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Abstract

This paper extends Onatski, Moreira and Hallin’s (2011) study of the

power of high-dimensional sphericity tests to the case of multiple symmetry-

breaking directions. Simple analytical expressions for the asymptotic power

envelope and the asymptotic powers of previously proposed tests are de-

rived. These asymptotic powers are shown to lie very substantially below

the envelope, at least for relatively small values of the number of symmetry-

breaking directions under the alternative. In contrast, the asymptotic power

of the likelihood ratio test based on the data reduced to the eigenvalues of

the sample covariance matrix is shown to be close to that envelope.
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1 Introduction

In a recent paper, Onatski, Moreira and Hallin (2011) (OMH) analyze the asymp-

totic power of statistical tests to detect a signal in spherical real-valued Gaussian

data as the dimensionality of the data and the number of observations diverge to

infinity at the same rate. This paper generalizes OMH’s alternative of a single

symmetry-breaking direction in the data to the alternative of multiple symmetry-

breaking directions, which is more relevant for applied work.

Contemporary sphericity tests in high-dimensional environment (see Ledoit and

Wolf (2002), Srivastava (2005), Schott (2006), Bai et al. (2009), Chen et al. (2010),

and Cai and Ma (2012)) consider general alternatives to the null of sphericity. Our

interest in alternatives with only a few contaminating signals stems from the fact

that in many applications, such as speech recognition, macroeconomics, finance,

wireless communication, genetics, physics of mixture, and statistical learning, a

few latent variables are able to explain a large portion of the variation in high-

dimensional data (see Baik and Silverstein (2006) for references). As a possible

explanation of this fact Johnstone (2001) introduces a spiked covariance model

where all eigenvalues of the population covariance matrix of high-dimensional data

are equal except for a small fixed number of distinct “spike eigenvalues”. The alter-

native to the null of sphericity considered in this paper coincides with Johnstone’s

model.

The generalization of the “single spiked alternative” of OMH to the “multi-

spiked alternative” is not straightforward. The diffi culty arises because the ex-

tension of the main technical tool in OMH (Lemma 2), which analyzes high-

dimensional spherical integrals, to integrals over high-dimensional real Stiefel man-

ifolds obtained in Onatski (2012) is not easily amenable to the Laplace approx-

imation method used in OMH. Therefore, in this paper we develop a different
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technique, based on the large deviation analysis of spherical integrals in Guionnet

and Maida (2005).

Let us describe the setting and main results in more detail. Suppose that data

consist of n independent observations of p-dimensional Gaussian vectors Xt with

mean zero and positive definite covariance matrix Σ. Let Σ = σ2 (Ip + V HV ′) ,

where Ip is the p-dimensional identity matrix, σ is a scalar, H is an r× r diagonal

matrix with elements hj ≥ 0 along the diagonal, and V is a (p× r)-dimensional

parameter normalized so that V ′V = Ir. We are interested in the asymptotic

power of tests of the null hypothesis H0 : h1 = ... = hr = 0 against the alternative

H1 : hj > 0 for some j = 1, ..., r, based on the eigenvalues of the sample covariance

matrix of the data when n, p→∞ so that p/n→ c with 0 < c <∞. The matrix V

is an unspecified nuisance parameter, the columns of which indicate the directions

of the perturbations of sphericity.

We consider the cases of specified and unspecified σ2. For the sake of simplicity,

in the rest of the Introduction, we discuss only the case of specified σ2 = 1,

although the case of unspecified σ2 is more realistic. Denoting by λj the j-th

largest sample covariance eigenvalue, let λ = (λ1, ..., λm) , where m = min (n, p) ,

and let h = (h1, ..., hr) . We begin our analysis with a study of the asymptotic

properties of the likelihood ratio process
{
L (h;λ) |h ∈

[
0, h̄
]r}

, where h̄ ∈ [0,
√
c)

and L (h;λ) is defined as the ratio of the density of λ under H1 to that under

H0, considered as a λ-measurable random variable; note, however, that L (h;λ)

depends on n and p, while λ is m = min {n, p} -dimensional. An exact formula for

L (h;λ) involves the integral
∫
O(p)

etr(AQBQ′) (dQ) over the orthogonal group O (p),

where the p×p matrix A has a deficient rank r. In the case where r = 1, OMH link

the integral to the confluent form of the Lauricella function, and use this link to

establish a representation of the integral in the form of a contour integral.1 Then,

1See Wang (2010) and Mo (2011) for independent different derivations of the contour integral
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the Laplace approximation to the contour integral is used to derive the asymptotic

behavior of L (h;λ).

Onatski (2012) generalizes the contour integral representation to cases r > 1.

For the complex-valued data, such a generalization allows Onatski (2012) to extend

OMH’s results to the multi-spiked case. However, for the real-valued data, which

we are concerned with in this paper, the generalization is not straightforwardly

amenable to the Laplace approximation method. Therefore, in this paper we con-

sider a different approach. For the case r = 1, Guionnet and Maida (2005) (GM)

use large deviation analysis to derive the second order asymptotic expansion of∫
O(p)

etr(AQBQ′) (dQ) as the non-zero eigenvalues of A diverge to infinity (see their

Theorem 3). We extend GM’s second order expansion to cases r > 1, and use this

extension to derive the asymptotics of L (h;λ).

Precisely, we show that for any h̄ such that 0 < h̄ <
√
c, the sequence of

log-likelihood processes {lnL (h;λ) ;h ∈ [0, h̄]r} converges weakly to a Gaussian

process2
{
Lλ(h);h ∈

[
0, h̄
]r}

under the null hypothesis as n, p → ∞. The limit-

ing process has mean E [Lλ(h)] = 1
4

r∑
i,j=1

ln (1− hihj/c) and autocovariance func-

tion Cov
(
Lλ (h) ,Lλ

(
h̃
))

= −1
2

∑r
i,j=1 ln

(
1− hih̃j/c

)
. Although this limiting

process is Gaussian, it is not a log-likelihood process of the Gaussian shift type,

so that the statistical experiments we study are not locally asymptotically normal

(LAN) ones. The established weak convergence of statistical experiments implies,

via Le Cam’s first lemma (see van der Vaart 1998, p.88), that the joint distrib-

utions of the normalized sample covariance eigenvalues under the null and under

alternatives associated with h ∈ [0,
√
c) are mutually contiguous.

An asymptotic power envelope for λ-based tests of H0 against H1 can be con-

representation in the case r = 1.
2Here the index λ in the notation Lλ(h) is used to distinguish the limiting log-likelihood

process in the case of specified σ2 = 1, from that in the case of unspecified σ2, which we denote
by Lµ(h).

4



structed using the Neyman-Pearson lemma and Le Cam’s third lemma. We show

that, for tests of size α, the maximum achievable asymptotic power against a

point alternative h = (h1, ..., hr) equals 1 − Φ
[
Φ−1 (1− α)−

√
W
]
, where Φ is

the standard normal distribution function and W = −1
2

∑r
i,j=1 ln (1− hihj/c). As

we explain in the paper, this asymptotic power envelope is valid not only for the

λ-based tests, but also for all tests invariant with respect to the orthogonal trans-

formations of the data Xt, t = 1, ..., n.

Next, we consider previously proposed tests of sphericity and of the equality of

the population covariance matrix to a given matrix . We focus on the tests studied

in Ledoit and Wolf (2002), Bai et al (2009), and Cai and Ma (2012). We find that,

in general, the asymptotic powers of those tests are substantially lower than the

maximum power envelope. In contrast, our computations for the case r = 2 show

that the asymptotic power of the λ- and µ-based likelihood ratio test is close to

the power envelope.

The rest of the paper is organized as follows. Section 2 establishes the weak

convergence of the log likelihood ratio process to a Gaussian process. Section 3

provides an analysis of the asymptotic powers of various sphericity tests, derives

the asymptotic power envelope, and proves its validity for general invariant tests.

Section 4 concludes. All proofs are given in the Appendix.

2 Asymptotics of the likelihood ratio

LetX be a p×np matrix with independent GaussianN (0, σ2 (Ip + V HV ′)) columns.

Let λp1 ≥ ... ≥ λpp be the ordered eigenvalues of 1
np
XX ′ and let λp = (λp1, ..., λpm) ,

wherem=min {p,np}. Finally, let µpi =λpi/(λp1+...+λpp) and µp=
(
µp1, ..., µp,m−1

)
.

As explained in the introduction, our goal is to study the asymptotic power,

as p, np → ∞ so that cp = p/np → c ∈ (0,∞) , of the eigenvalue-based tests
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of H0 : h1 = ... = hr = 0 against H1 : hj > 0 for some i = 1, ..., r, where

hj are the diagonal elements of the diagonal matrix H. If σ2 is specified, the

model is invariant with respect to left and right orthogonal transformations and

the maximal invariant statistic is λp. Therefore, we consider tests based on λp. If

σ2 is unspecified, the model is invariant with respect to left and right orthogonal

transformations and multiplications by non-zero scalars, and the maximal invariant

is µp. Hence, we consider tests based on µp. Note that the distribution of µp does

not depend on σ2, whereas if σ2 is specified, we can always normalize λp dividing

it by σ2. Therefore, in what follows, we will assume without loss of generality that

σ2 = 1.

Let us denote the joint density of λp1, ..., λpm at x = (x1, ..., xm) ∈ (R+)m as

fλp (x;h), and that of µp1, ..., µp,m−1 at y = (y1, ..., ym−1) ∈ (R+)m−1 as fµp (y;h).

We have

fλp (x;h) = γ̃

∏m
i=1 x

|p−np|−1
2

i

∏m
i<j (xi − xj)∏r

j=1 (1 + hj)
np/2

∫
O(p)

e−
np
2

tr(ΠQ′XQ) (dQ) , (1)

where γ̃ depends only on np and p; Π = diag
(
(1 + h1)−1 , ..., (1 + hr)

−1 , 1, ..., 1
)
;

X = diag (x1, ..., xm, 0, ..., 0) is a (p× p) diagonal matrix; O (p) is the set of all p×p

orthogonal matrices; and (dQ) is the invariant measure on the orthogonal group

O (p) normalized to make the total measure unity. Formula (1) is a special case of

the density given in James (1964, p.483) for np ≥ p, and follows from Theorems 2

and 6 in Uhlig (1994) for np < p.

Let x = x1 +...+xm and let yi = xi/x. Note that the Jacobian of the coordinate

change from (x1, ..., xm) to (y1, ..., ym−1, x) equals xm−1. Changing variables in (1)
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and integrating x out, we obtain

fµp (y;h) = γ̃

∏m
i=1 y

|p−np|−1
2

i

∏m
i<j (yi − yj)∏r

j=1 (1 + hj)
np/2

∫ ∞
0

x
npp

2
−1

∫
O(p)

e−
np
2
x tr(ΠQ′YQ) (dQ) dx,

(2)

where Y = diag (y1, ..., ym, 0, ..., 0) is a (p× p) diagonal matrix.

Consider the likelihood ratios: Lp (h;λp) = fλp (λp;h) /fλp (λp; 0) and Lp (h;µ) =

fµp
(
µp;h

)
/fµp

(
µp; 0

)
. Formulae (1) and (2) imply the following proposition.

Proposition 1 Let O (p) be the set of all p × p orthogonal matrices. Denote by

(dQ) the invariant measure on the orthogonal group O (p) normalized to make the

total measure unity. Further, let Λp = diag (λp1, ..., λpp) , Sp = λp1 + ...+ λpp, and

let Dp be a p×p matrix diag
(

1
2cp

h1
1+h1

, ..., 1
2cp

hr
1+hr

, 0, ..., 0
)
, where cp = p/np. Then

Lp(h;λp) =
r∏
j=1

(1 + hj)
−np

2

∫
O(p)

ep tr(DpQ′ΛpQ) (dQ) and (3)

Lp
(
h;µp

)
=

r∏
j=1

(1 + hj)
−np

2

(np
2

)npp
2

Γ
(npp

2

) ∫ ∞
0

x
npp

2
−1e−

np
2
x

∫
O(p)

e
p x
Sp

tr(DpQ′ΛpQ)
(dQ)dx. (4)

In the special case where r = 1, the rank of matrix Dp equals one, and the

integrals over the orthogonal group in (3) and (4) can be rewritten as integrals

over a p-dimensional sphere. Onatski, Moreira and Hallin (2011) show how such

spherical integrals can be represented in the form of contour integrals, and apply

Laplace approximation to these contour integrals to establish asymptotic properties

of Lp (h;λp) and Lp
(
h;µp

)
. In cases where r > 1, the integrals in (3) and (4) can be

rewritten as integrals over a Stiefel manifold, the set of all orthonormal r-frames in

Rp. Onatski (2012) obtaines a generalization of the contour integral representation

from spherical integrals to integrals over Stiefel manifolds. Unfortunately, the

generalization is not straightforwardly amenable to the Laplace approximation
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method. In this paper, we therefore propose an alternative method of analysis.

The second-order asymptotic behavior of integrals of the form
∫
O(p)

ep tr(DQ′ΛQ) (dQ)

as p goes to infinity was analyzed in Guionnet and Maida (2005) (Theorem 3) for

cases whereD is a fixed matrix of rank one and Λ is a deterministic matrix with the

empirical distribution of its eigenvalues converging to a distribution with bounded

support. Below, we will extend Guionnet and Maida’s analysis to cases where

D = Dp have rank larger than one, and to the stochastic setting of this paper. We

will then use such an extension to derive the asymptotic properties of Lp (h;λp)

and Lp
(
h;µp

)
.

First, let us introduce new notation and a few new definitions. Let F̂p =

1
p

∑p
i=1 δλpi be the empirical distribution of λp1, ..., λpp, and letFp be the Marchenko-

Pastur distribution with density

ψp (x) =
1

2πcpx

√
(bp − x) (x− ap), (5)

where ap =
(
1−√cp

)2
and bp =

(
1 +
√
cp
)2
, and a mass of max

(
0, 1− c−1

p

)
at

zero. As is well known, the difference between F̂p and Fp almost surely weakly

converges to zero as p, np → ∞ so that cp = p/np → c > 0. Moreover, λp1
a.s→

(1 +
√
c)

2
, and λpp

a.s→ (1−
√
c)

2 if c > 1 and λpp
a.s→ 0 if c ≤ 1.

Consider the Hilbert transform of Fp, Hp(x) =
∫

1
x−λdFp (λ) . It is well-defined

for real x outside the support of Fp, that is on the set R\ supp (Fp) . Using (5),

one gets

Hp (x) =
x+ cp − 1−

√
(x− cp − 1)2 − 4cp

2cpx
, (6)

where the sign of the square root is chosen equal to the sign of x − cp − 1. It

is not hard to see that Hp (x) is strictly decreasing on R\ supp (Fp). Thus, on

8



Hp (R\ supp (Fp)), we can define an inverse function Kp (x), which equals

Kp (x) =
1

x
+

1

1− cpx
. (7)

Note also that the so-called R-transform of Fp, defined as Kp (x)− 1/x is given by

Rp (x) = 1
1−cpx .

For some small constants ε > 0 and η > 0, consider a subset of R

Ωεη =


[−η−1, 0) ∪

(
0, 1√

c(1+
√
c)
− ε
]

for c ≥ 1,[
− 1√

c(1−
√
c)

+ ε, 0

)
∪
(

0, 1√
c(1+

√
c)
− ε
]
for c < 1.

From (6), Hp (R\ supp (Fp)) = (−∞, 0)∪
(

0, 1
√
cp(1+

√
cp)

)
∪
(

1
√
cp(√cp−1)

,∞
)
when

cp > 1,
(
− 1
√
cp(1−√cp)

, 0

)
∪
(

0, 1
√
cp(1+

√
cp)

)
when cp < 1, and (−∞, 0) ∪ (0, 1/2)

when cp = 1. Therefore, Ωεη ⊂ Hp (R\ supp (Fp)) with probability approaching

one as p, np →∞ so that cp → c.

Proposition 2 Let ε > 0 and η > 0 be some constants. Let {Θp} be a sequence

of p × p diagonal matrices diag (θp1, ..., θpr, 0, ..., 0) , where θpj 6= 0, j = 1, ..., r,

are such that 2θpj ∈ Ωε,η, with probability approaching one as p, np → ∞ so that

cp → c ∈ (0,∞). Further, let vpj = Rp (2θpj), where Rp (x) = Kp (x)−1/x = 1
1−cpx

is the R-transform of the Marchenko-Pastur distribution Fp. Then,

∫
O(p)

ep tr(ΘpQ′ΛpQ) (dQ) = ep
∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλp,i)] ×

r∏
j=1

j∏
s=1

√
1− 4 (θpjvpj) (θpsvps) cp (1 + o(1)) ,

almost surely, where o(1) in uniform in sequences {Θp} satisfying the above re-

quirement.
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This proposition extends Guionnet and Maida’s (2005) Theorem 3 to cases

when rank Θp > 1, θpj depends on p, and Λp is random. When r = 1, and θp1 = θ

and vp1 = v are fixed, it is straightforward to verify that
√

1− 4θ2v2cp =
√

4θ2√
Z
,

where Z =
∫

1
(Kp(2θ)−λ)2

dFp (λ) . In Guionnet and Maida’s (2005) Theorem 3, the

expression
√

4θ2√
Z
should have been used instead of

√
Z−4θ2

θ
√
Z

, which is a typo.3

Setting r = 1 and θp1 = 1
2cp

h
1+h

in Proposition 2 and using formula (3) from

Proposition 1 gives us an expression for Lp(h;λp) which is an equivalent of formula

(4.1) from Theorem 7 of Onatski, Moreira and Hallin (2011). Our next theorem

uses Proposition 2 to generalize Theorem 7 of OMH to cases r > 1.

Let us set θpj = 1
2cp

hj
1+hj

. Note that the condition hj ∈ Hδ for some δ > 0,

where

Hδ=

[−1 + δ, 0) ∪ (0,
√
c− δ] for c > 1,

[−
√
c+ δ, 0) ∪ (0,

√
c− δ] for c ≤ 1,

(8)

implies that 2θpj ∈ Θεη for some ε > 0 and η > 0 for all suffi ciently large p. Below,

we will only be interested in non-negative hj, and will assume that hj ∈ (0,
√
c− δ]

under alternative hypothesis. The corresponding θpj will, thus, be positive.

With the above setting for θpj, we have vpj = 1+hj andKp (2θpj) =
(cp+hj)(1+hj)

hj
.

To facilitate comparison of our next theorem with Theorem 7 in OMH, we denote

(cp+hj)(1+hj)

hj
as zj0 and define

∆p (zj0) =

p∑
i=1

ln (zj0 − λpi)− p
∫

ln (zj0 − λ) dFp (λ) . (9)

Theorem 1 Suppose that the null hypothesis is true (h = 0). Let δ be any fixed

number such that 0 < δ <
√
c, and let C [0,

√
c− δ]r be the space of real-valued

continuous functions on [0,
√
c− δ]r equipped with the supremum norm. Then, as

3We thank Alice Guionnet for confirming our correction of the typo.
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p, np →∞ so that p/np = cp → c ∈ (0,∞) , almost surely

Lp(h;λp) =

r∏
j=1

exp

{
−1

2
∆p (zj0)+

1

2

j∑
s=1

ln

(
1−hjhs

cp

)}
(1+o (1)) and (10)

Lp
(
h;µp

)
=Lp(h;λp) exp

 1

4cp

(
r∑
j=1

hj

)2

− Sp−p
2cp

r∑
j=1

hj

(1+o (1)), (11)

where the o (1) terms are uniform in h ∈ [0,
√
c− δ]r. Furthermore, lnLp(h;λp)

and lnLp
(
h;µp

)
, viewed as random elements of C [0,

√
c− δ]r, converge weakly to

Lλ (h) and Lµ (h) with Gaussian finite-dimensional distributions such that E (Lλ (h)) =

−1
2

Var (Lλ (h)), E (Lµ (h)) = −1
2

Var (Lµ (h)) , and for any h, h̃ ∈ [0,
√
c− δ]r ,

Cov
(
Lλ (h) ,Lλ

(
h̃
))

= −1

2

r∑
i,j=1

ln

(
1− hih̃j

c

)
, and (12)

Cov
(
Lµ (h) ,Lµ

(
h̃
))

= −1

2

r∑
i,j=1

(
ln

(
1− hih̃j

c

)
+
hih̃j
c

)
. (13)

Theorem 1 and Le Cam’s first lemma (van der Vaart (1998), p.88) imply that

the joint distributions of λ1, ..., λm (as well as those of µ1, ..., µm−1) under the null

and under the alternative are mutually contiguous for any h ∈ [0,
√
c)
r. Along with

Le Cam’s third lemma (van der Vaart (1998), p.90), this can be used to study the

“local” powers of tests detecting signals in noise. The requirement that hj > 0

under alternative hypothesis corresponds to situations where data conatain signals

independent from noise. If signals are allowed to be noise-dependent, one might

become interested in the two-sided alternative H1 : hj 6= 0 for some j. Negative

hj > −1 mean that noise’s variance is reduced along certain dimensions. Given

Proposition 2, it should not be diffi cult to generalize Theorem 1 to the case of

some or all hj be negative, which is left for future research.
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3 Asymptotic power analysis

Let βλ (h) and βµ (h) be the asymptotic powers of the asymptotically most powerful

λ- and µ-based tests of size α of the null h = 0 against a point alternative h =

(h1, ..., hr) with hj <
√
c, j = 1, ..., r. We have

Proposition 3 Let Φ denote the standard normal distribution function. Then,

βλ (h) = 1−Φ

Φ−1 (1−α)−

√√√√−1

2

r∑
i,j=1

ln

(
1−hihj

c

) and (14)

βµ (h) = 1−Φ

Φ−1 (1−α)−

√√√√−1

2

r∑
i,j=1

(
ln

(
1−hihj

c

)
+
hihj
c

) . (15)

The upper left panel of Figure 1 shows the asymptotic power envelope βλ (h) as

a function of h1/
√
c and h2/

√
c when h = (h1, h2) is two-dimensional. The upper

right panel shows the contour plot of βλ (h) . The lower panel of Figure 1 is an

analogue of the upper panel for βµ (h).

It is important to realize that the asymptotic power envelopes derived in Propo-

sition 3 are valid not only for λ- and µ-based tests but also for the general tests

that are invariant with respect to the orthogonal transformations of the data Xt,

t = 1, ..., n, and for the general tests that are invariant with respect to multipli-

cation of the data by constants and the orthogonal transformations of the data.

Examples of the former tests include the tests of H0 : Σ = I studied in Chen et

al (2010) and Cai and Ma (2012). An example of the latter test is the test of

sphericity studied in Chen et al (2010). The tests studied in Chen et al (2010)

and Cai and Ma (2012) are invariant, although they are not λ- or µ-based, that is,

they are not based on the maximally invariant statistics. The following proposition

establishes the validity of the power envelopes for such tests.
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Let ‖A‖F and ‖A‖2 denote the Frobenius norm, tr (A′A) , and the spectral

norm, λ1/2
1 (A′A) , of matrix A, respectively. Let H0 be the null hypothesis h1 =

... = hr = 0, and let H1 be any of the following alternatives: H1 : hj > 0 for

some j = 1, ..., r, or H1 : Σ 6= σ2Ip, or H1 :
{

Σ : ‖Σ− σ2Ip‖F > εn,p
}
, or H1 :{

Σ : ‖Σ− σ2Ip‖2 > εn,p
}
, where εn,p is a positive constant that may depend on n

and p.

Proposition 4 For specified σ2 = 1, consider tests of H0 against H1 that are

invariant with respect to the left orthogonal transformations of the data X =

[X1, ..., Xn] . For any such test, there exists a test based on λ with the same power

function. Similarly, for unspecified σ2, consider tests that, in addition, are invari-

ant with respect to multiplication of the data X by non-zero constants. For any

such test, there exists a test based on µ with the same power function.

As shown by OMH for r = 1, the asymptotic power envelopes are closely ap-

proached by the asymptotic powers of the λ- and µ-based likelihood ratio tests.

Our next goal is to explore the asymptotic power of these tests for r > 1. Un-

fortunately, as r grows, it becomes increasingly diffi cult to find the asymptotic

critical values for the likelihood ratio tests by simulation. For example, for r = 2

this requires simulating a 2-dimensional Gaussian random field with the covariance

function and the mean function described in Theorem 1.

For r = 2, Figure 2 shows sections of the power envelope (dashed lines) and the

power of the likelihood ratio test based on λ for various fixed values of h1/
√
c under

alternative. Figure 3 shows the same plots for the tests based on µ. To enhence

visibility, we use a different parameterization: θj =
√
− ln

(
1− h2

j/c
)
, i = 1, ..., r.

As hj varies in the region of contiguity [0,
√
c) , θj spans the entire half-line [0,∞) .

Note that the asymptotic mean and autocovariance functions of the log likelihood

ratios derived in Theorem 1 depend on hj only through hj/
√
c =

√
1− e−θ2j .
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Figure 2: Profiles of the asymptotic power of the λ-based LR test (solide lines)
relative to the asymptotic power envelope (dashed lines) for different values of
h1/
√
c under the alternative. α = 0.05.

Therefore, under the new parametrization, they depend only on θ = (θ1, ..., θr).

The parameter θ plays the classical role of a “local parameter”in our setting.

Figure 4 further explores the relationship between the asymptotic power of the

λ- and µ-based LR test and the corresponding asymptotic power envelopes when

r = 2. We pick all values of h = (h1, h2) satisfying inequality h1 ≥ h2 and such

that the asymptotc power envelope for λ-based tests is exactly 25,50,75, and 90%.

Then, we compute and plot the corresponding power of the λ-based LR test (solid

lines) against h2/h1. The dashed lines show similar graphs for µ-based LR test. The

value h2/h1 = 0 corresponds to single-spiked alternatives h1 > 0, h2 = 0. The value

h2/h1 = 1 corresponds to equi-spiked alternatives h1 = h2 > 0. The intermediate
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Figure 3: Profiles of the asymptotic power of the µ-based LR test (solide lines)
relative to the asymptotic power envelope (dashed lines) for different values of
h1/
√
c under the alternative. α = 0.05.
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Figure 4: Power of λ-based (solid lines) and µ-based (dashed lines) LR tests plot-
ted against h2/h1, where (h1, h2) constitute all alternative hypotheses where the
asymptotic power envelope equals 25, 50, 75 and 90%.

values of h2/h1 link the two extreme cases. We do not consider values h2/h1 > 1

because the power function is symmetric around the 45-degree line in h1, h2-space.

Somewhat surprisingly, the power of the LR test along the set of alternatives

(h1, h2) corresponding to the same values of the asymptotic power envelope is not

monotone with respect to h2/h1. The equi-spiked alternatives seem to be partic-

ularly diffi cult to detect by the LR test in most of the analyzed cases. However,

for the set of alternatives corresponding to the asymptotic power envelope equal

to 90%, the single-spiked alternatives are even harder to detect.

The next question we ask is: how does the asymptotic power of the λ- and

µ-based LR tests depend on assumptions made about r? For example, to detect

a single signal, one can, in principle, use LR tests of the null hypothesis against

alternatives with r = 1, r = 2, etc. How does the asymptotic powers of such

tests compare? Figure 5 reports the asymptotic powers of the λ- and µ-based LR
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Figure 5: Asymptotic power of the λ-based (left panel) and µ-based (right panel)
LR tests. Solid line: power when r = 1 is correctly assumed. Dashed line: power
when incorrect r = 2 is assumed.

tests designed to detect alternatives with r = 1 (solid line) and r = 2 (dashed line),

against single-spiked alternatives. To enhence visibility we use the parametrization

θ =
√
− ln (1− h2/c) for the single-spiked alternative. The asymptotic powers of

the tests designed against alternatives with r = 1 and r = 2 are very close to

each other. Interestingly, neither of the curves dominates the other. Using LR

tests designed against alternatives with r > 1 seems to be beneficial for detecting

a single-spiked alternative with relatively small θ (and h).

In the remaining part of this section, we consider examples of some of the tests

that have been proposed previously in the literature, and, in Proposition 5, derive

their asymptotic power functions.

Example 1 (John’s (1971) test of sphericity) John (1971) proposes testing

the sphericity hypothesis θ = 0 against general alternatives using the test statistic

U =
1

p
tr

 Σ̂

(1/p) tr
(

Σ̂
) − Ip

2 , (16)
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where Σ̂ is the sample covariance matrix of the data. He shows that, when n >

p, such a test is locally most powerful invariant. Ledoit and Wolf (2002) study

John’s test when p/n → c ∈ (0,∞). They prove that, under the null, nU −

p
d→ N (1, 4) . Hence the test with asymptotic size α rejects the null of sphericity

whenever 1
2

(nU − p− 1) > Φ−1 (1− α).

Example 2 (The Ledoit-Wolf (2002) test of Σ = I.) Ledoit and Wolf (2002)

propose to use

W =
1

p
tr

[(
Σ̂− I

)2
]
− p

n

[
1

p
trΣ̂

]2

+
p

n
(17)

as a test statistic for testing the hypothesis that the population covariance matrix

is unity. They show that, under the null, nW − p d→ N (1, 4) . As with the previ-

ous example, the null is rejected at asymptotic size α whenever 1
2

(nW − p− 1) >

Φ−1 (1− α) .

Example 3 (The “corrected”LRT of Bai et al. (2009).) When n > p, Bai

et al. (2009) propose to use a corrected version CLR = tr Σ̂ − ln det Σ̂ − p −

p
(

1−
(

1− n
p

)
ln
(
1− p

n

))
of the likelihood ratio statistic based on the entire data,

as opposed to λ or µ only, to test the equality of the population covariance ma-

trix to the identity matrix against general alternatives. Under the null, CLR d→

N
(
−1

2
ln (1− c) ,−2 ln (1− c)− 2c

)
(still, as both n and p go to infinity, with p/n

converging to c). The null hypothesis is rejected at asymptotic level α whenever

CLR + 1
2

ln (1− c) is larger than (−2 ln (1− c)− 2c)1/2 Φ−1 (1− α).

Example 4 (The Cai-Ma (2012) minimax test) Cai and Ma (2012) propose

to use a U-statistic

Tn =
2

n (n− 1)

∑
1≤i<j≤n

h (Xi, Xj) ,

where h (X1, X2) = (X ′1X2)2 − (X ′1X1 +X ′2X2) + p, to test the hypothesis that

the population covariance matrix is unity. Under the null, as both n and p go to
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infinity, with p/n converging to c, Tn
d→ N (0, 4c2) . The null hypothesis is rejected

at asymptotic level α whenever Tn is larger than 2
√

p(p+1)
n(n−1)

Φ−1 (1− α). Cai and

Ma (2012) show that this test is rate optimal against general alternatives from a

minimax point of view.

Example 5 (Tracy-Widom-type tests.) Let ϕ (λ1, ..., λr) be any function of

the r largest eigenvalues increasing in all its arguments. The asymptotic distri-

bution of ϕ (λ1, ..., λr) under the null is determined by the functional form of ϕ (·)

and the fact that

(σn,c (λ1 − µc) , ..., σn,c (λr − µc))
d→ TW (r) , (18)

where TW(r) denotes the r-dimensional Tracy-Widom law of the first kind, σn,c =

n2/3c1/6 (1 +
√
c)
−4/3 and µc = (1 +

√
c)

2. Call Tracy-Widom-type tests all tests

that reject the null whenever ϕ (λ1, ..., λr) is larger than the corresponding asymp-

totic critical value obtained from (18).

Consider the tests described in Examples 1, 2, 3, 4 and 5, and denote by βJ (h) ,

βLW (h) , βCLR (h) , βCM (h) and βTW (h) their respective asymptotic powers at

asymptotic level α.

Proposition 5 The asymptotic power functions of the tests described in Examples

1-5 satisfy

βTW (h)=α, (19)

βJ (h)=βLW (h)=βCM (h)=1−Φ

(
Φ−1 (1− α)− 1

2

r∑
j=1

h2
j

c

)
, and (20)

βCLR (h)=1−Φ

(
Φ−1 (1− α)−

r∑
j=1

hj − ln (1 + hj)√
−2 ln (1− c)− 2c

)
, (21)

for any h = (h1, ..., hr) such that hj <
√
c for j = 1, ..., r.
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Formula (20) for βCM (h) direcly follows from Proposition 2 of Cai and Ma

(2012). The proof of the other formulae is a straightforward extension of the

proof of Proposition 10 in Onatski, Moreira and Hallin (2011), and we omit it

to save space. The asymptotic power functions of the tests from Examples 1,

2, 3 and 4 are non-trivial. Figures 6 and 7 compare these power functions to

the corresponding power envelopes for r = 2. Since John’s test is invariant with

respect to orthogonal transformations and scalings of the data, Figure 6 compares

βJ (h) (solid line) to the power envelope βµ (h) (dotted line). Since the Ledoit-

Wolf test, the “corrected”likelihood ratio test, and the Cai-Ma test are invariant

only with respect to orthogonal transformations of the data, Figure 7 compares the

asymptotic power functions βLW (h) = βCM (h) and βCLR (h) (solid and dashed

lines, respectively) to the power envelope βλ (h) (dotted line). Note that βCLR (h)

depends on c. As c converges to one, βCLR (h) converges to α, which corresponds to

the case of trivial power. As c converges to zero, βCLR (h) converges to βLW (h) =

βCM (h). In Figure 7, we provide plots of βCLR (h) that correspond to c = 0.5.We

see that the power of the tests in examples 1-4 is increasing very slowly and is very

far below the corresponding power envelope.

4 Conclusion

This paper extends Onatski, Moreira and Hallin’s (2011) (OMH) study of the power

of high-dimensional sphericity tests to the case of multi-spiked alternatives. We

derive the asymptotic distribution of the log likelihood ratio process and use it to

obtain simple analytical expressions for the maximal asymptotic power envelope

and for the asymptotic power of several tests proposed in the literature. The

asymptotic powers of those tests turns out to be very substantially below the

envelope. We propose the likelihood ratio test based on the data reduced to the
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Figure 6: Profiles of the asymptotic power of the John’s test (solide lines) relative
to the asymptotic power envelope (dotted lines) for different values of h1/

√
c under

the alternative. α = 0.05.
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eigenvalues of the sample covariance matrix. Our computations show that the

asymptotic power of this test is close to the envelope.

5 Appendix

All convergence statements made below refer to the situation when p, np →∞ so

that cp = p/np → c ∈ (0,∞). We start from two auxiliary results.

Lemma 1 Let d (µ, ν) be the Dudley distance between measures

d (µ, ν) = sup

{∣∣∣∣∫ f (dµ− dν)

∣∣∣∣ : f (x) ≤ 1 and

∣∣∣∣f (x)− f (y)

x− y

∣∣∣∣ ≤ 1,∀x 6= y

}
.

There exists a constant τ > 0 such that d
(
F̂p,Fp

)
= o (p−1 logτ p) almost surely.

Proof: Let us denote the cumulative distribution function corresponding to a

measure µ as Fµ (x) . Further, let us denote inf {|x2 − x1| : supp (µ) ⊆ [x1, x2]} as

diam (µ) . Consider the following three distances between measures µ and ν : the

Kolmogorov distance k (µ, ν) = supx |Fµ (x)− Fν (x)| , the Wasserstein distance

w (µ, ν) = sup
{∣∣∫ f (dµ− dν)

∣∣ :
∣∣∣f(x)−f(y)

x−y

∣∣∣ ≤ 1,∀x 6= y
}
, and the Kantorovich

distance γ (µ, ν) =
∫
|Fµ (x)− Fν (x)| dx. As is well known (see, for example, ex-

ercise 1 on p.425 of Dudley (2002)), w (µ, ν) = γ (µ, ν) . Therefore, we have

d
(
F̂p,Fp

)
≤ w

(
F̂p,Fp

)
= γ

(
F̂p,Fp

)
≤ k

(
F̂p,Fp

)(
diam

(
F̂p
)

+ diam (Fp)
)
.

As follows from Theorem 1.1 of Götze and Tikhomirov (2011), there exists a con-

stant τ > 0 such that
∑∞

p=1 Pr
(
k
(
F̂p,Fp

)
> εp−1 logτ p

)
< ∞ for all ε > 0.

Thus, k
(
F̂p,Fp

)
= o (p−1 logτ p) almost surely. Since diam (Fp) is O(1) and

diam
(
F̂p
)
− diam (Fp)→ 0 almost surely, the statement of the lemma follows.�
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Corollary 1 Suppose that a sequence of functions {fp(λ)} is bounded Lipshitz on

supp (Fp) ∪ supp
(
F̂p
)
uniformly over all suffi ciently large p, almost surely. Then∣∣∣∫ fp(λ)d

(
F̂p (λ)−Fp (λ)

)∣∣∣ = o
(
p−1/2

)
, almost surely.

5.1 Proof of Proposition 2

Let us denote the integral
∫
O(p)

ep tr(ΘpQ′ΛpQ) (dQ) as Ip (Θp,Λp). As explained in

Guionnet and Maida (2005, p.454), we can write

Ip (Θp,Λp) = EΛp exp

{
p

r∑
j=1

θpj
g̃(j)′Λpg̃

(j)

g̃(j)′g̃(j)

}
, (22)

where EΛp denotes the expectation conditional on Λp, and p-dimensional vec-

tors
(
g̃(1), ..., g̃(r)

)
are obtained from the standard Gaussian p-dimensional vectors(

g(1), ..., g(r)
)
, independent from Λp, by Schmidt orthogonalization procedure. Pre-

cisely, we have g̃(j) =
∑j

k=1Ajkg
(k), where Ajj = 1 and

j−1∑
k=1

Ajkg
(k)′g(t) = −g(j)′g(t) for t = 1, ..., j − 1. (23)

In the spirit of Guionnet and Maida’s (2005) proof of their Theorem 3, let us

define

γ
(j,s)
p1 =

√
p

(
1

p
g(j)′g(s)−δjs

)
and γ(j,s)

p2 =
√
p

(
1

p
g(j)′Λpg

(s)−vpjδjs
)
, (24)

where δjs = 1 if j = s and δjs = 0 if j 6= s. As will be shown below, after

an appropriate change of measure, γ(j,s)
p1 and γ

(j,s)
p2 are asymptotically centered

Gaussian. Expressing the exponent in (22) as a function of γ(j,s)
p1 and γ(j,s)

p2 , changing

the measure of integration, and using the asymptotic Gaussianity will establish the

proposition.
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Let γp=
(
γ

(1,1)
p , ..., γ

(r,1)
p , γ

(2,2)
p , ..., γ

(r,2)
p , γ

(3,3)
p , ..., γ

(r,r)
p

)′
, where γ(j,s)

p =
(
γ

(j,s)
p1 , γ

(j,s)
p2

)
.

Using this notation, (22), (23), and (24), we get after some algebra

Ip (Θp,Λp)=

∫
fp,θ

(
γp
)
e
p
∑r
j=1 θpj

(
vpj+γ̂

(j,j)
p −vpjγ(j,j)p

) r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
, (25)

where P is the standard Gaussian probability measure, and

fp,θ
(
γp
)

= exp

{
r∑
j=1

θpj
N1j+ ...+N6j

Dj

}
with (26)

N1j = −γ(j,j)
p1

(
γ

(j,j)
p2 − vpjγ

(j,j)
p1

)
,

N2j = γ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1 (
G

(j)
p2 +Wpj

)(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N3j = −2γ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p2 ,

N4j = vpjγ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N5j = p−1/2γ
(j,j)
p2 γ

(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N6j = −p−1/2vpjγ
(1:j−1,j)′
p1

(
G

(j)
p1 + I

)−1

γ
(1:j−1,j)
p1 γ

(j,j)
p1 , and

Dj = 1 + p−1/2γ
(j,j)
p1 − p−1γ

(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

where G(j)
pi is a (j − 1)× (j − 1) matrix with k, s-th element p−1/2γ

(k,s)
pi ,

Wpj = diag (vp1, ..., vp,j−1) , and γ(j,1:j−1)
pi =

(
γ

(j,1)
pi , ..., γ

(j,j−1)
pi

)′
.

Now, let BM,M ′ be the event

BM,M ′ =
{∣∣∣γ(j,s)

p1

∣∣∣ ≤M and
∣∣∣γ(j,s)
p2

∣∣∣ ≤M ′ for all j, s = 1, ..., r
}
,

where M and M ′ are positive parameters to be specified later. Somewhat abusing

notation, we will also refer to BM,M ′ as a rectangular region in Rr2+r that con-

sists of vectors with odd coordinates smaller than M by absolute value and even
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coordinates smaller than M ′ by absolute value. Let

IM,M ′

p (Θp,Λp)=

∫
1 {BM,M ′} fp,θ

(
γp
)
e
p
∑r
j=1 θpj

(
vpj+γ̂

(j,j)
p −vpjγ(j,j)p

) r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
,

where 1 {·} denotes the indicator function. Below, we will establish the asymptotic

behavior of IM,M ′
p (Θp,Λp) as first p, and then M and M ′ diverge to infinity. We

will then show that the asymptotics of IM,M ′
p (Θp,Λp) and Ip (Θp,Λp) coincide.

Consider infinite arrays,
{
P(j)
pi , p = 1, 2, ...; i = 1, ..., p

}
, j = 1, ..., r, of random

centered Gaussian measures

dP(j)
pi (x) =

√
1 + 2θpjvpj − 2θpjλpi

2π
e−

1
2

(1+2θpjvpj−2θpjλpi)x
2

dx.

Since, vpj = Rp (2θpj) = 1
1−2θpjcp

and 2θpj ∈ Ωεη, there exists ε̂ > 0 such that, for

suffi ciently large p,

vpj +
1

2θpj
>

(
1 +
√
c
)2

+ ε̂ when θpj > 0 and

vpj +
1

2θpj
< −ε̂ when θpj < 0.

Recall that λpp ≥ 0, and λp1 → (1 +
√
c)

2 almost surely. Therefore, almost surely,

for suffi ciently large p, vpj + 1
2θpj

> λp1 when θpj > 0 and vpj + 1
2θpj

< λpp when

θpj < 0. Hence, measures P(j)
pi are well-defined for suffi ciently large p, almost surely.

Whenever P(j)
pi are not well-defined, we re-define them arbitrarily.

We have

IM,M ′

p (Θp,Λp) = ep
∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλpi)]JM,M ′

p , (27)
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where

JM,M ′

p =

∫
1 {BM,M ′} fp,θ

(
γp
) r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
. (28)

We will now show that, under
∏r

j=1

∏p
i=1 dP

(j)
pi

(
g

(j)
i

)
, γp converges in distribution

to centered r2 + r-dimensional Gaussian vector, almost surely, so that JM,M ′
p is

asymptotically equivalent to an integral with respect to a Gaussian measure in

Rr2+r.

First, let us find the mean, Epγp, and the variance, Vpγp, of γp under measure∏r
j=1

∏p
i=1dP(j)

pi

(
g

(j)
i

)
. Note thatVpγp = diag

(
Vpγ(1,1)

p ,Vpγ(2,1)
p ,...,Vpγ(r,r)

p

)
and ep =

Epγp =
(
Epγ(1,1)

p ,Epγ(2,1)
p ,...,Epγ(r,r)

p

)
′. With probability one, for suffi ciently large p,

we have

Epγ(k,s)
p1 =

√
pδks

(
1

p

p∑
i=1

1

(1 + 2θpkvpk − 2θpkλpi)
− 1

)

=
√
pδks

∫
(2θpk)

−1

Kp (2θpk)− λ
d
(
F̂p (λ)−Fp (λ)

)
,

which, by Corollary 1, is o (1) uniformly in 2θpk ∈ Ωεη, almost surely. That Corol-

lary 1 can be applied here follows from the form of the expression (7) for Kp (x).

Similarly,

Epγ(k,s)
p2 =

√
p
δks
2θpk

∫
Kp (2θpk)

Kp (2θpk)− λ
d
(
F̂p (λ)−Fp (λ)

)
=o (1)

uniformly in 2θpk, 2θps ∈ Ωεη, almost surely. Thus, almost surely,

sup
{2θpj∈Ωεη ,j≤r}

Epγp = o (1) . (29)
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Next, with probability one, for suffi ciently large p we have

Vpγ(k,s)
p1 =

1

p

p∑
i=1

1 + δks
(1 + 2θpkvpk − 2θpkλpi) (1 + 2θpsvps − 2θpsλpi)

.

Let Ĥ(2)
p,ks =

∫ dF̂p(λ)

(Kp(2θpk)−λ)(Kp(2θps)−λ)
and H(2)

p,ks =
∫ dFp(λ)

(Kp(2θpk)−λ)(Kp(2θps)−λ)
. Then, using

Corollary 1, we get

Vpγ(k,s)
p1 =

1 + δks
4θpkθps

Ĥ
(2)
p,ks =

1 + δks
4θpkθps

H
(2)
p,ks + o(1),

uniformly in 2θpk, 2θps ∈ Ωεη, almost surely. Similarly, we have

Vpγ(k,s)
p2 =

1

p

p∑
i=1

λ2
pi (1 + δks)

(1+2θpkvpk−2θpkλpi) (1+2θpsvps−2θpsλpi)

=
1+δks
4θpkθps

(
1+Kp (2θps)Kp (2θpk)H

(2)
p,ks−2θpkKp (2θpk)−2θpsKp (2θps)

)
+o(1),

and

Covp

(
γ

(k,s)
p1 , γ

(k,s)
p2

)
=

1

p

p∑
i=1

λpi (1 + δks)

(1 + 2θpkvpk − 2θpkλpi) (1 + 2θpsvps − 2θpsλpi)

=
(1 + δks)

4θpkθps

(
Kp (2θps)H

(2)
p,ks−2θpk

)
+ o(1),

uniformly in 2θpk, 2θps ∈ Ωεη, almost surely.

A straightforward calculation, using formula (7), shows that

H
(2)
p,ks =

(
1

4θpkθps
− cpvpkvsk

)−1

, and

Vpγ(k,s)
p = V (k,s)

p + o(1), (30)

uniformly in 2θpk, 2θps ∈ Ωεη, almost surely, where matrix V
(k,s)
p has the following
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elements

V
(k,s)
p,11 = (1+δks) (1−4θpkvpkθpsvskcp)

−1 , (31)

V
(k,s)
p,12 = V

(k,s)
p,21 =(1+δks) vpkvsk (1−4θpkvpkθpsvskcp)

−1 , and (32)

V
(k,s)
p,22 = (1+δks)

[
cpvpkvsk+v2

pkv
2
sk (1−4θpkvpkθpsvskcp)

−1] . (33)

This implies that

det
(
V (k,s)
p

)
=

r∏
k≥s

(1+δks)
2 cpvpkvsk (1−4θpkvpkθpsvskcp)

−1 , (34)

which is separated from zero and infinity for suffi ciently large p uniformly in

{2θpj ∈ Ωεη, j ≤ r}, almost surely.

By construction, γp is a sum of p independent random vectors having uniformly

bounded third and fourth absolute moments under measure
∏r

j=1

∏p
i=1 dP(j)

pi

(
g

(j)
i

)
.

Therefore a central limit theorem applies. Moreover, since function fp,θ
(
γp
)
is Lip-

shitz over BM,M ′ , uniformly in {2θpj ∈ Ωεη, j ≤ r} , Theorem 13.3 of Bhattacharya

and Rao (1976), which describes the accuracy of the Gaussian approximations

to the integrals like the one in (28) in terms of the oscillation measures of the

integrand, implies that

JM,M ′

p =

∫
BM,M′

fp,θ (x) dΦ
(
x;Epγp,Vpγp

)
+ oM,M ′ (1) , (35)

where Φ
(
x;Epγp,Vpγp

)
denotes the Gaussian measure with mean Epγp and vari-

ance Vpγp, and oM,M ′ (1) converges to zero uniformly in {2θpj ∈ Ωεη, j ≤ r} as

p→∞, almost surely. The rate of such a convergence may depend on the values

of M and M ′.

Note that, in BM,M ′ , as p→∞, the difference fp,θ
(
γp
)
− fp,θ

(
γp
)
converges to
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zero uniformly in {2θpj ∈ Ωεη, j ≤ r} , where

fp,θ
(
γp
)

= exp

{
r∑
j=1

θpj
(
N̄1j+ ...+N̄4j

)}
, with (36)

N̄1j = −γ(j,j)
1

(
γ

(j,j)
2 − vpjγ(j,j)

1

)
,

N̄2j = γ
(j,1:j−1)′
1 Wpjγ

(j,1:j−1)
1 ,

N̄3j = −2γ
(j,1:j−1)′
1 γ

(j,1:j−1)
2 , and

N̄4j = vpjγ
(j,1:j−1)′
1 γ

(j,1:j−1)
1 .

Such a convergence, together with (29), (30), and (35) imply that

JM,M ′

p =

∫
BM,M′

fp,θ (x) dΦ (x; 0, Vp) + oM,M ′ (1) , (37)

where Vp = diag
(
V

(1,1)
p , V

(2,1)
p , ..., V

(r,r)
p

)
.

Note that the difference
∫

BM,M′

fp,θ (x) dΦ (x;0,Vp) −
∫

Rr2+r
fp,θ (x) dΦ (x;0,Vp) con-

verges to zero as M,M ′ → ∞ uniformly in all suffi ciently large p. On the other

hand, ∫
Rr2+r

fp,θ (x) dΦ (x; 0, Vp)=
r∏
j=1

j∏
s=1

∫
R2

exp

[
−1

2
y′
(
W

(j,s)
p

)−1

y

]
2π

√
det
(
V

(j,s)
p

) dy, (38)

where

(
W (j,s)
p

)−1
=
(
V (j,s)
p

)−1
+ (1 + δjs)

−1

 −2θpj (vpj + vps) 2θpj

2θpj 0

 .
Using (31-33), we verify that for suffi ciently large p, W (j,s)

p are positive definite,
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almost surely, and

det
(
W (j,s)
p

)
= (1 + δjs)

2 cpvpjvps, and (39)

det
(
V (j,s)
p

)
= (1 + δjs)

2 cpvpjvps (1−4 (θpjvpj) (θpsvps) cp)
−1 . (40)

Therefore,

∫
Rr2+r

fp,θ (x) dΦ (x; 0, Vp)=

r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp

and, uniformly for all suffi ciently large p,

lim
M,M ′→∞


∫

BM,M′

fp,θ (x) dΦ (x; 0, Vp)−
r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp

=0. (41)

Equations (27), (37), and (41) describe the behavior of IM,M ′
p (Θp,Λp) for large p,

M, and M ′.

Let us now turn to the analysis of Ip (Θp,Λp)− IM,M ′
p (Θp,Λp) . Let BM be the

event
{∣∣∣γ(j,s)

p1

∣∣∣ ≤M for all j, s ≤ r
}
, and let

IMp (Θp,Λp) = EΛp

(
1 {BM} exp

{
p

r∑
j=1

θpj
g̃(j)′Λpg̃

(j)

g̃(j)′g̃(j)

})
.

As explained in Guionnet and Maida’s (2005, p.455), γ(j,s)
p1 , j, s = 1, ..., r are inde-

pendent from g̃(j)′Λg̃(j)

g̃(j)′g̃(j)
, j = 1, ..., r. Therefore,

IMp (Θp,Λp) = EΛp (1 {BM}) Ip (Θp,Λp)

=
(
1− EΛp (1 {Bc

M})
)
Ip (Θp,Λp) .
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Denote the centered standard Gaussian measure on R as P. We have

EΛp

(
1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
})

=

∫
1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
} r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
.

For j 6= s and τ such that −1
2

√
p < τ < 1

2

√
p,

∫
eτγ

(j,s)
p1

r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
=

1

(2π)p

∫
e
τ 1√

p
g(j)′g(s)

e−
1
2(g(j)′g(j)+g(s)′g(s))

p∏
i=1

(
dg

(j)
i dg

(s)
i

)
=

(
1− τ 2

p

)− p
2

≤ e2τ2 .

Therefore, using Chebyshev’s inequality, for j 6= s and τ such that −1
2

√
p < τ <

1
2

√
p, ∫

1
{
γ

(j,s)
p1 ≥M

} r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
≤ e2τ2

eMτ
.

Setting τ = M
4
(here we assume that M < 2

√
p), we get

∫
1
{
γ

(j,s)
p1 ≥M

} r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
≤ e−

M2

8 .

Similarly, we show that the same inequality holds when γ(j,s)
p1 is replaced by −γ(j,s)

p ,

and thus, ∫
1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
} r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
≤ 2e−

M2

8 . (42)

For j = s, following the same line of arguments, we get

∫
1
{∣∣γ(j,j)

p

∣∣ ≥M
} r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
≤ 2e−

M2

16 . (43)

Inequalities (42) and (43) imply that EΛp (1 {Bc
M}) ≤ 2r2e−

M2

16 , and therefore,
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for suffi ciently large p,

Ip (Θp,Λp) ≥ IMp (Θp,Λp) ≥
(

1− 2r2e−
M2

16

)
Ip (Θp,Λp) . (44)

Note that

IMp (Θp,Λp)= ep
∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλi)]

(
JM,M ′

p + JM,M ′,∞
p

)
, (45)

where

JM,M ′,∞
p =

∫
1 {BM\BM,M ′} fp,θ

(
γp
) r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
.

We will now derive an upper bound on JM,M ′,∞
p .

From the definition of fp,θ
(
γp
)
, we see that there exist positive constants β1

and β2, which may depend on r, ε and η, such that for any θpj, j = 1, ..., r satisfying

{2θpj ∈ Ωεη, j ≤ r} and for suffi ciently large p, when BM holds,

fp,θ
(
γp
)
≤ exp

{
β1M

r∑
s,k=1

∣∣∣γ(k,s)
p2

∣∣∣+ β2M
2

}
.

Let B(k,s)
M,M ′ be the event that holds whenBM holds and

∣∣∣γ(k,s)
p2

∣∣∣ = maxj,m≤r

∣∣∣γ(j,m)
p2

∣∣∣ >
M ′. Clearly, BM\BM,M ′ = ∪rk,s=1B

(k,s)
M . Therefore,

JM,M ′,∞
p ≤

r∑
k,s=1

∫
B
(k,s)

M,M′

e
β1Mr2

∣∣∣γ(k,s)p2

∣∣∣+β2M2
r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤

r∑
j,m=1

∫
∣∣∣γ(k,s)p2

∣∣∣≥M ′ e
β1Mr2

∣∣∣γ(k,s)p2

∣∣∣+β2M2
r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)

Consider, first, cases where k 6= s. Let us denote λpi (1− 2θpkλpi + 2θpkvpk)
−1/2×

(1− 2θpsλpi + 2θpsvps)
−1/2 as λ̃pi and (1− 2θpjλpi + 2θpjvpj)

1/2 g
(j)
i as g̃(j)

i . Note

that under P(j)
pi , g̃

(j)
i is a standard normal random variable. Further, as long as
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2θpj ∈ Ωεη for j ≤ r, λ̃pi considered as a function of λi is continuous on λi ∈ supp F̂p

for suffi ciently large p, almost surely. Hence, the empirical distribution of λ̃i con-

verges. Moreover, λ̃max = maxi=1,...,p

(
λ̃pi

)
and λ̃min = mini=1,...,p

(
λ̃pi

)
almost

surely converge to finite real numbers. Now, for τ such that |τ | < 1
2

√
p

λ̃max
, we have

∫
eτγ

(k,s)
p2

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
= Eeτ

√
p 1
p

∑p
i=1 λ̃pig̃

(k)
i g̃

(s)
i

=

p∏
i=1

Eeτ
1√
p
λ̃pig̃

(k)
i g̃

(s)
i =

p∏
i=1

(
1− τ 2

λ̃
2

pi

p

)−1/2

≤ e2λ̃
2
maxτ

2

for suffi ciently large p, almost surely. Using this inequality, we get, for suffi ciently

large p and any positive t such that β1r
2M + t < 1

2

√
p

λ̃max

∫
γ
(k,s)
p2 ≥M ′

eβ1r
2Mγ

(k,s)
p2

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤
∫
e
β1r

2Mγ
(k,s)
p2 +t

(
γ
(k,s)
p2 −M ′

) r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
= e−tM

′
∫
e(β1r

2M+t)γ(k,s)p2

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤e−tM ′e2λ̃

2
max(β1r2M+t)

2

Setting t = M ′

4λ̃
2
max

−β1r
2M (here we assume thatM andM ′ are such that t satisfies

the above requirements), we get

∫
γ
(k,s)
p2 ≥M ′

eβ1r
2Mγ

(k,s)
p2

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤ e

− (M′)2

8λ̃
2
max

+β1r
2MM ′

.

Replacing γ(k,s)
p2 by −γ(k,s)

p2 in the above derivations and combining the result with

the above inequality, we get

∫
∣∣∣γ(k,s)p2

∣∣∣≥M ′ e
β1r

2M
∣∣∣γ(k,s)p2

∣∣∣ r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤ 2e

− (M′)2

8λ̃
2
max

+β1r
2MM ′

.
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For the case k = s, following a similar line of arguments, we obtain

∫
∣∣∣γ(k,k)p2

∣∣∣≥M ′ e
β1r

2M
∣∣∣γ(k,k)p2

∣∣∣ r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
≤ 4e

− (M′)2

16λ̃
2
max

+β1r
2MM ′

.

and thus, for suffi ciently large p,

JM,M ′,∞
p ≤ 4r2e

− (M′)2

16λ̃
2
max

+β1r
2MM ′

. (46)

Finally, combining (44), (45), and (46), we obtain the following upper and lower

bounds on

Jp = Ip (Θp,Λp) e
−p
∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλi)] : (47)

JM,M ′

p ≤ Jp ≤
(

1− 2r2e−
M2

16

)−1
(
JM,M ′

p + 4r2e
− (M′)2

16λ̃
2
max

+β1r
2MM ′

)
. (48)

Let τ > 0 be an arbitrarily small number. Equations (37) and (41) imply that

there exist M̄ and M̄ ′, such that for any M > M̄ and M ′ > M̄ ′,

∣∣∣∣∣JM,M ′

p −
r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp

∣∣∣∣∣ < τ

4

for all suffi ciently large p. Let us choose M > M̄ and M ′ > M̄ ′ so that

(
1− 2r2e−

M2

16

)−1

< 2,(
1− 2r2e−

M2

16

)−1

4r2e
− (M′)2

16λ̃
2
max

+β1r
2MM ′

<
τ

4
,

and

[(
1− 2r2e−

M2

16

)−1

− 1

]
sup

{2θpj∈Ωεη ,j≤r}

r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp <

τ

4
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for all suffi ciently large p, almost surely. Then, (48) implies that

∣∣∣∣∣Jp −
r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp

∣∣∣∣∣ < τ (49)

for all suffi ciently large p, almost surely. Since τ can be chosen arbitrarily, we have

from (47) and (49)

Ip (Θp,Λp) = ep
∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλpi)] ×(

r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
,

where o(1)→ 0 as p→∞ uniformly in {2θpj ∈ Ωεη, j ≤ r} , almost surely.�

5.2 Proof of Theorem 1

Setting θpj = 1
2cp

hj
1+hj

, we have vpj = 1+hj, θpjvpj =
hj
2cp
, and ln (1+2θpjvpj−2θpjλpi) =

ln
(

1
cp

hj
1+hj

)
+ ln (z0j − λpi) . Further, by Lemma 11 and formula (3.3) of Onatski,

Moreira and Hallin (2011),
∫

ln (zj0 − λ) dFp (λ) =
hj
cp
− 1

cp
ln (1 + hj) + ln

(1+hj)cp
hj

for suffi ciently large p, almost surely. With these auxiliary results, formula (10) is

a straightforward consequence of (3) and Proposition 2.

Turning to the proof of (11), consider itegrals

I (k1, k2)=

∫ k2

k1

x
npp

2
−1e−

np
2
x

∫
O(p)

e
p x
Sp

tr(DpQ′ΛpQ)
(dQ)dx.

In what follows, we will omit the subscript p in np to simplify notation. Note that

I (0,∞) is the integral part of the expression for Lp
(
h;µp

)
in formula (4). We will

now prove that, for some constant α > 0, almost surely,

I (0,∞)=I (p−α√p, p+α
√
p) (1+o (1)) , (50)
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where o(1) is uniform in h ∈ [0,
√
c− δ]r .

Note that since, by Corollary 1, Sp/p→ 1 almost surely, the set Hδ is bounded

from below, and λp1 → (1 +
√
c)

2 almost surely, there exists a constant A1 > 0,

that depends only on δ and r, such that inf[0,
√
c−δ]

r p x
Sp

tr (DpQ
′ΛpQ) ≥ −A1

2
x for all

x ≥ 0 and all suffi ciently large p, almost surely. Therefore, for all h ∈ [0,
√
c− δ]r ,

2I (0,∞) ≥
∫ ∞

0

x
np
2
−1e−

n+A1
2

xdx =

(
n+ A1

2

)−np
2

Γ
(np

2

)
,

and, using Stirling’s approximation, we get,

I (0,∞) ≥
(
n+ A1

2

)−np
2 (np

2

)np
2
e−

np
2

(
4π

np

)1/2

(1 + o (1))

= p
np
2 e
−
(
n
2

+
A1
2
− 1
4

A21
n

)
p
(

4π

np

)1/2

(1 + o (1)) , (51)

almost surely.

Next, there exists a constant A2 > 0 such that for all x ≥ 0 and all suffi ciently

large p, suph∈[0,
√
c−δ]

r p x
Sp

tr (DpQ
′ΛpQ) ≤ A2

2
x, almost surely. Therefore, almost

surely, for all suffi ciently large p,

I (p+α
√
p,∞) ≤

∫ ∞
p+α
√
p

x
np
2
−1e−

n−A2
2

xdx

=

(
n− A2

2

)−np
2

Γ
(np

2
, y
)
,

where Γ
(
np
2
, y
)
is the complementary incomplete Gamma function (see Olver, p.45)

with y =
(
p+ α

√
p
) (

n−A2
2

)
. Hence, for suffi ciently large p, y > np

2
+

nα
√
p

4
and we

can continue

I (p+α
√
p,∞)<

(
n− A2

2

)−np
2

Γ

(
np

2
,
np

2
+
αn
√
p

4

)
,
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almost surely. According to Olver, p.70, for the complementary incomplete Gamma

function Γ (β, γ) , we have

Γ (β, γ) ≤ e−γγβ

γ − β + 1
,

whenever β > 1 and γ > β − 1. Therefore, we have for suffi ciently large p

I (p+α
√
p,∞) <

(
1− A2

n

)−np
2 e−

np
2
−αn

√
p

4 p
np
2

(
1 + α

2
√
p

)np
2

αn
√
p/4 + 1

= p
np
2 e

A2p
2

+
A22p

4n
e
−np

2
−α

2n
16

+ α3n
48
√
p
− α4n
128p

αn
√
p/4 + 1

(1 + o(1))

< p
np
2 e−

np
2
e
p
(
A2−α

2n
32p

)
αn
√
p/4 + 1

(1 + o(1)) ,

almost surely. Comparing this to (51), we see that α can be chosen so that

I (p+α
√
p,∞) = o(1)I (0,∞) , (52)

almost surely.

Further, for suffi ciently large p, almost surely,

I (0, p−α√p) ≤
∫ p−α√p

0

x
np
2
−1e−

n−A2
2

xdx

=

(
n− A2

2

)−np
2
∫ y

0

t
np
2
−1e−tdt

where y =
(
p− α√p

)
n−A2

2
< np

2
− αn

√
p

4
. Therefore, for any positive z < np

2
, for
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suffi ciently large p,

I (0, p−α√p) ≤
(
n−A2

2

)−np
2
∫ np

2
−αn

√
p

4

0

t
np
2
−1e−tdt

<

(
n−A2

2

)−np
2
(
np

2
−
αn
√
p

4

)z
Γ
(np

2
−z
)
.

Setting z = αn
√
p/4 and using Stirling’s approximation, we have

(
np

2
−
αn
√
p

4

)z
Γ
(np

2
−z
)

=

(
np

2
−
αn
√
p

4

)np
2
− 1
2

e−
np
2

+
αn
√
p

4

√
2π (1+o (1))

so that we can continue

I (0, p−α√p) <

(
n−A2

2

)−np
2
(
np

2
−
αn
√
p

4

)np
2
− 1
2

e−
np
2

+
αn
√
p

4

√
2π (1+o (1))

< p
np
2 e−

np
2 e

p

(
A2
2

+
A22
4n
−α

2n
16p

)
(1+o (1)) .

Comparing this to (51), we see that α can be chosen so that

I (0, p−α√p) = o(1)I (0,∞) , (53)

almost surely. Combining (52) and (53), we get (50).

Now, let us set θ̃pj = x
Sp
θpj = x

Sp
1

2cp

hj
1+hj

. Note that there exist ε > 0 and

η > 0 such that
{

2θ̃pj : hj ∈ [0,
√
c− δ] and x ∈

[
p−α√p, p+α

√
p
]}
⊆ Θεη for

all suffi ciently large p, almost surely. Hence, by (50), and Proposition 2, almost

surely,

I (0,∞) =

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xep

∑r
j=1[θ̃pj ṽpj− 1

2p

∑p
i=1 ln(1+2θ̃pj ṽpj−2θ̃pjλpi)] × (54)(

r∏
j=1

j∏
s=1

√
1−4

(̃
θpj ṽpj

) (̃
θpsṽps

)
cp + o(1)

)
dx,
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where o(1) is uniform in h ∈ [0,
√
c− δ]r and x ∈

[
p−α√p, p+α

√
p
]
.

Expanding θ̃pj ṽpj − 1
2p

∑p
i=1 ln

(
1+2θ̃pj ṽpj−2θ̃pjλpi

)
and

(̃
θpj ṽpj

) (̃
θpsṽps

)
into

power series of x
p
− 1, we get

I (0,∞) =

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xe
p
(
B0+B1(xp−1)+B2(xp−1)

2
)
×(

r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx,

where B0, B1 and B2 are O(1) uniformly in h ∈ [0,
√
c− δ]r . Further, consider the

integral

I(0) =

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xe
p
(
B1

x
p
+B2(xp−1)

2
)
dx.

Splitting the region of integration into segments
[
p−α√p, p−αpγ

]
, [p−αpγ, p+αpγ]

and
[
p+αpγ, p+α

√
p
]
, where 0 < γ < 1/2, and calling the corresponding integrals

as I(1), I(2) and I(3), respectively, we have

I(1) < eα
2

∫ p−αpγ

p−α√p
x
np
2
−1e−

n
2
xeB1xdx < eα

2

p
np
2

(
1− 2B1

n

)np
2
∫ 1−α

2
pγ−1

0

y
np
2
−1e−

np
2
ydy

I(2) >

∫ p+αpγ

p−αpγ
x
np
2
−1e−

n
2
xeB1xdx > p

np
2

(
1− 2B1

n

)np
2
∫ 1+α

2
pγ−1

1−α
2
pγ−1

y
np
2
−1e−

np
2
ydy, and

I(3) < eα
2

∫ p+α
√
p

p+αpγ
x
np
2
−1e−

n
2
xeB1xdx < eα

2

p
np
2

(
1− 2B1

n

)np
2
∫ ∞

1+α
2
pγ−1
y
np
2
−1e−

np
2
ydy

Using Laplace approximation, we have

∫ 1−α
2
pγ−1

0

y
np
2
−1e−

np
2
ydy = o(1)

∫ 1+α
2
pγ−1

1−α
2
pγ−1

y
np
2
−1e−

np
2
ydy, and∫ ∞

1+α
2
pγ−1
y
np
2
−1e−

np
2
ydy = o(1)

∫ 1+α
2
pγ−1

1−α
2
pγ−1

y
np
2
−1e−

np
2
ydy
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so that I(2) dominates I(1) and I(3) and

I(0) = (1 + o(1))

∫ p+αpγ

p−αpγ
x
np
2
−1e−

n
2
xe
p
(
B1

x
p
+B2(xp−1)

2
)
dx

= (1 + o(1))

∫ p+αpγ

p−αpγ
x
np
2
−1e−

n
2
xeB1xdx

= (1 + o(1))

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xeB1xdx.

This implies that

I (0,∞) =

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xep(B0+B1(xp−1)) ×(

r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx,

and hence, only constant and linear terms in the expansion of

θ̃pj ṽpj − 1
2p

∑p
i=1 ln

(
1+2θ̃pj ṽpj−2θ̃pjλpi

)
into power series of x

p
− 1 matter for the

evaluation of I (0,∞) . Let us find these terms.

By Corollary 1, x
Sp
− 1 = x

p
− Sp

p
+ o(p−1) almost surely. Using this fact, after

some algebra, we get

θ̃pj ṽpj =θpjvpj + θpjv
2
pj

(
x

p
− Sp

p

)
+O

((
x

p
− 1

)2
)
,

ln
(

2θ̃pj

)
=ln (2θpj)+

(
x

p
−Sp
p

)
+O

((
x

p
−1

)2
)
,

and

p∑
i=1

ln
(
Kp

(
2θ̃pj

)
−λpi

)
=

p∑
i=1

ln (Kp (2θpj)−λpi)− p
(
1−4cpθ

2
pjv

2
pj

)(x
p
−Sp
p

)

+O

((
x

p
− 1

)2
)
.
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Therefore,

I (0,∞) =

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xep

∑r
j=1[θpjvpj− 1

2p

∑p
i=1 ln(1+2θpjvpj−2θpjλpi)] ×

e
∑r
j=1 θpjvpj(x−Sp)

(
r∏
j=1

j∏
s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx

= (1 + o(1))

r∏
j=1

(1 + hj)
np
2 Lp(h;λp)

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xe
∑r
j=1 θpjvpj(x−Sp)dx,

where the last equality follows from (3) and Proposition 2.

The last equality, (4) and the fact that

∫ p+α
√
p

p−α√p
x
np
2
−1e−

n
2
xe
∑r
j=1 θpjvpj(x−Sp)dx=e

∑r
j=1−

hj
2cp

Sp

(
n

2
−

r∑
j=1

hj
2cp

)−np
2

Γ
(np

2

)
(1+o(1))

imply that

Lp
(
h;µp

)
= (1 + o(1))Lp(h;λp)e

∑r
j=1−

hj
2cp

Sp

(
1−

r∑
j=1

hj
ncp

)−np
2

= (1 + o(1))Lp(h;λp)e
−Sp−p

2cp

∑r
j=1hj+

1
4cp

(
∑r
j=1 hj)

2

,

which establishes (11). The rest of the statements of Theorem 1 follow from (10),

(11), and Lemmas 12 and A2 of Onatski, Moreira and Hallin (2011).�

5.3 Proof of Proposition 3

To save space, we only derive the asymptotic power envelope for the relatively

more diffi cult case of real-valued data and µ-based tests. According to the Neyman-

Pearson lemma, the most powerful test of the null h = 0 against a point alternative

h = (h1, ..., hr) is the test which rejects the null when Lp
(
h;µp

)
is larger than a

critical value C. It follows from Theorem 1 that, for such a test to have asymptotic
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size α, C must be

C =
√
W (h)Φ−1 (1− α) +m (h) , (55)

where

m (h) =
1

4

r∑
i,j=1

(
ln

(
1− hihj

c

)
+
hihj
c

)
and

W (h) = −1

2

r∑
i,j=1

(
ln

(
1− hihj

c

)
+
hihj
c

)
.

Now, according to Le Cam’s third lemma and Theorem 1, under h = (h1, ..., hr) ,

lnLp
(
h;µp

) d→ N (m (h) +W (h) ,W (h)) . Therefore, the asymptotic power βµ (h)

is (15).�

5.4 Proof of Proposition 4

Suppose that X be a p × n random matrix distributed as N (0, In ⊗ Σ). The

pdf of X is given by f (x; Σ) = (2π)−np/2 |Σ|−n/2 exp
{
−1

2
tr (Σ−1XX ′)

}
. By the

factorization theorem, T = T (X) = XX ′ is a suffi cient statistic.

Let g ∈ O (p) and define the action in the sample space g ◦ X = gX. This

implies the action in the parameter space g ◦ Σ = gΣg′, which preserves H0 and

H1. The action in the sample space also induces an action in the suffi cient statistic

space g ◦ T = gTg′.

Let φ (x) be any invariant test, and define ψ (t) = E (φ (X) |T = t) . We note

that this expectation does not depend on Σ because T is a suffi cient statistic.

Then, E (ψ (t)) = E (E (φ (X) |T = t)) = E (φ (X)) so that ψ (t) has the same

power function as φ (x). On the other hand, ψ (gtg′) = E (φ (X) |T = gtg′) =

E (φ (X) |g−1Tg′−1 = t) = E (φ (g−1X) |g−1XX ′g′−1 = t) = E (φ (X) |T = t) =

ψ (t). Hence, ψ (t) is an invariant test based on T.

Finally, note that the maximal invariant M(T ) consists of the ordered sample
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eigenvalues λ1, ..., λm, where m = min (n, p) . But any invariant test can be written

as a function of the maximal invariant M(T ). Hence, ψ (t) is λ-based and has the

same power function as φ (X) .

The existence of a µ-based test with the same power function as that of an

invariant test with respect to orthogonal transformations and multiplications by

non-zero constants is established similarly.�
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