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ABSTRACT. Standard approaches to constructing nonparametric confidence

bands for functions are frustrated by the impact of bias, which generally is not esti-
mated consistently when using the bootstrap and conventionally smoothed function
estimators. To overcome this problem it is common practice to either undersmooth,
so as to reduce the impact of bias, or oversmooth, and thereby introduce an ex-

plicit or implicit bias estimator. However, these approaches, and others based on
nonstandard smoothing methods, complicate the process of inference, for example
by requiring the choice of new, unconventional smoothing parameters and, in the

case of undersmoothing, producing relatively wide bands. In this paper we suggest
a new approach, which exploits to our advantage one of the difficulties that, in
the past, has prevented an attractive solution to this problem—the fact that the

standard bootstrap bias estimator suffers from relatively high-frequency stochastic
error. The high frequency, together with a technique based on quantiles, can be
exploited to dampen down the stochastic error term, leading to relatively narrow,
simple-to-construct confidence bands.

KEYWORDS. Bandwidth, bias, confidence interval, conservative coverage, cov-
erage error, kernel methods, statistical smoothing.

SHORT TITLE. Confidence bands.

1. INTRODUCTION

There is a particularly extensive literature, summarised at the end of this section,

on constructing nonparametric confidence bands for functions. However, this work

generally does not suggest practical solutions to the critical problem of choosing

tuning parameters, for example smoothing parameters or the nominal coverage level

for the confidence band, to ensure a high degree of coverage accuracy or to produce

bands that err on the side of conservatism. In this paper we suggest new, simple
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bootstrap methods for constructing confidence bands using conventional smoothing

parameter choices.

In particular, our approach does not need any undersmoothing or oversmooth-

ing. The basic algorithm requires only a single application of the bootstrap, al-

though a more refined, double bootstrap technique is also suggested. The greater

part of our attention is directed to regression problems, but we also discuss the

application of our methods to constructing confidence bands for density functions.

The key to our methodology is to exploit, to our advantage, a difficulty that in

the past has hindered a simple solution to the confidence band problem. Specifically,

if nonparametric function estimators are constructed in a conventional manner then

their bias is of the same order as their error about the mean, and accommodating the

bias has been a major obstacle to achieving good coverage accuracy. Conventional

bootstrap methods can be used to estimate the bias and reduce its impact, but the

bias estimators fail to be consistent, and in fact the stochastic noise from which

they suffer is highly erratic; in the case of kernel methods it varies on the same

scale as the bandwidth. However, as we show in this paper, the erratic behaviour

is actually advantageous, since if we average over it then we can largely eliminate

the negative impact that it has on the level accuracy of confidence bands. We do

the averaging implicitly, not by computing means but by working with quantiles of

the “distribution” of coverage.

To conclude we note some of the earlier literature on nonparametric confidence

bands for functions. We summarise this literature largely in terms of whether it

involves undersmoothing or oversmoothing; the technique suggested in the present

paper is almost unique in that it requires neither of these approaches. Härdle and

Bowman (1988), Härdle and Marron (1991), Hall (1992a), Eubank and Speckman

(1993), Sun and Loader (1994), Härdle et al. (1995) and Xia (1998) suggested

methods based on oversmoothing, using either implicit or explicit bias correction.

Hall and Titterington (1988) also used explicit bias correction, in the sense that

their bands required a known bound on an appropriate derivative of the target

function. Bjerve et al. (1985), Hall (1992b), Hall and Owen (1993), Neumann

(1995), Chen (1996), Neumann and Polzehl (1998), Picard and Tribouley (2000),

Claeskens and Van Keilegom (2003) and McMurry and Politis (2008) employed

methods that involve undersmoothing. There is also a theoretical literature which

addresses the bias issue through consideration of the technical function class from

which a regression mean or density came; see e.g. Low (1997) and Genovese and
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Wasserman (2008). This work sometimes involves confidence balls, rather than

bands, and in that respect is connected to research such as that of Li (1989), Eubank

and Wang (1994) and Genovese and Wasserman (2005). Wang and Wahba (1995)

considered spline and Bayesian methods.

2. METHODOLOGY

2.1. Model. Suppose we observe data pairs in a sample Z = {(Xi, Yi), 1 ≤ i ≤ n},
generated by the model

Yi = g(Xi) + εi , (2.1)

where the experimental errors εi have zero mean. Our aim is to construct a point-

wise confidence band for the true g in a closed region R. A more elaborate, het-

eroscedastic model will be discussed in section 2.4; we omit it here only for the sake

of simplicity.

2.2. Overview and intuition. Let ĝ denote a conventional estimator of g. We

assume that ĝ incorporates smoothing parameters computed empirically from the

data, using for example cross-validation or a plug-in rule, and that the variance

of ĝ can be estimated consistently by s(X )2 σ̂2, where s(X ) is a known function

of the set of design points X = {X1, . . . , Xn} and the smoothing parameters, and

σ̂2 is an estimator of the variance, σ2, of the experimental errors εi, computed

from the dataset Z. The case of heteroscedasticity is readily accommodated too;

see section 2.4. We write ĝ∗ for the version of ĝ computed from a conventional

bootstrap resample. For details of the construction of ĝ∗, see step 4 of the algorithm

in section 2.3.

The smoothing parameters used for ĝ would generally be chosen to optimise a

measure of accuracy, for example in a weighted Lp metric where 1 ≤ p < ∞, and

we shall make this assumption implicitly in the discussion below. In particular it

implies that the asymptotic effect of bias, for example as represented by the term

b(x) in (2.4) below, is finite and typically nonzero.

An asymptotic, symmetric confidence band for g, constructed naively without

considering bias, and with nominal coverage 1− α, has the form:

B(α) =
{

(x, y) : x ∈ R , ĝ(x)− s(X )(x) σ̂ z1−(α/2) ≤ y

≤ ĝ(x) + s(X )(x) σ̂ z1−(α/2)

}
, (2.2)

where zβ = Φ−1(β) is the β-level critical point of the standard normal distribution,

and Φ is the standard normal distribution function. Unfortunately, the coverage of
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B(α) at a point x, given by

π(x, α) = P{(x, g(x)) ∈ B(α)} , (2.3)

is incorrect even in an asymptotic sense, and in fact the band usually undercovers,

often seriously, in the limit as n → ∞. The reason is that the bias of ĝ, as an

estimator of g, is of the same size as the estimator’s stochastic error, and the

confidence band allows only for the latter type of error. As a result the limit, as

n→∞, of the coverage of the band is given by

πlim(x, α) = lim
n→∞

π(x, α) = Φ{z + b(x)} − Φ{−z + b(x)} , (2.4)

where z = z1−(α/2) and b(x) describes the asymptotic effect that bias has on cov-

erage. The right-hand side of (2.4) equals Φ(z) − Φ(−z) = 1 − α if and only if

b(x) = 0. For all other values of b(x), πlim(x, α) < 1 − α. This explains why the

band at (2.2) almost always undercovers, unless some sort of bias correction is used.

The band potentially can be recalibrated, using the bootstrap, to correct for

coverage errors caused by bias, but now another issue causes difficulty: the standard

bootstrap estimator of bias, E{ĝ∗(x) | Z} − ĝ(x), is inconsistent, in the sense that

the ratio of the estimated bias to its true value does not converge to 1 as n → ∞.

This problem can be addressed using an appropriately oversmoothed version of ĝ

when estimating bias, either explicitly or implicitly, but the degree of oversmoothing

has to be determined from the data, and in practice this issue is awkward to resolve.

Alternatively, the estimator ĝ can be undersmoothed, so that the influence of bias

is reduced, but now the amount of undersmoothing has to be determined, and that

too is difficult. Moreover, confidence bands computed from an undersmoothed ĝ

are an order of magnitude wider than those at (2.2), and so the undersmoothing

approach, although more popular than oversmoothing, is unattractive for at least

two reasons.

However, a simpler bootstrap technique, described in detail in section 2.3,

overcomes these problems. In summary it is implemented as follows. First, use

standard bootstrap methods to construct an estimator π̂(x, α) of the probability

π(x, α), defined at (2.3), that the band B(α) covers (x, g(x)). (For details, see

step 5 in section 2.3.) Then, for a given desired level of coverage, 1−α0 say, define

α̂(x, α0) to be the solution of the equation π̂(x, α) = 1− α0. Formally:

π̂(x, β) = 1− α0 when β = α̂(x, α0) . (2.5)
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In view of the undercoverage property discussed below (2.4), we expect α̂(x, α0)

to be less than α0. Equivalently, we anticipate that the nominal coverage of the

band has to be increased above 1 − α0 in order for the band to cover (x, g(x))

with probability at least 1 − α0. Conventionally we would employ α̂(x, α0) as the

nominal level, but, owing to the large amount of stochastic error in the bootstrap

bias estimator that is used implicitly in this technique, it produces confidence bands

with particularly poor coverage accuracy.

Instead we take the following approach. Given ξ ∈ (0, 1
2 ), let α̂ξ(α0) be the

(1 − ξ)-level quantile of values of α̂(x, α0), where α̂(x, α0) is viewed as a function

of x ∈ R. (Details are given in step 6 in section 2.3.) The band B{x, α̂ξ(α0)}
is asymptotically conservative for all but at most a fraction ξ of pairs (x, g(x)),

which can be identified from a plot of α̂(x, α0). (They correspond to values x for

which |b(x)| is relatively large, or equivalently, to x for which α̂(x, α0) tends to be

relatively large.) In particular, taking 1− ξ ≈ 0.7 or 0.8 typically gives bands that

err on the side of conservatism, but are not unduly conservative. See section 3.

Why does this work? It is clear that the coverage of the band B{x, α̂ξ(α0)}
increases with decreasing ξ. However, the more detailed claim made above, that

the band is asymptotically conservative for all but at most a proportion ξ of pairs

(x, g(x)), needs justification. This will be given in detail in section 4. In the

remainder of section 2.2 we provide the reader with intuition, noting first that,

although the bootstrap bias estimator is inconsistent, the estimator equals the true

bias, plus negligible terms, together with a stochastic quantity which has zero mean

and a symmetric distribution. This symmetry plays a major role.

For example, if the model at (2.1) obtains and ĝ is a local linear estimator with

bandwidth h and a compactly supported kernel, and if the design is univariate, then

the bootstrap bias estimator is given by

E{ĝ∗(x) | Z} − ĝ(x) = c1 g
′′(x)h2 + (nh)−1/2 fX(x)−1/2W (x/h)

+ negligible terms , (2.6)

where, here and below, cj denotes a positive constant, c1 and c2 depend only on the

kernel, fX is the common density of the design points Xi, and W is a c2-dependent,

stationary Gaussian process with zero mean and unit variance. (Although the

covariance structure, and hence the distribution, of W are fixed, a different version

of W is used for each sample size, to ensure that (2.6) holds.) The value of c2, in the

claim of “c2-dependence,” depends on the length of the support of the kernel. The
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first term, c1 g
′′(x)h2, on the right-hand side of (2.6) is identical to the asymptotic

bias of ĝ(x), but the second term on the right makes the bias estimator, on the

left-hand side of (2.6), inconsistent.

Still in the context of (2.6), the bandwidth h, which typically would have been

chosen by a standard empirical method to minimise a version of Lp error where

1 ≤ p < ∞, is asymptotic to c3 n
−1/5. The asymptotic variance of ĝ(x) equals

c4 (nh)−1 fX(x)−1, where fX is the density of the design variables Xi. In this

notation, b(x) in (2.4) is given by

b(x) = − lim
h→0

[
c1 g
′′(x)h2

/{
c4 (nh)−1 fX(x)−1

}1/2
]

= −c5 g′′(x) fX(x)1/2 . (2.7)

However, the limiting form of the bootstrap estimator of bias is strongly influenced

by the second term on the right-hand side of (2.6), as well as by the first term, with

the result that

π̂(x, α) = Φ{z + b(x) + ∆(x)} − Φ{−z + b(x) + ∆(x)}+ negligible terms , (2.8)

where

∆(x) = −c6W (x/h) . (2.9)

Write β = α(x, α0) > 0 for the solution of the equation

Φ{z1−(β/2) + b(x)} − Φ{−z1−(β/2) + b(x)} = 1− α0 . (2.10)

Replacing b(x) in (2.4) by b(x) + ∆(x) makes π̂(x, α) greater, asymptotically, than

πlim(x, α) in (2.4) if |b(x) + ∆(x)| > |b(x)|; and makes π̂(x, α) less than πlim(x, α)

if |b(x) + ∆(x)| ≤ |b(x)|. Since the stochastic process W is symmetric then,

again asymptotically, these inequalities arise with equal probabilities, and more-

over, |b(x) + ∆(x)| = |b(x)| if and only if ∆(x) = 0. Observe too that, because

∆ oscillates at a high frequency, methods based on quantiles of |b(x) + ∆(x)| for

all x ∈ R are, in an asymptotic sense, based on quantiles of the “distribution” of

|b(x)| for x ∈ R. Hence, if α̂ξ(α0) is taken to be the (1 − ξ)-level quantile of the

“distribution” of α̂(x, α0), as suggested four paragraphs above, then α̂ξ(α0) will

converge, as n→∞, to a number β = αξ(α0) say, that solves the equation

1∫
R dx

∫
R
I{α(x, α0) ≤ β} dx = 1− ξ , (2.11)

or, in cases where the function b, in (4.8), vanishes on a set of nonzero measure,

αξ(α0) equals the infimum of values β such that the left-hand side does not exceed



7

the right-hand side. Going back to (2.4) we see that this is exactly the value we

need in order to ensure that the asymptotic coverage of the band equals 1− α0 for

all x such that α(x, α0) ≤ αξ(α0).

This approach becomes steadily more conservative, for a proportion 1 − ξ of

values of x, as we decrease ξ towards 0. (The proportion referred to here corresponds

to the set of x such that α(x, α0) ≤ αξ(α0); see (2.10).) Nevertheless, there may

be some values of x for which the associated confidence interval for g(x) is slightly

anti-conservative. These are the x ∈ R for which |b(x)| (where b is as in (2.4)) is

relatively large. We use the word “slightly” since, if the function b is smooth, then,

as 1 − ξ increases to 1, the effect of bias on the asymptotic coverage of confidence

intervals for g(x), when x is in the anti-conservative region ofR, converges uniformly

to 0. To appreciate why, note that, for x in the anti-conservative region, the size

of |b(x)|, which is causing the anti-conservatism, is close to its size in nearby places

where conservatism is found, and so the coverage errors are close too.

If ξ = 0, so that α̂1(α0) = supx∈R α̂(x, α0), then we obtain a band which, in the

one-dimensional example treated from (2.6) down, has width O{(nh)−1/2 (log n)1/2}
rather than O{(nh)−1/2}. In comparison, for each fixed ξ > 0 the band is of width

O{(nh)−1/2}.

In summary, our algorithm produces confidence bands that, in asymptotic

terms, cover g(x) with probability at least 1 − α0, for a given known α0 such as

α0 = 0.05, for at least a proportion 1 − ξ of values of x ∈ R. If we take ξ = α0

then we have a method for constructing confidence bands “that cover g(x) with

probability at least 1− α0 for at least a proportion 1− α0 of values x.”

2.3. The algorithm in detail

Step 1. Estimators of g and σ2. Construct a conventional nonparametric estimator

ĝ of g. Use a standard empirical method (for example, cross-validation or a plug-in

rule), designed to minimise mean Lp error for some p in the range 1 ≤ p < ∞, to

choose the smoothing parameters on which ĝ depends. For example, if the design

is univariate then a local linear estimator of g(x) is given by

ĝ(x) =
1

n

n∑
i=1

Ai(x)Yi , (2.12)

where

Ai(x) =
S2(x)− {(x−Xi)/h}S1(x)

S0(x)S2(x)− S1(x)2
Ki(x) , (2.13)
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Sk(x) = n−1
∑
i {(x −Xi)/h}kKi(x), Ki(x) = h−1K{(x −Xi)/h}, K is a kernel

function and h is a bandwidth.

There is an extensive literature on computing estimators σ̂2 of the error variance

σ2 = var(ε); see, for example, Rice (1984), Buckley et al. (1988), Gasser et al. (1986),

Müller and Stadtmüller (1987, 1992), Hall et al. (1990), Hall and Marron (1990),

Seifert et al. (1993), Neumann (1994), Müller and Zhao (1995), Dette et al. (1998),

Fan and Yao (1998), Müller et al. (2003), Munk et al. (2005), Tong and Wang

(2005), Brown and Levine (2007), Cai et al. (2009) and Mendez and Lohr (2011). It

includes residual-based estimators, which we introduce at (2.15) below, and methods

based on differences and generalised differences. An example of the latter approach,

in the case of univariate design, is the following estimator due to Rice (1984):

σ̂2 =
1

2 (n− 1)

n∑
i=2

(Y[i] − Y[i−1])
2 , (2.14)

where Y[i] is the concomitant of X(i) and X(1) ≤ . . . ≤ X(n) is the sequence of order

statistics derived from the design variables.

As in section 2.2, let s(X )(x)2 σ̂2 denote an estimator of the variance of ĝ(x),

where s(X )(x) depends on the data only through the design points, and σ̂2 estimates

error variance, for example being defined as at (2.14) or (2.15). In the local linear

example, introduced in (2.12) and (2.13), we take s(X )(x)2 = κ/{nh f̂X(x)}, where

κ =
∫
K2 and f̂X(x) = (nh1)−1

∑
1≤i≤n K1{(x − Xi)/h

1} is a standard kernel

density estimator, potentially constructed using a bandwidth h1 and kernel K1

different from those used for ĝ. There are many effective, empirical ways of choosing

h1, and any of those can be used.

Step 2. Computing residuals. Using the estimator ĝ from step (1), calculate initial

residuals ε̃i = Yi − ĝ(Xi), put ε̄ = n−1
∑
i ε̃i, and define the centred residuals by

ε̂i = ε̃i − ε̄.

A conventional, residual-based estimator of σ2, alternative to the estimator at

(2.14), is

σ̂2 =
1

n

n∑
i=1

ε̂2i . (2.15)

The estimator at (2.14) is root-n consistent for σ2, whereas the estimator at (2.15)

converges at a slower rate unless an undersmoothed estimator of ĝ is used when

computing the residuals. This issue is immaterial to the theory in section 4, although

it tends to make the estimator at (2.14) a little more attractive.
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Step 3. Computing bootstrap resample. Construct a resample Z∗ = {(Xi, Y
∗
i ),

1 ≤ i ≤ n}, where Y ∗i = ĝ(Xi) + ε∗i and the ε∗i s are obtained by sampling from

ε̂1, . . . , ε̂n randomly, with replacement, conditional on X . Note that, since regression

is conventionally undertaken conditional on the design sequence, then the Xis are

not resampled, only the Yis.

Step 4. Bootstrap versions of ĝ, σ̂2 and B(α). From the resample drawn in step 3,

but using the same smoothing parameter employed to construct ĝ, compute the

bootstrap version ĝ∗ of ĝ. (See section 2.4 for discussion of the smoothing parameter

issue.) Let σ̂∗2 denote the bootstrap version of σ̂2, obtained when the latter is

computed from Z∗ rather than Z, and construct the bootstrap version of B(α),

at (2.2):

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x)− s(X )(x) σ̂∗ z1−(α/2) ≤ y

≤ ĝ∗(x) + s(X )(x) σ̂∗ z1−(α/2)

}
. (2.16)

Note that s(X ) is exactly the same as in (2.2); again this is a consequence of the

fact that we are conducting inference conditional on the design points.

If, as in the illustration in step 1, the design is univariate and local linear

estimators are employed, then ĝ∗(x) = n−1
∑

1≤i≤n Ai(x)Y ∗i where Ai(x) is as

at (2.13). The bootstrap analogue of the variance formula (2.14) is σ̂∗2 = {2 (n −
1)}−1

∑
2≤i≤n (Y ∗[i] − Y

∗
[i−1])

2, where, if the ith largest order statistic X(i) equals

Xj , then Y ∗[i] = ĝ(Xj) + ε∗j .

Step 5. Estimator of coverage error. The bootstrap estimator π̂(x, α) of the prob-

ability π(x, α) that B(α) covers (x, g(x)) is defined by:

π̂(x, α) = P
{

(x, ĝ(x)) ∈ B∗(α)
∣∣ X} , (2.17)

and is computed, by Monte Carlo simulation, in the form

1

B

B∑
b=1

I
{

(x, ĝ(x)) ∈ B∗b (x, α)
}
, (2.18)

where B∗b (x, α) denotes the bth out of B bootstrap replicates of B∗(α), where the

latter is as at (2.16). The estimator at (2.17) is completely conventional, and in

particular, no additional or nonstandard smoothing is needed.

Step 6. Constructing final confidence band. Define α̂(x, α0) to be the solution, in

α, of π̂(x, α) = 1− α0, and let α̂ξ(α0) denote the (1− ξ)-level quantile of points in
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the set {α̂(x, α0) : x ∈ R}. Specifically:

take R to be a subset of IRr, superimpose on R a regular, r-dimensional,
rectangular grid with edge width δ, let x1, . . . , xN ∈ R be the grid centres,
let α̂ξ(α0, δ) denote the (1 − ξ)-level empirical quantile of the points
α̂(x1, α0), . . . , α̂(xN , α0), and, for ξ ∈ (0, 1), let α̂ξ(α0) denote the limit
infimum, as δ → 0, of the sequence α̂ξ(α0, δ).

(2.19)

(We use the limit infimum to avoid ambiguity, although under mild conditions the

limit exists.) For a value ξ ∈ (0, 1
2 ], construct the band B{α̂ξ(α0)}. In practice we

have found that taking 1−ξ in the range 0.7–0.8 generally gives a slight to moderate

degree of conservatism. It can result in noticeable anti-conservatism if the sample

size is too small.

2.4. Two remarks on the algorithm.

Remark 1. Smoothing parameter for ĝ∗. An important aspect of step 4 is that we

use the same empirical smoothing parameters for both ĝ∗ and ĝ, even though, in

some respects, it might seem appropriate to use a bootstrap version of the smoothing

parameters for ĝ when estimating ĝ∗. However, since smoothing parameters should

be chosen to effect an optimal tradeoff between bias and stochastic error, and the

bias of ĝ is not estimated accurately by the conventional bootstrap used in step 3

above, then the bootstrap versions of smoothing parameters, used to construct ĝ∗,

are generally not asymptotically equivalent to their counterparts used for ĝ. This

can cause difficulties. The innate conservatism of our methodology accommodates

the slightly nonstandard smoothing parameter choice in step 4. Moreover, by not

having to recompute the bandwidth at every bootstrap step we substantially reduce

computational labour.

Remark 2. Heteroscedasticity. A heteroscedastic generalisation of the model at

(2.1) has the form

Yi = g(Xi) + σ(Xi) εi , (2.20)

where the εis have zero mean and unit variance, and σ(x) is a nonnegative function

that is estimated consistently by σ̂(x), say, computed from the dataset Z using

either parametric or nonparametric methods. In this setting the variance of ĝ(x)

generally can be estimated by s(X )2 σ̂(x)2, where s(X ) is a known function of the

design points, and the confidence band at (2.2) should be replaced by

B(α) =
{

(x, y) : x ∈ R , ĝ(x)− s(X )(x) σ̂(x) z1−(α/2) ≤ y

≤ ĝ(x) + s(X )(x) σ̂(x) z1−(α/2)

}
.
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The model for generating bootstrap data now has the form: Y ∗i = ĝ(Xi)+ σ̂(Xi) ε
∗
i ,

instead of: Y ∗i = ĝ(Xi) + ε∗i in step 4; and the ε∗i s are resampled conventionally

from residual approximations to the εis.

With these modifications, the algorithm described in steps 1–6 can be imple-

mented as before, and the resulting confidence bands have similar properties. In

particular, if we redefine B∗(α) by

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x)− s(X )(x) σ̂∗(x) z1−(α/2) ≤ y

≤ ĝ∗(x) + s(X )(x) σ̂∗(x) z1−(α/2)

}
(compare (2.16)), and, using this new definition, continue to define π̂(x, α) as at

(2.17) (computed as at (2.18)); and if we continue to define α = α̂(x, α0) to be the

solution of π̂(x, α) = 1− α0, and to define α̂ξ(α0) as in (2.19); then the confidence

band B{x, α̂ξ(α0)} is asymptotically conservative for at least a proportion 1− ξ of

values x ∈ R. (Moreover, as explained in the second-last paragraph of section 2.2,

for the complementary proportion of values x the coverage of the confidence interval

for g(x) is close to 0.) This approach can be justified intuitively as in section 2.2,

noting that, in the context of the model at (2.20), the expansion at (2.6) should be

replaced by:

E{ĝ∗(x) | Z} − ĝ(x) = c1 g
′′(x)h2 + (nh)−1/2 σ(x) fX(x)−1/2W (x/h)

+ negligible terms .

2.5. Percentile bootstrap confidence bands. The methods discussed above are based

on the symmetric, asymptotic confidence band B(α), which in turn is founded on

a normal approximation. The approach uses a single application of the bootstrap

for calibration, so as to reduce coverage error. However, particularly if we would

prefer the bands to be placed asymmetrically on either side of the estimator ĝ so as

to reflect skewness of the distribution of experimental errors, the initial confidence

band B(α), at (2.2), could be constructed using bootstrap methods, and a second

iteration of the bootstrap, resulting in a double bootstrap method, could be used

to refine coverage accuracy.

The first bootstrap implementation is undertaken using step 4 of the algorithm

in section 2.3, and allows us to define the critical point ẑβ(x) by

P
{
ĝ∗(x)− ĝ(x) ≤ s(X ) ẑβ | Z} = β , (2.21)



12

for β ∈ (0, 1). The confidence band B(α) is now re-defined as

B(α) =
{

(x, y) : x ∈ R , ĝ(x)− s(X )(x) ẑ1−(α/2) ≤ y

≤ ĝ(x) + s(X )(x) ẑ1−(α/2)

}
. (2.22)

The remainder of the methodology can be implemented in the following six-step

algorithm.

(1) Calculate the uncentred bootstrap residuals, ε̃∗i = Y ∗i − ĝ∗(Xi). (2) Centre

them to obtain ε̂∗i = ε̃∗i − ε̄∗i , where ε̄∗ = n−1
∑
i ε̃
∗
i . (3) Draw a double-bootstrap

resample, Z∗∗ = {(Xi, Y
∗∗
i ), 1 ≤ i ≤ n}, where Y ∗∗i = ĝ∗(Xi) + ε∗∗i and the ε∗∗i s are

sampled randomly, with replacement, from the ε̂∗i s. (4) Construct the bootstrap-

world version B∗(α) of the band B(α) at (2.22), defined by

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x)− s(X )(x) ẑ∗1−(α/2) ≤ y

≤ ĝ∗(x) + s(X )(x) ẑ∗1−(α/2)

}
,

where, reflecting (2.21), ẑ∗β is defined by

P
{
ĝ∗∗(x)− ĝ∗(x) ≤ s(X ) ẑ∗β | Z∗} = β ,

and Z∗ is defined as in step 3 of the algorithm in section 2.3. (5) For this new

definition of B∗(α), define π̂(x, α) as at (2.17). (6) Define α̂ξ(α0) as in (2.19), and

take the final confidence band to be B{α̂ξ(α0)}, where B(α) is as at (2.22).

There is also a percentile-t version of this methodology, using our our quantile-

based definition of α̂ξ(α0).

2.6. Confidence bands for probability densities. Analogous methods can be used

effectively to construct confidence bands for probability densities. We consider here

the version of the single-bootstrap technique introduced in section 2.3, when it is

adapted so as to construct confidence bands for densities of r-variate probability

distributions. Specifically, let X = {X1, . . . , Xn} denote a random sample drawn

from a distribution with density f , let h be a bandwidth and K a kernel, and define

the kernel estimator of f by

f̂(x) =
1

nhr

n∑
i=1

K
(x−Xi

h

)
.

This estimator is asymptotically normally distributed with variance (nhr)−1 κ f(x),

where κ =
∫
K2, and so a naive, pointwise confidence band for f(x) is given by

B(α) =
{

(x, y) : x ∈ R , f̂(x)−
[
(nhr)−1 κ f̂(x)

]1/2
z1−(α/2) ≤ y

≤ f̂(x) +
[
(nhr)−1 κ f̂(x)

]1/2
z1−(α/2)

}
;
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compare (2.2).

To correct B(α) for coverage error, draw a random sample X ∗ = {X∗1 , . . . , X∗n}
from the distribution with density f̂X , and define f̂∗ to be the corresponding kernel

estimator of f̂ , based on X rather than X ∗:

f̂∗(x) =
1

nhr

n∑
i=1

K
(x−X∗i

h

)
.

Importantly, we do not generate X ∗ simply by resampling from X . Analogously to

(2.16), the bootstrap version of B(α) is

B∗(α) =
{

(x, y) : x ∈ R , f̂∗(x)−
[
(nhr)−1 κ f̂∗(x)

]1/2
z1−(α/2) ≤ y

≤ f̂∗(x) +
[
(nhr)−1 κ f̂∗(x)

]1/2
z1−(α/2)

}
.

For the reasons given in Remark 1 in section 2.4 we use the same bandwidth, h, for

both B(α) and B∗(α).

Our bootstrap estimator π̂(x, α) of the probability π(x, α) = P{(x, f(x)) ∈
B(α)} that B(α) covers (x, f(x)), is given by π̂(x, α) = P{(x, ĝ(x)) ∈ B∗(α) | X}.
As in step 6 of the algorithm in section 2.3, for a given desired coverage level 1−α0,

let α = α̂(x, α0) be the solution of π̂(x, α) = 1−α0, and define α̂ξ(α0) as in (2.19).

Our final confidence band is B{α̂ξ(α0)}. For a proportion of at least 1 − ξ of the

values of x ∈ R, the limit of the probability that this band covers f(x) is not less

than 1− α0, and for the remainder of values x the coverage error is close to 0.

In the cases r = 1 and 2, which are really the only cases where confidence bands

can be depicted, theoretical results analogous to those in section 4, for regression,

can be developed using Hungarian approximations to empirical distribution func-

tions. See, for example, Theorem 3 of Kómlós, Major and Tusnády (1976) for the

case r = 1, and Tusnády (1977) and Massart (1989) for r ≥ 2. In the univariate

case, the analogue of (2.6) is

E{f̂∗(x) | Z} − f̂(x) = 1
2 κ2 f

′′(x)h2 + (nh)−1/2 f(x)1/2 V (x/h)

+ negligible terms ,

and (2.8) holds as stated before; there, for constants c7 and c8, κ2 =
∫
u2K(u) du,

we define b(x) = −c7 f ′′(x) f(x)−1/2, ∆(x) = −c8 V (x), and V is a stationary

Gaussian process with zero mean and covariance K ′′ ∗K ′′.
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Alternative to the definition of B(α) above, a confidence band based on the

square-root transform, reflecting the fact that the asymptotic variance of f̂ is

proportional to f , could be used. Percentile and percentile-t methods, using our

quantile-based method founded on α̂ξ(α0), can also be used.

4. NUMERICAL PROPERTIES

This section summarises the results of a simulation study addressing the finite-

sample performance of the method described in section 2. In particular, we report

empirical coverage probabilities of nominal 95% confidence intervals for g(x), using

different values of x, different quantiles (corresponding to different values of 1− ξ),
different choices of g and different design densities fX , and different sample sizes n.

Data were generated randomly from the model at (2.1), where the experimental

errors εi were distributed independently as N(0, 1). We also simulated cases where

the errors were distributed as N(0, 0.04) and N(0, 0.25), although, since the results

were similar to those in the N(0, 1) setting, they are not reported here.

We present results for g(x) ≡ x2 and g(x) ≡ Φ(3x), where Φ denotes the

standard normal distribution function. Graphs of these functions on the interval

[−1, 1] are given in Figure 4. The Xis were sampled randomly from either the

uniform distribution on [−1, 1] or from the distribution with probability density

fX(x) = b cos{ 1
2 (π − 0.01)x} on [−1, 1], where b was chosen to make fX a proper

density on that interval. Below, we refer to that as the “cosine density.”

The estimator ĝ was constructed using local-linear kernel regression and the

biweight kernel. The bandwidth was computed using the plug-in method of Rup-

pert et al. (1995). Almost identical results were obtained using least-squares cross

validation bandwidths, and so for brevity they are not reported here. The variance

of εi was estimated using (2.14), and fX was estimated using a standard normal

kernel with the bandwidth obtained by the “normal reference” method. The sam-

ple sizes were n = 50, 100, and 200. Each experiment involved 100 Monte Carlo

replications, and 500 bootstrap resamples were used for each each replication.

The empirical coverage probabilities of nominal 95%, two-sided confidence in-

tervals are shown in Figures 1 and 2. For the quantiles corresponding to 1− ξ = 0.7

and 0.8 the coverage levels are slightly conservative, except for values of x near the

boundaries of the support of fX , where the coverage probabilities associated with

these quantiles tend to be below 95% on account of data sparsity. (Near the bound-

aries the estimator is limited largely to data on just one side of the point being
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estimated, but away from the boundaries it has access to data on both sides.) In

the case of the cosine density the sparsity problems at boundaries are more serious,

and so the anti-conservatism at boundaries is more noticeable.

Figure 3 shows average empirical critical values according to quantile level,

1 − ξ, with n = 50. These provide an indication of the widths of the confidence

intervals for different quantile levels. The values in Figure 3 may be compared with

the critical value of 1.96, which would be the correct asymptotic critical value if ĝ

had no asymptotic bias. (In captions to figures we refer to this as the “asymptotic”

case.) The critical values at the quantiles corresponding to 1 − ξ = 0.7 and 0.8

are only slightly larger than 1.96, but the critical values are significantly larger for

quantiles at levels above 1− ξ = 0.9 or 0.95.

Figure 1 shows typical nominal pointwise 95% confidence intervals for g(x) =

x2, in the case of the cosine design density. The solid lines in the figure show the

functions g(x) = x2 and g(x) = Φ(3x). The dashed and dotted lines show confidence

intervals using the asymptotic critical value and the critical values obtained by

implementing the method of section 2, employing quantiles corresponding to 1−ξ =

0.7 and 0.8. As can be seen, the three bands differ mainly in terms of width.

FIGURES ARE GIVEN AT END OF PAPER

4. THEORETICAL PROPERTIES

4.1. Theoretical background. In the present section we describe theoretical prop-

erties of bootstrap methods for estimating the distribution of ĝ. In section 4.2

we apply our results to underpin the arguments in section 2 that motivated our

methodology. A proof of Theorem 4.1, below, is given in Appendix A of Hall and

Horowitz (2012).

We take ĝ(x) to be a local polynomial estimator of g(x), defined by (A.16) and

(A.17). The asymptotic variance, Avar, of the local polynomial estimator ĝ at x is

given by

Avar{ĝ(x)} = D1 σ
2 fX(x)−1 (nhr1)−1 , (4.1)

where D1 > 0 depends only on the kernel and σ2 = var(ε). (If r = k = 1 then

D1 = κ ≡
∫
K2.) With this in mind we take the estimator s(X )(x)2 σ̂2, introduced

in section 2.2, of the variance of ĝ(x), to be D1 σ̂
2 f̂X(x)−1 (nhr)−1, where f̂X is an

estimator of the design density fX and was introduced in step 1 of the algorithm

in section 2.3.
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We assume that:

(a) the data pairs (Xi, Yi) are generated by the model at (2.1), where the
design variables Xi are identically distributed, the experimental errors
εi are identically distributed, and the design variables and errors are
totally independent; (b) R is a closed, nondegenerate rectangular prism
in IRr; (c) the estimator ĝ is constructed by fitting a local polynomial of
degree 2k − 1, where k ≥ 1; (d) f̂X is weakly and uniformly consistent,
on R, for the common density fX of the r-variate design variables Xi;
(e) g has 2k Hölder-continuous derivatives on an open set containing R;
(f) fX is bounded on IRr, and Hölder continuous and bounded away
from zero on an open subset of IRr containing R; (g) the bandwidth, h, (4.2)
used to construct ĝ, is a function of the data in Z and, for constants
C1, C2 > 0, satisfies P{|h − C1 n

−1/(r+4k)| > n−(1+C2)/(r+4k)} → 0, and
moreover, for constants 0 < C3 < C4 < 1, P (n−C4 ≤ h ≤ n−C3) =
1 − O(n−C) for all C > 0; (h) the kernel used to construct ĝ, at (2.12),
is a spherically symmetric, compactly supported probability density, and
has C5 uniformly bounded derivatives on IRr, where the positive integer
C5 is sufficiently large and depends on C2; and (j) the experimental errors
satisfy E(ε) = 0 and E|ε|C6 < ∞, where C6 > 2 is chosen sufficiently
large, depending on C2.

The model specified by (c) is standard in nonparametric regression. The assump-

tions imposed in (b), on the shape of R, can be generalised substantially and are

introduced here for notational simplicity. The restriction to polynomials of odd de-

gree, in (c), is made so as to eliminate the somewhat anomalous behaviour in cases

where the degree is even. See Ruppert and Wand (1994) for an account of this issue

in multivariate problems. Condition (d) asks only that the design density be esti-

mated uniformly consistently. The assumptions imposed on g and fX in (e) and (f)

are close to minimal when investigating properties of local polynomial estimators of

degree 2k−1. Condition (g) is satisfied by standard bandwidth choice methods, for

example those based on cross-validation or plug-in rules. The assertion, in (g), that

h be approximately equal to a constant multiple of n−1/(r+2k) reflects the fact that

h would usually be chosen to minimise a measure of asymptotic mean Lp error, for

1 ≤ p <∞. Condition (h) can be relaxed significantly if we have in mind a partic-

ular method for choosing h. Smooth, compactly supported kernels, such as those

required by (h), are commonly used in practice. The moment condition imposed in

(j) is less restrictive than, for example, the assumption of normality.

In addition to (4.2) we shall, on occasion, suppose that:

the variance estimators σ̂2 and σ̂∗2 satisfy P (|σ̂ − σ| > n−C8) → 0 and
P (|σ̂∗ − σ̂| > n−C8)→ 0 for some C8 > 0.

(4.3)
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In the case of the estimators σ̂2 defined at (2.14) and (2.15), if (4.2) holds then so

too does (4.3).

Let h1 = C1 n
−1/(r+4k) be the deterministic approximation to the empirical

bandwidth h asserted in (4.2)(g). Under (4.2) the asymptotic bias of a local polyno-

mial estimator ĝ of g, evaluated at x, is equal to h2k
1 ∇ g(x), where ∇ is a linear form

in the differential operators (∂/∂x(1))j1 . . . (∂/∂x(r))jr , for all choices of j1, . . . , jr

such that each js is an even, positive integer, j1 + . . . + jr = 2k (the latter being

the number of derivatives assumed of g in (4.2)(e)), and x = (x(1), . . . , x(r)). For

example, if r = k = 1 then ∇ = 1
2 κ2 (d/dx)2, where κ2 =

∫
u2K(u) du.

Recall that σ2 is the variance of the experimental error εi. Let L = K ∗ K,

denoting the convolution of K with itself, and put M = L − K. Let W1 be a

stationary Gaussian process with zero mean and the following covariance function:

cov{W1(x1),W1(x2)} = σ2 (M ∗M)(x1 − x2) . (4.4)

Note that, since h1 depends on n, then so too does the distribution of W1. Our

first result shows that (4.2) is sufficient for the expansion (2.6) to hold in the case

of local polynomial estimators.

Theorem 4.1. If (4.2) holds then, for each n, there exists a zero-mean Gaussian

process W , having the distribution of W1 and defined on the same probability space

as the data Z, such that for constants D2, C7 > 0,

P

[
sup
x∈R

∣∣∣∣E{ĝ∗(x) | Z} − ĝ(x)−
{
h2k

1 ∇ g(x)

+D2

(
nhr1

)−1/2
fX(x)−1/2W (x/h1)

}∣∣∣∣ > h2r
1 n−C7

]
→ 0 (4.5)

as n → ∞. If, in addition to (4.2), we assume that (4.3) holds, then for some

C7 > 0,

P

(
sup
x∈R

sup
z∈IR

∣∣∣∣P[ĝ∗(x)− E{ĝ∗(x) | Z}

≤ z
{
D1 σ̂

2 f̂X(x)−1 (nhr)−1
}1/2

∣∣∣∣ Z]− Φ(z)

∣∣∣∣ > n−C7

)
→ 0 (4.6)

as n→∞.

Property (4.5) is a concise and more general version of the expansion at (2.6),

which underpinned our heuristic motivation for our methodology. Result (4.6) as-

serts that the standard central limit theorem for ĝ∗(x) applies uniformly in x ∈ R.
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In particular, the standard deviation estimator {D1 σ̂
2 f̂X(x)−1 (nhr)−1}1/2, used

to standardise ĝ∗ − E(ĝ∗ | Z) on the left-hand side of (4.6), is none other than

the conventional empirical form of the asymptotic variance of ĝ at (4.1), and was

used to construct the confidence bands described in sections 2.2 and 2.3. The

only unconventional aspect of (4.6) is that the central limit theorem is asserted to

hold uniformly in x ∈ R, but this is unsurprising, given the moment assumption

in (4.2)(j).

4.2. Theoretical properties of coverage error. Let D3 = D
−1/2
1 σ−1 and D4 = D2D3,

and define

b(x) = −D3 fX(x)1/2∇ g(x) , ∆(x) = −D4W (x/h1) , (4.7)

where W is as in (4.5), these being the versions of b(x) and ∆(x) at (2.7) and (2.9),

respectively, in the present setting. Our first result in this section is a detailed

version of (2.8):

Corollary 4.1. If (4.2) and (4.3) hold then, with z = z1−(α/2) and b(x) and ∆(x)

defined as above, we have for some C9 > 0,

P

(
sup
x∈R

∣∣∣π̂(x, α)−
[
Φ
{
z+b(x)+∆(x)

}
−Φ
{
−z+b(x)+∆(x)

}]∣∣∣ > n−C9

)
→ 0 (4.8)

as n→∞.

Next we give notation that enables us to assert, under specific assumptions,

properties of coverage error of confidence bands stated in the paragraph immediately

below (2.9). See particularly (4.11) in Corollary 4.2, below. Results (4.9) and (4.10)

are used to derive (4.11), and are of interest in their own right because they describe

large-sample properties of the quantities α̂(x, α0) and α̂ξ(α0), respectively, in terms

of which our confidence bands are defined; see section 2.3.

Given a desired coverage level 1−α0 ∈ ( 1
2 , 1), define α̂(x, α0) and α̂ξ(α0) as at

(2.5) and (2.19), respectively. Let b(x) and ∆(x) be as at (4.7), put d = b+ ∆, and

define Z = Z(x, α0) to be the solution of

Φ{Z + d(x)} − Φ{−Z + d(x)} = 1− α0 .

Then Z(x, α0) > 0, and A(x, α0) = 2 [1−Φ{Z(x, α0)}] ∈ (0, 1). Define α = α(x, α0)

to be the solution of (2.11), and let αξ(α0) be the (1−ξ)-level quantile of the values

of α(x, α0). Specifically, β = αξ(α0) solves equation (2.11). Define Rξ(α0) = {x ∈
R : I[α(x, α0) ≤ αξ(α0)]}. Let the confidence band B(α) be as at (2.2).
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Corollary 4.2. If (4.2) and (4.3) hold, then, for each C10, C11 > 0, and as n→∞,

P

{
sup

x∈R : |∆(x)|≤C10

|α̂(x, α0)−A(x, α0)| > C11

}
→ 0 , (4.9)

P
{
α̂ξ(α0) ≤ αξ(α0) + C11

}
→ 1 , (4.10)

for each x ∈ Rξ(α0) the limit infimum of the probability P [(x, g(x)) ∈
B{α̂ξ(α0)}], as n→∞, is not less than 1− α0.

(4.11)

Property (4.10) implies that the confidence band B(β), computed using β =

α̂ξ(α0), is no less conservative, in an asymptotic sense, than its counterpart when

β = αξ(α0). This result, in company with (4.11), underpins our claims about the

conservatism of our approach. Result (4.11) asserts that the asymptotic coverage

of (x, g(x)) by B{α̂ξ(α0)} is, for at most a proportion ξ of values of x, not less

than 1− α0. Proofs of Corollaries 4.1 and 4.2 are given in Appendix B of Hall and

Horowitz (2012).
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Figure 1:  Empirical coverage probability as function of quantile and x  for 50n =  and uniform density of 
X , with 2( )g x x=  in the top panel and ( ) (3 )g x x= Φ  in the bottom panel.  The dashed horizontal line 
indicates a coverage probability of 0.95.  Dots indicate 0.50 quantile, dash-dot indicates 0.60 quantile, 
dashes indicate 0.70 quantile, solid indicates 0.80 quantile, dash-dot-dot indicates 0.90 quantile, dash-dot-
dot-dot indicates 0.95 quantile, and long dash-short dash indicates 0.98 quantile. 
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Figure 2:  Empirical coverage probability as function of quantile and x  for 50n =  and cosine density of 
X , with 2( )g x x=  in the top panel and ( ) (3 )g x x= Φ  in the bottom panel.  The dashed horizontal line 
indicates a coverage probability of 0.95.  Dots indicate 0.50 quantile, dash-dot indicates 0.60 quantile, 
dashes indicate 0.70 quantile, solid indicates 0.80 quantile, dash-dot-dot indicates 0.90 quantile, dash-dot-
dot-dot indicates 0.95 quantile, and long dash-short dash indicates 0.98 quantile. 
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Figure 3:  Average critical value as function of quantile for 50n = .  Top panel is for uniform density of 
X ; bottom panel is for cosine density.  Solid line indicates 2( )g x x= .  Dashed line indicates 

( ) (3 )g x x= Φ . 
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Figure 4:  Nominal 95% pointwise confidence bands for 2( )g x x=  (top panel) and ( ) (3 )g x x= Φ  (bottom 
panel).  Solid line indicates ( )g x .  Dashed line indicates confidence band at the 0.7 quantile.  Dotted line 
indicates confidence band at the 0.8 quantile.  Large dots are simulated data points. 



APPENDICES A AND B

(NOT INTENDED FOR PUBLICATION)

APPENDIX A: PROOF OF THEOREM 4.1

We shall prove only (4.5), since (4.6) can be derived by adapting standard results

on the rate of convergence in the central limit theorems for sums of independent

random variables, for example Theorem 6, page 115 of Petrov (1975). In the present

context the independent random variables are the quantities ε∗i multiplied by weights

depending only on Z, which is conditioned on when computing the probability on

the left-hand side of (4.6).

Step 1. Preliminaries. For the sake of clarity we give the proof only in the case

r = k = 1, where ĝ is defined by (2.12) and (2.13). However, in step 6 below we

shall mention changes that have to be made for multivariate design and polynomials

of higher degree. Define κ2 =
∫
u2K(u) du and κ =

∫
K2.

Noting the model at (2.1), and defining

g̃(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(x)Ai2(Xi1) g(Xi2) ,

e1(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(x)Ai2(Xi1) εi2 , (A.1)

where Ai as at (2.13), we have:

E{ĝ∗(x) | Z} =
1

n

n∑
i=1

Ai(x) ĝ(Xi) = g̃(x) + e1(x) . (A.2)

Writing xi1i2 for a quantity between 0 and Xi2−Xi1 , and noting that
∑
i Ai(x) ≡ n

and
∑
i Ai(x) (Xi − x) ≡ 0, it can be shown that, for x ∈ R,

1

n

n∑
i2=1

Ai2(Xi1) g(Xi2) =
1

n

n∑
i2=1

Ai2(Xi1)
{
g(Xi1) + (Xi2 −Xi1) g′(x)

+ 1
2 (Xi2 −Xi1)2 g′′(Xi1 + xi1i2)

}
= g(Xi1) + 1

2 h
2 g′′(Xi1) +R(x,Xi1) ,

where

R(x,Xi1) =
1

2n

n∑
i2=1

Ai2(Xi1) (Xi2 −Xi1)2
{
g′′(Xi1 + xi1i2)− g′′(Xi1)

}
. (A.3)
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In this notation,

g̃(x) =
1

n

n∑
i=1

Ai(x)
{
g(Xi) + 1

2 h
2 g′′(Xi) +R(x,Xi)

}
= ĝ(x) + 1

2 h
2 κ2 g

′′(x)− e2(x) + 1
2 h

2R(x) , (A.4)

where

e2(x) =
1

n

n∑
i=1

Ai(x) εi , R(x) =
1

n

n∑
i=1

Ai(x)
{
R(x,Xi) + g′′(Xi)− g(x)

}
. (A.5)

Step 2. Bound for |R(x)|. The bound is given at (A.13) below. Let K be the kernel

discussed in (4.2)(h). Since K is supported on a compact interval [−B1, B1], for some

B1 > 0 (see (4.2)(h)), then Ai2(Xi1) = 0 unless |Xi2 −Xi1 | ≤ 2B1h, and therefore

the contribution of the i2th term to the right-hand side of (A.3) equals zero unless

|xi1i2 | ≤ 2B1h. However, g′′ is Hölder continuous on an open set O containing R
(see (4.2)(e)), and so |g′′(x1) − g′′(x2)| ≤ B2 |x1 − x2|B3 for all x1, x2 ∈ O, where

B2, B3 > 0. Hence, by (A.3),

|R(x,Xi1)| ≤ B4 h
2+B3

n

n∑
i2=1

|Ai2(Xi1)| , (A.6)

where B4 = 1
2 B2 (2B1)2+B3 . Now,

1

n

n∑
i=1

|Ai(x)| ≤ S0(x)S2(x) +B1 S0(x) |S1(x)|
S0(x)S2(x)− S1(x)2

. (A.7)

We shall show in Lemma A.1, in step 9, that the open set O containing R can be

chosen so that, for some B5 > 1 and all B6 > 0,

P

{
max
j=0,1,2

sup
x∈O
|Sj(x)| > B5

}
= O

(
n−B6

)
, (A.8)

P

[
min
j=0,1,2

inf
x∈O

{
S0(x)S2(x)− S1(x)2

}
≤ B−1

5

]
= O

(
n−B6

)
. (A.9)

Combining (A.7)–(A.9) we deduce that, for all B6 > 0 and some B7 > 0,

P

{
1

n

n∑
i=1

|Ai(x)| > B2
5

}
= O

(
n−B7

)
. (A.10)

Hence, by (A.6), for all B6 > 0,

P

{
sup
x∈O

1

n

n∑
i=1

|Ai(x)| |R(x,Xi)| > B4B
2
5 h

B3

}
= O

(
n−B6

)
. (A.11)
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More simply, since Ai(x) = 0 unless |x−Xi| ≤ 2B1h then, for all B6 > 0,

sup
x∈O

1

n

n∑
i=1

|Ai(x)| |g′′(Xi)− g′′(x)| ≤ B2 (2B1h)B3 sup
x∈O

1

n

n∑
i=1

|Ai(x)| ,

and so by (A.10), for all B6 > 0,

P

{
sup
x∈O

1

n

n∑
i=1

|Ai(x)| |g′′(Xi)− g′′(x)| > B2 (2B1h)B3 B2
5

}
= O

(
n−B6

)
. (A.12)

Combining (A.11) and (A.12), and noting the definition of R(x) at (A.5), we deduce

that, for all B6 > 0 and some B7 > 0,

P

{
sup
x∈O
|R(x)| > B7 h

2+B3

}
= O

(
n−B6

)
. (A.13)

Step 3. Expansion of e1(x). Recall that e1(x) was defined at (A.1); our expansion

of e1(x) is given at (A.23) below, and the terms R1 and R2 in (A.23) satisfy (A.22)

and (A.25), respectively. The expansion is designed to replace h, the bandwidth in

(4.2)(g), which potentially depends on the errors εi as well as on the design variables

Xi, by a deterministic bandwidth h1. If h were a function of the design sequence

alone then this step would not be necessary.

Define h1 = C1 n
−1/(r+4k) = C1 n

−1/5 where C1 is as in (4.2)(g), put δ1 =

(h1 − h)/h1, and note that, if |δ1| ≤ 1
2 ,

h1

h
= (1− δ1)−1 = 1 + δ1 + 1

2 δ
2
1 + 1

3 δ
3
1 + . . . .

Therefore, if ` ≥ 1 is an integer, and if K has `+ 1 uniformly bounded derivatives,

then there exist constants B8, B9 > 0 such that, when |δ1| ≤ 1
2 ,∣∣∣∣K(uh)−

{
K
( u
h1

)
+
∑
j1

∑
j2

c(j1, j2) δj1+j2
1

( u
h1

)j2
K(j2)

( u
h1

)}∣∣∣∣
≤ B8 |δ1|`+1 I(|u/h1| ≤ B9) , (A.14)

where c(j1, j2) denotes a constant and the double summation is over j1 and j2 such

that j1 ≥ 0, j2 ≥ 1 and j1 + j2 ≤ `. (This range of summation is assumed also in

the double summations in (A.16) and (A.20) below.) The constant B9 is chosen so

that K(u) and its derivatives vanish for |u| > B9. More simply,

u

h
=

u

h1

(
1 + δ1 + 1

2 δ
2
1 + 1

3 δ
3
1 + . . .

)
. (A.15)
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Recall that Sk(x) = n−1
∑
i {(x − Xi)/h}kK{(x − Xi)/h}. Write this as

Sk(h, x), to indicate the dependence on h, and define

Tkj(x) =
1

nh1

n∑
i=1

(x−Xi

h1

)k+j

K(j)
(x−Xi

h1

)
.

Results (A.14) and (A.15) imply that, for constants ck(j1, j2), and provided |δ1| ≤ 1
2 ,∣∣∣∣Sk(h, x)−

{
Sk(h1, x) +

∑
j1

∑
j2

ck(j1, j2) δj1+j2
1 Tkj2(x)

}∣∣∣∣
≤ B10

|δ1|`+1

nh1

n∑
i=1

I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B9

)
. (A.16)

The methods leading to (A.52), in the proof of Lemma A.1, can be used to show

that there exists an open set O, containing R, such that for all B11, B12 > 0, and

each j and k,

P

{
sup
x∈O

∣∣(1− E)Tkj(x)
∣∣ > (nh1)−1/2 nB11

}
= O

(
n−B12

)
. (A.17)

Additionally, the argument leading to (A.53) can be used to prove that

sup
x∈O
|E{Tkj(x)} − `kj(x)| → 0 , (A.18)

where `kj(x) = fX(x)
∫
uk+j K(j)(u) du.

The definition of e1(x), at (A.1), can be written equivalently as

e1(x) =
1

(nh)2

n∑
i1=1

n∑
i2=1

S2(h, x)− {(x−Xi1)/h}S1(h, x)

S0(h, x)S2(h, x)− S1(h, x)2

× S2(h,Xi1)− {(Xi1 −Xi2)/h}S1(h,Xi1)

S0(h,Xi1)S2(h,Xi1)− S1(h,Xi1)2

×K
(x−Xi1

h

)
K
(Xi1 −Xi2

h

)
εi2 . (A.19)

Write Ai(h1, x) for the version of Ai(x), at (2.13), that would be obtained if h were

replaced by h1 in that formula, and in particular in the definitions of S0, S1, S2

and Ki. Using (A.14) and (A.16) to substitute for K(u/h) and Sk(h, x), respectively,

where u = x−Xi1 or Xi1 −Xi2 in the case of K(u/h); and then Taylor expanding;

it can be proved from (A.19), noting the properties at (A.16)–(A.18), that, provided

|δ1| ≤ 1
2 ,

e1(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(h1, x)Ai2(h1, Xi1) εi2

+
∑
j1

∑
j2

c1(j1, j2) δj1+j2
1 Dj1j2(x) + |δ1|`+1R1(x) , (A.20)
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where the constants c1(j1, j2) do not depend on h1 or n and are uniformly bounded;

each term Dj1j2(x) can be represented as

1

nh

n∑
i=1

Ji

(x−Xi

h1

)
εi , (A.21)

where the functions Ji depend on j1, j2 and x, on the design sequence X and the

bandwidth h1, but not on the errors or on h, and, for some B14 and B15, and all

B16, satisfy

P

{
sup
x∈O

sup
|u|≤B13

max
1≤i≤n

|Ji(u)| > B14

}
= O

(
n−B16

)
,

P

{
sup
x∈O

sup
|u|>B14

max
1≤i≤n

|Ji(u)| = 0

}
= O

(
n−B16

)
,

P

{
sup
x∈O

sup
u1,u2∈IR

max
1≤i≤n

|Ji(u1)− Ji(u2)| ≤ B15 |u1 − u2|
}

= O
(
n−B16

)
;

and, also for some B14 and all B16,

P

{
sup
x∈O
|R1(x)| > B14

}
= O

(
n−B16

)
. (A.22)

Combining the results from (A.20) down, and using Markov’s inequality and lattice

arguments to bound the quantity at (A.21), we deduce that, if |δ1| ≤ 1
2 ,

e1(x) = T (x) + δ1R2(x) + |δ1|`+1R1(x) , (A.23)

where

T (x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(h1, x)Ai2(h1, Xi1) εi2 , (A.24)

R1 satisfies (A.22) and R2 satisfies

P

{
sup
x∈O
|R2(x)| > (nh1)−1/2 nB17

}
= O

(
n−B18

)
. (A.25)

In (A.25), for each fixed B17 > 0, B18 can be taken arbitrarily large, provided that

E|ε|B19 <∞ for sufficiently large B19.

Step 4. Approximation to T (x), defined at (A.24). The approximation is given by

(A.33), with the remainder there controlled by (A.34).

Define

Di(x) =
1

n

n∑
i1=1

Ai1(h1, x)Ai(h1, Xi1) .
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Result (A.53), derived during the proof of Lemma A.1, and assumption (4.2)(f) on

fX , imply that for a sequence of constants η = η(n) decreasing to 0 at a polynomial

rate as n→∞, and for all B16 > 0,

P

[
sup
x∈O

max
1≤i≤n

{∣∣∣∣hAi(h1, x)K
(x−Xi

h1

)−1

− 1

fX(x)

∣∣∣∣} > η

]
= O

(
n−B16

)
. (A.26)

Define

D(x1, x2) =
1

nh1

n∑
i=1

1

fX(Xi)
K
(x1 −Xi

h1

)
K
(x2 −Xi

h1

)
,

It follows from (A.26) and the compact support of K (see (4.2)(h)) that

Di(x) =
1 + ∆i(x)

h1 fX(x)
D(x,Xi) , (A.27)

where the random functions ∆i are measurable in the sigma-field generated by X
(we refer to this below as “X measurable”) and satisfy, for some B20 > 0 and all

B16 > 0,

P

{
sup
x∈O

max
1≤i≤n

|∆i(x)| > n−B20

}
= O

(
n−B16

)
. (A.28)

Recall that L = K ∗ K, and note that E{D(x1, x2)} = L{(x1 − x2)h1}, and

that, since K is compactly supported, there exists B21 > 0 such that D(x1, x2) = 0

whenever x1 ∈ R and |x1 − x2| > B21. Furthermore, there exist B22 and B23(p),

the latter for each choice of the integer p ≥ 1, such that whenever x1 ∈ R,

var{D(x1, x2)} ≤ B22

nh1
I
(∣∣∣x1 − x2

h1

∣∣∣ ≤ B21

)
,

E

{
1

fX(Xi)
K
(x1 −Xi

h1

)
K
(x2 −Xi

h1

)}2p

≤ B23(p)h1 I
(∣∣∣x1 − x2

h1

∣∣∣ ≤ B21

)
.

Hence, by Rosenthal’s inequality, whenever x1 ∈ R and x2 ∈ IR,

E
∣∣(1− E)D(x1, x2)

∣∣2p ≤ B24(p)

(nh1)p
I
(∣∣∣x1 − x2

h1

∣∣∣ ≤ B21

)
.

Therefore, by Markov’s inequality, for each B25, B26 > 0,

sup
x1∈R, x2∈IR

P
{∣∣(1− E)D(x1, x2)

∣∣ > (nh1)−1/2 nB25

}
= O

(
n−B26

)
.

Approximating to (1−E)D(x1, x2) on a polynomially fine lattice of pairs (x1, x2),

with x1 ∈ R and |x1−x2| ≤ B21, we deduce that the supremum here can be placed

inside the probability statement: for each B25, B26 > 0,

P

{
sup

x1∈R, x2∈IR

∣∣(1− E)D(x1, x2)
∣∣ > (nh1)−1/2 nB25

}
= O

(
n−B26

)
. (A.29)
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Combining (A.27)–(A.29) we deduce that

Di(x) =
1 + ∆i(x)

h1 fX(x)
L
(x−Xi

h1

)
+

Θi(x)

h1 (nh1)1/2
I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B21

)
, (A.30)

where the function Θi is X -measurable and satisfies, for each B25, B26 > 0,

P

{
sup
x∈R

max
i : |x−Xi|≤B21h1

|Θi(x)| > nB25

}
= O

(
n−B16

)
. (A.31)

By (A.24) and (A.30),

T (x) =
1

n

n∑
i=1

Di(x) εi =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi + T1(x) + T2(x) , (A.32)

where

T1(x) =
1

nh1 fX(x)

n∑
i=1

∆i(x)L
(x−Xi

h1

)
εi ,

T2(x) =
1

(nh1)3/2 fX(x)

n∑
i=1

Θi(x) I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B21

)
εi .

Using he fact that the functions ∆i and Θi are X -measurable, as well as (A.28),

(A.31), and approximations on polynomially fine lattices, it can be proved that ifB27

(large) and B28 (small) are given then, provided E|ε|B29 < ∞ where B29 depends

on B27 and B28, we have for some B30 > 0,

P

{
sup
x∈R

|T1(x)| > (nh1)−1/2 n−B30

}
= O

(
n−B27

)
,

P

{
sup
x∈R

|T2(x)| > (nh1)−1 nB28

}
= O

(
n−B27

)
.

Therefore, by (A.32),

T (x) =
1

n

n∑
i=1

Di(x) εi =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi +R3(x) , (A.33)

where the following property holds for j = 3: for some B31 > 0, if B32 > 0 is given

then, provided E|ε|B33 <∞, with B33 depending on B32,

P

{
sup
x∈R

|Rj(x)| > (nh1)−1/2 n−B31

}
= O

(
n−B32

)
. (A.34)

Step 5. Approximation to e2(x), defined at (A.5). Property (A.53), and arguments

similar to those in step 5, permit us to show that

e2(x) =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi +R4(x) , (A.35)
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where (A.34) holds for j = 4.

Step 6. Gaussian approximation to e1(x) − e2(x). The approximation is given at

(A.42). Recall that M = L−K = K ∗K−K. By (A.23), (A.25) and (A.33)–(A.35),

e1(x)− e2(x) =
1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
εi + |δ1|`+1R1(x) +R5(x) , (A.36)

where R1 and R5 satisfy (A.22) and (A.34), respectively.

Next we use an approximation due to Kómlós, Major and Tusnády (1976).

Theorem 4 there implies that if B34 (small) and B35 (large) are given then there

exists B36 > 0, depending on B34 and B35, such that, if E|ε|B36 < ∞, then it

is possible to construct a sequence of Normal random variables Z1, Z2, . . . with

E(Zi) = E(εi) = 0 and E(Z2
i ) = E(εi)

2 = σ2, and for which

P

{
max

1≤i≤n

∣∣∣∣ i∑
i1=1

(εi1 − Zi1)

∣∣∣∣ > nB34

}
= O

(
n−B35

)
. (A.37)

Define Mi(x) = M{(x −Xi)/h1} for 1 ≤ i ≤ n, Mn+1 = 0, Vi =
∑

1≤i1≤i εi1 and

Ni =
∑

1≤i1≤i Zi1 , and note that, using Euler’s method of summation,

n∑
i=1

M
(x−Xi

h1

)
εi =

n∑
i=1

Mi(x) εi =

n∑
i=1

{Mi(x)−Mi+1(x)}Vi .

Therefore,

n∑
i=1

M
(x−Xi

h1

)
(εi − Zi) =

n∑
i=1

{Mi(x)−Mi+1(x)} (Vi −Ni) . (A.38)

Let T = T (h1) denote the set of all points x1 ∈ IR such that (x − x1)/h1 lies

within the support of K for some x ∈ R. Then T depends on n, and, for n ≥ B37

say, is a subset of the open set O introduced in step 9. Hence, if x ∈ T and n ≥ B37

then fX(x) > B38, where B38 > 0 is a lower bound for fX on the open set referred

to in (4.2)(f). Let ν denote the number of Xis, for 1 ≤ i ≤ n, that lie in T . Order

the Xis so that these Xis are listed first in the sequence X1, . . . , Xn, and moreover,

such that X1 ≤ . . . ≤ Xν . Let Xν+1 be the Xi that is nearest to Xν and is not one

of X1, . . . , Xν . Using properties of spacings of order statistics from a distribution

the density of which is bounded away from zero, we deduce that if B39 < 1 then,

for all B40 > 0,

P
(

max
1≤i≤ν

|Xi −Xi+1| > n−B39

)
= O

(
n−B40

)
. (A.39)
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If 1 ≤ i ≤ ν and x ∈ R then

|Mi(x)−Mi+1(x)| =
∣∣∣M(x−Xi

h1

)
−M

(x−Xi

h1
+
Xi −Xi+1

h1

)∣∣∣
≤ h−1

1 (sup |M ′|) |Xi −Xi+1| ≤ h−1
1 (sup |M ′|)n−B39 ,

where the identity and the first inequality hold with probability 1, and, by (A.39),

the second inequality holds with probability 1 − O(n−B40). If n ≥ B37 and x ∈ R
then all the indices i for which Mi(x)−Mi+1(x) 6= 0 are in the range from 1 to ν,

and therefore the second series on the right-hand side of (A.38) can be restricted to

a sum from i = 1, . . . , ν. Combining the results in this paragraph we deduce that

for all B40 > 0,

P

{
max

1≤i≤n
|Mi(x)−Mi+1(x)| ≤ h−1

1 (sup |M ′|)n−B39

}
= 1−O

(
n−B40

)
. (A.40)

In multivariate cases, where the number of dimensions, r, satisfies r ≥ 2, the

spacings argument above should be modified by producing an ordering X1, . . . , Xn

of the Xis which is such that ‖Xi −Xi+1‖ is small, for 1 ≤ i ≤ n− 1, where ‖ · ‖ is

the Euclidean metric. We do this by taking B < 1/r and, first of all, constructing

a regular, rectangular lattice within R where the total number of cells, or lattice

blocks, is bounded above and below by constant multiples of nB+δ for a given

δ ∈ (0, 1
3 (r−1 − B)). (The sizes of the faces of the cells are in proportion to the

sizes of the faces of R.) We order the points Xi within each given cell so that

‖Xi − Xi+1‖ ≤ nB is small. (With probability converging to 1 at a polynomial

rate, this can be done simultaneously for each of the cells.) Then we choose one

representative point Xi in each cell (it could be the point nearest to the cell’s

centre), and draw a path linking that point in one cell to its counterpart in an

adjacent cell, such that those linked points are no further than nB+2δ apart, and

each cell is included in the chain after just n − 1 links have been drawn. Again

this can be achieved with probability converging to 1 at a polynomial rate. Once

the linkage has been put in place, the n design points can be reordered so that

‖Xi − Xi+1‖ ≤ nB+3δ for 1 ≤ i ≤ n − 1. By taking B > r, but very close to r,

and then choosing δ > 0 but very close to 0, we see that, for any given B′ > r, we

can, with probability converging to 1 at a polynomial rate, construct an ordering

X1, . . . , Xn so that ‖Xi −Xi+1‖ ≤ nB
′

for 1 ≤ i ≤ n− 1.

Result (A.38) implies that, if x ∈ R,∣∣∣∣ 1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
(εi − Zi)

∣∣∣∣
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≤ 1

nh1B38

{
max

1≤i≤n
|Mi(x)−Mi+1(x)|

}{
max

1≤i≤n

∣∣∣∣ i∑
i1=1

(εi1 − Zi1)

∣∣∣∣} . (A.41)

Combining (A.37), (A.40) and (A.41), recalling from step 3 that h1 = C1 n
−1/5,

and taking B35 > 1 in (A.37), we conclude that for all B40 > 0,

P

{
sup
x∈R

∣∣∣∣ 1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
(εi − Zi)

∣∣∣∣
≤ sup |M ′|
B38 C2

1 n
(3/5)+B39−B34

}
= 1−O

(
n−B40

)
.

Hence, by (A.36),

e1(x)− e2(x) = ζ(x) + |δ1|`+1R1(x) +R5(x) +R6(x) , (A.42)

where

ζ(x) =
1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
Zi , (A.43)

R1 and R5 satisfy (A.22) and (A.34), respectively, and, for some B41 > 0 and all

B40 > 0,

P

{
sup
x∈R

|R6(x)| ≤ B41 n
−(3/5)−B39+B34

}
= 1−O

(
n−B40

)
. (A.44)

Step 7. Approximation to ζ(x) in terms of a Gaussian process. The approximation

is given at (A.45). Conditional on the design sequence X the process ζ, at (A.43),

is itself Gaussian, with zero mean and covariance

cov{ζ(x1), ζ(x2) | X} =
σ2

{nh1 fX(x)}2
n∑
i=1

M
(x1 −Xi

h1

)
M
(x2 −Xi

h1

)
,

and standard arguments show that for some B42 > 0 and all B43 > 0,

P

{
sup

x1, x2∈R

∣∣∣∣nh1 fX(x) cov{ζ(x1), ζ(x2) | X}

− (M ∗M)
(x1 − x2

h1

)∣∣∣∣ > n−B42

}
= O

(
n−B43

)
.

Hence, for each n there exists a Gaussian stationary process W , with zero mean

and covariance given by (4.4), such that for some B44 > 0 and all B43 > 0,

P

{
(nh1)1/2 sup

x∈R

∣∣ζ(x)− fX(x)−1/2W (x)
∣∣ > n−B44

}
= O

(
n−B43

)
. (A.45)
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Step 8. Completion of proof of Theorem 4.1, except for Lemma A.1. Combining

(A.2) and (A.4) we deduce that

E{ĝ∗(x) | Z} = ĝ(x) + 1
2 h

2 κ2 g
′′(x) + e1(x)− e2(x) + 1

2 h
2R(x) . (A.46)

Combining (A.42) and (A.45), using the bounds at (A.22), (A.34) and (A.44) on the

remainder terms R1, R5 and R6 on the right-hand side of (A.42), and noting that,

in view of (4.2)(g) and the definition δ1 = (h1 − h)/h1, P (|δ1| > n−C2/(r+4k))→ 0,

we see that if the exponent `+1 in (A.42) can be taken sufficiently large (depending

on C2 > 0, and enabled by taking C5 sufficiently large in (4.2)(h)), then for some

B45 > 0,

P

{
(nh1)1/2 sup

x∈R

∣∣e1(x)− e2(x)− fX(x)−1/2W (x)
∣∣ > n−B45

}
→ 0 . (A.47)

In view of the approximation to h by h1 = C1 n
−1/5 asserted in (4.2)(g), (A.13)

implies that

P

{
sup
x∈R

|R(x)| > B7 h
2
1 n
−B46

}
→ 0 . (A.48)

Result (4.5) follows on combining (A.46)–(A.48).

Step 9. Derivation of (A.8) and (A.9).

Lemma A.1. If (4.2) holds then there exists an open set O, containing R, such

that (A.8) and (A.9) obtain.

To derive the lemma, recall that

Sk(x) =
1

nh

n∑
i=1

(x−Xi

h

)k
K
(x−Xi

h

)
.

LetH = [n−B49 , n−B48 ], where 0 < B48 < B49 < 1. As noted in (4.2), the bandwidth

h is a function of the data in Z, but initially we take h to be deterministic, denoting it

by h2 and denoting the corresponding value of Sk(x) by Sk(h2, x). Then by standard

calculations, for each integer j ≥ 1, and for k = 0, 1, 2,

sup
h2∈H

sup
x∈IR

(nh2)j E
[
{(1− E)Sk(h2, x)}2j

]
≤ B(j) , (A.49)

where B(j) does not depend on n. Here we have used the uniform boundedness of

fX , asserted in (4.2)(f). Result (A.49), and Markov’s inequality, imply that for all

B50, B51 > 0, and for k = 0, 1, 2,

sup
h2∈H

sup
x∈IR

P
[∣∣(1− E)Sk(h2, x)

∣∣ > (nh2)−1/2 nB50

]
= O

(
n−B51

)
. (A.50)
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Let B52 > 0. It follows from (A.50) that if S, contained in the open set referred

to in (4.2)(f), is a compact subset of IR, if S(n) is any subset of S such that

#S(n) = O(nB52), and if H(n) is any subset of H such that #H(n) = O(nB52),

then for all B50, B51 > 0, and for k = 0, 1, 2,

P

[
sup

h2∈H(n)

sup
x∈S(n)

∣∣(1− E)Sk(h2, x)
∣∣ > (nh2)−1/2 nB50

]
= O

(
n−B51

)
. (A.51)

Approximating to Sk(h2, x) on a polynomially fine lattice of values of h2 and x, we

deduce from (A.51) that, for all B50, B51 > 0, and for k = 0, 1, 2,

P

[
sup
h2∈H

sup
x∈S

∣∣(1− E)Sk(h2, x)
∣∣ > (nh2)−1/2 nB50

]
= O

(
n−B51

)
. (A.52)

Choose S sufficiently large to contain an open set, O, which contains R and

has the property that, for some δ > 0, the set of all closed balls of radius δ and

centred at a point in O is contained in S. Since K is compactly supported and

h2 ∈ H satisfies h2 ≤ n−B48 , it can be proved from (4.2)(f) that from some BA > 0,

sup
h2∈H

sup
x∈O

[
|E{S0(x)}−fX(x)|+ |E{S1(x)}|+ |E{S2(x)}−κ2 fX(x)|

]
= O

(
n−BA

)
.

Therefore, defining `k(x) = fX(x), 0, κ2 fX(x) according as k = 0, 1, 2, respectively,

we deduce from (A.52) that for a sequence η = η(n) decreasing to 0 at a polynomial

rate in n as n→∞, for k = 0, 1, 2, and for all B51 > 0,

P

[
sup
h2∈H

sup
x∈O

∣∣Sk(h2, x)− `k(x)
∣∣ > η

]
= O

(
n−B51

)
. (A.53)

Results (A.8) and (A.9) follow from (A.53) on noting the properties on h in (4.2)(g);

we can take C3 and C4 there to be B48 and B49 above.

APPENDIX B: OUTLINE PROOFS

OF COROLLARIES 4.1 AND 4.2

B.1. Proof of Corollary 4.1. Define

d̂∗(x) =
ĝ(x)− E{ĝ∗(x) | Z}

{D1 σ̂∗2 f̂X(x)−1 (nhr)−1}1/2
, d̂(x) =

ĝ(x)− E{ĝ∗(x) | Z}
{D1 σ2 fX(x)−1 (nhr1)−1}1/2

.

Recall that, motivated by the variance formula (4.1), we take s(X )(x)2 σ̂2, in the

definition of the confidence band B(α) at (2.2), to be D1 σ̂
2 f̂X(x)−1 (nhr)−1. The



13

bootstrap estimator π̂(x, α), defined at (2.17), of the probability π(x, α), at (2.3),

that the band B(α) covers the the point (x, g(x)), is given by

π̂(x, α) = P
{
ĝ∗(x)− s(X )(x) σ̂∗ z1−(α/2) ≤ ĝ(x) ≤ ĝ∗(x) + s(X )(x) σ̂∗ z1−(α/2)

∣∣∣ Z}
= P

[
− z1−(α/2) ≤

ĝ∗(x)− ĝ(x){
D1 σ̂∗2 f̂X(x)−1 (nhr)−1

}1/2
≤ z1−(α/2)

∣∣∣∣∣ Z
]

= P

[
− z1−(α/2) + d̂∗(x) ≤ ĝ∗(x)− E{ĝ∗(x) | Z}{

D1 σ̂∗2 f̂X(x)−1 (nhr)−1
}1/2

≤ z1−(α/2) + d̂∗(x)

∣∣∣∣∣ Z
]
. (B.1)

If both (4.2) and (4.3) hold then, by (4.5), (4.6), (B.1) and minor additional calcu-

lations,

P

(
sup
x∈R

∣∣∣π̂(x, α)−
[
Φ
{
z1−(α/2) + d̂(x)

}
− Φ

{
− z1−(α/2) + d̂(x)

}]∣∣∣ > n−C9

)
→ 0 . (B.2)

Now, −d̂(x) = D3 fX(x)1/2∇ g(x)+D4W (x/h1) where D3 = D
−1/2
1 σ−1 and D4 =

D2D3, and so (4.8) follows from (B.2).

B.2. Proof of Corollary 4.2. Result (4.9) follows from (4.8). Shortly we shall outline

a proof of (4.10); at present we use (4.10) to derive (4.11). To this end, recall that

β = αξ(α0) solves equation (2.11) when z = z1−(β/2), and β = α(x, α0) > 0 denotes

the solution of equation (2.10). If (4.10) holds then (4.11) will follow if we establish

that result when α̂ξ(α0), in the quantity P [(x, g(x)) ∈ B{α̂ξ(α0)}] appearing in

(4.11), is replaced by αξ(α0). Call this property (P). Now, the definition of αξ(α0),

and the following monotonicity property,

Φ(z+b)−Φ(−z+b) is a decreasing (respectively, increasing) function of b
for b > 0 (respectively, b < 0) and for each z > 0,

(B.3)

ensure that

lim inf
n→∞

P [(x, g(x)) ∈ B{αξ(α0)}] ≥ 1− α0

whenever α(x, α0) ≤ αξ(α0), or equivalently, whenever x ∈ Rξ(α0). This estab-

lishes (P).

Finally we derive (4.10), for which purpose we construct a grid of edge width

δ, where δ is sufficiently small (see (B.4) below), and show that if this grid is used
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to define α̂ξ(α0) (see (2.19)) then (4.10) holds. Let x′1, . . . , x
′
N1

be the centres of the

cells, in a regular rectangular grid in IRr with edge width δ1, that are contained

within R. (For simplicity we neglect here cells that overlap the boundaries of R;

these have negligible impact.) Within each cell that intersects R, construct the

smaller cells (referred to below as subcells) of a subgrid with edge width δ = m−1δ1,

where m = m(δ1) ≥ 1 is an integer and m ∼ δ−c1 for some c > 0. Put N = mrN1;

let xj`, for j = 1, . . . , N1 and ` = 1, . . . ,mr, denote the centres of the subcells that

are within the cell that has centre x′j ; and let x1, . . . , xN be an enumeration of the

values of xj`, with x11, . . . , x1m listed first, followed by x21, . . . , x2m, and so on.

Recalling the definition of α̂ξ(α0) at (2.19), let α̂ξ(α0, δ) denote the (1 − ξ)-level

quantile of the sequence α̂(x1, α0), . . . , α̂(xN , α0).

Let h1 = C1 n
−1/(r+4k) represent the asymptotic size of the bandwidth asserted

in (4.2)(g), and assume that

δ = O
(
n−B1

)
, 1/(r + 4k) < B1 <∞ . (B.4)

Then

δ = O
(
h1 n

−B2
)

(B.5)

for some B2 > 0. In particular, δ is an order of magnitude smaller than h1.

Recall that A(x, α0) = 2 [1− Φ{Z(x, α0)}] ∈ (0, 1), where Z = Z(x, α0) > 0 is

the solution of

Φ{Z + b(x) + ∆(x)} − Φ{−Z + b(x) + ∆(x)} = 1− α0 ,

and ∆(x) = −D4W (x/h1); and that β = α(x, α0) > 0 solves Φ{β + b(x)} −
Φ{−β+b(x)} = 1−α0. Define e(x, α0) = 2 [1−Φ{α(x, α0)}]. Given a finite set S of

real numbers, let quant1−ξ(S) and med(S) = quant1/2(S) denote, respectively, the

(1− ξ)th empirical quantile and the empirical median of the elements of S. Noting

(B.3), and the fact that the stationary process W is symmetric (W is a zero-mean

Gaussian process the distribution of which does not depend on n), it can be shown

that P{Z(x, α0) > α(x, α0)} = P{Z(x, α0) ≤ α(x, α0)} = 1
2 . Therefore the median

value of the random variable A(x, α0) equals e(x, α0). Hence, since the lattice subcell

centres xj1, . . . , xjmr are clustered regularly around xj , it is unsurprising, and can

be proved using (B.5), that the median of A(xj1, α0), . . . , A(xjmr , α0) is closely

approximated by e(x, α0), and in particular that for some B3 > 0 and all B4 > 0,

P

{
max

j=1,...,N1

∣∣∣med{A(xj1, α0), . . . , A(xjmr , α0)}
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− e(xj , α0)
∣∣∣ > n−B3

}
= O

(
n−B4

)
.

Therefore, since the (1− ξ)-level quantile of the points in the set

N1⋃
j=1

{A(xj1, α0), . . . , A(xjmr , α0)}

is bounded below by {1 + op(1)} multiplied by the (1− ξ)-level quantile of the N1

medians

med{A(xj1, α0), . . . , A(xjmr , α0)} , 1 ≤ j ≤ N1 ,

then for all η > 0,

P

[
quant1−ξ {e(x, α0) : x ∈ R} ≤ quant1−ξ {A(x, α0) : x ∈ R}+ η

]
→ 1 .

Since quant1−ξ {e(x, α0) : x ∈ R} = αξ(α0) then

P

[
quant1−ξ {A(x, α0) : x ∈ R} ≤ αξ(α0) + η

]
→ 1 . (B.6)

In view of (4.9),

P

[∣∣∣quant1−ξ {A(x, α0) : x ∈ R} − quant1−ξ {α̂(x, α0) : x ∈ R}
∣∣∣ > η

]
→ 0 (B.7)

for all η > 0, and moreover, if δ satisfying (B.4) is chosen sufficiently small,

quant1−ξ {α̂(x, α0) : x ∈ R} − α̂ξ(α0)→ 0 (B.8)

in probability. (This can be deduced from the definition of α̂ξ(α0) at (2.19).) Com-

bining (B.6)–(B.8) we deduce that P
{
α̂ξ(α0) ≤ αξ(α0) + η

}
→ 1 for all η > 0,

which is equivalent to (4.10).




