = Op(

√
N)) we have

‖T (rem)(β)‖ = Op(N−1/2) + ‖β − β0‖Op(N1/2) + ‖β − β0‖2Op(N3/2) . (A.18)

which holds uniformly over β. Note also that

B(eeee) +B(eeee)′ = Mf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Mf0 . (A.19)

Thus, we have ‖B(rem,2)‖ = Op(1), and for
√
N‖β − β0‖ ≤ c we have ‖B(rem,1)(β)‖ =

Op(1) + ‖β − β0‖Op(N), and by Weyl’s inequality

µt
[
ê′(β)ê(β)

]
= µt

[
B(β) +B′(β)

]
+ op

[(
1 + ‖β − β0‖

)2]
, (A.20)

again uniformly over β. This proves the Theorem. �

Proof of Corollary 3.4. From Theorem 2.1 we know that
√
N(β̂R−β0) = Op(1), so that

the bounds in Theorem 3.3 and Assumption 4 are applicable. Since β̂R minimizes LRNT (β)

it must in particular satisfy LRNT (β̂R) ≤ LRNT (β0). Applying Theorem 3.3(i), Theorem 3.1,
and Assumption 4 to this inequality gives(
β̂R − β0

)′
W
(
β̂R − β0

)
− 2√

NT

(
β̂R − β0

)′ (
C(1) + C(2)

)
≤ 1

NT


R−R0∑
t=1

µr

[
Ã
(
β̂R

)]
+Op

[√
N +N5/4‖β̂R − β0‖+N2‖β̂R − β0‖/ log(N)

] .

(A.21)

Our assumptions guarantee C(2) = Op(1), and we explicitly assume C(1) = Op(1). Fur-
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thermore, Assumption 2 guarantees that

(
β̂R − β0

)′
W
(
β̂R − β0

)
− 1

NT

R−R0∑
t=1

µr

[
Ã
(
β̂R

)]
≥ b2‖β̂R − β0‖2. (A.22)

Thus we obtain

b2

(
N3/4‖β̂R − β0‖

)2
≤ Op (1) +Op

(
N3/4‖β̂R − β0‖

)
+ op

[(
N3/4‖β̂R − β0‖

)2
]
,

(A.23)

from which we can conclude that N3/4‖β̂R − β0‖ = Op(1), which proves the first part of
the Theorem. �

Proof of Corollary 3.5. Having N3/4‖β̂R − β0‖ = Op(1) the bound in Assumption 5
becomes applicable. We already introduced γ ≡W−1

(
C(1) + C(2)

)
/
√
NT = Op(1/

√
NT ).

Since β̂R minimizes LRNT (β) it must in particular satisfy LRNT (β̂R) ≤ LRNT
(
β0 + γ

)
. Using

Theorem 3.3(ii) and Assumption 5 it follows that

L0
NT (β̂R) ≤ L0

NT

(
β0 + γ

)
+

1

NT
op

[(
1 +
√
NT‖β̂R − β0‖2

)2
]
. (A.24)

The rest of the proof is analogous to the proof of corrollary 3.2. �

The proofs for the results of Section 4 can be found in the supplementary material.
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S Supplementary Material

S.1 Detailed Proof of Consistency

Detailed Proof of Theorem 2.1. We first establish a lower bound on L0
NT (β). Con-

sider the the last expression for L0
NT (β) in equation (2.4) and plug in Y =

∑
k β

0
kXk +

λ0f0′ + e, then replace λ0f0′ by λf ′, and minimize over the N × R0 matrix λ and the

T ×R0 matrix f . This gives

L0
NT (β) ≥ 1

NT
min
λ,f

T∑
t=R+1

µt

[(∑
k

(β0
k − βk)Xk + e+ λf ′

)′(∑
k

(β0
k − βk)Xk + e+ λf ′

)]

=
1

NT

T∑
t=R+R0+1

µt

[(∑
k

(β0
k − βk)Xk + e

)′(∑
k

(β0
k − βk)Xk + e

)]

=
1

NT
min
F̃

Tr

[(∑
k

(β0
k − βk)Xk + e

)
MF̃

(∑
k

(β0
k − βk)Xk + e

)′]
, (S.1)

where in the last line we minimize over all T×(R+R0) matrices F̃ . We now decompose this

expression into a the component quadratic in (β−β0), linear in (β−β0) and independent

of (β − β0). For the quadratic component we use Assumption 2(ii) to obtain

1

NT
min
F̃

Tr

[(∑
k

(βk − β0
k)Xk

)
MF̃

(∑
k

(βk − β0
k)Xk

)′]

=
1

NT

T∑
t=R+R0+1

µt

[(∑
k

(βk − β0
k)Xk

)′(∑
k

(βk − β0
k)Xk

)]
≥ b ‖β − β0‖2 .

(S.2)

For the coefficient of the linear component we use assumption 1 and 2(i) to find∣∣∣∣ 1

NT
Tr
(
XkMF̃ e

′)∣∣∣∣ ≤ ∣∣∣∣ 1

NT
Tr
(
Xk e

′)∣∣∣∣+

∣∣∣∣ 1

NT
Tr
(
Xk PF̃ e

′)∣∣∣∣
≤ Op

(
1√
NT

)
+
R+R0

NT
‖e‖ ‖Xk‖ = Op

(
1√

min(N,T )

)
. (S.3)

For the constant term we use Assumption 1 to obtain

1

NT
Tr
(
eMF̃ e

′) =
1

NT
Tr
(
ee′
)
− 1

NT
Tr
(
e PF̃ e

′)
=

1

NT
Tr
(
ee′
)

+Op
(

1

min(N,T )

)
, (S.4)
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because
∣∣Tr
(
e PF̃ e

′)∣∣ ≤ (R+R0) ‖e‖2 = Op(max(N,T )). Combining these results we have

L0
NT (β) ≥ b ‖β − β0‖2 +Op

(
‖β − β0‖√
min(N,T )

)
+

1

NT
Tr
(
ee′
)

+Op
(

1

min(N,T )

)
. (S.5)

Next, we establish an upper bound on L0
NT (β0). We have

L0
NT (β0) =

1

NT

T∑
t=R+1

µt

[(
λ0f0′ + e

)′ (
λ0f0′ + e

)]

=
1

NT
min
λ

T∑
t=R−R0+1

µt

[(
λ0f0′ + e

)′
Mλ

(
λ0f0′ + e

)]

≤ 1

NT

T∑
t=R−R0+1

µt

[(
λ0f0′ + e

)′
Mλ0

(
λ0f0′ + e

)]
≤ 1

NT
Tr
(
e′Mλ0e

)
=

1

NT
Tr
(
ee′
)

+Op
(

1

min(N,T )

)
. (S.6)

To arrive at the last line we use ‖e‖ = Op(
√

max(N,T )) and the same argument as in

equation (S.4). Since we could choose β = β0 in the minimization of β, the optimal β̂

needs to satisfy L0
NT (β̂) ≤ L0

NT (β0). With the above results we thus find

b ‖β̂ − β0‖2 +Op

(
‖β̂ − β0‖√
min(N,T )

)
+Op

(
1

min(N,T )

)
≤ 0 . (S.7)

From this it follows that ‖β̂ − β0‖ = Op
(
min(N,T )−1/2

)
, which is what we wanted to

show.

�

S.2 Details of Likelihood Expansion

Proof of Lemma A.1.

(i,ii) We apply perturbation theory in Kato (1980). The unperturbed operator is T (0) =

λ0f0′f0λ0′, the perturbed operator is T = T (0)+T (1)+T (2) (i.e. the parameter κ that

appears in Kato is set to 1), where T (1) =
∑K

k=0 εkXkf
0λ0′ + λ0f0′∑K

k=0 εkX
′
k, and

T (2) =
∑K

k1=0

∑K
k2=0 εk1εk2Xk1X

′
k2

. The matrices T and T 0 are real and symmetric

(which implies that they are normal operators), and positive semi-definite. We know

that T (0) has an eigenvalue 0 with multiplicity N − R, and the separating distance
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of this eigenvalue is d = NTd2
min(λ0, f0). The bound (A.6) guarantees that

‖T (1) + T (2)‖ ≤ NT

2
d2

min(λ0, f0) . (S.8)

By Weyl’s inequality we therefore find that the N − R smallest eigenvalues of T
(also counting multiplicity) are all smaller than NT

2 d2
min(λ0, f0), and they “origi-

nate” from the zero-eigenvalue of T (0), with the power series expansion for L0
NT (β)

given in (2.22) and (2.18) at p.77/78 of Kato, and the expansion of Mλ̂ given in

(2.3) and (2.12) at p.75,76 of Kato. We still need to justify the convergence ra-

dius of this series. Since we set the complex parameter κ in Kato to 1, we need

to show that the convergence radius (r0 in Kato’s notation) is at least 1. The con-

dition (3.7) in Kato p.89 reads ‖T (n)‖ ≤ acn−1, n = 1, 2, . . ., and it is satisfied for a =

2
√
NTdmax(λ0, f0)

∑K
k=0 |εk|‖Xk‖ and c =

∑K
k=0 |εk|‖Xk‖/

√
NT/2/dmax(λ0, f0). Ac-

cording to equation (3.51) in Kato p.95, we therefore find that the power series for

L0
NT (β) and Mλ̂ are convergent (r0 ≥ 1 in his notation) if 1 ≤

(
2a
d + c

)−1
, and this

becomes exactly our condition (A.6).

When L0
NT (β) is approximated up to order G ∈ N, Kato’s equation (3.6) at p.89

gives the following bound on the remainder

∣∣∣∣L0
NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
≤ (N −R)γG+1 d2

min(λ0, f0)

4(1− γ)
,

(S.9)

where

γ =

∑K
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+ ‖e‖√
NT

r0(λ0, f0)
< 1 . (S.10)

This bound again shows convergence of the series expansion, since γG+1 → 0 as

G → ∞. Unfortunately, for our purposes this is not a good bound since it still

involves the factor N −R (in Kato this factor is hidden since his λ̂(κ) is the average

of the eigenvalues, not the sum), but as we show below this can be avoided.

(iii,iv) We have ‖S(m)‖ =
(
NTd2

min(λ0, f0)
)−m

, ‖T (1)
k ‖ ≤ 2

√
NTdmax(λ0, f0)‖Xk‖, and

iii



‖T (2)
k1k2
‖ ≤ ‖Xk1‖‖Xk2‖. Therefore∥∥∥S(m1) T (ν1)

k1...
S(m2) . . . S(mp) T (νp)

...kg
S(mp+1)

∥∥∥
≤
(
NTd2

min(λ0, f0)
)−∑

mj
(

2
√
NTdmax(λ0, f0)

)2p−
∑
νj
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖ .

(S.11)

We have

∑
ν1 + . . .+ νp = g

2 ≥ νj ≥ 1

1 ≤ 2p ,

∑
m1+. . .+mp+1 = p−1

mj ≥ 0

1 ≤
∑

m1 + . . .+mp+1 = p

mj ≥ 0

1 =
(2p)!

(p!)2
≤ 4p . (S.12)

Using this we find17

∥∥∥M (g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∥∥∥
≤
(

2
√
NTdmax(λ0, f0)

)−g
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f0)

d2
min(λ0, f0)

)p

≤ g

2

(
16 dmax(λ0, f0)

d2
min(λ0, f0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

. (S.13)

For g ≥ 3 there always appears at least one factor S(m), m ≥ 1, inside the trace of

the terms that contribute to L(g), and we have rank(S(m)) = R for m ≥ 1. Using

Tr(A) ≤ rank(A)‖A‖, and the equations (S.11) and (S.12), we therefore find18 for

g ≥ 3

1

NT

∣∣∣L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣
≤ Rd2

min(λ0, f0)
(

2
√
NTdmax(λ0, f0)

)−g
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f0)

d2
min(λ0, f0)

)p

≤ Rg d2
min(λ0, f0)

2

(
16 dmax(λ0, f0)

d2
min(λ0, f0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

. (S.14)

17The sum over p only starts from dg/2e, the smallest integer larger or equal g/2, because ν1 + . . . + νp = g
can not be satisfied for smaller p, since νj ≤ 2.

18The calculation for the bound of L(g) is almost identical to the one for M (g). But now there appears an
additional factor R from the rank, and since

∑
mj = p − 1 (not p as before), there is also an additional factor

NTd2min(λ0, f0).
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This implies for g ≥ 3

1

NT

∣∣∣∣∣∣
K∑

k1=0

K∑
k2=0

. . .
K∑

kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣∣∣∣
≤ Rg d2

min(λ0, f0)

2

(
16 dmax(λ0, f0)

d2
min(λ0, f0)

)g ( K∑
k=0

‖εkXk‖√
NT

)g
. (S.15)

Therefore for G ≥ 2 we have

∣∣∣∣L0
NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
=

1

NT

∞∑
g=G+1

K∑
k1=0

K∑
k2=0

. . .
K∑

kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
≤

∞∑
g=G+1

Rg αg d2
min(λ0, f0)

2

≤ R (G+ 1)αG+1 d2
min(λ0, f0)

2(1− α)2
, (S.16)

where

α =
16 dmax(λ0, f0)

d2
min(λ0, f0)

K∑
k=0

‖εkXk‖√
NT

=
16 dmax(λ0, f0)

d2
min(λ0, f0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 . (S.17)

Using the same argument we can start from equation (S.13) to obtain the boundfor

the remainder of the series expansion for Mλ̂ (β).

Note that compared to the bound (S.9) on the remainder, the new bound (S.16)

only shows convergence of the power series within the the smaller convergence radius
d2

min(λ0,f0)

16 dmax(λ0,f0)
< r0(λ0, f0). However, the factor N − R does not appear in this new

bound, which is crucial for our approximations.

�
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Lemma S.1. Under the assumptions of Theorem 3.1 we have

Mλ̂(β) = Mλ0 +M
(1)

λ̂,e
+M

(2)

λ̂,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

λ̂,X,k
+M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 +M
(1)

f̂ ,e
+M

(2)

f̂ ,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

f̂ ,X,k
+M

(rem)

f̂
(β) ,

where the expansion coefficients in the expansion of Mλ̂(β) are N ×N matrices given by

M
(1)

λ̂,e
= −Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 ,

M
(1)

λ̂,X,k
= −Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′X ′kMλ0 ,

M
(2)

λ̂,e
= Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1λ0′

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

−Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′Mλ0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ ,

and analogously we have T × T matrices

M
(1)

f̂ ,e
= −Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

M
(1)

f̂ ,X,k
= −Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′XkMf0 ,

M
(2)

f̂ ,e
= Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

−Mf0 e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′

− f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ .
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Finally, the remainder terms of the expansions satisfy for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∥∥∥M (rem)

λ̂
(β)
∥∥∥

‖β − β0‖2 +N−1/2‖β − β0‖ +N−3/2
= Op (1) ,

sup
{β:‖β−β0‖≤cNT }

∥∥∥M (rem)

f̂
(β)
∥∥∥

‖β − β0‖2 +N−1/2 ‖β − β0‖ +N−3/2
= Op (1) .

Proof. The general expansion of Mλ̂(β) is given in Lemma A.1. The present Lemma

just makes this expansion explicit for the first few orders. The bound on the remainder

M
(rem)

λ̂
(β) is obtained from the bound (S.13) by the same logic as in the proof of Theo-

rem 3.1. The analogous result for Mf̂ (β) is obtained by applying the symmetry N ↔ T ,

λ↔ f , e↔ e′, Xk ↔ X ′k. �

S.3 Proofs for Section 4

Lemma S.2. Let A and B be symmetric n×n matrices, and let A be positive semi-definite.

Let µ1(A) ≥ µ2(A) ≥ . . . ≥ µn(A) ≥ 0 be the sorted eigenvalues of A, and let ν1, ν2, . . . , νn

be the corresponding eigenvectors that are orthogonal and normalized such that ‖νi‖ = 1 for

i = 1, . . . , n. Let b = maxi,j=1,...,n |ν ′iBνj |. Let r and q be positive integers with r < q ≤ n,

and let
∑n

i=q b (µr(A)− µi(A))−1 ≤ 1 be satisfied. Then we have

|µr(A+B)− µr(A)| ≤ (q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

(S.18)

Proof. For the eigenvalues of A+B we have

µr(A+B) = min
Γ

max
{γ: ‖γ‖=1, PΓγ=0}

γ′(A+B)γ , (S.19)

where Γ is a n × (r − 1) matrix with full rank r − 1, and γ is a n × 1 vector. In the

following we only consider those γ that lie in the span of the first r eigenvectors A, i.e.

γ =
∑r

i=1 ciνi. The condition ‖γ‖ = 1 implies
∑r

i=1 c
2
i = 1. The column space of Γ is

(r−1)-dimensional. Therefore, for a given γ =
∑r

i=1 ciνi there always exists a Γ such that
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the conditions ‖γ‖ = 1 and PΓγ = 0 uniquely determine γ up to the sign. We thus have

µr(A+B) ≥ min
Γ

max
{γ: γ=

∑r
i=1 ciνi, ‖γ‖=1, PΓγ=0}

γ′(A+B)γ

= min
{γ: γ=

∑r
i=1 ciνi, ‖γ‖=1}

γ′(A+B)γ

≥ min
{(c1,...,cr):∑r

i=1 c
2
i=1}

 r∑
i=1

c2
i µi(A)− b

(
r∑
i=1

|ci|

)2


≥ µr(A)− r b

≥ µr(A)− (q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

, (S.20)

where we used that q− 1 ≥ r and that the additional fraction we multiplied with is larger

than one. This is the lower bound for µr(A+ B) that we wanted to show. We now want

to derive the upper bound. Let Ã, B̃ and B̄ be (n− r + 1)× (n− r + 1) matrices defined

by Ãij = ν ′i+r−1Aνj+r−1, B̃ij = ν ′i+r−1Bνj+r−1, and B̄ij = b, where i, j = 1, . . . , n− r + 1.

We can choose Γ = (ν1, ν2, . . . , νr−1) in the above minimization problem, in which case γ

is restricted to the span of νr, νr+1, . . . , νn. Therefore

µr(A+B) ≤ max
{γ̃: ‖γ̃‖=1}

γ̃′(Ã+ B̃)γ̃

= µ1(Ã+ B̃) , (S.21)

where γ̃ is a (n−r+1)-dimensional vector, whose components are denoted γ̃i, i = 1, . . . , n−
r + 1, in the following. Note that Ã is a diagonal matrix with entries µi+r−1(A), i =

1, . . . , n− r + 1. Therefore

µr(A+B) ≤ max
{γ̃: ‖γ̃‖=1}

n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) +

n+r−1∑
i,j=1

γ̃i γ̃j B̃ij


≤ max
{γ̃: ‖γ̃‖=1}

n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) + b

n+r−1∑
i,j=1

|γ̃i| |γ̃j |


= max
{γ̃: ‖γ̃‖=1}

n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) +

n+r−1∑
i,j=1

γ̃i γ̃j B̄ij


= µ1(Ã+ B̄) . (S.22)

In the last maximization problem the maximum is always attained at a point with γ̃i ≥ 0,

which is why we could omit the absolute values around γ̃i.

The eigenvalue µ̃ ≡ µ1(Ã+ B̄) is a solution of the characteristic polynomial of Ã+ B̄
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which can be written as

1 =
n∑
i=r

b

µ̃− µi(A)
, (S.23)

where µi(A) = µi−r+1(Ã) are the eigenvalues of Ã. In addition we have µ̃ = µ1(Ã+ B̄) >

µ1(Ã) = µr(A), because B̄ is positive semi-definite (which gives ≥) and the eigenvectors

of Ã do not agree with those of B̄ (which gives 6=). From the characteristic polynomial we

therefore find

1 =

q−1∑
i=r

b

µ̃− µi(A)
+

n∑
i=q

b

µ̃− µi(A)

≤ b(q − 1)

µ̃− µr(A)
+

n∑
i=q

b

µr(A)− µi(A)
(S.24)

Since we assume 1 ≥
∑n

i=q
b

µr(A)−µi(A) , this gives an upper bound on µ̃, and since µr(A+

B) ≤ µ̃ the same bound holds for µr(A+B), namely

µr(A+B) ≤ µr(A) +
(q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

. (S.25)

This is what we wanted to show. �

Proof of Theorem 4.1. Define

C±(β) = B(β) +B′(β)±

(√
4

aN
Mf0B(rem,1)(β)Pf0 ∓

√
aN

4
Pf0

)

×

(√
4

aN
Mf0B(rem,1)(β)Pf0 ∓

√
aN

4
Pf0

)′

±

(√
4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′ ±

√
aN

4
Pf0

)

×

(√
4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1f0′ ±

√
aN

4
Pf0

)′
.

(S.26)

Since C+(β) (or C−(β)) is obtained be adding (or subtracting) a positive definite matrix

from B(β) +B′(β), we have

µt
(
C−(β)

)
≤ µt

(
B(β) +B′(β)

)
≤ µt

(
C+(β)

)
. (S.27)

The advantage of considering C±(β) instead of B(β) +B′(β) directly is that there are no
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“mixed terms” in C±(β), which start with Mf0 and end with Pf0 , or vice versa, i.e. we

can write C±(β) = C±1 (β) + C±2 , where C±1 (β) = Mf0C±1 (β)Mf0 and C±2 = Pf0C±2 Pf0 .

Concretely, we have

C±1 (β) = A(β)± 4

aN
Mf0B(rem,1)(β)Pf0B(rem,1)′(β)Mf0

± 4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0

+Mf0

[
(β − β0) ·X − e

]′
Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0

[
(β − β0) ·X

]
f0(f0′f0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0

+ the last three lines transposed +B(eeee) +B(eeee)′,

C±2 = Pf0B(rem,2)Pf0 + Pf0B(rem,2)′Pf0 ±
aN

2
Pf0 . (S.28)

In the rest of the proof we always assume that N3/4
∥∥β − β0

∥∥ ≤ c. We apply Lemma S.2

to C±1 (β), with the A in the lemma equal to the leading term Mf0e′Mλ0eMf0 , the B in

the lemma equal to the remainder of C±1 (β), and q = qNT . If we can show that

T−R0∑
τ=qNT

bNT
ρR−R0 − ρτ

= op(1), (S.29)

then the lemma becomes applicable asymptotically, and for t = 1, . . . , R − R0 we have

wpa1

∣∣µt (C±1 (β)
)
− ρt

∣∣ ≤ (qNT − 1) bNT

1−
∑T−R0

τ=qNT
bNT
ρt−ρτ

≤ qNT bNT

1−
∑T−R0

τ=qNT
bNT

ρR−R0−ρτ

, (S.30)

where

bNT = max
t,τ=1,...,T−R0

w′t
(
C±1 (β)−Mf0e′Mλ0eMf0

)
wτ . (S.31)

We now check how the different terms in C±1 (β)−Mf0e′Mλ0eMf0 contribute to bNT . We
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have

max
t,τ

∣∣w′tMf0e′Mλ0 [(β − β0) ·X]Mf0wτ
∣∣ ≤ K‖e‖‖β − β0‖max

k,i,τ
‖v′iXkwτ‖

≤ dNTOp(N−1/4),

max
t,τ

∣∣w′tMf0 [(β − β0) ·X]′Mλ0 [(β − β0) ·X]Mf0wτ
∣∣ ≤ K2

∥∥β − β0
∥∥2

max
k,t
‖Mλ0Xkwt‖2

≤ K2N
∥∥β − β0

∥∥2
max
k,i,t
‖v′iXkwt‖2

≤ d2
NTOp(N−1/2),∣∣∣∣w′t 4

aN
Mf0B(rem,1)(β)Pf0B(rem,1)′(β)Mf0wτ

∣∣∣∣ ≤ 4

aN
‖B(rem,1)(β)‖2 = Op(N−1/2),

max
t,τ

∣∣∣∣w′t 4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0wτ

∣∣∣∣
≤ 4

aN
‖e‖4

∥∥λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′∥∥max
t
‖w′te′Pλ0‖2 ≤ dNTOp(N−1),

max
t,τ

∣∣w′tMf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0wτ
∣∣

≤ ‖e‖
∥∥f0(f0′f0)−1(λ0′λ0)−1λ0′∥∥max

i
‖v′iePf0‖max

t
‖w′te′Pλ0‖ ≤ d2

NTOp(N−1/2),

max
t,τ

∣∣∣w′tMf0

[
(β − β0) ·X

]′
Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′eMf0wτ

∣∣∣
= max

t,τ

∣∣∣∣∣w′t [(β − β0) ·X
]′(∑

i

v′ivi

)
ef0(f0′f0)−1(λ0′λ0)−1λ0′ewτ

∣∣∣∣∣
≤ K‖β − β0‖N max

i,t,k
|v′iXkwt|max

i
‖v′iePf0‖max

t
‖w′te′Pλ0‖

∥∥f0(f0′f0)−1(λ0′λ0)−1λ0′∥∥
≤ d3

NTOp(N−3/4),

max
t,τ

∣∣w′tMf0e′Mλ0

[
(β − β0) ·X

]
f0(f0′f0)−1(λ0′λ0)−1λ0′eMf0wτ

∣∣
≤ K‖e‖‖β − β0‖

∥∥f0(f0′f0)−1(λ0′λ0)−1λ0′∥∥max
i,k
‖v′iXkPf0‖max

t
‖w′te′Pλ0‖

≤ d2
NTOp(N−1/2),

max
t,τ

∣∣w′tMf0e′Mλ0ef0(f0′f0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0wτ

∣∣
≤ K‖e‖‖β − β0‖

∥∥f0(f0′f0)−1(λ0′λ0)−1λ0′∥∥max
i,k
‖v′iePf0‖max

t
‖w′tX ′kPλ0‖

≤ d2
NTOp(N−1/2).

and analogously one can check that

max
t,τ

∣∣∣w′tB(eeee)wτ

∣∣∣ ≤ d2
NTOp(N−1) + d3

NTOp(N−3/2). (S.32)
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All in all, we thus have

bNT ≤ Op(N−1/2) + dNTOp(N−1/4) + d2
NTOp(N−1/2) + d3

NTOp(N−3/4)

≤ dNTOp(N−1/4) , (S.33)

where in the last we used that by assumption dNT ≥ 1 and dNT = op(N
1/4). Therefore

T−R0∑
τ=qNT

bNT
ρR−R0 − ρτ

= qNTdNTOp(N−1/4)
1

qNT
≤

T−R0∑
τ=qNT

1

ρR−R0 − ρτ
= op(1), (S.34)

so that Lemma S.2 is indeed applicable asymptotically, and we find

∣∣µt (C±1 (β)
)
− ρt

∣∣ ≤ qNT bNT
1− op(1)

≤ qNT dNT Op(N−1/4) = op(1) . (S.35)

For t = 1, . . . , R−R0 we thus have

µt
(
C±1 (β)

)
= ρt + op(1) ≥ ρR−R0 + op(1) ≥ ‖C±2 ‖, wpa1, (S.36)

where the last step follows because ‖C±2 ‖ = aN/2 +Op(1) and we assumed ρR−R0 > aN ,

wpa1. Since C±(β) is block-diagonal with blocks C±1 (β) and C±2 (in the basis defined by

f0), and µt
(
C±1 (β)

)
≥ ‖C±2 ‖, it must be the case that wpa1 the largest R−R0 eigenvalues

of C±(β) are those of C±1 (β). Thus,

∣∣µt (C±(β)
)
− ρt

∣∣ = op(1) , (S.37)

and also

∣∣µt (B(β) +B′(β)
)
− ρt

∣∣ = op(1) , (S.38)

which holds uniformly over all β with N3/4
∥∥β − β0

∥∥ ≤ c. This concludes the proof. �

Lemma S.3. Let g be an N×Q matrix and h be a T×Q matrix such that g′g = h′h = 1Q.

Let U be an N × T matrix whose entries Uit are distributed independently of g and h, and

are iid N (0, σ2). Let R be a positive integer. For asymptotics where Q and R are constant

and N,T →∞ such that N/T → κ2, 0 < κ <∞, we then have

sup
C∈RQ×Q

∑R
t=1 µt

[
(U + gCh′)′ (U + gCh′)

]
−
∑min(Q,R)

t=1 µt (C ′C)− Tσ2(1 + κ)2

√
N + ‖C‖

≤ Op (1) .

Proof. Let u be a T × Q matrix with iid normal entries of mean zero and variance σ2,
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independent of U . We decompose

(
U + gCh′

)′ (
U + gCh′

)
= A1 +A2 +A3(C) , (S.39)

where

A1 = U ′U + hu′uh′ ,

A2 = Tσ2P(h, U ′g) − U ′gg′U − hu′uh′ .

A3(C) =
(
U + gCh′

)′
gg′
(
U + gCh′

)
− Tσ2P(h, U ′g) , (S.40)

We then have

R∑
t=1

µt

[(
U + gCh′

)′ (
U + gCh′

)]
≤

R∑
t=1

µt(A1) +

R∑
t=1

µt(A2) +

R∑
t=1

µt [A3(C))] . (S.41)

Thus, the theorem is proven if we can show that

R∑
t=1

µt(A1) = Tσ2(1 + κ)2 +Op(N1/3) ,
R∑
t=1

µt(A2) = Op(
√
N) , (S.42)

and

sup
C∈RQ×Q

∑R
t=1 µt [A3(C))]−

∑min(Q,R)
t=1 µt (C ′C)√

N + ‖C‖
≤ Op (1) . (S.43)

If h would be distributed according to the Haar measure on the Stiefel manifold defined

by h′h = 1Q, then A1 would have Wishart distribution WT (N +Q,1T ), see e.g. Muirhead

(1982). Since the distribution of U is rotationally invariant, the choice of h does not

matter for the probability distribution of the eigenvalues of A1. Thus, the eigenvalues

of A1 have the same joint distribution as the eigenvalues of the Wishart distribution

WT (N+Q,1T ). Using Theorem 1 in Soshnikov (2002) we can thus conclude that µt(A1) =

Tσ2(1 + κ)2 +Op(N1/3), which proves the first part of (S.42).

We have h′h = 1Q and thus ‖h‖ = Op(T−1/2) = Op(N−1/2), and it is straightforward

to show that g′UU ′g = Tσ2
1Q + Op(

√
N), gUh′ = Op(1) and u′u = Tσ2

1Q + Op(
√
N).
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Therefore

P(h, U ′g) = (h, U ′g)
[
(h, U ′g)′(h, U ′g)

]−1
(h, U ′g)′

= (h, U ′g)

(
1Q Op(1)

Op(1) Tσ2
1Q +Op(

√
N)

)−1

(h, U ′g)′

= (h, U ′g)

(
1Q Op(N−1)

Op(N−1) T−1σ−2
1Q +Op(N−1/2))

)
(h, U ′g)′

= hh′ + T−1σ−2U ′gg′U + r1

= T−1σ−2hu′uh′ + T−1σ−2U ′gg′U + r2 , (S.44)

where ‖r1‖ = Op(N−1/2) and ‖r2‖ = Op(N−1/2). Since A2 = Tσ2r2 we have ‖A2‖ =

Op(
√
N), from which the second part of (S.42) follows.

Finally, we consider A3(C). We have

A3(C) = P(h, U ′g)

[(
U + gCh′

)′
gg′
(
U + gCh′

)
− Tσ2

1T

]
P(h, U ′g) (S.45)

This shows that A3(C) has T−2Q zero-eigenvalues, Q eigenvalues −Tσ2 and the remaining

eigenvalues of A3(C) are equal to the Q non-zero eigenvalues of (U + gCh′)′ gg′ (U + gCh′)

minus Tσ2. The non-zero eigenvalues of (U + gCh′)′ gg′ (U + gCh′) are identical to the

eigenvalues of g′ (U + gCh′) (U + gCh′)′ g. Therefore

µt [A3(C))] ≤ max
{

0, µt

[
g′
(
U + gCh′

) (
U + gCh′

)′
g
]
− Tσ2

}
, for t ≤ Q,

µt [A3(C))] ≤ 0 , for t > Q. (S.46)

Furthermore

min(Q,R)∑
t=1

µt

[
g′
(
U + gCh′

) (
U + gCh′

)′
g
]

≤
min(Q,R)∑

t=1

µt
(
g′UU ′g

)
+

min(Q,R)∑
t=1

µt
(
CC ′

)
+

min(Q,R)∑
t=1

µt
(
g′UhC ′ + Ch′U ′g

)
≤ min(Q,R)T σ2 +Op(

√
N) +

min(Q,R)∑
t=1

µt
(
C ′C

)
+ min(Q,R) ‖g′Uh‖ ‖C‖.

(S.47)
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Since µt (C ′C) ≥ 0 we can thus conclude that

R∑
t=1

µt [A3(C))] ≤
min(Q,R)∑

t=1

µt
(
C ′C

)
+Op(

√
N) + min(Q,R) ‖g′Uh‖ ‖C‖ . (S.48)

Since g′Uh = Op(1) it follows that (S.43) holds. This concludes the proof. �

Proof of Theorem 4.2. We have to show that the Assumption 1, 2, 4 and 5 as well as

C(1) = Op(1) are satisfied.

• Proof for Assumption 1 and 2, and for C(1) = Op(1). Theorem 2.1 does not re-

quire N/T → κ2. For consistency reasons, we therefore want to show that Assumption

1 and 2 are satisfied in an arbitrary limit N,T → ∞, although this is not explicitly

stated in Theorem 4.2. By assumption, the errors eit are iid N (0, σ2). Since an ar-

bitrary limit N,T → ∞ is not considered very often in Random Matrix Theory, we

define the max(N,T ) × max(N,T ) matrix ebig, which contains e as a submatrix, and

whose remaining elements are also iid N (0, σ2) and independent of e. We then have

‖e‖ ≤ ‖ebig‖ = Op(
√

max(N,T )), where the last step is due to Geman (1980). As dis-

cussed in the main text, neither normality nor homoscedasticity nor independence of eit

are actually required to conclude ‖e‖ = Op(
√

max(N,T )). For the spectral norm of Xk we

have ‖Xk‖ ≤ ‖Xk‖ + ‖X̃k‖ and therefore ‖Xk‖ = Op(
√
NT ), which concludes the proof

of Assumption 1. Using the matrix norm inequality ‖A‖HS ≤
√

rank(A)‖A‖ we find

‖Xk‖HS ≤
√
Qk‖Xk‖+ ‖X̃k‖HS = Op(

√
NT ) . (S.49)

Therefore, E
[
Tr(Xke

′)2|Xk

]
= σ2‖Xk‖2HS = O(NT ), and thus (NT )−1/2Tr(Xke

′) =

Op(1), which is part (i) of Assumption 2. Analogously we obtain C(1) = Op(1) from

‖Mλ0XkMf0‖2HS ≤ ‖Xk‖2HS = O(NT ).

To prove the second part of Assumption 2, define theN×KT matrixX = (X1, X2, . . . , Xk).

Note that rank(X) ≤
∑

kQk, i.e. the projector MX projects out at most
∑

kQk dimen-
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sions of the N dimensional Euclidian space. For ‖α‖ = 1 we have

(NT )−1
T∑

t=R+R0+1

µt
(
X ′αXα

)
≥ (NT )−1

T∑
t=R+R0+1

µt
(
X ′αMXXα

)

= (NT )−1
T∑

t=R+R0+1

µt

 K∑
k1,k2=1

αk1αk2X̃
′
k1
MXX̃k2


≥ (NT )−1Tr

 K∑
k1,k2=1

αk1αk2X̃
′
k1
MXX̃k2

− (NT )−1(R+R0)K2‖X̃k‖2

= (NT )−1
K∑

k1,k2=1

αk1αk2Tr
(
X̃ ′k1

MXX̃k2

)
− (NT )−1(R+R0)K2‖X̃k‖2

≥ (NT )−1
K∑

k1,k2=1

αk1αk2Tr
(
X̃ ′k1

MXX̃k2

)
− (NT )−1

(
R+R0 +

∑
k

Qk

)
K2‖X̃k‖2

= α′W̃α+Op
(
N3/2/NT

)
≥ b1 + op(1) . (S.50)

Thus, Assumption 2(ii) is satisfied for any b with b1 > b > 0.

• Proof for Assumption 4. Using Weyl’s inequality we find

R−R0∑
t=1

µt [A(β)] =

R−R0∑
t=1

µt

{
Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0

}

=
R−R0∑
t=1

µt

{
Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0

−Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
(β − β0) · X̃

]
Mf0

−Mf0

[
(β − β0) · X̃

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0

+Mf0

[
(β − β0) · X̃

]′
Mλ0

[
(β − β0) · X̃

]
Mf0

}

≤
R−R0∑
t=1

µt

{
Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0

}
+ 2(R−R0)

(
‖e‖+K‖β − β0‖max

k
‖Xk‖

)
‖β − β0‖max

k
‖X̃k‖

+ (R−R0)K2‖β − β0‖2 max
k
‖X̃k‖2

=
R−R0∑
t=1

µt

{[
Mλ0eMf0 − (β − β0) ·Mλ0XMf0

]′ [
Mλ0eMf0 − (β − β0) ·Mλ0XMf0

]}
+ ‖β − β0‖Op(N5/4) + ‖β − β0‖2Op(N7/4). (S.51)
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In a basis orthogonal to λ0 and f0 the matrix Mλ0eMf0 is a (N −R0)× (T −R0) matrix

with iid normal entries, so that Lemma S.3 becomes applicable, and we have

R−R0∑
t=1

µt [A(β)] ≤ (T −R0)σ2(1 + κ)2+

+
R−R0∑
t=1

{[
(β − β0) ·Mλ0XMf0

]′ [
(β − β0) ·Mλ0XMf0

]}
+Op(

√
N) +Op

(
‖(β − β0) ·Mλ0XMf0‖

)
+ ‖β − β0‖Op(N5/4) + ‖β − β0‖2Op(N7/4)

= Tσ2(1 + κ)2

+

R−R0∑
t=1

{[
(β − β0) ·Mλ0XMf0

]′ [
(β − β0) ·Mλ0XMf0

]}
+Op(

√
N) + ‖β − β0‖Op(N5/4) + ‖β − β0‖2Op(N7/4). (S.52)

uniformly over β. Setting C = 0 we can also conclude from Lemma S.3 that

R−R0∑
t=1

µt
[
A(β0)

]
= Tσ2(1 + κ)2 +Op(

√
N). (S.53)

Finally, similarly to (S.51) we find that

R−R0∑
t=1

µt

[
Ã(β)

]
=

R−R0∑
t=1

{[
(β − β0) ·Mλ0XMf0

]′ [
(β − β0) ·Mλ0XMf0

]}
+ ‖β − β0‖Op(N5/4) + ‖β − β0‖2Op(N7/4). (S.54)

Combining the last three results we find that

R−R0∑
t=1

{
µt [A(β)]− µt

[
A(β0)

]
− µt

[
Ã(β)

]}
≤ Op(

√
N) + ‖β − β0‖Op(N5/4) + ‖β − β0‖2Op(N7/4) , (S.55)

which shows that Assumption 4 holds.

• Proof for Assumption 5. We want to show that the assumptions of Theorem 4.1 are

satisfied with qNT = log(N)N1/6. First, we want to show that dNT qNT = op(N
1/4), i.e.

dNT = op(N
1/12/ log(N)). Let ṽ be an N -vector with iidN (0, 1) entries, and let w̃ be an

T -vector, independent of ṽ, also iidN (0, 1). For all i = 1, . . . , N−R0 and t = 1, . . . , T −R0
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we then have

vi =
d

Mλ0 ṽ

‖Mλ0 ṽ‖
, wt =

d

Mf0w̃

‖Mf0w̃‖
. (S.56)

This is true, because e has iidN (0, σ2) entries, i.e. rotational invariance dictates that the

distribution of vi and wi is given by the Haar measure on the unit sphere of dimension

N −R0 and T −R0, respectively. Define

d̃
(1)
k ≡

ṽ′Mλ0XkMf0w̃

‖Mλ0 ṽ‖‖Mf0w̃‖
=
d
v′iXkwt . (S.57)

We want to show that d̃
(1)
k has sufficiently high bounded moments. The squares ‖Mλ0 ṽ‖−1

and ‖Mf0w̃‖−1 have inverse chi-square distributions with N − R0 and T − R0 degrees of

freedom, respectively. The inverse chi-square distribution with dof ν possesses all moments

smaller than ν/2, and for every ξ > 0 there exists a constant a1 > 0 such that we have

E

∥∥∥∥Mλ0 ṽ√
N

∥∥∥∥−ξ< a1, E

∥∥∥∥Mf0w̃
√
T

∥∥∥∥−ξ< a1,

for all N − R0 > 4ξ and T − R0 > 4ξ. Since we assume that the (24 + ε)’th moment of

Mλ0XkMf0 is uniformly bounded, there exists a constant a2 > 0 such that

E

∣∣∣∣ ṽ′Mλ0XkMf0w̃
√
NT

∣∣∣∣24+ε

< a2 ,

Applying the Cauchy-Schwarz-inequality we thus obtain

E

∣∣∣d̃(1)
k

∣∣∣ 1
1/(24+ε)+2/ξ

= E
∣∣v′iXkwj

∣∣ 1
1/(24+ε)+2/ξ < max(a1, a2) , (S.58)

and thus

max
i,t,k

∣∣v′iXkwt
∣∣ = Op

(
(NT )1/(24+ε)+2/ξ

)
= op(N

1/12/ log(N)) , (S.59)

where in the last step we chose ξ sufficiently large such that 2/(24 + ε) + 4/ξ < 1/12. We

have thus shown that d
(1)
NT = op(N

1/12/ log(N)).

Let f̃ be a N × R0 matrix such that Pf0 = Pf̃ , i.e. the column spaces of f0 and

f̃ are identical, and f̃ ′f̃ = 1R0 . Then we have ‖v′iePf0‖ = ‖v′ief̃ ′‖. Note that ef̃ ′ is a

N ×R0 matrix with iid normal entries, independently distributed of vi for all i = 1, . . . , n.

Together with the fact that the vi have iid normal entries, as well, it is straightforward to

show that maxi ‖v′iePf0‖ = Op(N δ) for any δ > 0, and the same is true for maxi ‖w′ie′Pλ0‖,
i.e. we have d

(2)
NT = op(N

1/12/ log(N)) and d
(3)
NT = op(N

1/12/ log(N)).
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We have

d
(4)
NT = N−3/4 max

i,k
‖v′iXkPf0‖ ≤ N−3/4 max

i,k
‖v′iXk‖

≤ N−3/4
√
T max

i,t,k
|v′iXk,·t|+ op(1)

≤ N−3/4
√
T max

i,t,k

N∑
j=1

vi,jXk,jt + op(1), (S.60)

where t = 1, . . . , T , and we applied the inequality ‖z‖ ≤
√
T maxt zt, which holds for

all T -vectors z. The remaining treatment of d
(4)
NT is analogous to that of d

(1)
NT . Using

the assumption that (Mλ0Xk)it has uniformly bounded (6 + ε)’th moment and (S.56) one

can show that maxi,t,k
∑N

j=1 vi,jXk,jt grows at a rate of Op(N2/(6+ε)+1/ξ), and therefore

d
(4)
NT = op(N

1/12/ log(N)). Analogously one can show that d
(5)
NT = op(N

1/12/ log(N)), so

that we can indeed conclude dNT = op(N
1/12/ log(N)).

Without loss of generality, we set σ = 1 in the rest of the proof. We want to show that

qNT = log(N)N1/6 also satisfies

1

qNT (T −R0)

N−R0∑
i=qNT

1

µR−R0 − µi
= Op(1),

where µi = ρi/(T −R0). Note that it is not important whether the sum runs to N −R0 or

T−R0, since those contributions of small eigenvalues are of order Op(1) anyways. Without

loss of generality let limN,T→∞N/T = κ2 ≤ 1 in the rest of this proof (the proof for κ ≥ 1

is analogous, since all arguments are symmetric under interchange of N and T ). Let µNT =[
(N −R)1/2 + (T −R)1/2

]2
, σNT =

[
(N −R)1/2 + (T −R)1/2

] [
(N −R)−1/2 + (T −R)−1/2

]1/3
,

x = limN,T→∞ µNT /(T − R) = (1 + κ)2, and x = (1 − κ)2. From Theorem 1 in Sosh-

nikov (2002) we know that that the joint distribution of σ−1
NT (ρ1−µNT , ρ2−µNT , . . . , ρR+1−

µNT ) converges to the Tracy-Widom law, i.e. to the limiting distribution of the first R+1

eigenvalues of the Gaussian Orthogonal Ensemble. Note that σNT is of order N1/3, and

that the Tracy-Widom law is a continuous distribution, so that the result of Soshnikov

implies that

x− µR = Op(N−2/3) , (µR − µR+1)−1 = Op
(
N2/3

)
. (S.61)

The empirical distribution of the µi is defined as FNT (x) = N−1
∑N

i=1 1(µi ≤ x), where

1(.) is the indicator function. This empirical distribution converges to the Marchenko-

Pastur limiting spectral distribution FLSD(x), which has domain [x, x], and whose density

xix



fLSD(x) = dFLSD(x)/dx is given by

fLSD(x) =
1

2πκ2x

√
(x− x)(x− x) . (S.62)

An upper bound for fLSD(x) is given by 1
2πκ2x

√
(x− x)(x− x), and by integrating that

upper bound we obtain

1− FLSD(x) ≤ a (x− x)3/2 , a =
2

3πκ3/2x
. (S.63)

From Theorem 1.2 in Götze and Tikhomirov (2007) we know that

sup
x
|FNT (x)− FLSD(x)| = Op(N−1/2) . (S.64)

Let c1,NT =
⌈
2N1/2+ε

⌉
and c2,NT =

⌈
2N3/4

⌉
, where dae is the smallest integer larger or

equal to a. Plugging in x = µc1,NT into the result of Götze and Tikhomirov, and using

FNT (µi) = 1− (i− 1)/N , we find

a
(
x− µc1,NT

)3/2 ≥ 1− FLSD(µc1,NT ) =
c1,NT − 1

N
+Op(N−1/2)

≥ N−1/2+ε, wpa1. (S.65)

Using this and (S.61) we obtain (µR−µc1)−1 = Op
(
N1/3−2/3ε

)
. Analogously one can show

that (µR − µc2)−1 = Op
(
N1/6

)
. In the following we just write q, c1 and c2 for qNT , c1,NT

and c2,NT , and we set n = T −R0. Combining the above results we find

1

q n

N−R0∑
i=q

1

µR − µi
=

1

q n

c1−1∑
i=q

1

µR − µi
+

1

q n

c2−1∑
i=c1

1

µR − µi
+

1

q n

N−R0∑
i=c2

1

µR − µi

≤ c1

qn(µR − µR+1)
+

c2

qn(µR − µc1)
+

N −R0

qn(µR − µc2)

= Op(1) +Op(N−1/12−5/3ε) +Op(N−ε) = Op(1) .

This is what we wanted to show. �
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