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Abstract

We estimate a model of strategic voting with incomplete information in which com-

mittee members – judges in the US courts of appeals – have the opportunity to com-

municate before casting their votes. The model is characterized by multiple equilibria,

and partial identification of model parameters. We obtain confidence regions for these

parameters using a two-step estimation procedure that allows flexibly for characteris-

tics of the alternatives and the individuals. To quantify the effects of deliberation on

outcomes, we compare the probability of mistakes in the court with deliberation with a

counterfactual of no pre-vote communication. We find that for most configurations of

the court in the confidence set, in the best case scenario deliberation produces a small

potential gain in the effectiveness of the court, and in the worst case it leads to large

potential losses.
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1 Introduction

Deliberation is an integral part of collective decision-making. Instances of voting in leg-

islatures, courts, boards of directors, shareholder meetings, and academic committees are

generally preceded by some form of communication among members, ranging from free to

fully structured, and from public to private or segmented.

Does talking affect what people actually do? While a rosy picture of deliberation as an open-

minded exchange of ideas suggests that it influences behavior, many real-world examples

show that formal instances of deliberation can become hollow, with speeches being allowed

but unheard (think of legislators’ speeches in the chambers of Congress).1 Even more,

deliberation can possibly be counterproductive to the interests of some committee members,

steering collective outcomes in the direction that more influential committee members would

prefer. The question then is: does deliberation allow committee members to overcome their

initial differences of opinion and points of views and increase the efficiency of decision-

making? Or is it detrimental to effective decision-making?

How much deliberation can achieve in any given situation will naturally depend on the

characteristics of the individuals making the decision and the choice situation. When the

committee members have common goals, they should have incentives to exchange informa-

tion truthfully, and act on it cohesively (Coughlan (2000), Goeree and Yariv (2011)). When

instead committee members disagree, it will generally be harder to have them truthfully

report their information to others. How much they will do so depends on how informa-

tive their private information is relative to the prior beliefs and biases of other committee

members, and on their expectations about how others will communicate.

Our goal in this paper is to quantify the effect of deliberation on collective choices. To do

this we structurally estimate a model of voting with deliberation. This approach allows us

to disentangle committee members’ preferences, information, and strategic considerations,

and ultimately, to compare equilibrium outcomes under deliberation with a counterfactual

scenario in which pre-vote communication is precluded.

We focus on decisions of the U.S. courts of appeals on criminal cases. The appellate court

setting is attractive for this analysis for three reasons. First, appellate courts make decisions

on issues in which there is an underlying common value component; a correct decision

under the law, even if this can be arbitrarily hard to grasp given limited information. This

environment allows us to evaluate the effect of deliberation on the efficiency of collective

1Even in these cases deliberation might be important for outcomes, although here the relevant commu-
nication might involve private messages among groups of legislators.
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outcomes. Second, courts of appeals are small committees, composed of only three judges.

This allows us to capture relevant strategic considerations in a relatively simple environment.

Third, within each circuit, judges are assigned to panels and cases on an effectively random

basis. The random assignment norm minimizes the impact of “case selection”, whereby

appellants are more likely to pursue cases in courts composed of more sympathetic judges.

We consider a simple decision-making model, tailored to the application. Three judges

decide whether to uphold or overturn the decision of the lower court by simple majority

vote. Whether the decision should be overturned or not is unobservable, for both the

econometrician and the judges. Judges only observe a private signal, the precision of which

is individual specific, and differ in the payoff of incorrectly overturning and upholding a

decision of the lower court. The bias and the precision of judges’ private information

is allowed to vary with characteristics of the case and the individual. To allow flexible

communication, we consider communication equilibria (Forges (1986), Myerson (1986)),

following Gerardi and Yariv (2007).

Because the incentive for any individual member to convey her information truthfully de-

pends on her expectations about how others will communicate, any natural model of delib-

eration will have a large multiplicity of equilibria. Since this is also the case in our setting,

the conventional maximum likelihood approach does not apply without an equilibrium se-

lection mechanism. Instead, we base our estimation and inference solely on equilibrium

conditions. These equilibrium conditions do not point identify the structural parameters

characterizing judges’ biases and quality of information. For this reason, we obtain confi-

dence regions for these parameters using a two-step estimation procedure that allows flexibly

for characteristics of the alternatives and the individuals.

Our main result is a measure of the effect of deliberation in collective decision-making: how

much do outcomes differ because of deliberation? To do this, we compare the equilibrium

probability of error with deliberation with the probability of error that would have occurred

in the absence of deliberation for the same court and case characteristics.

The comparison leads to mostly discouraging results for the prospects of deliberation. For

most comparable points in the confidence set, in the best case deliberation produces a small

gain in the effectiveness of the court, and in the worst case it leads to large losses. Consider

for instance courts with the most competent judges. The minimum equilibrium error prob-

ability with deliberation is less than 5 pp lower than the corresponding error probability

without deliberation. Yet at the same time, the maximum equilibrium error probability

with deliberation is more than 25 pp higher than the corresponding error probability with-

out deliberation. Especially, if we restrict attention to courts with small preference diversity
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and highly competent judges, the latter number becomes as high as 60 pp.

The previous comparison is completely agnostic about the determinants of equilibrium

selection in future play. If, instead, we restrict attention to equilibria consistent with

the observed data, the prospects for deliberation are rather bleak. As in the case of all

equilibria, the maximum equilibrium probability of error with deliberation generally vastly

exceeds the corresponding figure maximum without deliberation. In addition, for a large

number of points in the CS, the minimum equilibrium probability of error with deliberation

across equilibria consistent with the data is higher than the minimum probability of error

without deliberation. For 20% of the points in the confidence set, for instance, the minimum

equilibrium probability of error without deliberation is below 1%. The corresponding figure

for equilibria consistent with the data is 23%. Furthermore, for more than eighty percent of

all comparable points in the confidence set, all equilibria with deliberation are worse than

all equilibria without deliberation. Thus, although in the best case scenario deliberation

can potentially reduce mistakes vis a vis the benchmark of no deliberation, in the selection

of equilibria that is consistent with the data these potential gains are not realized. Instead,

communication on average leads to large losses in the effectiveness of the court.

Surprisingly, the more unfavorable results for deliberation obtain when judges are highly

competent (i.e., when judges’ private signals are very precise). This is because the maximum

equilibrium probability of error with deliberation actually increases with the competence of

judges in the court, independently of the direction and level of their bias. The reason for

this result is that judges’ best responses in the game with deliberation are very sensitive

to their expectations about how other individuals will communicate. And since judges care

directly about the content of each others’ messages, the effect of these beliefs is larger the

more valuable is the information held by other members of the court.

In addition to speaking of the effect of deliberation on outcomes, our results also provide a

new explanation for the large proportion of cases decided unanimously in the US court of

appeals. This feature is commonly interpreted in the literature to suggest that judges are

either like-minded from the outset, or have an intrinsic desire to compromise (see Fischman

(2007) and references therein). Our results suggest an alternative interpretation. They

suggest that competent judges with heterogeneous preferences can often agree after delib-

erating. Thus, a high rate of unanimous decisions does not imply either agreement ex ante,

or a desire to put forward a “unified” stance in each case. Instead, it can be a consequence

of communication among competent individuals with heterogeneous preferences.
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2 Related literature

The structural estimation of voting models with incomplete information is a relatively recent

endeavor in empirical economics. This paper extends several recent papers examining voting

behavior in committees with incomplete information and common values (Iaryczower and

Shum, (2012b, 2012a); Iaryczower, Lewis, and Shum (2011)).2 In those papers committee

members are assumed to vote without deliberating prior to the vote. This paper takes the

analysis one step further, by allowing explicitly for communication among judges. As we

show below, this extension is far from a trivial one, as the deliberation stage introduces

multiple equilibria, rendering the conventional estimation approach inapplicable.

In terms of estimation and inference, this paper draws upon recent-developed tools from

the econometric literature on partial identification (eg. Chernozhukov, Hong, and Tamer

(2007), Beresteanu, Molchanov, and Molinari (2011)). A closely-related paper is Kawai and

Watanabe (forthcoming), who study the partial identification of a strategic voting model

using aggregate vote share data from Japanese municipalities.

Our basic model of collective decision-making builds on Feddersen and Pesendorfer (1998),

allowing for heterogeneous biases and quality of information (all of which are public infor-

mation). To this we add deliberation as in Gerardi and Yariv (2007), considering communi-

cation equilibria.3 This is an attractive model of voting with deliberation because the set of

outcomes induced by communication equilibria coincides with the set of outcomes induced

by sequential equilibria of any cheap talk extension of the underlying voting game.

Coughlan (2000), and Austen-Smith and Feddersen, (2005, 2006) introduce an alternative

approach in this context, extending the voting game with one round of public deliberation.

In essence, both papers allow committee members to carry out a straw poll prior to the

vote (in the case of Austen-Smith and Feddersen (2005, 2006), this includes a third mes-

sage, e.g. abstention). Coughlan (2000) shows that if committee members are sufficiently

homogeneous, there is an equilibrium in which individuals vote sincerely in the straw poll,

making all private information public. Austen-Smith and Feddersen, (2005, 2006) show that

a similar result holds for a committee of size three when biases also are private information

2Iaryczower, Katz, and Saiegh (2012) uses a similar approach to study information transmission among
chambers in the U.S. Congress. For structural estimation of models of voting with private values and
complete information see Poole and Rosenthal (1985, 1991), Heckman and Snyder (1997), Londregan (1999),
Clinton, Jackman, and Rivers (2004) – for the US Congress– and Martin and Quinn, (2002, 2007) – for
the US Supreme Court. Degan and Merlo (2009), De Paula and Merlo (2009), and Henry and Mourifie
(forthcoming) consider nonparametric testing and identification of the ideological voting model.

3Our model therefore is a particular case of Gerardi and Yariv (2007). In this paper, Gerardi and Yariv
focus on a comparison of the set of communication equilibria across different voting rules. They show that
every outcome that can be implemented with a non-unanimous voting rule r can also be implemented in
communication equilibria with a non-unanimous rule r′.
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if committee members are moderate enough, and provide a comparison of equilibria with

partial revelation of information under simple majority and unanimity.4

While we are not aware of other papers analyzing deliberation with field data in a setting

similar to the one considered here, some recent papers have analyzed deliberation in lab-

oratory experiments. Guarnaschelli, McKelvey, and Palfrey (2000), using the straw poll

setting of Coughlan (2000), show that subjects do typically reveal their signal (above 90%

of subjects do so), but that contrary to the theoretical predictions, individuals’ private in-

formation has a significant effect on their final vote. Goeree and Yariv (2011) show that

when individuals can communicate freely, they typically disclose their private information

truthfully and use public information effectively (as in Austen-Smith and Feddersen (2005)

bias is private information, so individuals are identical ex ante).5

Finally, equilibria of voting with deliberation can lead to panel effects in voting. For papers

studying panel effects in the courts of appeals see Fischman (2007), Kastellec (2011, 2013),

and Boyd, Epstein, and Martin (2010).

3 The Model

We consider a model of voting in a small committee, tailored to cases from the US appellate

courts. We allow for pre-vote deliberation amongst the judges – that is, for judges to discuss

the case with each other, and potentially to reveal their private information to each other.

Our model is based on Feddersen and Pesendorfer (1998) and Gerardi and Yariv (2007).

There are three judges, i = 1, 2, 3. Judge i votes to uphold (vi = 0) or overturn (vi = 1)

the decision of the lower court. The decision of the court, v ∈ {0, 1} is that of the majority

of its members; i.e. overturns (v = ψ(~v) = 1) if and only if
∑

i vi ≥ 2.

We assume that the goal of judge i is that the decision of the court follows her own best

understanding of how the law applies to the particulars of the case. There is room for conflict

and interpretation because whether the decision of the lower court should be overturned

(ω = 1) or upheld (ω = 0) according to the law is itself unobservable. Instead, each judge i

only observes a private signal ti ∈ {0, 1} that is imperfectly correlated with the truth; i.e.,

Pr(ti = k|ω = k) = qi > 1/2 for k = 0, 1. The parameter qi captures the informativeness of

4The complication in the analysis comes from the fact that players condition on being pivotal both at
the voting and the deliberation stage. For other models of deliberation, see Li, Rosen, and Suen (2001),
Doraszelski, Gerardi, and Squintani (2003), Meirowitz (2006), and Landa and Meirowitz (2009), Lizzeri and
Yariv (2011).

5For other experimental results on deliberation, see McCubbins and Rodriguez (2006) and Dickson, Hafer,
and Landa (2008).
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i’s signals.6 The judges’ signals are independent from each other conditional on ω.

Judge i suffers a cost πi ∈ (0, 1) when the court incorrectly overturns the lower court (v = 1

when ω = 0) and of (1 − πi) when it incorrectly upholds the lower court (v = 0 when

ω = 1).7 The payoffs of v = ω = 0 and v = ω = 1 are normalized to zero. Thus given

information I, judge i votes to overturn if and only if Pri(ω = 1|I) ≥ πi, or, equivalently, if

and only if Pri(I|ω = 1)|/Pri(I|ω = 0) ≥ πi
1−πi

1−ρ
ρ , where ρ ≡ Pr(ω = 1) denotes justices’

common prior probability that the decision of the lower court should be overturned.8 For

convenience, we let θ ≡ (ρ, ~q).

In the absence of deliberation, this setting describes a voting game G. As in Gerardi and

Yariv (2007), we model deliberation by considering equilibria of an extended game in which

judges exchange messages after observing their signals and before voting. In particular, we

consider a cheap talk extension of the voting game that relies on a fictional mediator, who

helps the judges communicate. In this augmented game, judges report their signals ~t to

the mediator, who then selects the vote profile ~v with probability µ(~v|~t), and informs each

judge of her own vote. The judges then vote. A communication equilibrium is a sequential

equilibrium of this cheap talk extension in which judges (i) convey their private information

truthfully to the mediator, and (ii) follow the mediator’s recommendations’ in their voting

decisions (we describe the equilibrium conditions formally below). A powerful rationale for

focusing on the set of communication equilibria, M , is that the set of outcomes induced by

communication equilibria coincides with the set of outcomes induced by sequential equilibria

of any cheap talk extension of G (see Gerardi and Yariv (2007)).

We can now define communication equilibria more formally. As we described above, in

a communication equilibrium judges (i) convey their private information truthfully to the

mediator, and (ii) follow the mediator’s recommendations’ in their voting decisions. These

define two sets of incentive compatibility conditions, which we call the “deliberation stage”

and “voting stage” constraints respectively.

6Assuming qi > 1/2 is without loss of generality, because if qi < 1/2 we can redefine the signal as 1− ti.
The assumption that the signal quality does not depend on ω is made only for simplicity.

7Thus, πi < 1/2 reflects a bias towards upholding (or towards the Petitioner), while πi > 1/2 reflects a
bias towards overturning (or towards the Respondent). These preconceptions can reflect a variety of factors
inducing a non-neutral approach to this case, such as ingrained theoretical arguments about the law, personal
experiences, or ideological considerations.

8Note that since ω is assumed to be unobservable, there is always information that would make any two
justices disagree about a case. Moreover, if sufficiently biased, two justices can disagree almost always. In
particular, with π ≈ 0 (or π ≈ 1), justice i is almost always ideological. On the other hand, when π = 1/2
for all i, the setting boils down to an unbiased, pure common values model.

6



Voting Stage. At the voting stage, private information has already been disclosed to the

mediator. Still the equilibrium probability distributions µ(·|~t) over vote profiles ~v must be

such that each judge i wants to follow the mediator’s recommendation vi. Hence we need

that for all i = 1, 2, 3, for all vi ∈ {0, 1}, and for all ti ∈ {0, 1},∑
t−i

p(t−i|ti; θ)
∑
v−i

[
ui(ψ(vi, v−i),~t)− ui(ψ(1− vi, v−i),~t)

]
µ(~v|~t) ≥ 0, (3.1)

where as usual t−i ≡ (tj , tk) and v−i ≡ (vj , vk) for j, k 6= i. Here p(t−i|ti; θ) denotes the

conditional probability mass function of t−i given ti, and ui(ψ(~v),~t) denotes the utility of

judge i when the decision is ψ(~v) and the signal profile is ~t. Note that ui(ψ(vi, v−i),~t) −
ui(ψ(1 − vi, v−i),~t) = 0 whenever v−i /∈ Pi ≡ {(vj , vk) : vj 6= vk}. Then (3.1) is equivalent

to (3.2) (for vi = 1) and (3.3) (for vi = 0) for i = 1, 2, 3 and for all ti ∈ {0, 1}:

∑
t−i

p(t−i|ti; θ)
[
pω(1|~t; θ)− πi

] ∑
v−i∈Pi

µ(1, v−i|~t) ≥ 0 (3.2)

and ∑
t−i

p(t−i|ti; θ)
[
πi − pω(1|~t; θ)

] ∑
v−i∈Pi

µ(0, v−i|~t) ≥ 0, (3.3)

where pω(ω|~t; θ) denotes conditional probability mass function of ω given ~t. There are

therefore 12 such equilibrium conditions at the voting stage. For interpretation, note that

the conditions (3.2) can be written as∑
t−i

[Pr(ω = 1|t−i, ti; (q, ρ))− πi]
∑

v−i∈Pi

µ((1, v−i)|(ti, t−i)) Pr(t−i|ti; (q, ρ)) ≥ 0,

which provided
∑

t−i

∑
v−i∈Pi

µ((1, v−i)|(ti, t−i)) Pr(t−i|ti; (q, ρ)) > 0, can be written as

Pr(ω = 1|vi = 1, ti, P iv
i; (~q, ρ, µ)) ≥ πi.

That is, conditional on her vote vi, signal ti, and conditional on Pivi, the event that i

is pivotal in the decision (given µ), i prefers to overturn the decision of the lower court.

Similarly conditions (3.3) boil down to Pr(ω = 1|vi = 0, ti, P iv
i; (~q, ρ, µ)) ≤ πi.

Deliberation Stage. At the deliberation stage, communication equilibria require that

judges are willing to truthfully disclose their private information to the mediator, antici-

pating the outcomes induced by the equilibrium probability distributions µ(·|~t) over vote

profiles ~v. This includes ruling out deviations at the deliberation stage that are profitable
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when followed up by further deviations at the voting stage. To consider this possibility we

define the four “disobeying” strategies:

τ1(vi) = vi : always obey

τ2(vi) = 1− vi : always disobey

τ3(vi) = 1 : always overturn

τ4(vi) = 0 : always uphold

We require that for all i = 1, 2, 3, all ti ∈ {0, 1}, and τj(·), j = 1, 2, 3, 4:∑
t−i

p(t−i|ti; θ)
∑
v

[
ui(ψ(~v),~t)µ(~v|ti, t−i)− ui(ψ(τj(vi), v−i),~t)µ(~v|1− ti, t−i)

]
≥ 0 (3.4)

There are therefore 24 such equilibrium conditions at the deliberation stage.

For any given (θ, ~π), the conditions (3.2),(3.3), and (3.4) characterize the set of communi-

cation equilibria M(θ, ~π); i.e.,

M(θ, ~π) = {µ ∈M : (θ, ~π, µ) satisfies (3.2), (3.3) and (3.4)}, (3.5)

whereM is the set of all possible values that µ can take, and it can be conveniently thought

of as the set of 8*8 dimensional matrices whose elements lie in [0, 1] and each row sums to

one. Note that M(θ, ~π) is convex, as it is defined by linear inequality constraints on µ.

Remark 3.1 (Robust Communication Equilibria). Note that for given vi, the vote profiles in

which the other judges vote unanimously to overturn or uphold do not enter the incentive

compatibility conditions at the voting stage. Thus, without any additional refinement, the

set of communication equilibria includes strategy profiles in which some members of the

court vote against their preferred alternative only because their vote cannot influence the

decision of the court. These include not only strategy profiles µ that put positive probability

only on unanimous votes, but also profiles in which i votes against her preferred alternative

only because conditional on her signal and her vote recommendation she is sure – believes

with probability one – that her vote is not decisive. Consider the example in Table 1.

The strategy profile in Table 1 is a communication equilibrium for ρ = 0.1, and πi =

0.3, qi = 0.6 for i = 1, 2, 3. However, judge 1 votes to overturn with positive probability

even if Pr(ω = 1|~t) < π for all ~t. This in spite of the fact that non-unanimous vote profiles

are played with positive probability. However, conditional on t1 = 0 (columns 5 to 8) and

v1 = 1 (rows 1 to 4), judge 1 believes that either ~v = (1, 0, 0) or ~v = (1, 1, 1) are played. As

a result, her vote is not decisive in equilibrium, and 1 is willing to vote to overturn. The

same is true in this example conditional on t1 = 1. A similar logic holds for judges 2 and 3.
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Table 1: A Non-Robust Communication Equilibrium for ρ = 0.1 and πi = 0.3, qi = 0.6 for
i = 1, 2, 3.

Because these equilibria are not robust to small perturbations in individuals’ beliefs about

how others will behave, we rule them out. To do this, we require that each individual

best responds to beliefs that are consistent with small trembles (occurring with probability

η) on equilibrium play (so that all vote profiles have positive probability after any signal

profile). Formally, in all equilibrium conditions (at both the voting and deliberation stage)

we substitute Pr(~v|~t) in place of µ(~v|~t), where for any ~t and ~v,

Pr(~v|~t) =
∑

v̂:v̂i=vi

µ(v̂|~t)
∏
j 6=i

(1− η)v̂j=vjηv̂j 6=vj

The η we use in the empirical section is 0.000001. To evaluate the robustness of our

results, we replicate the analysis using two larger values of η: 0.001 and 0.01. This relaxes

significantly the consistency of equilibrium beliefs with equilibrium strategies. The results,

presented in Figure 10 in the appendix, show that our findings are qualitatively unchanged.

4 Data

The data are drawn together from two sources. The main source is the United States

Courts of Appeals Data Base (Songer (2008)). This provides detailed information about a

substantial sample of cases considered by courts of appeals between 1925 and 1996, including

characteristics of the cases, the judges hearing the case, and their votes. Among the roughly

16,000 cases in the full database, we restrict our attention to criminal cases, which make up

around 25% of the total. The case and judge-specific variables which we use in our analysis

are summarized in Table 5 in the Appendix. Additional information for judges involved

9



in these decisions was obtained from the Multi-User Data Base on the Attributes of U.S.

Appeals Court Judges (Zuk, Barrow, and Gryski (2009)).

Since we are modeling the voting behavior on appellate panels, we distinguish between

judges’ votes for upholding (v = 0) versus overturning (v = 1) the decision of a lower

court.9 Thus, given the majority voting rule, among the eight possible vote profiles, there

are four which lead to an outcome of upholding the lower court’s decision – (0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1) – and four leading to overturning – (1, 1, 1), (1, 1, 0), (1, 0, 1) and (0, 1, 1).

For each case, we include a dummy variable (“FedLaw”) for whether the case is prosecuted

under federal (rather than state) law, as well as dummy variables for the crime in each case.

These crime categories are based on the nature of the criminal offense in the case, and do

not exhaust the set of possible crimes, but instead constitute “common” issues, bundling

a relatively large number of cases within each label. Thus “Aggravated” contains murder,

aggravated assault, and rape cases. “White Collar” crimes include tax fraud, and violations

of business regulations, etc. “Theft” includes robbery, burglary, auto theft, and larceny.

The “Narcotics” category encompasses all drug-related offenses.

In addition to the nature of the crime, we also include information about the major le-

gal issue under consideration in the appeal. In particular, we distinguish issues of Jury

Instruction, Sentencing, Admissibility and Sufficiency of evidence from other legal issues.

We also include three variables which describe the makeup of the judicial panel deciding

each case: an indicator for whether the panel is a Republican majority (“Rep. Majority”),

whether the panel contains at least one woman (“Woman on panel”), and whether there

is a majority of Harvard and/or Yale Law School graduates on the panel (“Harvard-Yale

Majority”). This latter variable is included to capture possible “club effects” in voting

behavior; the previous literature has pointed out how graduates from similar program may

share common judicial views, and vote as a bloc.

Finally, we include four judge-specific covariates. “Republican” indicates a judge’s affiliation

to the Republican Party. “Yearsexp” measures the number of years that a judge has served

on the court of appeals, at the time that he/she decides a particular case (this variable

varies both across judges and across cases). “Judexp” and “Polexp” measure the number

of years of, respecitvely, judicial and political experience which a judge had prior to his/her

appointment to the appellate court.

Judges are assigned to cases on an effectively random basis. The particular assignment pro-

9Courts of appeal in the US do not determine the guilt or innocence of the accused, but only assess
whether or not errors have been committed at trial. Their decisions are based on the record of the case
established by the trial court, and do not consider additional evidence or hear witnesses.
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cedures vary from circuit to circuit, with some circuits using explicitly random assignments

(via random number generators) and others incorporating additional factors as dictated by

practical considerations (e.g., availability). This semi-random nature of panel assignment

means that the parties in each case have little influence over the particular makeup of the

panel which hears their case; this minimizes “case selection” problems which may otherwise

confound the interpretation of the estimation results.10

5 Econometric Model

5.1 Partial identification of model parameters

The immediate goal of the estimation is to recover the signal/state distribution parameters,

θ, and the judges’ preference vector ~π. The information used to recover these parameters

is the distribution of the voting profiles, pv(~v), which can be identified from the data. Here

we define the sharp identified set for the model parameters.11 The sharp identified set of

{θ, ~π} is the set of parameters that can rationalize pv(~v) under some equilibrium selection

mechanism λ – a mixing distribution over µ ∈M(θ, ~π). In other words, the sharp identified

set A0 is the set of (θ, ~π) ∈ Θ× [0, 1]3 such that there exists a λ that satisfies

pv(~v) =

∫
µ∈M(θ,~π)

λ(µ)
∑
~t

µ(~v|~t)p(~t; θ)dλ. (5.1)

However, because the set M(θ, ~π) of communication equilibria is convex, whenever there

exists a mixture λ satisfying (5.1) there exists a single equilibrium µ ∈ M(θ, ~π) such that

pv(~v) =
∑
~t µ(~v|~t)p(~t; θ).12 Thus A0 boils down to

A0 = {(θ, ~π) ∈ Θ× [0, 1]3 : ∃µ ∈M(θ, ~π) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)}. (5.2)

10See Iaryczower and Shum’s (2012b) study of US Supreme Court voting behavior for a more extended
discussion and assessment of case selection.

11The sharpness of the identified set is in the sense of Berry and Tamer (2006), Galichon and Henry (2011),
Beresteanu, Molchanov, and Molinari (2011). However, our estimation approach differs quite substantially
from those papers.

12 This fact implies an observational equivalence between a unique communication equilibrium being played
in the data, versus a mixture of such equilibria. Sweeting (2009) and De Paula and Tang (2012) discuss
the non-observational equivalence between mixture of equilibria and a unique mixed strategy equilibria in
coordination games. One difference is that communication equilibria induce correlated actions, whereas
mixed-strategy equilibria induce independent actions.
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We will also introduce the following set B0:

B0 = {(θ, ~π, µ) ∈ B : µ ∈M(θ, ~π) and pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)}, (5.3)

where B = Θ × [0, 1]3 × M and M is the set of µ – 64×64 dimensional matrices, the

elements of which are positive and each row sums to 1. The set B0 is the sharp identified

set of {θ, ~π, µ}, where µ is the true mixture voting assignment probability. The identified set

A0 can be considered as the projection of B0 onto its first dθ + 3 dimensions, corresponding

to the parameters (θ, ~π).

Identification in a Symmetric Model: Intuition. Before proceeding on to the esti-

mation of the identified set, we provide some intuition for the identification of the model

parameters by analyzing a stripped-down model in which the three judges are symmetric, in

the sense that they have identical preferences and quality of information. That is, the bias

parameters are identical across judges (π1 = π2 = π3 = π) and so are the signal accuracies

(q1 = q2 = q3 = q). In this simple model, there are only three parameters (ρ, q, π).

In Figure 1 we show the pairs (π, q) in the identified set for four different vote profile

vectors and given values of the common prior ρ. The figure on the upper left panel plots

the identified set for ρ = 0.5, and a uniform distribution of vote profiles, i.e., pv(~v) = 1/8 for

all ~v. Because of the symmetry of the vote profile and the characteristics of the individuals,

the identified set is also symmetric. Moreover, the set of biases π in the identified set for

each value of q is increasing in q. Thus, low ability judges must be moderate if they are

to be consistent with the “data”, but high ability judges can be very biased towards either

upholding or overturning and still play a mixture of equilibria consistent with the data.

The figure on the top right plots the pairs (π, q) in the identified set for the uniform distri-

bution over vote profiles and ρ = 0.1. In this case the public information incorporated in

the prior is very favorable towards upholding the decision of the lower court. As a result,

only judges that are very biased towards overturning can vote in a way consistent with the

uniform distribution of the voting profile. The figures in the lower panel return to ρ = 0.5,

but consider non-uniform distributions of vote profiles. In the lower-left figure only unani-

mous votes have positive probability, and the probability of overturning is pv(1, 1, 1) = 0.9,

while pv(0, 0, 0) = 0.1. As in the first figure, low ability judges must be moderate if they

are to be consistent with the “data”, but high ability judges must be biased towards over-

turning, and increasingly so the higher the information precision. The same result holds in

the lower right figure, where also overturning is more likely, but only non-unanimous votes

have positive probability. In this case, however, more moderate judges are consistent with

12
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Figure 1: Identification of Second-Stage Parameters: A Simplified Model: qi = q for all i,
πi = π for all i. X-axis: q (probability of correct signal); Y-axis: π (judges’ bias parameter)
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the data for any given level of q.

5.2 Estimation

To study the estimation of the identified set, we define the criterion function

Q(θ, ~π;W ) = min
µ∈M(θ,~π)

Q(θ, ~π, µ;W ) where

Q(θ, ~π, µ,W ) = (~pv − Pt(θ)~µ)
′
W (~pv − Pt(θ)~µ)

′
, (5.4)

and where ~pv = (pv(111), pv(110), pv(101), pv(100), pv(010), pv(001), pv(000))
′
, ~µ is a 64−vector

whose 8k + 1’th to 8k + 8’th coordinates are the (k + 1)’th row of µ(~v|~t) for k = 0, ..., 7,

Pt(θ) = p(~t, θ)
′ ⊗ [I7|07] and W is a positive definite weighting matrix specified later.

The profile of vote probabilities pv(~v) is unknown, but can be estimated by the empirical

frequencies of the vote profiles:

p̂v(~v) =
1

n

n∑
l=1

1(Vl = ~v), (5.5)

where Vl is the observed voting profile for case l and n is the sample size. Assuming that

the cases are i.i.d., by the law of large numbers, p̂v(~v) →p pv(~v) for all ~v ∈ V, where

V = {111, 110, 101, 100, 011, 010, 001}. One can define a sample analogue estimator for A0:

Ân = {(θ, ~π) ∈ Θ× [0, 1]3 : Qn(θ, ~π,Wn) = min
(θ,~π)∈Θ×[0,1]3

Qn(θ, ~π,Wn)}, (5.6)

where Wn is an estimator of W and Qn is defined like Q except with ~pv replaced by its

sample analogue ~̂pv.

The following theorem establishes the consistency of Ân with respect to the Hausdorff

distance:

dH(Ân,A0) = max

{
sup

(θ,~π)∈Ân

inf
(θ∗,~π∗)∈A0

||(θ, ~π)− (θ∗, ~π∗)||, sup
(θ∗,~π∗)∈A0

inf
(θ,~π)∈Ân

||(θ, ~π)− (θ∗, ~π∗)||

}
.

(5.7)

In general partially identified models, the sample analogue estimators for the identified sets

typically are not consistent with respect to the Hausdorff distance. See e.g. Chernozhukov,

Hong, and Tamer (2007). Our problem has a special structure that guarantees consistency

under mild conditions.
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Theorem 1. Suppose that Wn →p W for some finite positive definite matrix W and Θ is

compact. Also suppose that cl(int(B) ∩ B0) = B0.13 Then, dH(Ân,A0)→p 0 as the sample

size n goes to infinity.

Proof. Because p(~t, θ) = p(~t|w = 1; θ)ρ + p(~t|w = 0; θ)(1− ρ) is continuously differentiable

in θ, Theorem 2.1 of Shi and Shum (2012) applies and shows that dH(B̂,B0)→p 0, where

B̂n = {(θ, ~π, ~µ) ∈ B : Qn(θ, ~π, µ;Wn) = min
(θ,~π)∈Θ×[0,1]3

Qn(θ, ~π,Wn)}, (5.8)

where Qn(θ, ~π, µ;Wn) is defined like Q(θ, ~π, µ;W ) but with ~p and W replaced by ~̂p and

Wn. Because Ân and A0 are the projections of B̂n and B0 onto their first dθ + 3 dimension,

respectively, we have dH(Ân,A0)→p 0.

5.3 Confidence Set

Next, we discuss statistical inference in partially identified models based on confidence sets

which cover either the true parameter, or the identified set with a prespecified probability.

Following the literature, we construct a confidence set by inverting a test for the null

hypothesis H0 : (θ, ~π) ∈ A0 for each fixed (θ, ~π). To be specific, we collect all the (θ, ~π)

such that there is one µ ∈M(θ, ~π) at which the H0 is accepted. The collection of all those

(θ, ~π) forms a confidence set.14

Next, we define the test statistic used in the test which we will invert. Standard applica-

tion of the central limit theorem gives us
√
n(~̂pv − ~pv) →d N(0,Σ), where Σ denote the

variance matrix of (1(Vl = 111), 1(Vl = 110), 1(Vl = 101), 1(Vl = 100), 1(Vl = 011), 1(Vl =

010), 1(Vl = 001))
′
. Let Σ̂n be the sample analogue estimator of Σ. Then the law of large

number implies Σ̂n →p Σ.

Accordingly, we define the following test statistic:

Tn(θ, ~π) = nQn(θ, ~π; Σ̂−1
n ). (5.9)

By definition, Tn(θ, ~π) ≤ nQn(θ, ~π, µ; Σ̂−1
n ) for any (θ, ~π, µ) ∈ B0. Using standard argu-

13This is a weak assumption that is satisfied if each point in B0 is either in the interior of B or is a limit
point of a sequence in the interior of B. Unlike seemingly similar assumptions in the literature, it does not
require the identified set B0 to have nonempty interior. In this paper, numerical calculation of the identified
sets for different values of ~pv shows that this assumption holds.

14This inferential method differs from the approach of Pakes, Porter, Ho, and Ishii (2009), which is based
on moment inequalities derived from agents’ best-response correspondences. While this approach has proved
useful in several applications with games of complete information, in the context of our incomplete informa-
tion environment we have not been able to derive moment inequalities based on best-response behavior.
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ments, we can show that for any (θ, ~π, µ) ∈ B0, nQn(θ, ~π, µ, Σ̂−1
n ) →d χ

2(7). Thus, a test

of significance level α ∈ (0, 1) can use the 1 − α quantile of χ2(7) as critical value. The

confidence set for (θ, ~π) is defined as

CSn(1− α) = {(θ, ~π) ∈ Θ× [0, 1]3 : Tn(θ, ~π) ≤ χ2
7,α}, (5.10)

where χ2
7,α is the 1− α quantile of χ2(7).

Theorem 2. Suppose Σ is invertible. Then

(a) lim infn→∞ inf(θ,~π)∈A0
Pr((θ, ~π) ∈ CSn(1− α)) ≥ 1− α; and

(b) lim infn→∞ Pr(A0 ⊆ CSn(1− α)) ≥ 1− α.

Proof. (a) For any sequence {(θn, ~πn) ∈ A0}∞n=1, there exists {µn ∈ M(θn, ~πn)}∞n=1 such

that ~pv = Pt(θn)~µn. Thus, nQn(θn, ~πn, µn; Σ̂−1
n ) = n(~̂pv−~pv)

′
Σ̂−1
n (~̂pv−~pv)→d X 2(7). Thus

Pr((θn, ~πn) ∈ CSn(1− α)) = Pr(Tn(θn, ~πn) ≤ χ2
7,α)

≥Pr(nQn(θn, ~πn, µn; Σ̂−1
n ) ≤ χ2

7,α)

→Pr(χ2(7) ≤ χ2
7,α) = 1− α. (5.11)

This implies part (a).

(b) Part (b) holds because

Pr(A0 ⊆ CSn(1− α)) = Pr( sup
(θ,~π)∈A0

Tn(θ, ~π) ≤ χ2
7,α)

≥ Pr( sup
(θ,~π,µ)∈B0

nQn(θ, ~π, µ; Σ̂−1
n ) ≤ χ2

7,α)

= Pr(n(~̂pv − ~pv)
′
Σ̂−1
n (~̂pv − ~pv) ≤ χ2

7,α)

→ Pr(χ2(7) ≤ χ2
7,α) = 1− α, (5.12)

where the second equality holds because for all (θ, ~π, µ) ∈ B0, ~pv = Pt(θ)~µ.

Remark 5.1. Part (a) shows that CSn covers the true value of (θ, ~π) with asymptotic prob-

ability no smaller than 1− α. Interestingly, it is also a confidence set that covers A0 with

asymptotic probability no smaller than 1−α, as shown in part (b).15 The intuition for this

phenomenon is that the random components of Tn(θ, ~π, µ) – which are just the empirical

frequencies of the vote probabilities ~̂p – do not depend on the model parameters (θ, π). Be-

cause of this, the second-stage confidence sets for (θ, π) are obtained by the random elements

in ~̂p, by a (loosely-speaking) partially-identified analog of the Delta method. In contrast, in

15 Imbens and Manski (2004) initiated a sizable literature regarding these two types of confidence sets.
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typicall moment inequality models, the random sample moment functions depend explicitly

on the model parameters.

Remark 5.2. Because the confidence set CSn above is based on the asymptotic critical value

for nQn(θ, ~π, µ; Σ̂−1
n ), which is weakly bigger than Tn(θ, ~π), it may over-cover asymptoti-

cally; that is, it may be larger than necessary. Tighter and nonconservative confidence sets

can be constructed by directly approximating the distribution of Tn(θ, ~π) using the meth-

ods developed in Bugni, Canay, and Shi (2011) and Kitamura and Stoye (2011).16 The

disadvantage of doing this is two-fold: (i) the critical value will need to be simulated and

will depend on θ and ~π and (ii) a tuning parameter will need to be introduced to reflect the

slackness of the inequality constraints. In addition, in our data, we find that the confidence

set CSn is not much larger than the estimated set Ân, suggesting that not much can be

gained by adopting the more complicated methods.

The confidence set can be computed in the following steps:

(1) for each (θ, ~π), compute Tn(θ, ~π) = nQn(θ, ~π; Σ̂−1
n ) by solving the quadratic program-

ming problem:

Qn(θ, ~π;Wn) = min
~µ∈[0,1]64

(~pv − Pt(θ)~µ)
′
W (~pv − Pt(θ)~µ)

′

s.t.(3.2), (3.3), (3.4), and
k+8∑
j=k+1

~µj = 1, k = 0, ..., 7. (5.13)

(2) repeat step (1) for many grid points of (θ, ~π) ∈ Θ× [0, 1]3, and

(3) collect the points in step (2) that satisfy Tn(θ, ~π) ≤ χ2
7,α and the points form CSn(1−α).

For all the results in this paper, we use a value of α = 0.05.

5.4 Handling Covariates – Two-step Estimation

Here we describe a two-step estimation approach for this model, which resembles the two-

step procedure in Iaryczower and Shum (2012b). This is a simple and effective way to

deal with a large number of covariates. Throughout, we let Xt denote the set of covariates

associated with case t, including the characteristics of the judges who are hearing case t.

16 See Wolak (1989) for the case where the inequality constraints are linear in the structural parameters
θ.
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In the first step, we estimate a flexible “reduced-form” model for the vote probabilities

pv(~v|X).17 Specifically, we parameterize the probabilities of the eight feasible vote profiles

using an 8-choice multinomial logit model. Letting i index the eight vote profiles, we have

pv(vi|X;β) =
exp(X ′iβi)

1 +
∑7

i′=1 exp(Xi′βi′)
, i = 1, . . . , 7;

pv(v8|X;β) =
1

1 +
∑7

i′=1 exp(Xi′βi′)
,

(5.14)

where v1, ..., v7 are the 7 elements in V and v8 = 1 −
∑7

i=1 v7.18 Because the labeling

of the three judges is arbitrary, it makes sense to impose an exchangeability requirement

on our model of vote probabilities. In particular, the conditional probability of a vote

profile (v1, v2, v3) given case characteristics X and judge covariates (Z1, Z2, Z3) should be

invariant to permutations of the ordering of the three judges; i.e., the vote probability

P (v1, v2, v3|X,Z1, Z2, Z3) should be exchangeable in (v1, Z1), (v2, Z2) and (v3, Z3), for all

X. These exchangeability conditions imply restrictions on the coefficients on (X,Z1, Z2, Z3)

in the logit choice probabilities.19

Given the first-stage parameter estimates β̂ =
(
β̂1, . . . , β̂7

)′
, we obtain estimated vote

probabilities p̂ =
(
p(v1|X; β̂), . . . , p(v7|X; β̂)

)′
. In the second stage, we use the estimated

voting probability vector p̂ to estimate the identified set of the model parameters (θ, ~π)

using arguments from the previous section. This estimation procedure allows the underlying

model parameters (θ, ~π) to depend quite flexibly on X. The voting assignment µ is allowed

to depend on X arbitrarily, µ(~v|~t,X).

Both the estimation and the inference procedure described in the previous section can

be used for each fixed value of X = x in exactly the same way, only with p̂v(~v), ~̂pv,

pv(~v) and ~pv replaced by pv(~v|x, β̂), ~pv(x, β̂), pv(~v|x, β) and ~pv(x, β), (θ, ~π, µ) replaced by

(θ(x), ~π(x), µ(·|·;x)) and Σ̂n replaced by Σ̂n(x) = (∂~pv(x, β̂)/∂β
′
)Σ̂β(∂~pv(x, β̂)/∂β), where

Σ̂β is a consistent estimator of the asymptotic variance of
√
n(β̂−β), which can be obtained

from the first stage. The consistency and the coverage probability theory go through as

17This approach is commonplace in recent empirical applications of auction and dynamic game models
(see for example Ryan (2012), and Cantillon and Pesendorfer (2006)).

18By using a parametrization of the conditional vote probabilities P (v|X) that is continuous in X, we
are also implicitly assuming that the equilibrium selection process is also continuous in X. Note that such
an assumption is not needed if we estimate P (v|X) nonparametrically and impose no smoothness of these
probabilities in X.

19In particular, symmetry implies the following constraints: (i) β1,111 = β2,111 = β3,111, (ii) β1,011 =
β2,101 = β3,110, (iii) β1,100 = β2,010 = β3,001, (iv) β2,011 = β3,011 = β1,101 = β3,101 = β1,110 = β2,110, (v)
β2,100 = β3,100 = β1,010 = β3,010 = β1,001 = β2,001, (vi) γ011 = γ110 = γ101, and (vii) γ001 = γ100 = γ010. See
also Menzel (2011) for a related discussion about the importance of exchangeability restrictions in Bayesian
inference of partially identified models.
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long as β̂ is consistent and asymptotically normal and (∂~pv(x, β)/∂β
′
)Σβ(∂~pv(x, β)/∂β)

is invertible, where Σβ is the asymptotic variance of
√
n(β̂ − β). This assumption holds

automatically in the logit case described above as long as Σβ is invertible.

6 Results

6.1 First-Stage Estimates

The results from the first-stage estimation are given in Table 2. Since these are “reduced-

form” vote probabilities, these coefficients should not be interpreted in any causal manner,

but rather summarizing the correlation patterns in the data.

Nevertheless, some interesting patterns emerge. First, vote outcomes differ significantly

depending on the type of crime considered in each case (cases involving aggravated assault,

white collar crimes and theft are significantly less likely to be overturned in a divided decision

than other cases) and in response to differences in legal issues (cases involving problems with

jury instruction or sentencing in the lower courts are on average less likely to be overturned

in a divided decision, while cases involving issues of sufficiency and admissibility of evidence

are less likely to be overturned in unanimous decisions).

Vote outcomes also change with the partisan composition of the court. A republican judge

is less likely to be in the majority of a divided decision to overturn (less so in assault and

white collar cases) and more likely to be in the majority of a divided decision to uphold

the decision of the lower court. At the same time, cases considered by courts composed of

a majority of republican judges on average have a significantly higher probability of being

overturned in both unanimous and divided decisions. The first result indicates that this is

due to the voting behavior of the democrat judge when facing a republican majority.

Finally, vote outcomes also differ based on judges’ judicial and political experience. Judges

with more judicial and political experience, or with more years of experience in the court,

are less likely to be in the majority of a divided decision to overturn. Neither having a

female judge on the panel, or a majority of graduates from Harvard or Yale Law schools (a

possible club effect) are significantly related to vote outcomes.

6.2 Second-Stage Estimates: Preferences and Information

In the second stage of the estimation, we use the estimated voting probability vector p̂ =

p(~v|X; β̂) to estimate the identified set of the model parameters (θ, ~π).
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!"#""' "#""& !"#"%, "#"$" "#""( "#""+
!"#""$ "#""& !"#"&* "#"$% !"#""* "#"$"
"#""* "#"") !"#"&$ "#"%% "#"'& "#"$(
!"#"%$ "#$*' "#+%" "#&*& "#"(& "#'++
"#$"* "#$', "#,&& "#&&) !"#%$) "#')$
!"#$** "#$(, !"#")+ "#()) !"#+(% "#&(*
!"#"(' "#$&$ "#&$+ "#&,' !"#",, "#&%*
!"#&'+ "#%$) !"#,+$ "#%(% !&#("& "#(%%

v = (v(i),v(k),v(m))
v = (1,1,1) v = (1,0,1) v = (0,1,0)

Table 2: First-stage estimates, from a multinomial logit model (baseline vote profile (0,0,0))
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To present the results, we fix benchmark case and judge characteristics, and later on in-

troduce comparative statics from this benchmark. For our benchmark case we consider a

white collar crime prosecuted under federal law, in which the major legal issue for appeal

is admissibility of evidence. Judges 1 and 2 are Republican, and judge 3 is a Democrat (so

that the majority of the court is Republican). All three judges are male, and at most one

of the judges has a law degree from Harvard or Yale.

The three benchmark judges differ in their years of court experience, as well as prior judicial

and political experience. See Table 6 in the Appendix for the full benchmark specification.

6.2.1 The Symmetric (ρ, q, π) Model

We begin by analyzing the symmetric model introduced in Section 5.1. In the symmetric

model, the bias parameters and signal accuracies are assumed to be identical across judges.

As a result, the model has only three parameters (ρ, q, π).
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0.7

0.8
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1

ρ = 0.5 ρ = 0.2

Figure 2: 95% Confidence set, for symmetric justices model. X-axis: q (probability of
correct signal); Y-axis: π (judges’ bias parameter). Computed at benchmark values of co-
variates (predicted vote profile probabilities are p̂v(111) = 0.212; p̂v(101) = 0.019; p̂v(110) =
0.008; p̂v(011) = 0.009; p̂v(100) = 0.019; p̂v(010) = 0.014; p̂v(001) = 0.019; p̂v(000) = 0.700).
Green dots: estimates of identified set (using Eq. (5.8)). Blue dots: 95% confidence set.

The left panel in Figure 2 plots the pairs (π, q) in the identified set for ρ = 0.5. Because the

distribution of vote profiles is asymmetric in favor of upholding the decision of the lower

court, the identified set for ρ = 0.5 is asymmetric towards larger values of π (particularly

for low competence levels, q), indicating a preference towards upholding the decision of the

lower courts. But while the distribution of vote profiles is highly asymmetric in favor of
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upholding, the identified set for ρ = 0.5 is only mildly asymmetric, and not qualitatively

different than the set we obtained for the uniform distribution over vote profiles in section

5.1. Moreover, as in that case, the range of biases π that are consistent with the data for

a given value of q is increasing in q. Thus, low ability judges must be moderate if they

are to be consistent with the data, but high ability judges can be heavily biased towards

upholding or overturning and still play a mixture of equilibria consistent with the data.20

To evaluate the range of possible equilibrium outcomes under deliberation, we compute

the probability that the court reaches an incorrect decision for every point (θ, ~π) in the

confidence set. Because of the multiplicity of equilibria, for each such point (θ, ~π) there is

a set of communication equilibria M(θ, ~π), with each µ ∈ M(θ, ~π) being associated with a

certain probability of error

ε(µ, (θ, ~π)) = (1− ρ)εI(µ, (θ, ~π)) + ρεII(µ, (θ, ~π)).

Here εI(µ, (θ, ~π)) = Pr(v = 1|ω = 0) =
∑
~t

∑
~v:v=1 µ(~v|~t)p(~t|w = 0) denotes the type-I error

(overturn when should not) in the equilibrium µ, given (θ, ~π), and εII(µ, (θ, ~π)) = Pr(v =

0|ω = 1) =
∑
~t

∑
~v:v=1 µ(~v|~t)p(~t|w = 1) is the type-II error (fail to overturn when it should)

in the equilibrium µ, given (θ, ~π). Note that both the type-I error and the type-II error are

functions of the model parameters µ, θ, ~π, and inference on them amounts to projecting the

confidence set of the model parameters onto the range of these functions.

We consider two objects of interest, in order to address two conceptually distinct questions.

First is the maximum and minimum error probabilities across all possible equilibria, for all

parameter values in the confidence set. For each point in the confidence set, define

ε(θ, ~π) ≡ max
µ∈M(θ,~π)

ε(µ, (θ, ~π)), and ε(θ, ~π) ≡ min
µ∈M(θ,~π)

ε(µ, (θ, ~π)).

Second is the maximum and minimum error probabilities across equilibria that are consistent

with the observed data ~pv. For each point (θ, ~π) in the confidence set, and data ~pv, we define

ε∗(θ, ~π, pv) = max
µ∈M(θ,~π)

ε(µ, (θ, ~π)) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)


20The right panel of Figure 2 plots the pairs (π, q) in the identified set for ρ = 0.2, which is approximately

the sample probability that a case is overturned for the benchmark specification. In this case the public
information incorporated in the prior favors upholding the decision of the lower court. As a result, when
private signals are not too informative, only judges that are relatively biased towards upholding can vote in
a way consistent with the data. However, as with ρ = 0.5, high ability judges can have relatively extreme
preferences for overturning or upholding and still play a mixture of equilibria consistent with the data.
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and similarly for ε∗(θ, ~π, pv).
21

The first object gives us the safest bounds on what could happen, for any equilibrium

selection rule, including both mixtures of equilibria that are consistent with the observed

data and others that are not. The second objects tells us what did happen in our data.

The upper left and lower left panels of Figure 3 present the minimum and maximum equi-

librium errors across all equilibria in the symmetric (q, π, ρ) model. The figures plot ε(θ, ~π)

and ε(θ, ~π) for all combinations of q and π in the confidence set, fixing ρ = 0.5. Consider

first ε(θ, ~π) in the upper-left panel. For low quality of information, as we saw, only moderate

judges are consistent with the data (Figure 2). With higher quality of information, the set

of biases consistent with the data expands, so that courts with significant heterogeneity are

consistent with the data. Nevertheless, the minimum error ε(θ, ~π) falls with the competence

of the court, and goes to zero as q → 1, even when judges have extreme biases.

The bottom-left panel presents the upper bound of the equilibrium probability of error

ε(ρ, q, π) for points in the confidence set. This worst case measure illustrates the flip side of

deliberation: the maximum equilibrium error with communication actually increases with

the precision of judges’ private information, and goes to one for q → 1, independently of the

direction and level of justices’ bias. Thus, courts composed of highly competent judges can

produce wrong decisions very frequently after deliberating. As we argue below, the reason

for this inefficiency is that best responses in a game with deliberation are very sensitive to

agents’ expectations of how other individuals will communicate. And because judges care

directly about the content of each others’ messages, the effect of these beliefs is larger the

more valuable is the information held by other members of the court.

The upper right and lower right panels of Figure 3 plot the minimum and maximum prob-

ability of error for equilibria consistent with the data, ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv). Specifi-

cally, the figures show the maximum and minimum error probability in equilibria matching

voting profile distributions that are in the 95% confidence set of the “true” voting profile

distribution. Thus, while the figures on the left panel provide the bounds of the 95% confi-

dence interval of the potential error probability, the figures on the right panel plot the 95%

confidence interval of the true error probability.

21Because M(θ, ~π) is a convex set and the constraint pv(~v) =
∑

~t µ(~v|~t)p(~t; θ) is linear in µ, µ can be
replaced with a linear combination of elements in M(θ, ~π) without affecting the value of ε∗(θ, ~π, pv) or
ε∗(θ, ~π, pv). Therefore, when considering equilibria consistent with the data, we are not assuming that the
same equilibrium is played in every case.”
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Although the results are qualitatively similar to the unconstrained max and min error

probabilities, the upper and lower bounds of the equilibrium errors tighten significantly.

In particular, the lower bound of ε∗(θ, ~π, pv) in the confidence set, which is attained for

high levels of q, increases from close to zero in the unconstrained case to about 25% for

equilibria consistent with the data. It follows that if we focus on mixtures of equilibria that

are consistent with the data, then for any possible configuration of bias and competence

in the confidence set the court chooses incorrectly at least one fourth of the time. Thus,

although in the best case scenario deliberation can reduce mistakes to almost zero when

courts are competent, these potential gains are far from being realized given the selection

of equilibria that is consistent with the data.

6.2.2 Heterogeneous Preferences: The (ρ, q, ~π) Model

The previous model suppressed heterogeneity in preferences. However, it is possible that this

heterogeneity is precisely what leads to better outcomes, raising the level of deliberation

by bringing together different points of view. We now extend the analysis to allow for

heterogeneous preferences. Here each judge i is allowed an idiosyncratic bias πi. The model

is then characterized by a vector (ρ, q, π1, π2, π3). Figure 4 plots the set of ~π in the confidence

set for different values of the prior, ρ, and precision of private information, q.

The results for the confidence set with heterogeneous preferences extend naturally the results

of Figure 2 for the symmetric model: while low competence judges must be homogeneous

and relatively moderate in order to be consistent with the data, competent judges can

be highly heterogeneous and still generate a distribution of vote profiles consistent with

the data. This result is interesting because it implies that deliberation can allow high

ability judges to surpass initial differences of opinion. A distinctive feature of decisions in

the courts of appeals is the large proportion of cases decided unanimously. This fact is

commonly interpreted in the literature as indicating that either judges were like-minded

from the outset, or that they have an intrinsic desire to compromise (see for example

Fischman (2007)). Our results suggest an alternative interpretation. High unanimity rates

do not imply common interests at an ex ante stage. Instead, deliberation among competent

judges can generate the high frequency of unanimous votes observed in the data, without

requiring auxiliary motives such as the desire of judges to compromise, or to put forward a

“unified” stance in each case.

As in the case of the symmetric (ρ, q, π) model, we can also compute here the maximum and

minimum error probabilities across all equilibria, ε(θ, ~π) and ε(θ, ~π) and across equilibria

consistent with the data, ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv) for each point in the confidence set.
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Figure 4: Hyperplanes of confidence set, for heterogeneous preferences model. (π1, π2, π3)
on (x, y, z)-axis. Green dots: estimates of identified set (using Eq. (5.8)). Red dots: 95%
confidence set.
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To reduce the dimensionality of the problem, we introduce a measure of polarization of the

court,

P =
∑
i∈N

∑
j 6=i

(πi − πj)2.

Polarization increases as judges’ bias parameters are farther apart from one another, reach-

ing a theoretical maximum of two, and decreases as judges’ preferences are closer to each

other’s, reaching a minimum of zero when all judges have the same preferences.

The upper-left and lower-left panels of Figure 5 present the minimum and maximum equi-

librium errors across all equilibria in the heterogeneous model. The figures plot ε(θ, ~π) and

ε(θ, ~π) for all combinations of competence (q) and polarization (P ) consistent with points

(θ, ~π) in the confidence set, for ρ = 0.5.

The results in the generalized model are a natural extension of the results for the symmetric

model. For low q, only very homogeneous courts, composed entirely of moderate judges, are

consistent with the data. These courts are highly inaccurate, even after pooling information,

and correspondingly make wrong decisions very often (about half of the time in the limit as

q → 1/2). As ability increases, however, more polarized courts can be consistent with the

data. These more polarized, but more able courts are capable of producing decisions that

have few errors. In fact, the minimum equilibrium error probability (in the top-left panel)

decreases with q, and goes to zero as q → 1, even when judges are very heterogeneous. On the

other hand, more able courts are also capable of producing wrong decisions very frequently.

The bottom-left panel presents the maximum equilibrium probability of error ε(ρ, q, π) for

points in the confidence set. As in the symmetric model, the maximum equilibrium error

with communication is attained when the precision of judges’ private information is large

(and goes to above 90% for q → 1).

The fact that courts composed of competent judges can produce such frequent errors after

deliberating shows the fragility of outcomes to the multiple beliefs that judges can have in

equilibrium about how other judges will share, interpret and use information. To see this

in more detail, consider the “bad” equilibrium presented in Table 3. In the model, judges’

beliefs about how others will communicate are built into the equilibrium strategy µ(·|~t).
Table 3 presents a particularly inefficient equilibrium for q = 0.98 and ~π = (0.20, 0.95, 0.50).

Here the court overturns almost always when it should uphold, and upholds when it should

overturn. This requires judges to go against their own private information.
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q = 0.98, ~π = (0.20, 0.95, 0.50)

Table 3: An Example of a Communication Equilibrium in which highly competent judges
make mistakes with high probability after deliberating.

To understand why this is possible, consider the problem of judge 1 after receiving a signal

t1 = 1. In equilibrium, judge 1 votes to uphold (vi = 0) with positive probability. Given µ,

this is indeed a best response to her post-deliberation beliefs about whether the decision of

the lower court should be overturned. Because t1 = 1, judge 1 can exclude (put probability

zero on) the last four columns in the table. Similarly, because v1 = 0, judge 1 can similarly

exclude the first four rows in the table. Moreover, because judge 1 is not pivotal when

both of the other judges vote to uphold (row 5) or when both of the other judges vote to

overturn (row 8), these events are not payoff relevant. We are thus left with rows 6 and 7

and columns 1 to 4. But given this, judge 1 is almost sure that ~t = (1, 0, 0); i.e., that the

two other judges received information favoring upholding the decision of the lower court.

These two signals overwhelm her own information, and, given q ≈ 1, also her prior belief

and bias. As a result, judge 1 is willing to vote to uphold the decision of the lower court,

against her private information. A similar logic holds for judges 2 and 3.22

The general point that this example illustrates is that deliberation across rational actors

opens a wide array of beliefs that are consistent with equilibrium behavior. With common

values, this allows committee members to form inferences about the information dissemi-

nated across the committee that can sustain wildly inefficient outcomes.

22As Table 3 illustrates, implementing bad outcomes might require equilibria that seem in some sense
fragile. These equilibria, however, are robust to perturbations of beliefs around equilibrium play in the sense
of remark 3.1. In particular, we require that each individual best-responds to beliefs that are consistent
with small trembles (occurring with probability η = 0.000001) on equilibrium play. Increasing the value of η
(relaxing further the consistency of equilibrium beliefs with equilibrium strategies) eliminates some of these
fragile equilibria, but does not change the nature of the results (see Figure 12 in the Appendix).
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The previous results are relevant as a measure of the range of outcomes that could be realized

for any equilibrium selection, including both mixtures of equilibria that are consistent with

the observed data, and others that are not. The upper right and lower right panels of Figure

5 plot the minimum and maximum probability of error for equilibria consistent with the

data, ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv).

As in the symmetric model, the error bounds in equilibria consistent with the data are

qualitatively similar to the corresponding bounds across all equilibria. There is, however, a

significant difference in the levels. This is shown in Figure 6, which plots the percentiles for

maximum and minimum errors for all equilibria, and equilibria consistent with the data,

across all points in the 95% confidence set. Note that while ε∗(θ, ~π, pv(~v)) ≤ 30% for 85%

of the points in the CS, on the other hand ε∗(θ, ~π, pv(~v)) ≥ 9% for 90% of the points in

the CS, and ε∗(θ, ~π, pv(~v)) ≥ 20% for 80% of the points in the CS. As we argued in the

context of the symmetric model, although in the best case scenario deliberation can reduce

mistakes to almost zero when courts are competent, these potential gains are far from being

realized given the selection of equilibria that is consistent with the data.
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Figure 6: Solid (dashed) lines plot the percentiles for maximum and minimum errors for all
equilibria (equilibria consistent with the data) across all points in the 95% confidence set.

Comparative Statics. In the discussion above, we have focused on the benchmark case

and court characteristics. It should be clear, however, that both the confidence set and the

set of equilibrium outcomes for each point in the confidence set are functions of the observ-

able characteristics that enter the first stage multinomial logit model. Thus, proceeding

as above, we can quantify the changes in types and outcomes associated with alternative

30



configurations of the cases under consideration or the judges integrating the court.

To illustrate this, we evaluate the effect of switching judge 2’s party from Republican to

Democrat, keeping all else equal. Changing from the benchmark “RRD” partisan configura-

tion of the court to the alternative “RDD” partisan configuration has two noticeable effect

on the predicted probability of different vote outcomes. First, each vote profile overturn-

ing the decision of the lower court has a lower probability under a democratic-controlled

court than under a republican-controlled court. In particular, p̂v(000) changes from 0.677

to 0.636, and p̂v(111) from 0.223 to 0.234. Second, democratic-controlled courts tend to

generate more divided decisions than republican-controlled courts. Relative to republican-

controlled courts, democratic-controlled courts put a relatively large probability on divided

decisions overturning the decision of the lower court (now p̂v(101) = 0.030, p̂v(110) = 0.035,

and p̂v(011) = 0.027, while p̂v(100) = 0.015, p̂v(010) = 0.011, and p̂v(001) = 0.011).
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Figure 7: Difference in 95% Confidence Set from switching judge 2 from Republican to
Democrat (RRD to RDD). Red crosses: in confidence set for RDD but not RRD specifica-
tion; green dots: in confidence set for RRD but not RDD specification.

Figure 7 illustrates the change in the confidence set, for two given levels of q, and ρ = 1/2.

The figure shows that the RDD partisan configuration induces a larger confidence set, with

more biased types now being consistent with the data for any given q. Because RDD allows

more extreme types and eliminates few moderate types, the set of feasible outcomes with a

democratic majority tends to be broader than with a republican majority, generating larger

maximum errors and smaller minimum errors for given parameters.
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Figure 8: Min and Max Error Probability in Equilibria consistent with data for RRD (green)
and RDD (blue) specifications, with ρ = 0.5. As a function of Competence and Polarization.

In particular, as shown in Figure 8, the democratic controlled courts generate larger maxi-

mum errors than the republican controlled courts for homogeneous courts and intermediate

levels of competence, and smaller minimum errors for high levels of competence and het-

erogeneous courts.

6.3 The Impact of Deliberation

Having described the outcomes attained in equilibria with deliberation, our next goal is to

quantify the effect of deliberation: how much do outcomes differ because of deliberation?

To do this, we compare equilibrium outcomes with deliberation with the outcomes that

would have arisen in a counterfactual scenario in which judges are not able to talk with

one another before voting. As before, in terms of outcomes, we focus on the probability

of mistakes in the decisions of the court. We then compare the equilibrium probability of

error with deliberation with the corresponding equilibrium probability of error that would

have occurred in the absence of deliberation for the same court and case characteristics.

Specifically, for each point (θ, ~π) in the identified set we compare the maximum and mini-

mum error probabilities across all equilibria, ε(θ, ~π) and ε(θ, ~π), and across equilibria con-

sistent with the data, ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv), with the corresponding maximum and

minimum error probabilities in responsive Bayesian Nash equilibria (BNE) of the voting

game without communication, εND(θ, ~π) and εND(θ, ~π). To carry out this comparison, we

solve for all responsive BNE of the non-deliberation game, for all parameter points in the
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confidence set.23

Figure 9 plots, for various values of judges’ information precision q, the maximum and

minimum equilibrium errors with and without deliberation as a function of the degree of

polarization in the court. The figures on the left panel show the maximum and minimum

error probability across all communication equilibria, and the figures on the right panel

show the maximum and minimum error probability in equilibria matching voting profile

distributions that are in the 95% confidence set of the “true” voting profile distribution.

All Equilibria. We consider first unconstrained outcomes, across all equilibria. The

figure on the top left panel shows the results for an intermediate level of competence,

q = 0.76. Two facts are apparent from the figure. First, although both the game with

deliberation and the game without deliberation have multiple equilibria, these two kinds

of multiplicity are qualitatively different. While the multiplicity of equilibria in voting

without deliberation has relatively minor consequences for the effectiveness of the court, the

multiplicity of equilibria with deliberation can lead to wildly different outcomes. Second,

the figure shows that while the equilibrium error bounds in the game with deliberation are

relatively insensitive to the level of polarization in the court, the equilibrium errors without

deliberation increase rapidly with the degree of polarization. Thus, in heterogeneous courts,

the best outcome with deliberation leads to large gains vis a vis the best outcomes without

deliberation. When courts are relatively homogeneous, instead, equilibrium errors without

deliberation are already close to the best outcomes achievable with deliberation, so that

the possible gain attributable to deliberation is relatively small. Furthermore, the worst

outcomes with deliberation imply very large losses with respect to all equilibrium outcomes

without deliberation.

The middle and bottom left panels (for q = 0.8 and q = 0.9) show a somewhat different

story. For these higher levels of competence in the court, the probability of error without

deliberation is close to the best outcomes with deliberation for all levels of polarization of

the court (for all bias configurations in the confidence set). Thus deliberation only allows

for a minimal gain in achieving a smaller probability of error, but significantly increases the

maximum equilibrium probability of error.24

In fact, it is these latter results, and not those in the top figure, which are most representative

of outcomes across all parameters in the confidence set. Whenever there exists a responsive

23Characterizing responsive equilibria in the non-deliberation game is an algebra-intensive, but simple
task. We discuss this further in Section 8.

24In fact, the worst outcomes with deliberation can and in general are worse than the errors in non-
responsive equilibria with communication (50% given ρ = 1/2).
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Figure 9: Probability of mistakes with and without deliberation for each point (θ, ~π) in
the confidence set, with ρ = 0.5, across all equilibria (left), and across only equilibria
consistent with the data (right). Y-axis is the probability of error, and X-axis is the degree
of Polarization in the court. Black lines plot the min. and max. equilibrium errors with
deliberation; red and green lines plot the min. and max. errors without deliberation.
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equilibrium in the game without deliberation, deliberation typically only produces a small

potential gain in the effectiveness of the court in the best case scenario, but can lead to large

losses in the worst case. Across the confidence set, for courts with more competent judges

(q ≥ 0.8), the minimum equilibrium error probability with deliberation is less than 5 pp

lower than the corresponding error probability without deliberation. Yet at the same time,

the maximum equilibrium error probability with deliberation is more than 25 pp higher than

the corresponding error probability without deliberation. Especially, if we restrict attention

to courts with small degrees of polarization (polarization≤ 0.3) and very competent judges

(q = 0.9), the latter number becomes as high as 60 pp.

It should be noted, however, that deliberation does have an unambiguously positive effect

on outcomes, in that it expands the set of court characteristics for which the decisions of

the court can be responsive to information. Indeed, in slightly over one fourth of the court

configurations for which there is a communication equilibrium that is consistent with the

data, the game without deliberation has no responsive equilibria.

Equilibria Consistent with the Data. The figures on the right panel show the results

for equilibria consistent with the data. As we described in Section 6.2, the constraint that

equilibria are to be consistent with the data leads to a substantially narrower range of

outcomes. Moreover, the minimum and maximum errors in equilibria consistent with the

data are more responsive to the degree of polarization of the court.

The comparison with the equilibrium errors of the voting game without deliberation leads

to striking results. As in the case of all equilibria, the maximum equilibrium probability of

error with deliberation generally vastly exceeds the corresponding figure maximum without

deliberation. In addition, for a large number of points in the CS, the minimum equilibrium

probability of error with deliberation across equilibria consistent with the data is higher

than the minimum probability of error without deliberation. This is illustrated in Figure 10,

which plots the percentiles for maximum and minimum errors for equilibria with deliberation

and without deliberation across all comparable points in the 95% confidence set (for all

points in the CS for which there exists a responsive equilibrium without deliberation).

For 20% of the points in the confidence set, the minimum equilibrium probability of error

without deliberation is below 1%. The corresponding figure for equilibria consistent with

the data is 23%. Similarly, while for 70% of the points in the confidence set, the minimum

equilibrium probability of error without deliberation is still below 14%, it reaches 25%

for equilibria consistent with the data. Furthermore, for more than eighty percent of all

comparable points in the confidence set, all equilibria with deliberation are worse than all
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Figure 10: Percentiles for maximum and minimum errors for equilibria with deliberation
and without deliberation across all comparable points in the 95% confidence set.

equilibria without deliberation. Thus, although in the best case scenario deliberation can

potentially reduce mistakes vis a vis the benchmark of no deliberation, in the selection

of equilibria that is consistent with the data these potential gains are not being realized.

Instead, communication among judges on average leads to a large loss in the effectiveness

of the court.

Welfare. The results so far are agnostic about equilibrium selection, and highlight the

potential for deliberation to increase the errors in decision-making. It could be argued,

however, that equilibria that maximize judges’ aggregate welfare constitute a focal point,

both in the game with deliberation and in the game without deliberation. If this were

the case, deliberation could in fact improve welfare, and would certainly do so if we don’t

restrict to equilibria consistent with the data.

In order to quantify this potential gain, we adopt a utilitarian approach, and compare

social welfare in the equilibria that maximize the sum of judges’ payoffs with and without

deliberation, for all equilibria and for equilibria consistent with the data. For a given point

(θ, ~π) in the confidence set, and given a communication equilibrium µ, judge i’s expected

utility is minus the expected cost of type I and type II errors,

Ui(µ; (θ, ~π)) = − [ρεII(µ; (θ, ~π))(1− πi) + (1− ρ)εI(µ; (θ, ~π))πi] .

Therefore, the equilibrium that maximizes judges’ total welfare, µ∗(θ, ~π), is the µ ∈M(θ, ~π)
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that maximizes U(θ, ~π, µ) ≡
∑

i Ui(µ; (θ, ~π)). A similar definition applies for non-deliberation

equilibria, giving σ∗(θ, ~π). For equilibria consistent with the data, the equilibrium that max-

imizes judges’ total welfare, µ̃(θ, ~π), is

µ̃(θ, ~π) = arg max
µ∈M(θ,~π)

U(θ, ~π, µ) s.t. pv(~v) =
∑
~t

µ(~v|~t)p(~t; θ)


The left panel of Figure 11 plots the maximum aggregate welfare for points in the confidence

set across all equilibria of the game with deliberation, UD(θ, ~π) ≡ U(µ∗(θ, ~π); (θ, ~π)), and

in the game without deliberation, UN (θ, ~π) ≡ U(σ∗(θ, ~π); (θ, ~π)). The difference is plotted

for various levels of competence q, as a function of the degree of polarization in the court.

The right panel provides a similar comparison restricting to the maximum aggregate welfare

across equilibria consistent with the data, ŨD(θ, ~π) ≡ U(µ̃(θ, ~π); (θ, ~π)).
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Figure 11: Maximum Equilibrium Welfare under Deliberation and No-Deliberation. Solid
lines denote outcomes with deliberation, for ρ = 0.5. Dashed lines denote outcomes with
no deliberation.

The plot of the unconstrained maximum welfare with deliberation UD(θ, ~π) and without

UN (θ, ~π) shows that deliberation can induce a relatively large gain in welfare when the

court is heterogeneous. The gains in welfare however, are not uniform across feasible con-

figurations of the court. In fact, deliberation leads to no welfare improvement in 70% of

all comparable parameter configurations in the confidence set. The comparison of UN (θ, ~π)

with the maximum welfare across equilibria consistent with the data, ŨD(θ, ~π) shows a

markedly different result. In fact, for most of the parameter configurations represented

in the figure, deliberation induces a loss in the maximal aggregate welfare. This loss is

particularly severe if judges are highly competent (if q is large).
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7 Conclusion

Deliberation is ubiquitous in collective decision-making. This is well understood. What is

less clear is whether talking can have an effect on what people actually do. In this paper, we

quantify the effect of deliberation on collective choices. To do this we structurally estimate

a model of voting with deliberation. This approach allows us to disentangle committee

members’ preferences, information, and strategic considerations, and ultimately, to compare

equilibrium outcomes under deliberation with a counterfactual scenario in which pre-vote

communication is precluded.

Because the incentive for any individual member to convey her information truthfully to

others depends on her expectations about how others will communicate, any natural model

of deliberation will have a large multiplicity of equilibria. In our setting, this implies that

the structural parameters characterizing judges’ biases and quality of information are only

partially identified. For this reason, we obtain confidence regions for these parameters using

a two-step estimation procedure that allows flexibly for characteristics of the alternatives

and the individuals.

To quantify the effect of deliberation on outcomes we compare the equilibrium probability

of error with deliberation with the probability of error that would have occurred in the

absence of deliberation for the same court and case characteristics. The comparison leads to

discouraging results for the prospects of deliberation. When we compare across all potential

outcomes, in the best case deliberation produces a small gain in the effectiveness of the

court, and in the worst case it leads to large losses. When we restrict to equilibria that are

consistent with the observed data, the comparison is bleaker still. In fact, for a large range

of comparable points in the confidence set, all equilibria with deliberation are worse than

all equilibria without deliberation. Thus, although in the best case scenario deliberation

can potentially reduce mistakes vis a vis the benchmark of no deliberation, in equilibria

consistent with the data these potential gains are not realized. Instead, communication

among judges on average leads to large losses in the effectiveness of the court: words do

indeed get in the way of effective decision-making.

In spite of the progress made, much work remains ahead in order to fully understand the

effect of deliberation on collective decision-making. A potentially rich area for progress is

in the intersection of data availability and the specification of the model describing the

environment and the nature of strategic interactions. In the absence of knowledge of a

particular sequence in which committee members communicate prior to a vote, the theo-

retical approach of Gerardi and Yariv (2007) is very attractive. This is because the set

of outcomes induced by communication equilibria coincides with the set of outcomes in-
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duced by sequential equilibria of any possible communication sequence. Given knowledge

of a particular communication protocol, however, equilibrium analysis yields more precise

predictions. This, in turn, would allow us to obtain a narrower identified set of the pa-

rameters of interest. Furthermore, in this context we could potentially use not only vote

outcomes, but also the messages exchanged among committee members, or the duration of

deliberation, as data, further reducing uncertainty about parameters. It follows from this

discussion that while the difficulties in identifying suitable applications are not minor, the

potential rewards are far reaching.

Our empirical approach can also be more immediately extended to evaluate the effect of

deliberation on outcomes across different issues and decision-making environments.
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8 Appendix: Responsive Equilibria without Deliberation

In Section 6.3 we compare the equilibrium probability of error in voting with deliberation

with the corresponding equilibrium probability of error that would have occurred in the

absence of deliberation for the same court and case characteristics. Specifically, for each

point (θ, ~π) in the confidence set we compare the maximum and minimum error probabili-

ties across all equilibria, ε(θ, ~π) and ε(θ, ~π), and across equilibria consistent with the data,

ε∗(θ, ~π, pv) and ε∗(θ, ~π, pv), with the corresponding maximum and minimum error proba-

bilities in responsive Bayesian Nash equilibria (BNE) of the voting game without communi-

cation, εND(θ, ~π) and εND(θ, ~π). To carry out this comparison, we solve for all responsive

BNE of the non-deliberation game, for all parameter points in the confidence set.

In the game without deliberation, the strategy of player i is a mapping σi : {0, 1} → [0, 1],

where σi(si) denotes the probability of voting to overturn given signal si. It is easy to show

that σi(si) > 0 (< 0) only if Pr(ω = 1|si, P ivi) ≥ πi (≤ πi), or

Pr(si|ω = 1)

Pr(si|ω = 0)

Pr(Pivi|ω = 1)

Pr(Pivi|ω = 1)
≥ πi

1− πi
1− ρ
ρ

(8.1)

Let αiω ≡ Pr(vi = 1|ω) denote the conditional probability that i votes to overturn in state

ω, and note that αi1 = qiσi(1)+(1−qi)σi(0), and αi0 = (1−qi)σi(1)+qiσi(0). Substituting

in (8.1), we have that σi(si) > 0 only if (for j, k 6= i)

Pr(si|ω = 1)

Pr(si|ω = 0)

[
αj1(1− αk1) + αk1(1− αj1)

αj0(1− αk0) + αk0(1− αj0)

]
≥ πi

1− πi
1− ρ
ρ

(8.2)

Under certain conditions (when the court is sufficiently homogeneous) there is an equilibrium

in which all judges vote informatively ; i.e., σi(1) = 1, σi(0) = 0 for all i ∈ N . Note that

with informative voting αi1 = qi, and αi0 = (1 − qi). Then informative voting is a best

response for each i iff

ρ(1− qi)
ρ(1− qi) + (1− ρ)qi

≤ πi ≤
ρqi

ρqi + (1− ρ)(1− qi)

In general, other responsive equilibria are possible. With binary signals and a symmetric

environment (qi = q and πi = π ∀i ∈ N), the literature has focused on symmetric responsive

BNE. Here of course the restriction has no bite. Still, there is a relatively “small” class of

equilibrium candidates for any given parameter value. The exhaustive list is presented in

Table 4.
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Judge i Judge j Judge ` Non-Generic
Eq. Class σ1(1) σ1(0) σ2(1) σ2(0) σ3(1) σ3(0)

Pure Strategies:

(EQ1.a) 1 0 1 0 1 0
(EQ1.b) 1 0 1 0 1 1
(EQ1.c) 1 0 1 0 0 0

All judges mix:

(EQ2) σ1 0 σ2 0 σ3 0
(EQ3) 1 σ1 1 σ2 1 σ3

(EQ4) σ1 0 σ2 0 1 σ3

(EQ5) σ1 0 1 σ2 1 σ3

Two judges mix:

(EQ6.a) σ1 0 σ2 0 1 1
(EQ6.b) σ1 0 σ2 0 0 0 X
(EQ6.c) σ1 0 σ2 0 1 0
(EQ7.a) 1 σ1 1 σ2 1 1 X
(EQ7.b) 1 σ1 1 σ2 0 0
(EQ7.c) 1 σ1 1 σ2 1 0
(EQ8.a) σ1 0 1 σ2 1 1 X
(EQ8.b) σ1 0 1 σ2 0 0 X
(EQ8.c) σ1 0 1 σ2 1 0

Table 4: We indicate by σj in column σj(s) that σj(s) ∈ (0, 1)
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Characterizing responsive equilibria in the non-deliberation game is a laborious but simple

task. We illustrate the main logic in case (8.c) in Table 4; i.e., σi(1) ∈ (0, 1), σj(0) ∈ (0, 1),

σi(0) = 0, σj(1) = 1, and σk(1) = 1, σk(0) = 0. (The analysis of the other cases is similar;

full details are available upon request). Note that here α10 = (1− q1)σ1(1), α11 = q1σ1(1),

α20 = (1− q2) + q2σ2(0), α21 = q2 + (1− q2)σ2(0), α30 = 0, and α31 = 1.

In equilibrium, i = 1 has to be indifferent between upholding and overturning after s1 = 1.

Then if it exists, σ∗2(0) is given by the value of σ2(0) ∈ [0, 1] that solves (8.2) with equality

for i = 1 and si = 1, or

σ∗2(0) =
[q1(1− π1)ρ− (1− q1)π1(1− ρ)][(1− q2)q3 + q2(1− q3)]

(2q3 − 1)[q1(1− π1)ρ(1− q2) + (1− q1)π1(1− ρ)q2]
,

which in turn implies α∗20 = (1 − q2) + q2σ
∗
2(0) and α∗21 = q2 + (1 − q2)σ∗2(0). Similarly, in

equilibrium, i = 2 has to be indifferent between upholding and overturning after s2 = 0.

Then when it exists, σ∗1(1) is given by the value of σ1(1) ∈ [0, 1] that solves (8.2) with

equality for i = 2 and s2 = 0, or

σ∗1(1) =
(1− q2)q3(1− π2)ρ− q2(1− q3)π2(1− ρ)

(2q3 − 1)[(1− q2)q1(1− π2)ρ+ q2(1− q1)π2(1− ρ)]
,

which implies α∗10 = (1 − q1)σ∗1(1) and α∗11 = q1σ
∗
1(1). Finally, in equilibrium i = 3 has to

have incentives to vote informatively. This means that

1− q3

q3
≤︸ ︷︷ ︸

s3=1

α∗21(1− α∗11) + α∗11(1− α∗21)

α∗20(1− α∗10) + α∗10(1− α∗20)
· 1− π3

π3
· ρ

1− ρ
≤ q3

1− q3︸ ︷︷ ︸
s3=0

We can then evaluate numerically, for each point (ρ, ~q, ~π) in the confidence set, if the

conditions for this to be an equilibrium are satisfied. As before, the error associated with

this equilibrium σ is εND(σ, θ) = (1 − ρ) Pr(v = 1|ω = 0;σ, θ) + ρPr(v = 0|ω = 1;σ, θ),

where given majority rule and independent mixing, for k, ` 6= j

Pr(v = 1|ω, σ, θ) =
3∑
j=1

αkωα`ω(1− αjω) + α1ωα2ωα3ω
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9 Appendix: Additional Figures and Tables

Variable: Mean Std.Dev.

Case characteristics:
FedLaw =1 if case prosecuted under federal law 0.8169 0.3868
Aggravated =1 if crime is aggravated assault/murder 0.1221 0.3274
White Collar =1 if white collar crime 0.2038 0.4029
Theft =1 if crime is theft 0.1418 0.3489
Narcotics =1 if drug-related crime 0.2062 0.4047
Rep. Majority =1 if ≥ 2 republicans on panel 0.4454 0.4971
Female =1 if ≥ 1 female judge on panel 0.0829 0.2758
Harv-Yale Majority =1 if ≥ 2 Harvard/Yale grads on panel 0.1809 0.3850
Jury instruction =1 if main legal issue is jury instruction 0.1970 0.3978
Sentencing =1 if main legal issue is sentencing 0.1628 0.3692
Admissibility =1 if main legal issue is admissibility of evidence 0.3474 0.4762
Sufficiency =1 if main legal issue is sufficiency of evidence 0.2543 0.4355

# cases: 3244

Judge characteristics:

Republican =1 if judge is republican 0.5392 0.4989
Yearsexp Years of appeals court experience 7.1893 7.8409
Judexp Years of prior judicial experience 1.9197 3.7628
Polexp Years of prior political experience 6.8547 7.0750

#judges: 523

Vote Outcomes:
Unanimous to Overturn 21.4%
Divided to Overturn 2.6%
Divided to Uphold 3.8%
Unanimous to Uphold 72.2%

Table 5: Summary statistics of data variables
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Table 6: Benchmark specification

Estimated Vote Probabilities pv(~v|X):

p̂v(111) =0.223 p̂v(000) =0.677
p̂v(101) =0.020 p̂v(010) =0.015
p̂v(110) =0.013 p̂v(001) =0.018
p̂v(100) =0.025 p̂v(011) =0.010

Case characteristics:
FedLaw =1 Jury instruction =0
Narcotics =0 Sentencing =0
Aggravated =0 Admissibility =1
White Collar =1 Sufficiency =0
Theft =0 Rep. Majority =1
Female Judge =0 Harvard-Yale Majority =0

Judge characteristics: Judge 1 Judge 2 Judge 3
Republican 1 1 0
Yearsexp 7.19 0 7.19
Judexp 1.92 0 1.92
Polexp 0 6.85 6.85
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Figure 12: Probability of Mistakes with and without Deliberation, with ρ = 0.5. Larger
Noise in Beliefs Consistent with Equilibrium: η = 0.0001 (left) and η = 0.01 (right). Main
Specification has η = 0.000001. Y-axis is the probability of error, and X-axis is the degree
of Polarization.
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