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financial support from the National Science Foundation and from the Gregory C. Chow Econometric Research
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1 Introduction and Related Literature

This paper investigates the determinants of joint retirement decisions in couples. A majority

of retirees are married and many studies indicate that a significant proportion of individuals

retires within a year of their spouse. Articles documenting joint retirement of couples (and

datasets employed) include Hurd (1990) (New Beneficiary Survey); Blau (1998) (Retirement

History Study); Gustman and Steinmeier (2000) (National Longitudinal Survey of Mature

Women); Michaud (2003) and Gustman and Steinmeier (2004) (Health and Retirement

Study); and Banks, Blundell, and Casanova Rivas (2007) (English Longitudinal Study of

Ageing). Even though this is especially the case for couples closer in age, a spike in the

distribution of retirement time differences at zero typically exists for most couples, regardless

of the age difference. This is illustrated in Figure 1.

The spike in the distribution of the difference in the retirement dates for husbands

and wives in Figure 1 suggests that many couples retire simultaneously. There are at least

two distinct explanations for such a phenomenon. One is that husband and wife receive

correlated shocks (observable or not), driving them to retirement at similar times. The

other is that retirement is jointly decided, reflecting taste interactions of both members of

the couple.

The distinction between these two drivers of joint retirement (which are not mutually

exclusive) parallels the categorization by Manski (1993) of correlated and endogenous (direct)

effects in social interactions. In that literature, the joint determination of a certain outcome

of interest yi, i = 1, 2 for two individuals i = 1, 2 is represented by the system of equations

y1 = αy2 + x>1 β + ε1

y2 = αy1 + x>2 β + ε2

where xi and εi, i = 1, 2 represent observed and unobserved covariates determining yi. We

want to separate the endogenous (direct) effect (α) from the correlation in εs. There, as in

this article, discerning these two sources of correlation in outcomes is relevant for analytical

and policy reasons. For example, if the estimated model does not allow for the joint decision

by the couple, then the estimate of the effect of a retirement-inducing shock will be biased if
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the retirement times are indeed chosen jointly. Such spillover effects invalidate, for instance,

the commonly employed Stable Unit Treatment Value Assumption (SUTVA) taken in the

treatment effects literature, preventing the clear separation of direct and indirect effects

occurring through feedback to the partner’s retirement decision [e.g., Burtless (1990)]. Fur-

thermore, the multiplier effect induced by the endogenous, direct effect of husband on wife

or vice-versa is an important conduit for policy. The quantification of its relative importance

is hence paramount for both methodological and substantive reasons.

Unfortunately, standard econometric duration models are not suitable to analyze joint

durations with simultaneity of the kind that we have in mind, and an important contribution

of this paper is therefore the specification of an econometric duration model that allows for

simultaneity [see also de Paula (2009) and Honoré and de Paula (2010)].

The broader literature on retirement is abundant and a number of papers focusing on

retirement decisions in a multi-person household have appeared in the last 20 years. Hurd

(1990) presents one of the early documentations of the joint retirement phenomenon. Later

papers confirming the phenomenon and further characterizing the correlates of joint retire-

ment are Blau (1998); Michaud (2003); Coile (2004a); Banks, Blundell, and Casanova Rivas

(2007). Gustman and Steinmeier (2000) and Gustman and Steinmeier (2004) work with a

dynamic economic model where husband and wife’s preferences are affected by their spouses

actions but make retirement decisions individually1 and focus on Nash equilibria to the joint

retirement decision, i.e. each spouse’s retirement decision is optimal given the other spouse’s

timing and vice-versa.2 More recently, Gustman and Steinmeier (2009) present a richer

(non-unitary) economic model with a solution concept that differs from Nash Equilibrium

and is guaranteed to exist and be unique. Michaud and Vermeulen (forthcoming) estimate a

1In the Family Economics terminology, their model is a non-unitary model where people in the household

make decisions individually. In unitary models, the household is viewed a single decision-making unit. A

characterization of unitary and non-unitary models can found in Browning, Chiappori, and Lechene (2006).
2When more than one solution is possible, they select the Pareto dominant equilibrium, i.e. for all other

equilibria at least one spouse would be worse off. In case no equilibrium is Pareto dominant, the equilibrium

where retirement by at least one household member happens earliest is assumed (see, e.g., Gustman and

Steinmeier (2000), pp. 515, 520).
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version of the “collective” model introduced by Chiappori (1992) where (static) labor force

participation decisions by husband and wife are repeatedly observed from a panel (i.e., the

Health and Retirement Study). Casanova Rivas (2010) recently suggests a detailed unitary

economic dynamic model of joint retirement. Coile (2004b) presents statistical evidence on

health shocks and retirement decision by the couple and Blau and Gilleskie (2004) present

an economic model also focusing on health outcomes and retirement in the couple.

In our analysis, we assume that retirement decisions are made through Nash Bar-

gaining on the retirement date. This solution concept is attributed to Nash (1950) (though

see also Zeuthen (1930)). It chooses retirement decisions to maximize the product of dif-

ferences between spouses utilities and respective outside-options (i.e. “threat-points”). The

Nash solution corresponds to a set of behavioral axioms on the bargaining outcomes (Pareto

efficiency, independence of irrelevant alternatives and symmetry) and it is widely adopted

in the literature on intra-household bargaining. It can be shown that this solution approx-

imates the equilibrium outcome of a situation where husband and wife make offers to each

other in an alternating order and the negotiation breaks down with a certain probability. As

this probability goes to zero, the equilibrium converges to the Nash solution (see Binmore,

Rubinstein, and Wolinsky (1986)). Though this solution also leads to Pareto efficient out-

comes, it imposes more structure than Casanova Rivas (2010) or Michaud and Vermeulen

(forthcoming) [see Chiappori (1992) and Chiappori, Donni, and Komunjer (2010)].

Our model is a variation of a recently developed model (Honoré and de Paula (2010))

which extends well-known duration models to a (non-cooperative) strategic stopping game,

where endogenous and correlated effects can be disentangled and interpreted (see also de Paula

(2009) for a related analysis).3 As such it is close to traditional duration models in the statis-

tics and econometrics literature. Our model extends the usual statistical framework in a way

that allows for joint termination of simultaneous spells with positive probability. In the usual

hazard modeling tradition, this property does not arise. It is nonetheless essential to model

3In fact, our model estimates are obtained using auxiliary models that are interpretable in terms of

the (non-cooperative game-theoretic) model in Honoré and de Paula (2010), which does not impose Pareto

efficiency and equilibrium uniqueness.
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joint retirement behavior. One can appeal to existing statistical models (e.g., Marshall and

Olkin (1967)) to address this issue as done by An, Christensen, and Gupta (2004) in the

analysis of joint retirement in Denmark, but parameter estimates cannot be directly inter-

pretable in terms of the decision process by the couple. The framework presented in this

paper directly corresponds to an economic model of decision-making by husband and wife

and consequently can be more easily interpreted in light of such model. To estimate our

model, we resort to indirect inference (Smith (1993); Gourieroux, Monfort, and Renault

(1993); and Gallant and Tauchen (1996)), using as auxiliary models standard duration mod-

els and ordered models, as suggested in Honoré and de Paula (2010) for a similar model.

(For an earlier application of indirect inference in a duration context, see Magnac, Robin,

and Visser (1995)).

The remainder of this paper proceeds as follows. Section 2 describes our model and

the empirical strategy for its estimation. In Section 3 we briefly describe the data and

subsequently discuss our results in Section 4. We conclude in Section 5.

2 Model and Empirical Strategy

In our model, spouse i receives a utility flow of Ki > 0 before retirement. After retirement,

the utility flow is given by Z(s)ϕiδ(s, tj)e
−ρs at time s. The function Z(·) is an increasing

function such that Z(0) = 0. In principle, it is possible to allow for kinks or discontinuities

in Z(·). In a model without interdependence, those would correspond to discontinuities

in the hazard rate in the case of kinks in Z(·) or, in the case of discontinuities in Z(·),

positive probability of retirement at the discontinuity date. The factor ϕi = ϕ(xi) is a

positive function of individual observable covariates. Time is discounted at the rate ρ > 0

and δ(s, tj) = (δ − 1)1(s ≥ tj) + 1 where δ > 1 and tj is the retirement date for spouse

j, representing the effect of spouse j’s retirement on i’s utility flow from retirement. This

structure is similar to the one defined in Honoré and de Paula (2010): if δ = 1, we obtain

a standard proportional hazards model for the time until retirement. Time is measured in

terms of “family age,” which is set to zero when the oldest partner in the couple reaches
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60 years-old. Given a realization (k1, k2) for the random vector (K1, K2), retirement timing

is obtained as the solution to the Nash bargaining problem [Nash (1950), see also Zeuthen

(1930)]:

maxt1,t2

(∫ t1
0
k1e
−ρsds +

∫∞
t1
Z(s)ϕ1δ(s ≥ t2)e−ρsds− A1

)
×(∫ t2

0
k2e
−ρsds+

∫∞
t2
Z(s)ϕ2δ(s ≥ t1)e−ρsds− A2

)
where A1 and A2 are the threat points for spouses 1 and 2, respectively. In our estimation,

we set Ai equal to a multiple of the utility spouse i would obtain if spouse j never retired.

Note that the first term can be further simplified to(
k1
−e−ρs

ρ

∣∣∣∣t1
0

+ ϕ1

∫ ∞
t1

Z(s)e−ρsds+ ϕ1 (δ − 1)

∫ ∞
max{t1,t2}

Z(s)e−ρsds− A1

)
=

(
k1ρ
−1
(
1− e−ρt1

)
+ ϕ1Z̃ (t1) + ϕ1 (δ − 1) Z̃ (max {t1, t2})− A1

)
where

Z̃ (t) =

∫ ∞
t

Z(s)e−ρsds

and hence

Z̃ ′ (t) = −Z (t) e−ρt.

An analogous simplification applies to the second term. In the absence of an interaction effect

(δ = 1), a Weibull baseline hazard for the proportional hazard model would correspond to

Z (t;α) = ta

and consequently

Z̃ (t;α) =

∫ ∞
t

sαe−ρsds

=

(
1

ρ

)α+1

Γ (α + 1, ρt)

where the upper incomplete gamma function is defined by

Γ (α, x) =

∫ ∞
x

sα−1e−sds.
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This expression can be further manipulated by noting that if the random variable X is

Gamma distributed with parameters α and β = 1

F Γ(α,1) (x) = P (X > x)

=
1

Γ (α)

∫ ∞
x

sα−1e−sds =
Γ (α, x)

Γ (α)
.

Consequently,

Z̃ (t;α) =

(
1

ρ

)α+1

Γ (α + 1, ρt)

=

(
1

ρ

)α+1

Γ (α + 1)F Γ(α+1,1) (ρt)

which is useful since both Γ (·) and F Γ(·,1) (·) are preprogrammed in many languages or

softwares commonly used.

In summary, the objective function is given by

N (t1, t2) =

≡I︷ ︸︸ ︷(
k1ρ
−1
(
1− e−ρt1

)
+ ϕ1Z̃ (t1) + ϕ1 (δ − 1) Z̃ (max {t1, t2})− A1

)
×(

k2ρ
−1
(
1− e−ρt2

)
+ ϕ2Z̃ (t2) + ϕ2 (δ − 1) Z̃ (max {t1, t2})− A2

)
︸ ︷︷ ︸

≡II

If spouses retire sequentially, the objective function first order conditions are obtained

as follows. Assuming t1 < t2 and taking derivatives with respect to t1 we get:

(
k1e
−ρt1 − Z(t1)ϕ1e

−ρt1
)(∫ t2

0

k2e
−ρsds+

∫ ∞
t2

Z(s)ϕ2δ(s ≥ t1)e−ρsds− A2

)
= 0.

This implies that

k1 = Z(t1)ϕ1

or ∫ t2

0

k2e
−ρsds+

∫ ∞
t2

Z(s)ϕ2δ(s ≥ t1)e−ρsds = A2.

The second possibility is ruled out since player 2 should get more than his or her threat

point at an interior optimum. The first order condition with respect to t2 gives

Z(t2)e−ρt2ϕ1 (1− δ)× (II) + (I)×
(
k2e
−ρt2 − Z(t2)ϕ2δe

−ρt2
)

= 0. (1)
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We note that the t2 that sets the above expression to zero occurs earlier than the value

obtained in Honoré and de Paula (2010): Z−1(k2/ϕ2δ). Because Z(t2)e−ρt2ϕ1 (1− δ) ×

(II) ≤ 0 at the optimum, for the first order condition to be zero the product (I) ×

(k2e
−ρt2 − Z(t2)ϕ2δe

−ρt2) should be positive. If the product were zero, one would have

t2 = Z−1(k2/ϕ2δ) (since setting I to zero would not be optimal as in previous arguments and

we then have that (k2e
−ρt2 − Z(t2)ϕ2δe

−ρt2) = 0, which is equivalent to t2 = Z−1(k2/ϕ2δ)).

To make the product positive, we then have to lower t2 below Z−1(k2/ϕ2δ). This implies

that

T1 = Z−1 (K1/ϕ1)

T2 ≤ Z−1 (K2/ (ϕ2δ))

which gives the same timing choice for the first retiree as in Honoré and de Paula (2010) but

an earlier one for the second spouse. A similar set of calculations is obtained for T2 < T1.4

A third possibility is for spouses to retire jointly. In this case,

T = arg max
t
N (t, t)

= arg max
t

(
k1ρ
−1
(
1− e−ρt

)
+ ϕ1Z̃ (t) + ϕ1 (δ − 1) Z̃ (t)− A1

)
(
k2ρ
−1
(
1− e−ρt

)
+ ϕ2Z̃ (t) + ϕ2 (δ − 1) Z̃ (t)− A2

)
= arg max

t

(
k1ρ
−1
(
1− e−ρt

)
+ ϕ1δZ̃ (t)− A1

)(
k2ρ
−1
(
1− e−ρt

)
+ ϕ2δZ̃ (t)− A2

)
.

The derivative of this is

e−ρt (K1 − ϕ1δZ (t))
(
k2ρ
−1
(
1− e−ρt

)
+ ϕ2δZ̃ (t)− A2

)
+e−ρt

(
k1ρ
−1
(
1− e−ρt

)
+ ϕ1δZ̃ (t)− A1

)
(k2 − ϕ2δZ (t))

4For computation purposes we also notice that the objective function is unimodal on t2. If we start at the

critical value, increasing t2 reduces the function. This is because Z(t2)e−ρt2ϕ1 (1− δ) becomes more negative

and II becomes more positive, so the product becomes more negative. For the second term, I decreases

and k2e
−ρt2 − Z(t2)ϕ2δe

−ρt2 , which is positive, decreases. Their product then decreases. Consequently, the

derivative, which is the sum of these two products becomes negative, and the objective function is decreasing.

Analogously we can also determine that the objective function is increasing for values below the critical value.
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which, set to zero, delivers the optimum implicitly. It can be noted that when t < Z−1 (k1/ (ϕ1δ))

and t < Z−1 (k2/ (ϕ2δ)) this is positive, and when t > Z−1 (k1/ (ϕ1δ)) and t > Z−1 (k2/ (ϕ2δ))

it is negative. The optimum is therefore in the interval

min
{
Z−1 (k1/ (ϕ1δ)) , Z

−1 (k2/ (ϕ2δ))
}
≤ t ≤ max

{
Z−1 (k1/ (ϕ1δ)) , Z

−1 (k2/ (ϕ2δ))
}

This is useful in the numerical solution to the above equation used in the estimation.

In any case, it should be pointed out that the set of realizations of (K1, K2) for which

T = T1 = T2 is an optimum is larger than the set obtained in the non-cooperative setup from

Honoré and de Paula (2010). This is illustrated in Figure 2, where the area between the dot-

ted lines is the joint retirement region in Honoré and de Paula (2010) and the area between

solid lines is the joint retirement region in the current paper. Also, whereas in that paper

any date within a range [T < T ] (where T = max {Z−1 (k1/ (ϕ1δ)) , Z
−1 (k2/ (ϕ2δ))})was

sustained as an equilibrium for pairs (k1, k2) inducing joint retirement, in the current article

the equilibrium joint retirement date for a given realization of (K1, K2) is uniquely pinned

down. Because Nash bargaining implies Pareto efficiency and because T is the Pareto dom-

inant outcome among the possible multiple equilibria in the game analyzed by Honoré and

de Paula (2010), it should be the case that joint retirement in the Nash bargaining model

occurs on or before T . In comparison to the non-cooperative paradigm adopted in our previ-

ous paper, Nash bargaining allows spouses to “negotiate” an earlier retirement date, which

is advantageous to both.

Finally, we note that when δ = 1 the optimal retirement dates will correspond to

logZ(ti) = − logϕi + logKi, i = 1, 2

which is the Generalized Accelerated Failure Time model of Ridder (1990).

2.1 Discussion of Identifying Variation

In this subsection we discuss informally the variation in the data that allows us to (non-

parametrically) identify the elements of the model. First, note that the functions Z(·) and
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ϕ(·) are identified (up to scale) if covariates have a support large enough so that

ϕj ≡ ϕ(xj)→ 0

as xj is driven to the boundary of the support (possibly infinity). This implies that it is

optimal to have tj → ∞: retirement age is arbitrarily large for that spouse. Intuitively,

this would come about if the explanatory variables take values that make one of the spouses

strongly attached to the labor force given his or her covariate values. The other spouse will

then optimally retire at Ti such that

logZ(Ti) = − logϕ(xi) + logKi

and one can apply the arguments in Ridder (1990) to identify Z(·), ϕ(·) and the marginal

distribution of Ki (up to scale). We note also that this identification argument operates

irrespective of the values of A1 and A2 (or asymmetries in the bargaining power).

Having identified Z(·), ϕ(·) and the marginal distribution of Ki, the interaction pa-

rameter δ is pinned down by the probability of joint retirement. To see this, note that δ = 1

implies that the objective function is:

N (t1, t2) =

≡I︷ ︸︸ ︷(
k1ρ
−1
(
1− e−ρt1

)
+ ϕ1Z̃ (t1)− A1

)
×
(
k2ρ
−1
(
1− e−ρt2

)
+ ϕ2Z̃ (t2)− A2

)
.︸ ︷︷ ︸

≡II

The first order conditions with respect to t1 and t2 are

e−ρt1 (k1 − ϕ1Z (t1))× II = 0 ⇒ t1 = Z−1 (k1/ϕ1)

e−ρt2 (k2 − ϕ2Z (t2))× I = 0 ⇒ t2 = Z−1 (k2/ϕ2) .

Then joint retirement (t1 = t2) would imply k1/k2 = ϕ2/ϕ1, which has zero probability if

(K1, K2) is continuously distributed.

On the other hand, if δ > 1, Pr(T1 = T2|x1, x2) > 0. This can be seen by remembering

that T1 < T2 implies

T1 = Z−1(K1/ϕ1)

T2 ≤ Z−1(K2/δϕ2)

⇒ K1/ϕ1 < K2/δϕ2.
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Likewise, if T1 > T2 we have that K2/ϕ2 < K1/δϕ1. These two implications are equivalently

written as

K1/ϕ1 ≥ K2/δϕ2 ⇒ T1 ≥ T2

K2/ϕ2 ≥ K1/δϕ1 ⇒ T2 ≥ T1,

which in turn implies that

0 < Pr(ϕ1/(ϕ2δ) ≤ K1/K2 ≤ δϕ1/ϕ2) ≤ Pr(T1 = T2|x1, x2),

where the first inequality follows if δ > 1. Intuitively, larger values of δ will induce joint

retirement more likely and joint retirement will be informative about δ.

Similarly, even in the event of sequential retirement, whereas the first spouse to retire

always retires at Z−1(Ki/ϕi), larger values of δ will lead to earlier retirement by the second

spouse to retire providing variation to identify δ. To see this, note that when t1 ≈ 0, applying

the Implicit Function Theorem to the FOC for t2 (see equation 1) gives

dt2
dδ

= −

[
∂2I
∂t2∂δ

× (II) + ∂II
∂δ
× ∂I

∂t2
+ ∂2II

∂t2∂δ
× (I) + ∂I

∂δ
× ∂II

∂t2
∂2I
∂2t2
× (II) + ∂II

∂t2
× ∂I

∂t2
+ ∂2II

∂2t2
× (I) + ∂I

∂t2
× ∂II

∂t2

]
, (2)

where (I) and (II) are defined as in equation 1. The various terms can be signed as shown

below:

∂I
∂δ

= ϕ1Z̃(t2) > 0 ∂II
∂δ

= ϕ2Z̃(t2) > 0

∂I
∂t2

= Z(t2)e−ρt2ϕ1(1− δ) < 0 ∂II
∂t2

= K2e
−ρt2 − Z(t2)ϕ2δe

−ρt2 > 0

∂2I
∂t2∂δ

= −Z(t2)e−ρt2ϕ1 < 0 ∂2II
∂t2∂δ

= K2e
−ρt2 − Z(t2)ϕ2δe

−ρt2 > 0

∂2I
∂t22

= Z ′(t2)e−ρt2ϕ1(1− δ) < 0 ∂2II
∂t22

= −ρe−ρt2(K2 − Z(t2)ϕ2δ)− Z ′(t2)e−ρt2 < 0.

These and the fact that (I) ≥ 0 and (II) ≥ 0 imply that the denominator in expression 2 is

strictly negative. To see that the numerator is also negative notice that

lim
δ→1

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= ϕ1Z̃(t2)[K2 − Z(t2)ϕ2] = 0

where the last equality follows because K2 = Z(t2)ϕ2 at the optimally chosen t2 when δ = 1.

Since

∂

∂δ

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= −2ϕ1ϕ2Z(t2)Z̃(t2)e−ρt2 < 0,
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we can determine that

∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2
< 0.

The other two remaining terms in the numerator are negative, which then implies that

the numerator is negative. Consequently, (2) is negative: larger values of δ lead to earlier

retirement by the second agent (i.e., lower t2). Having identified Z(·), ϕ(·) and the marginal

distribution of K2, this allows allows one to identify δ.

Finally, if x1 6= x2 and the support of covariates is large enough, we note that for

any (bounded convex) set of pairs (k1, k2) there is a pair (ϕ1, ϕ2) that induces sequential

retirement. When realizations of (K1, K2) induce sequential retirement, the retirement dates

t1 and t2 are a one-to-one mapping from k1 and k2. If t1 < t2, for example, t1 is a one-to-one

mapping of k1 (i.e., t1 = Z−1(k1/ϕ1)). Given k1 and k2 (and consequently t1 = Z−1(k1/ϕ1)),

t2 is uniquely determined (see footnote 4). From the FOC, it is also clear that, given (t1, t2)

(and k1 = Z(t1)ϕ1), one can uniquely retrieve the corresponding k2. Using the Jacobian

method, one can see that the joint density of (T1, T2) should be informative about the

joint density of (K1, K2). Intuitively, a different distribution of (K1, K2) on that (bounded

convex) set changes the probability of (T1, T2) (the image of that set) given the covariates

corresponding to the initial choice of (ϕ1, ϕ2). (Because the Jacobian transformation in the

mapping between the two joint densities does not factor, we should also mention that even

when K1 and K2 are independent, T1 and T2 are not (locally) independent on the T1 6= T2

region.)

2.2 Estimation: Indirect Inference

Because the likelihood for this model is not easily computed in closed form, we resort to sim-

ulation assisted methods. One potential strategy would be to use Simulated Maximum Like-

lihood, where one nonparametrically estimates the conditional likelihood via kernel methods

applied to simulations of T1 and T2 at particular parameter values and searches for the pa-

rameter value that maximizes the (simulated) likelihood. We opt for a different strategy for

two main reasons. First, our likelihood displays some non-standard features. For example,
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there is a positive probability for the event {T1 = T2}. Second, consistency of the SML

estimator requires a large number of simulations, which can be computationally expensive.

To estimate our model we employ an indirect inference strategy (see Gourieroux,

Monfort, and Renault (1993); Smith (1993); and Gallant and Tauchen (1996)). Rather

than estimating the Maximum Likelihood Estimator for the true model characterized by

parameter θ, one estimates an approximate (auxiliary) model with parameter β. Then,

under the usual regularity conditions,

β̂ = arg max
b

n∑
i=1

logLa (b; zi)
p−→ arg max

b
Eθ0 [logLa (b; zi)] ≡ β0 (θ0)

where La is the likelihood function for the auxiliary model and the expectation Eθ0 is taken

with respect to the true model. β0 (θ0) is known as the pseudo–true value and the key is

that it depends on the true parameters of the data–generation process (θ0). If one knew the

pseudo–true value as a function of θ0, then it could be used to solve the equation

β̂ = β0

(
θ̂
)

and obtain an estimator for θ0. In our case, we do not know β0(θ), but we can easily

approximate this function using simulations. For each θ, we generate R draws

{(z1r (θ) , z2r (θ) , . . . , znr (θ))}Rr=1

and then estimate the function

β0(θ) ≡ arg max
b
Eθ [logLa (b; zi)]

by

β̃R (θ) = arg max
b

1

R

R∑
r=1

1

n

n∑
i=1

(logLa (b; zir (θ)))

In other words, we find θ̂ such that the generated data set using θ̂ gives the same estimate

in the auxiliary model as we got in the real sample:

β̂ = β̃R

(
θ̂
)

13



Alternatively, one could also measure the distance between β̂ and β̃R (θ) by

n∑
i=1

logLa
(
β̂; zi

)
−

n∑
i=1

logLa
(
β̃R (θ) ; zi

)
≥ 0.

One could then minimize this function to make the difference between β̂ and β̃R (θ) as small

as possible. This implies that

β̂ = arg max
b

n∑
i=1

logLa (b; zi) =⇒ 1

n

n∑
i=1

Sa
(
β̂; zi

)
= 0

so β̂ converges to the solution to

Eθ [Sa (b; zi)] = 0

which is just β0 (θ0) from before. So if we knew the function β0 (θ) we would estimate θ0 by

solving β̂ = β0

(
θ̂
)

which is the same as

Eθ̂

[
Sa
(
β̂; zi

)]
= 0

As before, we estimate Eθ [Sa (·; zi)] as a function of θ using

1

R

R∑
r=1

1

n

n∑
i=1

Sa (·; zir (θ))

and θ0 is estimated by solving

1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

)
= 0.

If dim (Sa) > dim (β), we minimize(
1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

))>
W

(
1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

))
over θ. The weighting matrix W is a positive definite matrix performing the usual role in

terms of estimator efficiency. This strategy is useful because we only estimate the auxiliary

model once using the real data. After that, we evaluate its FOC for different draws of θ.

2.2.1 Auxiliary Model

Our auxiliary model is composed of three reduced form models that are chosen to capture

the features of the data that are our main concern: the duration until retirement for each

14



spouse, and the idea that members of some married couples choose to retire jointly. For

the first two, we use a standard proportional hazard model for each spouse with a Weibull

baseline hazard and the usual specification for the covariate function. For the third, we use

an ordered Logit model as suggested by our paper Honoré and de Paula (2010). We present

the models in detail below.

Weibull Proportional Hazard Model

For each spouse, the baseline hazard for retirement is assumed to be

Z (t) = tα ⇒ λ (t) ≡ Z ′ (t) = αtα−1

and the covariate function is ϕ(x) = exp
(
x>β

)
. The (log) density of retirement conditional

on x is then given by:

log f (t|x) = log
{
λ (t) exp

(
x>β

)
exp

(
−Z (t) exp

(
x>β

))}
= logα+(α− 1) log t+x>β−tα exp

(
x>β

)
The (conditional) survivor function can be analogously obtained and is given by:

logS (t|x) = log
{

exp
(
−Z (t) exp

(
x>β

))}
= −tα exp

(
x>β

)
Letting ci = 1 if the observation is (right-)censored, and = 0 otherwise, we obtain the

log-likelihood function:

logL =
n∑
i=1

(1− ci) (logα + (α− 1) log (ti) + x′iβ)−
n∑
i=1

tαi exp (x′iβ)

First and second derivatives used in the computation of the MLE for this auxiliary model

are presented in the Appendix.

Ordered Logit Model Pseudo MLE

In the spirit of the estimation strategy suggested in Honoré and de Paula (2010),

we also use as auxiliary model an ordered logit. Whereas the Weibull model will convey

information on the timing of retirement, this second auxiliary model will provide information

on the pervasiveness of joint retirement and help identify the taste interactions leading to

15



this phenomenon (i.e. δ). Define

yi =


1, if t1 > t2

2, if t1 = t2

3, if t1 < t2

The model is then given by:

y?i = x>i β − εi, yi =


0 if y?i < 0

1 if 0 ≤ y?i < α

2 if α ≤ y?i

where we also include an intercept. Then

P (yi = 1 or yi = 2) = Λ
(
x>i β

)
P (yi = 2) = Λ

(
x>i β − α

)
which allows us to construct the following pseudo-likelihood function:

Q =
∑
yi=0

log
(
1− Λ

(
x>0iθ

))
+
∑
yi 6=0

log
(
Λ
(
x>0iθ

))
+
∑
yi 6=2

log
(
1− Λ

(
x>1iθ

))
+
∑
yi=2

log
(
Λ
(
x>1iθ

))
where

x0i =

(
x>i

...0

)>
x1i =

(
x>i

...1

)>
θ =

(
β>

...− α
)>

As before, first and second order derivatives are presented in the Appendix.

Overall Auxiliary Model

Our final auxiliary model objective function is then defined by the pseudo–loglikelihood

function

logLmen (β1) + logLwomen (β2) +Q (β3)

and the moment conditions used for estimating the parameters of the structural model are

the first order conditions for maximizing this.

As is customary, we choose as our weighting matrix W = Ĵ−1
0 , where
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Ĵ0 = V̂




∂ logLmi

∂β1

∂ logLwi

∂β2

∂Qi

∂β3




The (asymptotic) standard errors of the structural estimates are calculated using the

formulae in Gourieroux and Monfort (1996).

3 Data

In the United States, full retirement age for those reaching 62 before 2000 was 65 years old.

The full retirement age has been increasing ever since until it reaches 67 for those reaching 62

in 2022. Workers who claim early retirement (between ages 62 to 65) have their basic benefit

(PIA, primary insurance account) reduced proportionately. Individuals who delay retirement

receive increases in benefits for every month of delayed retirement before age 70. (The rate of

increase rose gradually until reaching 8 percent for year of delayed retirement in 2005.) Those

claiming early retirement are also subject to an earnings test whereby half of the earnings

above a certain threshold are withheld. Most of the lost earnings are treated as delayed

receipt. (Until 2000, recipients were also subject to an earnings test during the first five

years of retirement.) Aside from the OASDI (Old Age, Survivors, and Disability Insurance)

program, the SSA also administers the SSI (Supplemental Security Income) program, which

provides assistance to individuals age 65 or older as well as disabled. The entitlement level

is unrelated to previous work earnings and is based on the individual or couple’s income and

net worth.

We estimate the model using eight waves of the Health and Retirement Study (every

two years from 1992 to 2006) and keep households where at least one individual was 60

years-old or more. We classify as retired a respondent who is not working, and not looking

for work and if there is any mention of retirement through the employment status or the

questions that ask the respondent whether he or she considers him or herself retired.5 To

5Specifically we use the classification provided by the variable RwLBRF.
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avoid left-censoring, selected households also had both partners working at the initial period.

Right-censoring occurs when someone dies or has his or her last interview before the end

of the survey. We excluded individuals who were part of the military. This leaves us with

1,469 couples. Of those, 384 couples have both husband and wife’s uncensored retirement

dates. Among the uncensored couples, 33 couples (≈ 8.6%) retire jointly.6 Figure 3 plots

the retirement month of the husbands against the retirement month of the wives for those

couples whose retirement month is uncensored for both spouses (January, 1931 is month 1).

The points along the 45-degree line are the joint retirements.

We condition covariates on the first “household year”: when the oldest partner reaches

60 years-old.7 The covariates we use are:

1. the age difference in the couple (husband’s age - wife’s age in years);

2. dummies for race (non-Hispanic black, Hispanic and other race with non-Hispanic

whites as the omitted category);

3. dummies for education (high school or GED, some college and college or above with

less than high school as the omitted category);

4. indicators of region (NE, SO, and WE with MW or other region as omitted category);

5. self-reported health dummies (good health, very good health, with poor health as the

omitted category);

6. an indicator for whether the person has health insurance;

7. the total health expenditure (in 10,000 dollars) (inflation adjusted using the CPI to

Jan/2000 dollars);

8. indicators for whether the person had a defined contribution (DC) or defined benefit

(DB) plan; and

6There are 540 additional couples with only one censored spouse. If those are presumed to have retired

sequentially, the proportion of joint retirements among couples with at most one censored spouse is 3.5%.
7We take the measurements from the first interview after the oldest spouse turns 60.
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9. financial wealth (inflation adjusted using the CPI to Jan/2000 dollars).8 This measure

includes value of checking, savings accounts, stocks, mutual funds, investment trusts,

CD’s, Government bonds, Treasury bills and all other savings minus the value of debts

such as credit card balances, life insurance policy loans or loans from relatives. It does

not include housing wealth or private pension holding.

In Table 2, we present an overview of intra-household differences. Most of the couples

marry within their own race but there is substantial variation in term of education. Many

couples report different health statuses and in accordance there is substantial difference

in health expenditures. There are also differences with respect to insurance and pension

ownership. Figure 4 presents the Kaplan-Meier estimates for the retirement behavior in our

sample (measured in year of retirement).

4 Results

We now present our estimation results using monthly data on retirement in couples. The

discount rate ρ is set to 0.004 per month (i.e., 5% per year) and the threat points are set at

the 0.6 times the utility level they would have obtained if his or her partner never retired.9

The number of simulations in each set of estimates is R = 5. Since we cannot detect any

visible discontinuity or kink in those plots, we assume that Z(·) is smooth. We assume that

Z(t) = tα implying a Weibull baseline hazard for a model with δ = 1. Utility flows while in

the labor force are drawn from independent unit exponentials (Ki ∼ exp(1)).10 Finally, we

take ϕi(xi) = exp(β>i xi).

8For financial wealth we use the transformation sgn(financial wealth)×
√

financial wealth. This transfor-

mation is in the spirit of a logarithmic transformation of positive variables and implies that large quantities

have a decreasing effect. In contrast to a log transformation, it allows us to handle negative numbers. It is

concave for positive values and convex for negative ones.
9In our estimations, we experimented with multiples of this scaled by 0 and 1 as well. Results are not

much different and hence omitted.
10Other distributions could be employed. Dependence between K1 and K2 could also be incorporated, for

example, using copulas.
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Tables 3 and 4 present our estimates. Results are very robust across covariate speci-

fications. There is positive duration dependence: retirement is more likely as the household

ages. Age differences tend to increase the retirement hazard for men and decrease it for

women. Since men are typically older and we count “family age” from the 60th year of the

oldest partner, a larger age difference implies that the wife is younger at time zero and less

likely to retire at any “family age” than an older woman (i.e., a similar wife in a household

with a lower age difference). Both non-white men and women have lower retirement hazard

than non-Hispanic whites, though only Hispanics’ coefficients tend to be significant. The

hazard of a hispanic woman is about 0.662(= exp(−0.411)) of a white woman’s. The hazard

of a hispanic man is about 0.642(= exp(−0.443)) of a white man’s.

More educated women, but especially those with high school or GED and in some

covariate specifications with college, seem to retire earlier than those without high school,

but the coefficients on those categories are not statistically significant. For men, college-

educated husbands retire later than all other categories and the association is statistically

significant. There is some evidence that high school graduates retire earlier but the effect is

numerically small and statistically insignificant. There is some evidence that husbands in the

Northeast retire earlier whereas those in the South and West retire later than those in the

Midwest. The only statistically significant coefficients are those associated with the South

though. Geographical region does not seem to play a statistically significant role for women.

Furthermore, depending on the covariate specification, Northeast and Southern women have

a lower or higher hazard than those in the Midwest. Western wives do seem to retire earlier

in all covariate specifications, but then again standard errors are quite imprecise.

Self-reported health lowers the hazard with healthier people retiring later than those

in poor health. Only the female coefficient on “good health” is significant in some of the

specifications nonetheless. Having health insurance increases the hazard for husbands and

decreases the hazard for wives, though not in a statistically significant way. Total health

expenditures increase the hazard for husband, but lowers it for the wife. Having a defined

benefit contribution pension plan increases the probability of retirement for both genders in

a numerically and statistically significant manner. A defined contribution plan affects nega-
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tively (though insignificantly) the male hazard of men but not the female. Wealthier women

tend to retire earlier, but financial wealth does not affect the hazard of men significantly.

The interaction parameter ranges from 1.131 to 1.074 across our various specifications.

In terms of our model, this means that the utility flow of retirement increases by around

10% when one’s partner retires. In terms of the effect on the hazard rate of retirement, this

corresponds to about 40% of the effect of having a defined benefit plan for the men.

We have also added spousal variables as covariates to the last specification. Those

variables were: dummies for “very good health” and “good health” and dummies for defined

benefit and defined contribution pensions. In the simultaneous duration model, the coeffi-

cient for the dummy on “West” is now barely significant at 10% for wives, but the coefficient

estimates on the remaining variables are essentially the same as in the tables. For males,

the spousal coefficients are statistically insignificant at usual levels. For females, only the

coefficient on a defined benefit pension plan for the spouse is statistically significant. The

absence of an effect of spousal health is in line with previous findings in the literature (e.g.,

Coile (2004b)). The effect of a husband having a defined benefit plan on a woman’s duration

(0.324) is comparable with that of the woman herself having a defined benefit pension plan,

which is 0.399 once include spousal covariates. In contrast, the point estimate of the effect

of a wife having a defined benefit pension plan on the man’s duration (−0.072) is negative,

much lower in magnitude and statistically insignificant, when compared to that of the man

himself having a defined benefit plan, which is 0.262 once we include spousal covariates.

5 Concluding Remarks

We have presented a novel model that nests the usual generalized accelerated failure time

models, but accounts for joint termination of spells and is built upon an economic model of

joint decision making. We applied the model to retirement of husband and wife.
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Appendix

Log-likelihood Derivatives: Weibull Model

∂ logL
∂α

=
n∑
i=1

(1− ci)
(

1

α
+ log (ti)

)
−

n∑
i=1

tαi log (ti) exp (x′iβ)

∂ logL
∂β

=
n∑
i=1

(1− ci)xi −
n∑
i=1

tαi exp (x′iβ)xi

∂2 logL
∂α2

= −
n∑
i=1

(1− ci)
1

α2
−

n∑
i=1

tαi log (ti)
2 exp (x′iβ)

∂2 logL
∂α∂β′

= −
n∑
i=1

tαi log (ti) exp (x′iβ)xi

∂2 logL
∂β∂β′

= −
n∑
i=1

tαi exp (x′iβ)xix
′
i

To impose α > 0 in our computations we parameterize α = exp (θ). Then,

∂ logL
∂θ

=
∂ logL
∂α

∂α

∂θ
=

(
n∑
i=1

(1− ci)
(

1

α
+ log (ti)

)
−

n∑
i=1

tαi log (ti) exp (x′iβ)

)
α

∂ logL
∂β

=
n∑
i=1

(1− ci)xi −
n∑
i=1

tαi exp (x′iβ)xi

∂2 logL
∂θ2

=
∂

∂θ

(
∂ logL
∂α

∂α

∂θ

)
=

∂2 logL
∂α2

(
∂α

∂θ

)2

+
∂ logL
∂α

∂2α

∂θ2

=

(
−

n∑
i=1

(1− ci)
1

α2
−

n∑
i=1

tαi log (ti)
2 exp (x′iβ)

)
α2

−

(
n∑
i=1

(1− ci)
(

1

α
+ log (ti)

)
−

n∑
i=1

tαi log (ti) exp (x′iβ)

)
α

∂2 logL
∂θ∂β′

=
∂2 logL
∂α∂β′

∂α

∂θ
=

(
−

n∑
i=1

tαi log (ti) exp (x′iβ)xi

)
α

∂2 logL
∂β∂β′

= −
n∑
i=1

tαi exp (x′iβ)xix
′
i

Pseudo-likelihood Derivatives: Ordered Model
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∂Q
∂θ

=
∑
i

[(
1 {yi 6= 0} − Λ

(
x>0iθ

))
x0i +

(
1 {yi = 2} − Λ

(
x>1iθ

))
x1i

]
∂2Q
∂θ∂θ>

= −
∑
i

[((
1− Λ

(
x>0iθ

))
Λ
(
x>0iθ

))
x0ix

>
0i +

((
1− Λ

(
x>1iθ

))
Λ
(
x>1iθ

))
x1ix

>
1i

]
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Honoré, B., and A. de Paula (2010): “Interdependent Durations,” Review of Economic

Studies, 77, 11381163.

Hurd, M. (1990): “The Joint Retirement Decisions of Husbands and Wives,” in Issues in

the Economics of Aging, ed. by D. A. Wise. Chicago: University of Chicago Press.

Magnac, T., J.-M. Robin, and M. Visser (1995): “Analysing Incomplete Individual

Employment Histories Using Indirect Inference,” Journal of Applied Econometrics, 10,

S153–S169.

25



Manski, C. (1993): “Identification of Endogenous Social Effects: The Reflection Problem,”

Review of Economic Studies, 60(3), 531–542.

Marshall, A., and I. Olkin (1967): “A Multivariate Exponential Model,” Journal of the

American Statistical Association, 62, 30–44.

Michaud, P., and F. Vermeulen (forthcoming): “A Collective Labor Supply Model with

Complementarities in Leisure: Identification and Estimation by Means of Panel Data,”

Labour Economics.

Michaud, P.-C. (2003): “Labor Force Participation Dynamics and Social Security Claim-

ing Decisions of Elderly Couples,” Working Paper, CentER Tilburn University and IZA.

Nash, J. (1950): “The Bargaining Problem,” Econometrica, 18, 155162.

Ridder, G. (1990): “The Non-Parametric Identification of Generalized Accelerated Failure-

Time Models,” Review of Economic Studies, 57.

Smith, A. (1993): “Estimating nonlinear time series models using vector-autoregressions:

Two approaches,” Journal of Applied Econometrics, 8, S63–S84.

Zeuthen, F. (1930): Problems of Monopoly and Economic Warfare. London: Routledge.

26



Appendix: Figures and Tables

Figure 1: Difference in Retirement Months (Husband-Wife)

Figure 2: Joint Retirement Regions
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Figure 3: Retirement Months: Husband vs Wife

Figure 4: Kaplan-Meier Estimates: Husband and Wife
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Table 1: Summary statistics

All Observations Uncensored Censored

Variable Mean N Mean N Mean N

Gender 0.50 2938 0.59 1308 0.43 1630

Failure Month 53.60 2938 42.67 1308 62.36 1630

Censored 0.56 2938 0 1308 1 1630

Censoring Montha 81.36 2938 105.03 1308 62.36 1630

Age Diff. 3.90 2794 3.62 1268 4.14 1526

Nonhisp. White 0.77 2916 0.809 1298 0.73 1618

Nonhisp. Black 0.10 2916 0.089 1298 0.11 1618

Other Race 0.03 2916 0.023 1298 0.03 1618

Hispanic 0.11 2916 0.079 1298 0.14 1618

< High School 0.19 2916 0.191 1298 0.20 1618

HS or GED 0.36 2916 0.378 1298 0.35 1618

Some College 0.22 2916 0.216 1298 0.22 1618

College or Above 0.22 2916 0.215 1298 0.23 1618

NE 0.17 2916 0.181 1298 0.16 1618

MW 0.24 2916 0.265 1298 0.23 1618

SO 0.42 2916 0.384 1298 0.45 1618

WE 0.17 2916 0.169 1298 0.17 1618

Health Insurance 0.85 2896 0.88 1288 0.83 1608

V Good Health 0.53 2916 0.551 1298 0.52 1618

Good Health 0.31 2916 0.294 1298 0.31 1618

Poor Health 0.16 2916 0.155 1298 0.17 1618

Tot. Health Exp.b 8.07 ×103 2436 8.80 ×103 1249 7.30 ×103 1187

Pension (DB) 0.23 2916 0.28 1298 0.18 1618

Pension (DC) 0.22 2916 0.201 1298 0.23 1618

Financial Wealthb 94.01 ×103 2938 87.83 ×103 1308 98.97 ×103 1630

a. For those uncensored, the censoring month is the smallest between the last interview or death
date. It is used in the simulations for indirect inference.
b. Inflation-adjusted using the CPI to 2000 US Dollars.
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Table 2: Intra-Household Differences

Prop. or Diff. N of Couples

Same Race (proportion) 0.9523 1447

Same Education (proportion) 0.4731 1469

Same Self-Reported Health (proportion) 0.4755 1447

Health Insurance (both) (proportion) 0.8160 1429

Health Insurance (neither) (proportion) 0.1092 1429

DB Pension (both) (proportion) 0.0636 1447

DB Pension (neither) (proportion) 0.6123 1447

DC Pension (both) (proportion) 0.0560 1447

DC Pension (neither) (proportion) 0.6185 1447

Health Exp. (difference) (US$1,000) 1.900 1208

Only couples with no missing variable. Inflation-adjusted health expenditures
in Jan/2000 USD.
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Table 3: WIVES’ Simultaneous Duration (Threat point scale=0.6)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.131 1.105 1.111 1.082 1.080 1.074
( 0.033) ( 0.026) ( 0.032) ( 0.027) (0.031) (0.036)

α 1.179 1.196 1.214 1.215 1.229 1.228
( 0.040 ) ( 0.051 ) ( 0.053 ) ( 0.077 ) ( 0.071 ) ( 0.076 )

Constant -5.761 ∗∗ -5.919 ∗∗ -5.786 -6.022 ∗∗ -5.964 ∗∗ -6.010 ∗∗

( 0.185 ) ( 0.269 ) ( 0.262 ) ( 0.433 ) ( 0.432 ) ( 0.465 )

Age Diff. -0.073 ∗∗ -0.068 ∗∗ -0.070 -0.073 ∗∗ -0.072 ∗∗ -0.073 ∗∗

( 0.017 ) ( 0.020 ) ( 0.020 ) ( 0.018 ) ( 0.019 ) ( 0.019 )

Nonhisp. Black -0.125 -0.108 -0.048 -0.075 0.028
( 0.153 ) ( 0.143 ) ( 0.172 ) ( 0.159 ) ( 0.188 )

Other race -0.443 -0.370 -0.390 -0.344 -0.294
( 0.316 ) ( 0.303 ) ( 0.339 ) ( 0.391 ) ( 0.381 )

Hispanic -0.433 † -0.461 -0.429 † -0.498 ∗ -0.466 †

( 0.224 ) ( 0.226 ) ( 0.227 ) ( 0.219 ) ( 0.244 )

High school or GED 0.233 0.257 0.219 0.172 0.151
( 0.165 ) ( 0.166 ) ( 0.172 ) ( 0.175 ) ( 0.189 )

Some college 0.086 0.070 0.107 0.060 -0.006
( 0.171 ) ( 0.179 ) ( 0.188 ) ( 0.183 ) ( 0.219 )

College or above 0.238 0.245 0.291 0.149 0.084
( 0.185 ) ( 0.189 ) ( 0.201 ) ( 0.195 ) ( 0.221 )

NE 0.016 0.018 -0.077 -0.197 -0.152
( 0.172 ) ( 0.165 ) ( 0.161 ) ( 0.176 ) ( 0.188 )

SO -0.001 -0.004 0.021 -0.018 -0.015
( 0.119 ) ( 0.126 ) ( 0.128 ) ( 0.131 ) ( 0.128 )

WE 0.204 0.140 0.201 0.165 0.220
( 0.158 ) ( 0.172 ) ( 0.157 ) ( 0.150 ) ( 0.150 )

V Good Health -0.200 -0.197 -0.254 -0.264
( 0.160 ) ( 0.173 ) ( 0.186 ) ( 0.199 )

Good Health -0.320 -0.336 ∗ -0.392 ∗ -0.383 †

( 0.157 ) ( 0.164 ) ( 0.179 ) ( 0.192 )

Health Insurance 0.302 0.227 0.202
( 0.191 ) ( 0.214 ) ( 0.205 )

Tot. Health Exp. -0.201 -0.129 -0.079
( 0.634 ) ( 0.791 ) ( 1.170 )

Pension (DC) 0.123 0.140
( 0.142 ) ( 0.156 )

Pension (DB) 0.418 ∗∗ 0.434 ∗∗

( 0.121 ) ( 0.127 )

Fin. Wealth 0.386 †

( 0.226 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α nor δ.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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Table 4: HUSBANDS’ Simultaneous Duration (Threat point scale=0.6)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.131 1.105 1.111 1.082 1.080 1.074
( 0.033) ( 0.026) ( 0.032) ( 0.027) (0.031) (0.036)

α 1.189 1.207 1.222 1.211 1.221 1.232
( 0.054 ) ( 0.050 ) ( 0.049 ) ( 0.049 ) ( 0.050 ) ( 0.045 )

Constant -5.505 ∗∗ -5.342 ∗∗ -5.341 -5.655 ∗∗ -5.708 ∗∗ -5.716 ∗∗

( 0.234 ) ( 0.246 ) ( 0.281 ) ( 0.268 ) ( 0.279 ) ( 0.286 )

Age Diff. 0.026 ∗∗ 0.023 ∗ 0.023 0.031 ∗∗ 0.031 ∗∗ 0.027 ∗∗

( 0.010 ) ( 0.011 ) ( 0.010 ) ( 0.009 ) ( 0.009 ) ( 0.009 )

Nonhisp. Black -0.142 -0.154 -0.101 -0.164 -0.165
( 0.140 ) ( 0.146 ) ( 0.180 ) ( 0.176 ) ( 0.180 )

Other race -0.313 -0.360 -0.081 0.010 -0.031
( 0.251 ) ( 0.236 ) ( 0.245 ) ( 0.231 ) ( 0.293 )

Hispanic -0.562 ∗∗ -0.588 -0.535 ∗∗ -0.538 ∗∗ -0.550 ∗

( 0.169 ) ( 0.166 ) ( 0.174 ) ( 0.203 ) ( 0.222 )

High school or GED 0.062 0.045 0.016 0.056 0.014
( 0.127 ) ( 0.131 ) ( 0.133 ) ( 0.134 ) ( 0.140 )

Some college 0.032 0.027 -0.050 -0.047 -0.069
( 0.133 ) ( 0.139 ) ( 0.141 ) ( 0.144 ) ( 0.153 )

College or above -0.326 ∗ -0.352 -0.235 † -0.199 -0.252 †

( 0.135 ) ( 0.136 ) ( 0.141 ) ( 0.136 ) ( 0.145 )

NE 0.093 0.061 0.107 0.132 0.117
( 0.118 ) ( 0.124 ) ( 0.124 ) ( 0.127 ) ( 0.128 )

SO -0.191 † -0.191 -0.163 -0.171 -0.172
( 0.102 ) ( 0.103 ) ( 0.112 ) ( 0.116 ) ( 0.119 )

WE -0.127 -0.127 -0.047 -0.047 -0.051
( 0.130 ) ( 0.129 ) ( 0.138 ) ( 0.144 ) ( 0.143 )

V Good Health -0.064 0.030 0.028 0.025
( 0.136 ) ( 0.141 ) ( 0.147 ) ( 0.158 )

Good Health -0.016 0.006 -0.044 -0.041
( 0.139 ) ( 0.147 ) ( 0.151 ) ( 0.161 )

Health Insurance 0.226 † 0.198 0.200
( 0.129 ) ( 0.137 ) ( 0.136 )

Tot. Health Exp. 1.283 ∗ 1.355 ∗ 1.355 ∗

( 0.646 ) ( 0.624 ) ( 0.653 )

Pension (DC) -0.118 -0.135
( 0.114 ) ( 0.115 )

Pension (DB) 0.223 ∗ 0.248 ∗

( 0.112 ) ( 0.112 )

Fin. Wealth 0.103
( 0.197 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α nor δ.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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