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This paper provides a general theory on the asymptotic normal-
ity of plug-in sieve M estimators of possibly irregular functionals of
semi-nonparametric time series models. We show that, even when
the sieve score process is not a martingale difference, the asymp-
totic variances of plug-in sieve M estimators of irregular (i.e., slower
than root-T estimable) functionals are the same as those for indepen-
dent data. Nevertheless, ignoring the temporal dependence in finite
samples may not lead to accurate inference. We then propose an
easy-to-compute and more accurate inference procedure based on a
“pre-asymptotic” sieve variance estimator that captures temporal de-
pendence of unknown forms. We construct a “pre-asymptotic” Wald
statistic using an orthonormal series long run variance (OS-LRV) esti-
mator. For sieve M estimators of both regular (i.e., root-T estimable)
and irregular functionals, a scaled “pre-asymptotic” Wald statistic is
asymptotically F distributed when the series number of terms in the
OS-LRV estimator is held fixed. Simulations indicate that our scaled
“pre-asymptotic” Wald test with F critical values has more accurate
size in finite samples than the conventional Wald test with chi-square
critical values.

1. Introduction. Many economic and financial time series are nonlinear and non-
Gaussian; see, e.g., Granger (2003). For policy analysis, it is important to uncover com-
plicated nonlinear economic relations in structural models. Unfortunately, it is difficult to
correctly parameterize all aspects of nonlinear dynamic functional relations. Due to the
well-known problem of “curse of dimensionality” it is also impractical to estimate a gen-
eral nonlinear time series model fully nonparametrically. These issues motivate the growing
popularity of semiparametric and semi-nonparametric models and methods in economics
and finance.

The method of sieves (Grenander, 1981) is a general procedure for estimating semi-
parametric and nonparametric models, and has been widely used in statistics, economics,
finance, biostatistics and other disciplines. In this paper, we focus on sieve M estimation,
which optimizes a sample average of a random criterion over a sequence of approximating
parameter spaces, sieves, that becomes dense in the original infinite dimensional param-
eter space as the complexity of the sieves grows to infinity with the sample size T . See
Shen and Wong (1994), Chen (2007) and the references therein for many examples of sieve
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M estimation, including sieve (quasi) maximum likelihood, sieve (nonlinear) least squares,
sieve generalized least squares, and sieve quantile regression.

We consider inference on possibly misspecified semi-nonparametric time series models
via the method of sieve M estimation. For general sieve M estimators with weakly depen-
dent data, White and Wooldridge (1991) establish the consistency, and Chen and Shen
(1998) establish the convergence rate and the

√
T asymptotic normality of plug-in sieve M

estimators of regular (i.e.,
√
T estimable) functionals. To the best of our knowledge, there

is no published work on the limiting distributions of plug-in sieve M estimators of irregular
(i.e., slower than

√
T estimable) functionals. There is also no published inferential result

for general sieve M estimators of regular or irregular functionals for possibly misspecified
semi-nonparametric time series models.

We first provide a general theory on the asymptotic normality of plug-in sieve M es-
timators of possibly irregular functionals in semi-nonparametric time series models. The
key insight is to examine the functional of interest on a sieve tangent space where a Riesz
representer always exists regardless of whether the functional is regular or irregular. The
asymptotic normality result is rate-adaptive in the sense that applied researchers do not
need to know a priori whether the functional of interest is

√
T estimable or not.

For possibly misspecified semi-nonparametric models with weakly dependent data, Chen
and Shen (1998) establish that the asymptotic variance of a sieve M estimator of any regular
functional depends on the temporal dependence and is equal to the long run variance (LRV)
of a scaled score (or moment) process. In this paper, we show a new result that, regardless
of whether the score process is martingale difference or not, the asymptotic variance of a
sieve M estimator of an irregular functional for weakly dependent data is the same as that
for independent data.

Our asymptotic theory suggests that, for weakly dependent time series data with a
large sample size, temporal dependence could be ignored in making inference on irregular
functionals via the method of sieves. However, simulation studies indicate that inference
procedures based on asymptotic variance estimates ignoring autocorrelation do not perform
well when the sample size is small (relatively to the degree of temporal dependence).
See, e.g., Conley, Hansen and Liu (1997) and Pritsker (1998) for earlier discussion of this
problem with kernel density estimation for interest rate data sets.

To deal with this problem, for inference on both regular and irregular functionals, we
propose to use a “pre-asymptotic” sieve variance that captures temporal dependence of an
unknown form. That is, we treat the underlying triangular array sieve score process as a
generic time series and ignore the fact that it becomes less temporally dependent when
the sieve number of terms in approximating unknown functions grows to infinity as T goes
to infinity. This novel “pre-asymptotic” sieve approach enables us to develop a unified
inference framework that can accommodate both regular and irregular functionals.

To derive a simple and more accurate asymptotic approximation under weak conditions,
we compute a “pre-asymptotic” Wald statistic using an orthonormal series LRV (OS-LRV)
estimator. For both regular and irregular functionals, we show that the “pre-asymptotic”
t statistic and a scaled Wald statistic converge to the standard t distribution and F distri-
bution respectively when the series number of terms in the OS-LRV estimator is held fixed;
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and that the t distribution and F distribution approach the standard normal and chi-square
distributions respectively when the series number of terms in the OS-LRV estimator goes
to infinity. Our “pre-asymptotic” t and F approximations achieve triple robustness in the
following sense: they are asymptotically valid regardless of (1) whether the functional is
regular or not; (2) whether there is temporal dependence of unknown form or not; and (3)
whether the series number of terms in the OS-LRV estimator is held fixed or not.

The rest of the paper is organized as follows. Section 2 presents the plug-in sieve M es-
timator of functionals of interest and gives two illustrative examples. Section 3 establishes
the asymptotic normality of the plug-in sieve M estimators of possibly irregular functionals.
Section 4 shows that the asymptotic variances of plug-in sieve M estimators of irregular
functionals for weakly dependent data are the same as if they were for i.i.d. data. Sec-
tion 5 presents the “pre-asymptotic” OS-LRV estimator and F approximation. Section 6
describes a simple computation method and reports a simulation study using a partially
linear regression model. Appendix contains all the proofs.

Notation. We denote fA(a) (FA(a)) as the marginal probability density (cdf) of a
random variable A evaluated at a and fAB(a, b) (FAB(a, b)) the joint density (cdf) of
the random variables A and B. We use ≡ to introduce definitions. For any vector-valued
A, we let A′ denote its transpose and ||A||E ≡ √

A′A, although sometimes we also use
|A| = √

A′A without confusion. Denote Lp(Ω, dμ), 1 ≤ p < ∞, as a space of measurable
functions with ||g||Lp(Ω,dμ) ≡ {∫Ω |g(t)|pdμ(t)}1/p < ∞, where Ω is the support of the
sigma-finite positive measure dμ (sometimes Lp(Ω) and ||g||Lp(Ω) are used when dμ is the
Lebesgue measure). For any (possibly random) positive sequences {aT }∞T=1 and {bT }∞T=1,
aT = Op(bT ) means that limc→∞ lim supT Pr (aT /bT > c) = 0; aT = op(bT ) means that
for all ε > 0, limT→∞Pr (aT /bT > ε) = 0; and aT � bT means that there exist two
constants 0 < c1 ≤ c2 < ∞ such that c1aT ≤ bT ≤ c2aT . We use AT ≡ AkT , HT ≡ HkT

and VT ≡ VkT to denote various sieve spaces. For simplicity, we assume that dim(VT ) =
dim(AT ) � dim(HT ) � kT , all of which grow to infinity with the sample size T .

2. Sieve M Estimation. We assume that the data {Zt = (Y ′
t ,X

′
t)
′}Tt=1 is from a

strictly stationary and weakly dependent process defined on an underlying complete prob-
ability space. Let Z ⊆ R

dz , 1 ≤ dz < ∞, Y ⊆ R
dy and X ⊆ R

dx be the supports of
Zt, Yt and Xt respectively. Let (A, d) denote an infinite dimensional metric space. Let
� : Z × A → R be a measurable function and E[�(Z,α)] be a population criterion. For
simplicity we assume that there is a unique α0 ∈ (A, d) such that E[�(Z,α0)] > E[�(Z,α)]
for all α ∈ (A, d) with d(α,α0) > 0. Different models correspond to different choices of the
criterion functions E[�(Z,α)] and the parameter spaces (A, d). A model does not need to
be correctly specified and α0 could be a pseudo-true parameter. Let f : (A, d) → R be a
known measurable mapping. In this paper we are interested in estimation of and inference
on f(α0) via the method of sieves.

Let AT be a sieve space for the whole parameter space (A, d). Then there is an element
ΠTα0 ∈ AT such that d (ΠTα0, α0) → 0 as dim(AT ) → ∞ (with T ). An approximate sieve
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M estimator α̂T ∈ AT of α0 solves

(2.1)
1

T

T∑
t=1

�(Zt, α̂T ) ≥ sup
α∈AT

1

T

T∑
t=1

�(Zt, α)−Op(ε
2
T ),

where the term Op(ε
2
T ) = op(T

−1) denotes the maximization error when α̂T fails to be
the exact maximizer over the sieve space. We call f(α̂T ) the plug-in sieve M estimator
of f(α0). Under very mild conditions (see, e.g., Chen, 2007, Theorem 3.1 and White and
Wooldridge, 1991), the sieve M estimator α̂T is consistent for α0:

d(α̂T , α0) = Op {max [d(α̂T ,ΠTα0), d (ΠTα0, α0)]} = op(1).

Given the consistency, we can restrict our attention to a shrinking d-neighborhood of α0.
We equip A with an inner product induced norm ‖α− α0‖ that is weaker than d(α,α0) (i.e.,
‖α− α0‖ ≤ cd(α,α0) for a constant c > 0), and is locally equivalent to

√
E[�(Zt, α0)− �(Zt, α)]

in a shrinking d-neighborhood of α0. For strictly stationary weakly dependent data, Chen
and Shen (1998) establish the convergence rate: ‖α̂T − α0‖ = Op(ξT ) = op(T

−1/4), where
ξT = max [‖α̂T −ΠTα0‖ , ‖ΠTα0 − α0‖].

The method of sieve M estimation includes many special cases. Different choices of
criterion functions �(Zt, α) and different choices of sieves AT lead to different examples of
sieve M estimation. As an illustration, we provide two examples below. See, e.g., Shen and
Wong (1994) and Chen (2007) for additional examples.

Example 2.1. (Partially additive ARX regression) Suppose that the time series data
{Yt}Tt=1 is generated by

(2.2) Yt = X ′
tθ0 + h01 (Yt−1) + h02 (Yt−2) + ut,

with
E [ut|Xt, Yt−1, Yt−2] = 0,

where Xt is a dx−dimensional random vector, and could include finitely many lagged Yt’s.
Let θ0 ∈ Θ ⊂ R

dx and h0j ∈ Hj for j = 1, 2. Let α0 = (θ′0, h01, h02)
′ ∈ A = Θ ×H1 ×H2.

Examples of functionals of interest could be f(α0) = λ′θ0 or ∇h0j(yj) where λ ∈ R
dx and

yj ∈ int(Y) for j = 1, 2.

For the sake of concreteness we assume that Y is a bounded interval of R and Hj =
Λsj (Y) (a Hölder space) for sj > 0.5, j = 1, 2, where

Λs(Y) =
{
h ∈ C [s](Y) : sup

k≤[s]
sup
y∈Y

∣∣∣∇kh(y)
∣∣∣ < ∞, sup

y,y′∈Y

∣∣∇[s]h(y)−∇[s]h (y′)
∣∣

|y − y′|s−[s]
< ∞

}
,

where [s] is the largest integer that is strictly smaller than s. The Hölder space Λs(Y) (with
s > 0.5) is a smooth function space that is widely assumed in the semi-nonparametric
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literature. We can then approximate H = H1 × H2 by a sieve HT = H1,T × H2,T , where
for j = 1, 2,

(2.3) Hj,T =

⎧⎨⎩h (·) : h (·) =
kj,T∑
k=1

βkpj,k(·) = β′Pkj,T (·), β ∈ R
kj,T

⎫⎬⎭ ,

where the known sieve basis Pkj,T (·) could be polynomial splines, B-splines, wavelets,
Fourier series and others.

Let �(Zt, α) = − [Yt −X ′
tθ − h1 (Yt−1)− h2 (Yt−2)]

2 /4 with α = (θ′, h1, h2)′ ∈ A =
Θ×H1 ×H2. Let AT = Θ×H1,T ×H2,T be a sieve for A. We can estimate α0 ∈ A by the

sieve least squares (LS) estimator α̂T ≡ (θ̂′T , ĥ1,T , ĥ2,T )
′ ∈ AT :

(2.4) α̂T = arg max
(θ,h1,h2)∈AT

1

T

T∑
t=1

�(Zt, θ, h1, h2).

A functional of interest f(α0) (such as λ′θ0 or ∇h0j(yj)) is then estimated by the plug-in

sieve LS estimator f(α̂T ) (such as λ′θ̂T or ∇ĥj,T (yj)).
This example is very similar to Example 2 in Chen and Shen (1998), except that we

allow for dynamic mispecification in the sense that E [ut|Xt, Yt−1, Yt−2;Yt−j for j ≥ 3] may
not equal to zero. One can slightly modify their proofs to get the convergence rate of α̂T

and the
√
T -asymptotic normality of λ′θ̂T . But that paper does not provide a variance

estimator for λ′θ̂T . The results in our paper immediately lead to the asymptotic normality
of f(α̂T ) for possibly irregular functionals f(α0) and provide simple, robust inference on
f(α0).

Example 2.2. (Possibly misspecified copula-based time series model) Suppose that
{Yt}Tt=1 is a sample of strictly stationary first order Markov process generated from (FY , C0(·, ·)),
where FY is the true unknown continuous marginal distribution, and C0(·, ·) is the true un-
known copula for (Yt−1, Yt) that captures all the temporal and tail dependence of {Yt}. The
τ -th conditional quantile of Yt given Y t−1 = (Yt−1, . . . , Y1) is:

QY
τ (y) = F−1

Y

(
C−1
2|1 [τ |FY (y)]

)
,

where C2|1[·|u] ≡ ∂
∂uC0(u, ·) is the conditional distribution of Ut ≡ FY (Yt) given Ut−1 = u,

and C−1
2|1 [τ |u] is its τ -th conditional quantile. The conditional density function of Yt given

Y t−1 is
p0(·|Y t−1) = fY (·)c0 (FY (Yt−1), FY (·)) ,

where fY (·) and c0(·, ·) are the density functions of FY (·) and C0(·, ·) respectively. A re-
searcher specifies a parametric form {c(·, ·; θ) : θ ∈ Θ} for the copula density function, but
it could be misspecified in the sense c0(·, ·) /∈ {c(·, ·; θ) : θ ∈ Θ}. Let θ0 be the pseudo true
copula dependence parameter:

θ0 = argmax
θ∈Θ

∫ 1

0

∫ 1

0
c(u, v; θ)c0(u, v)dudv.
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Let (θ′0, fY )
′ be the parameters of interest. Examples of functionals of interest could be

λ′θ0, fY (y), FY (y) or QY
0.01(y) = F−1

Y

(
C−1
2|1 [τ |FY (y); θ0]

)
for any λ ∈ R

dθ and some

y ∈ supp(Yt).

We could estimate (θ′0, fY )
′ by the method of sieve quasi ML using different parameter-

izations and different sieves for fY . For example, let h0 =
√
fY and α0 = (θ′0, h0)

′ be the
(pseudo) true unknown parameters. Then fY (·) = h20 (·) /

∫∞
−∞ h20 (y) dy, and h0 ∈ L2(R).

For the identification of h0, we can assume that h0 ∈ H:

(2.5) H =

⎧⎨⎩h (·) = p0 (·) +
∞∑
j=1

βjpj(·) :
∞∑
j=1

β2
j < ∞

⎫⎬⎭ ,

where {pj}∞j=0 is a complete orthonormal basis functions in L2 (R), such as Hermite poly-
nomials, wavelets and other orthonormal basis functions. Here we normalize the coefficient
of the first basis function p0 (·) to be 1 in order to achieve the identification of h0 (·). Other
normalization could also be used. It is now obvious that h0 ∈ H could be approximated by
functions in the following sieve space:

(2.6) HT =

⎧⎨⎩h (·) = p0 (·) +
kT∑
j=1

βjpj(·) = p0 (·) + β′PkT (·) : β ∈ R
kT

⎫⎬⎭ .

Let Z ′
t = (Yt−1, Yt), α = (θ′, h)′ ∈ A = Θ×H and

(2.7)

�(Zt, α) = log

{
h2 (Yt)∫∞

−∞ h2 (y) dy

}
+log

{
c

(∫ Yt−1

−∞

h2 (y)∫∞
−∞ h2 (x) dx

dy,

∫ Yt

−∞

h2 (y)∫∞
−∞ h2 (x) dx

dy; θ

)}
.

Then α0 = (θ′0, h0)
′ ∈ A = Θ × H could be estimated by the sieve quasi MLE α̂T =

(θ̂′T , ĥT )
′ ∈ AT = Θ×HT that solves:

(2.8) sup
α∈Θ×HT

1

T

{
T∑
t=2

�(Zt, α) + log

{
h2 (Y1)∫∞

−∞ h2 (y) dy

}}
−Op(ε

2
T ).

A functional of interest f (α0) (such as λ′θ0, fY (y) = h20 (y) /
∫∞
−∞ h20 (y) dy, FY (y) or

QY
0.01(y)) is then estimated by the plug-in sieve quasi MLE f (α̂T ) (such as λ′θ̂, f̂Y (y) =

ĥ2T (y) /
∫∞
−∞ ĥ2T (y) dy, F̂Y (y) =

∫ y
−∞ f̂Y (y)dy or Q̂Y

0.01(y) = F̂−1
Y (C−1

2|1 [τ |F̂Y (y); θ̂])).

Under correct specification, Chen, Wu and Yi (2009) establish the rate of convergence
of the sieve MLE α̂T and provide a sieve likelihood-ratio inference for regular functionals
including f (α0) = λ′θ0 or FY (y) or QY

0.01(y). Under misspecified copulas, by applying Chen
and Shen (1998), we can still derive the convergence rate of the sieve quasi MLE α̂T and the√
T asymptotic normality of f(α̂T ) for regular functionals. However, the sieve likelihood

ratio inference given in Chen, Wu and Yi (2009) is no longer valid under misspecification.
The results in this paper immediately lead to the asymptotic normality of f(α̂T ) (such as
f̂Y (y) = ĥ2T (y) /

∫∞
−∞ ĥ2T (y) dy) for any possibly irregular functional f(α0) (such as fY (y))

as well as valid inferences under potential misspecification.
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3. Asymptotic Normality of Sieve M Estimators. In this section, we establish
the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of
semi-nonparametric time series models. We also give a closed-form expression for the sieve
Riesz representer that appears in our asymptotic normality result.

3.1. Local Geometry. The convergence rate result of Chen and Shen (1998) implies that
α̂T ∈ BT ⊂ B0 with probability approaching one, where

(3.1) B0 ≡ {α ∈ A : ‖α− α0‖ ≤ CξT log(log(T ))}; BT ≡ B0 ∩ AT .

Hence, we now regard B0 as the effective parameter space and BT as its sieve space. Let

(3.2) α0,T ∈ arg min
α∈BT

||α− α0||.

Let VT ≡ clsp (BT ) − {α0,T }, where clsp (BT ) denotes the closed linear span of BT under
‖·‖. Then VT is a finite dimensional Hilbert space under ‖·‖. Similarly the space V ≡
clsp (B0) − {α0} is a Hilbert space under ‖·‖. Moreover, VT is dense in V under ‖·‖. To
simplify the presentation, we assume that dim(VT ) = dim(AT ) � kT , all of which grow to
infinity with T . By definition we have 〈α0,T − α0, vT 〉 = 0 for all vT ∈ VT .

As demonstrated in Chen and Shen (1998), there is lots of freedom to choose such a
norm ‖α− α0‖ that is locally equivalent to

√
E[�(Z,α0)− �(Z,α)]. In some parts of this

paper, for the sake of concreteness, we present results for a specific choice of the norm ‖·‖.
We suppose that for all α in a shrinking d-neighborhood of α0, �(Z,α) − �(Z,α0) can be
approximated by Δ(Z,α0)[α − α0] such that Δ(Z,α0)[α − α0] is linear in α− α0. Denote
the remainder of the approximation as:

(3.3) r(Z,α0)[α− α0, α− α0] ≡ 2 {�(Z,α) − �(Z,α0)−Δ(Z,α0)[α− α0]} .

When limτ→0[(�(Z,α0 + τ [α−α0])− �(Z,α0))/τ ] is well defined, we could let Δ(Z,α0)[α−
α0] = limτ→0[(�(Z,α0 + τ [α−α0])− �(Z,α0))/τ ], which is called the directional derivative
of �(Z,α) at α0 in the direction [α− α0]. Define

(3.4) ‖α− α0‖ =
√

E (−r(Z,α0)[α− α0, α− α0])

with the corresponding inner product 〈·, ·〉

(3.5) 〈α1 − α0, α2 − α0〉 = E {−r(Z,α0)[α1 − α0, α2 − α0]}

for any α1, α2 in the shrinking d-neighborhood of α0. In general this norm defined in (3.4)
is weaker than d (·, ·). Since α0 is the unique maximizer of E[�(Z,α)] on A, under mild
conditions ‖α− α0‖ defined in (3.4) is locally equivalent to

√
E[�(Z,α0)− �(Z,α)].

For any v ∈ V, we define ∂f(α0)
∂α [v] to be the pathwise (directional) derivative of the

functional f (·) at α0 and in the direction of v = α− α0 ∈ V :

(3.6)
∂f(α0)

∂α
[v] =

∂f(α0 + τv)

∂τ

∣∣∣∣
τ=0

for any v ∈ V.
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For any vT = αT − α0,T ∈ VT , we let

(3.7)
∂f(α0)

∂α
[vT ] =

∂f(α0)

∂α
[αT − α0]− ∂f(α0)

∂α
[α0,T − α0].

So ∂f(α0)
∂α [·] is also a linear functional on VT .

Note that VT is a finite dimensional Hilbert space. As any linear functional on a finite
dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to
deduce that there is a v∗T ∈ VT such that

(3.8)
∂f(α0)

∂α
[v] = 〈v∗T , v〉 for all v ∈ VT

and that

(3.9)
∂f(α0)

∂α
[v∗T ] = ‖v∗T ‖2 = sup

v∈VT ,v �=0
|∂f(α0)

∂α
[v]|2/ ‖v‖2

We call v∗T the sieve Riesz representer of the functional ∂f(α0)
∂α [·] on VT .

We emphasize that the sieve Riesz representation (3.8)–(3.9) of the linear functional
∂f(α0)
∂α [·] on VT always exists regardless of whether ∂f(α0)

∂α [·] is bounded on the infinite
dimensional space V or not. This crucial observation enables us to develop a general and
unified theory that is currently lacking in the literature.

• If ∂f(α0)
∂α [·] is bounded on the infinite dimensional Hilbert space V, i.e.

(3.10) ‖v∗‖ ≡ sup
v∈V ,v �=0

{
|∂f(α0)

∂α
[v]|/ ‖v‖

}
< ∞,

then ‖v∗T ‖ = O (1) (in fact ‖v∗T ‖ ↗ ‖v∗‖ < ∞ and ‖v∗ − v∗T ‖ → 0 as T → ∞); we

say that f (·) is regular (at α = α0). In this case, we have ∂f(α0)
∂α [v] = 〈v∗, v〉 for all

v ∈ V, and v∗ is the Riesz representer of the functional ∂f(α0)
∂α [·] on V. See, e.g., Shen

(1997).

• If ∂f(α0)
∂α [·] is unbounded on the infinite dimensional Hilbert space V, i.e.

(3.11) sup
v∈V ,v �=0

{
|∂f(α0)

∂α
[v]|/ ‖v‖

}
= ∞,

then ‖v∗T ‖ ↗ ∞ as T → ∞; and we say that f (·) is irregular (at α = α0).

As it will become clear later, the convergence rate of f(α̂T ) − f (α0) depends on the
order of ‖v∗T ‖.

3.2. Asymptotic Normality. To establish the asymptotic normality of f(α̂T ) for possibly
irregular nonlinear functionals, we assume:
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Assumption 3.1 (local behavior of functional).

(i) supα∈BT

∣∣∣f(α)− f(α0)− ∂f(α0)
∂α [α− α0]

∣∣∣ = o
(
T− 1

2 ‖v∗T ‖
)
;

(ii)
∣∣∣∂f(α0)

∂α [α0,T − α0]
∣∣∣ = o

(
T− 1

2 ‖v∗T ‖
)
.

Assumption 3.1.(i) controls the linear approximation error of possibly nonlinear func-
tional f (·). It is automatically satisfied when f (·) is a linear functional, but it may rule
out some highly nonlinear functionals. Assumption 3.1.(ii) controls the bias part due to
the finite dimensional sieve approximation of α0,T to α0. It is a condition imposed on the
growth rate of the sieve dimension dim(AT ), and requires that the sieve approximation

error rate is of smaller order than T− 1
2 ‖v∗T ‖. When f (·) is a regular functional, we have

‖v∗T ‖ ↗ ‖v∗‖ < ∞, and since 〈α0,T − α0, v
∗
T 〉 = 0 (by definition of α0,T ), we have:∣∣∣∣∂f(α0)

∂α
[α0,T − α0]

∣∣∣∣ = |〈v∗, α0,T − α0〉| = |〈v∗ − v∗T , α0,T − α0〉| ≤ ‖v∗ − v∗T ‖×‖α0,T − α0‖ ,

thus Assumption 3.1.(ii) is satisfied if

(3.12) ‖v∗ − v∗T ‖ × ‖α0,T − α0‖ = o(T−1/2) when f (·) is regular,

which is similar to condition 4.1(ii)(iii) imposed in Chen (2007, p. 5612) for regular func-
tionals.

Next, we make an assumption on the relationship between ‖v∗T ‖ and the asymptotic
standard deviation of f(α̂T ) − f(α0,T ). It will be shown that the asymptotic standard
deviation is the limit of the “standard deviation” (sd) norm ‖v∗T ‖sd of v∗T , defined as

(3.13) ‖v∗T ‖2sd ≡ V ar

(
T−1/2

T∑
t=1

Δ(Zt, α0)[v
∗
T ]

)
.

Note that ‖v∗T ‖2sd is the finite dimensional sieve version of the long run variance of the score

process Δ(Zt, α0)[v
∗
T ], and ‖v∗T ‖2sd = V ar (Δ(Z,α0)[v

∗
T ]) if the score process {Δ(Zt, α0)[v

∗
T ]}t≤T

is a martingale difference array.

Assumption 3.2 (sieve variance). ‖v∗T ‖ / ‖v∗T ‖sd = O (1) .

By definition of ‖v∗T ‖ given in (3.9), 0 < ‖v∗T ‖ is non-decreasing in dim(VT ), and hence
is non-decreasing in T . Assumption 3.2 then implies that lim infT→∞ ‖v∗T ‖sd > 0. Define

(3.14) u∗T ≡ v∗T / ‖v∗T ‖sd
to be the normalized version of v∗T . Then Assumption 3.2 implies that ‖u∗T ‖ = O(1).

Let μT {g (Z)} ≡ T−1
∑T

t=1 [g (Zt)− Eg (Zt)] denote the centered empirical process in-
dexed by the function g. Let εT = o(T−1/2). For notational economy, we use the same εT
as that in (2.1).
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Assumption 3.3 (local behavior of criterion). (i) μT {Δ(Z,α0) [v]} is linear in v ∈ V;

(ii) sup
α∈BT

μT {�(Z,α ± εTu
∗
T )− �(Z,α) −Δ(Z,α0)[±εTu

∗
T ]} = Op(ε

2
T );

(iii) sup
α∈BT

∣∣∣∣E[�(Zt, α) − �(Zt, α ± εTu
∗
T )]−

||α± εTu
∗
T − α0||2 − ||α− α0||2

2

∣∣∣∣ = O(ε2T ).

Assumptions 3.3.(ii) and (iii) are simplified versions of those in Chen and Shen (1998),
and can be verified in the same way.

Assumption 3.4 (CLT).
√
TμT {Δ(Z,α0) [u

∗
T ]} →d N(0, 1), where N(0, 1) is a stan-

dard normal distribution.

Assumption 3.4 is a very mild one, and can be easily verified by applying any existing
triangular array CLT for weakly dependent data (see, e.g., Hall and Heyde, 1980).

We are now ready to state the asymptotic normality theorem for the plug-in sieve M
estimator.

Theorem 3.1. Let Assumptions 3.1.(i), 3.2 and 3.3 hold. Then

(3.15)
√
T [f(α̂T )− f(α0,T )]/ ‖v∗T ‖sd =

√
TμT {Δ(Z,α0) [u

∗
T ]}+ op (1) ;

If further Assumptions 3.1.(ii) and 3.4 hold, then

(3.16)
√
T [f(α̂T )− f(α0)]/ ‖v∗T ‖sd =

√
TμT {Δ(Z,α0) [u

∗
T ]}+ op (1) →d N(0, 1).

In light of Theorem 3.1, we call ‖v∗T ‖2sd defined in (3.13) the “pre-asymptotic” sieve vari-
ance of the estimator f(α̂T ). When the functional f(α0) is regular (i.e., ‖v∗T ‖ = O(1)), we
have ‖v∗T ‖sd � ‖v∗T ‖ = O(1) typically; so f(α̂T ) converges to f(α0) at the parametric rate

of 1/
√
T . When the functional f(α0) is irregular (i.e., ‖v∗T ‖ → ∞), we have ‖v∗T ‖sd → ∞

(under Assumption 3.2); so the convergence rate of f(α̂T ) becomes slower than 1/
√
T .

Regardless of whether the “pre-asymptotic” sieve variance ‖v∗T ‖2sd stays bounded asymp-
totically (i.e., as T → ∞) or not, it always captures whatever true temporal dependence
exists in finite samples.

For regular functionals of semi-nonparametric time series models, Chen and Shen (1998)
and Chen (2007, Theorem 4.3) establish that

√
T (f(α̂T )− f(α0)) →d N(0, σ2

v∗) with

(3.17) σ2
v∗ = lim

T→∞
V ar

(
T−1/2

T∑
t=1

Δ(Zt, α0)[v
∗]

)
= lim

T→∞
‖v∗T ‖2sd ∈ (0,∞).

Our Theorem 3.1 is a natural extension of their results to allow for irregular functionals.
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3.3. Sieve Riesz Representer. To apply the asymptotic normality Theorem 3.1 one
needs to verify Assumptions 3.1–3.4. Once we compute the sieve Riesz representer v∗T ∈ VT ,
Assumptions 3.1 and 3.2 can be easily checked, while Assumptions 3.3 and 3.4 are standard
ones and can be verified in the same ways as those in Chen and Shen (1998) and Chen
(2007) for regular functionals of semi-nonparametric models. Although it may be difficult
to compute the Riesz representer v∗ ∈ V in a closed form for a regular functional on the
infinite dimensional space V, we can always compute the sieve Riesz representer v∗T ∈ VT

defined in (3.8) and (3.9) explicitly. Therefore, Theorem 3.1 is easily applicable to a large
class of semi-nonparametric time series models, regardless of whether the functionals of
interest are

√
T estimable or not.

3.3.1. Sieve Riesz representers for general functionals. For the sake of concreteness, in
this subsection we focus on a large class of semi-nonparametric models where the population
criterion E[�(Zt, θ, h (·))] is maximized at α0 = (θ′0, h0 (·))′ ∈ A = Θ ×H, Θ is a compact
subset in R

dθ , H is a class of real valued continuous functions (of a subset of Zt) belonging
to a Hölder, Sobolev or Besov space, and AT = Θ × HT is a finite dimensional sieve
space. The general cases with multiple unknown functions require only more complicated
notation.

Let ‖·‖ be the norm defined in (3.4) and VT = R
dθ × {vh (·) = PkT (·)′β : β ∈ R

kT }
be dense in the infinite dimensional Hilbert space (V, ‖·‖). By definition, the sieve Riesz

representer v∗T = (v∗′θ,T , v
∗
h,T (·))′ = (v∗′θ,T , PkT (·)′β∗

T )
′ ∈ VT of ∂f(α0)

∂α [·] solves the following
optimization problem:

∂f(α0)

∂α
[v∗T ] = ‖v∗T ‖2 = sup

v=(v′θ,vh)
′∈VT ,v �=0

∣∣∣∂f(α0)
∂θ′ vθ +

∂f(α0)
∂h [vh(·)]

∣∣∣2
E (−r (Zt, θ0, h0 (·)) [v, v])

= sup
γ=(v′θ,β′)

′∈Rdθ+kT ,γ �=0

γ′FkTF
′
kT
γ

γ′RkT γ
,(3.18)

where

(3.19) FkT ≡
(
∂f(α0)

∂θ′
,
∂f(α0)

∂h
[PkT (·)′]

)′

is a (dθ + kT )× 1 vector,1 and

(3.20) γ′RkT γ ≡ E (−r (Zt, θ0, h0 (·)) [v, v]) for all v =
(
v′θ, PkT (·)′β

)′ ∈ VT ,

with

(3.21) RkT =

(
I11 IT,12
IT,21 IT,22

)
and R−1

kT
:=

(
I11T I12T
I21T I22T

)
1When ∂f(α0)

∂h
[·] applies to a vector (matrix), it stands for element-wise (column-wise) operations. We

follow the same convention for other operators such as Δ (Zt, α0) [·] and −r (Zt, α0) [·, ·] in the paper.
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being (dθ + kT )× (dθ + kT ) positive definite matrices. For example if the criterion function
�(z, θ, h (·)) is twice continuously pathwise differentiable with respect to (θ, h (·)), then

we have I11 = E
[
−∂2�(Zt,θ0,h0(·))

∂θ∂θ′

]
, IT,22 = E

[
−∂2�(Zt,θ0,h0(·))

∂h∂h [PkT (·), PkT (·)′]
]
, IT,12 =

E
[
∂2�(Zt,θ0,h0(·))

∂θ∂h [PkT (·)]
]
and IT,21 ≡ I ′T,12.

The sieve Riesz representation (3.8) becomes: for all v = (v′θ, PkT (·)′β)′ ∈ VT ,

(3.22)
∂f(α0)

∂α
[v] = F ′

kT
γ = 〈v∗T , v〉 = γ∗′T RkT γ for all γ = (v′θ, β

′)′ ∈ R
dθ+kT .

It is obvious that the optimal solution of γ in (3.18) or in (3.22) has a closed-form
expression:

(3.23) γ∗T =
(
v∗′θ,T , β

∗′
T

)′
= R−1

kT
FkT .

The sieve Riesz representer is then given by

v∗T =
(
v∗′θ,T , v

∗
h,T (·))′ = (

v∗′θ,T , PkT (·)′β∗
T

)′ ∈ VT .

Consequently,

(3.24) ‖v∗T ‖2 = γ∗′T RkT γ
∗
T = F ′

kT
R−1

kT
FkT ,

which is finite for each sample size T but may grow with T .
Finally the score process can be expressed as

Δ(Zt, α0)[v
∗
T ] =

(
Δθ(Zt, θ0, h0 (·))′,Δh(Zt, θ0, h0 (·))[PkT (·)′]

)
γ∗T ≡ SkT (Zt)

′γ∗T .

Thus

(3.25) V ar (Δ(Zt, α0)[v
∗
T ]) = γ∗′T E

[
SkT (Zt)SkT (Zt)

′] γ∗T
and ‖v∗T ‖2sd = γ∗′T V ar

(
1√
T

∑T
t=1 SkT (Zt)

)
γ∗T .

To verify Assumptions 3.1 and 3.2 for irregular functionals, it is handy to know the exact
speed of divergence of ‖v∗T ‖2. We assume

Assumption 3.5. The smallest and largest eigenvalues of RkT defined in (3.20) are
bounded and bounded away from zero uniformly for all kT .

Assumption 3.5 imposes some regularity conditions on the sieve basis functions, which
is a typical assumption in the linear sieve (or series) literature.

Remark 3.2. Assumption 3.5 implies that

||v∗T ||2 � ||γ∗T ||2E � ||FkT ||2E = ||∂f(α0)

∂θ
||2E + ||∂f(α0)

∂h
[PkT (·)]||2E .

Then: f(·) is regular at α = α0 if limkT ||∂f(α0)
∂h [PkT (·)]||2E < ∞; f(·) is irregular at α = α0

if limkT ||∂f(α0)
∂h [PkT (·)]||2E = ∞.
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3.3.2. Examples. We first consider three typical linear functionals of semi-nonparametric
models.

For the Euclidean parameter functional f(α) = λ′θ, we have FkT = (λ′,0′kT )
′ with

0′kT = [0, . . . , 0]1×kT
, and hence v∗T = (v∗′θ,T , PkT (·)′β∗

T )
′ ∈ VT with v∗θ,T = I11T λ, β∗

T = I21T λ,
and

‖v∗T ‖2 = F ′
kT
R−1

kT
FkT = λ′I11T λ.

If the largest eigenvalue of I11T , λmax(I
11
T ), is bounded above by a finite constant uniformly

in kT , then ‖v∗T ‖2 ≤ λmax(I
11
T )× λ′λ < ∞ uniformly in T , and the functional f(α) = λ′θ is

regular.
For the evaluation functional f(α) = h(x) for x ∈ X , we have FkT = (0′dθ , PkT (x)

′)′, and
hence v∗T = (v∗′θ,T , PkT (·)′β∗

T )
′ ∈ VT with v∗θ,T = I12T PkT (x), β

∗
T = I22T PkT (x), and

‖v∗T ‖2 = F ′
kT
R−1

kT
FkT = P ′

kT
(x)I22T PkT (x) .

So if the smallest eigenvalue of I22T , λmin(I
22
T ), is bounded away from zero uniformly in kT ,

then ‖v∗T ‖2 ≥ λmin(I
22
T )||PkT (x)||2E → ∞, and the functional f(α) = h(x) is irregular.

For the weighted integration functional f(α) =
∫
X w(x)h(x)dx for a weighting function

w(x), we have FkT = (0′dθ ,
∫
X w(x)PkT (x)

′dx)′, and hence v∗T = (v∗′θ,T , PkT (·)′β∗
T )

′ with

v∗θ,T = I12T
∫
X w(x)PkT (x)dx, β

∗
T = I22T

∫
X w(x)PkT (x)dx, and

‖v∗T ‖2 = F ′
kT
R−1

kT
FkT =

{∫
X
w(x)PkT (x)dx

}′
I22T

∫
X
w(x)PkT (x)dx.

Suppose that the smallest and largest eigenvalues of I22T are bounded and bounded away
from zero uniformly for all kT . Then ||v∗T ||2 � || ∫X w(x)PkT (x)dx||2E . Thus f(α) =

∫
X w(x)h(x)dx

is regular if limkT || ∫X w(x)PkT (x)dx||2E < ∞; is irregular if limkT || ∫X w(x)PkT (x)dx||2E =
∞.

We finally consider an example of nonlinear functionals that arises in Example 2.2
when the parameter of interest is α0 = (θ′0, h0)

′ with h20 = fY being the true marginal
density of Yt. Consider the functional f(α) = h2 (y) /

∫∞
−∞ h2 (y) dy. Note that f(α0) =

fY (y) = h20 (y) and h0(·) is approximated by the linear sieve HT given in (2.6). Then

FkT =
(
0′dθ ,

∂f(α0)
∂h [PkT (·)′]

)′
with

∂f(α0)

∂h
[PkT (·)] = 2h0 (y)

(
PkT (y)− h0 (y)

∫ ∞

−∞
h0 (y)PkT (y)dy

)
,

and hence v∗T = (v∗′θ,T , PkT (·)′β∗
T )

′ ∈ VT with v∗θ,T = I12T
∂f(α0)

∂h [PkT (·)], β∗
T = I22T

∂f(α0)
∂h [PkT (·)],

and

‖v∗T ‖2 = F ′
kT
R−1

kT
FkT =

∂f(α0)

∂h
[PkT (·)′]I22T

∂f(α0)

∂h
[PkT (·)].

So if the smallest eigenvalue of I22T is bounded away from zero uniformly in kT , then

‖v∗T ‖2 ≥ const.× ||∂f(α0)
∂h [PkT (·)]||2E → ∞, and the functional f (α) = h2 (y) /

∫∞
−∞ h2 (y) dy

is irregular at α = α0.
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4. Asymptotic Variances of Sieve Estimators of Irregular Functionals. In
this section, we derive the asymptotic expression of the “pre-asymptotic” sieve variance
‖v∗T ‖2sd for irregular functionals. We provide general sufficient conditions under which the
asymptotic variance does not depend on the temporal dependence.

4.1. Exact Form of the Asymptotic Variance. By definition of the “pre-asymptotic”
sieve variance ||v∗T ||2sd and the strict stationarity of the data {Zt}Tt=1, we have:

(4.1) ||v∗T ||2sd = V ar (Δ(Z,α0)[v
∗
T ])×

[
1 + 2

T−1∑
t=1

(
1− t

T

)
ρ∗T (t)

]
,

where {ρ∗T (t)} is the autocorrelation coefficient of the triangular array {Δ(Zt, α0)[v
∗
T ]}t≤T :

(4.2) ρ∗T (t) ≡
E (Δ(Z1, α0)[v

∗
T ]Δ(Zt+1, α0)[v

∗
T ])

V ar
(
Δ(Z,α0)[v∗T ]

) .

Denote
CT ≡ sup

t∈[1,T )
|E {Δ(Z1, α0)[v

∗
T ]Δ(Zt+1, α0)[v

∗
T ]}| .

The following high-level assumption captures the essence of the problem.

Assumption 4.1. (i) ‖v∗T ‖ → ∞ as T → ∞, and ‖v∗T ‖2 /V ar (Δ(Z,α0)[v
∗
T ]) = O(1);

(ii) There is an increasing integer sequence {dT ∈ [2, T )} such that

(a)
dTCT

V ar
(
Δ(Z,α0)[v∗T ]

) = o(1) and (b)

∣∣∣∣∣∣
T−1∑
t=dT

(
1− t

T

)
ρ∗T (t)

∣∣∣∣∣∣ = o(1).

Primitive sufficient conditions for Assumption 4.1 are given in the next subsection.

Theorem 4.1. Let Assumption 4.1 hold. Then:

∣∣∣∣ ‖v∗T‖2

sd

V ar(Δ(Z,α0)[v∗T ])
− 1

∣∣∣∣ = o (1); If further

Assumptions 3.1, 3.3 and 3.4 hold, then

(4.3)

√
T [f(α̂T )− f(α0)]√
V ar

(
Δ(Z,α0)[v∗T ]

) →d N (0, 1) .

4.2. Sufficient Conditions for Assumption 4.1 . In this subsection, we first provide suf-
ficient conditions for Assumption 4.1 for sieve M estimation of irregular functionals of
general semi-nonparametric models. We then present additional low-level sufficient con-
ditions for sieve M estimation of real-valued functionals of purely nonparametric models.
We show that these sufficient conditions are easily satisfied for sieve M estimation of the
evaluation and the weighted integration functionals.
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4.2.1. Irregular functionals of general semi-nonparametric models. Given the closed-
form expressions of ‖v∗T ‖ and V ar (Δ(Z,α0)[v

∗
T ]) in Subsection 3.3, it is easy to see that

the following assumption implies Assumption 4.1.(i).

Assumption 4.2. (i) Assumption 3.5 holds and limkT ||∂f(α0)
∂h [PkT (·)]||2E = ∞; (ii) The

smallest eigenvalue of E [SkT (Zt)SkT (Zt)
′] in (3.25) is bounded away from zero uniformly

for all kT .

Next, we provide some sufficient conditions for Assumption 4.1.(ii). Let fZ1,Zt (·, ·) be
the joint density of (Z1, Zt) and fZ (·) be the marginal density of Z. Let p ∈ [1,∞). Define

(4.4) ‖Δ(Z,α0)[v
∗
T ]‖p ≡ (E {|Δ(Z,α0)[v

∗
T ]|p})1/p .

By definition, ‖Δ(Z,α0)[v
∗
T ]‖22 = V ar (Δ(Z,α0)[v

∗
T ]). The following assumption implies

Assumption 4.1.(ii)(a).

Assumption 4.3. (i) supt≥2 sup(z,z′)∈Z×Z |fZ1,Zt (z, z
′) / [fZ1 (z) fZt (z

′)]| ≤ C for some
constant C > 0; (ii) ‖Δ(Z,α0)[v

∗
T ]‖1 / ‖Δ(Z,α0)[v

∗
T ]‖2 = o(1).

Assumption 4.3.(i) is mild. When Zt is a continuous random variable, it is equiva-
lent to assuming that the copula density of (Z1, Zt) is bounded uniformly in t ≥ 2. For
irregular functionals (i.e., ‖v∗T ‖ ↗ ∞), the L2(fZ) norm ‖Δ(Z,α0)[v

∗
T ]‖2 diverges (un-

der Assumption 4.1.(i) or Assumption 4.2), Assumption 4.3.(ii) requires that the L1(fZ)
norm ‖Δ(Z,α0)[v

∗
T ]‖1 diverge at a slower rate than the L2(fZ) norm ‖Δ(Z,α0)[v

∗
T ]‖2 as

kT → ∞. In many applications the L1(fZ) norm ‖Δ(Z,α0)[v
∗
T ]‖1 actually remains bounded

as kT → ∞ and hence Assumption 4.3.(ii) is trivially satisfied.
The following assumption implies Assumption 4.1.(ii)(b).

Assumption 4.4. (i) {Zt}∞t=1 is strictly stationary strong-mixing with mixing coeffi-

cients α (t) satisfying
∑∞

t=1 t
γ [α (t)]

η
2+η < ∞ for some η > 0 and γ > 0; (ii) As kT → ∞,

‖Δ(Z,α0)[v
∗
T ]‖γ1 ‖Δ(Z,α0)[v

∗
T ]‖2+η∥∥Δ(Z,α0)[v∗T ]

∥∥γ+1

2

= o (1) .

The α-mixing condition in Assumption 4.4.(i) with γ > η
2+η becomes Condition 1.(iii)

in section 6.6.2 of Fan and Yao (2003) for the pointwise asymptotic normality of their
local polynomial estimator of a conditional mean function. In the next subsection, we
illustrate that γ > η

2+η is also sufficient for sieve M estimation of evaluation functionals of
nonparametric time series models to satisfy Assumption 4.4.(ii).

Proposition 4.2. Let Assumptions 4.2, 4.3 and 4.4 hold. Then:
∑T−1

t=1 |ρ∗T (t)| = o(1)
and Assumption 4.1 holds.

Theorem 4.1 and Proposition 4.2 show that when the functional f(·) is irregular (i.e.,
‖v∗T ‖ → ∞), time series dependence does not affect the asymptotic variance of a general
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sieve M estimator f(α̂T ). Similar results have been proved for nonparametric kernel and
local polynomial estimators of evaluation functionals of conditional mean and density func-
tions. See for example, Robinson (1983), Fan and Yao (2003) and Gao (2007). However,
whether this is the case for general sieve M estimators of unknown functionals has been a
long standing question. Theorem 4.1 and Proposition 4.2 give a positive answer. This may
seem surprising at first sight as sieve estimators are often regarded as global estimators
while kernel estimators are regarded as local estimators.

4.2.2. Irregular functionals of purely nonparametric models. In this subsection, we pro-
vide additional low-level sufficient conditions for Assumptions 4.1.(i), 4.3.(ii) and 4.4.(ii) for
purely nonparametric models where the true unknown parameter is a real-valued function
h0 (·) that solves suph∈HE[�(Zt, h(Xt))]. This includes as a special case the nonparametric
conditional mean model: Yt = h0(Xt) + ut with E[ut|Xt] = 0. Our results can be easily
generalized to more general settings with only some notational changes.

Let α0 = h0 (·) ∈ H and let f(·) : H → R be any functional of interest. By the results in
Subsection 3.3, f(h0) has its sieve Riesz representer given by:

v∗T (·) = PkT (·)′β∗
T ∈ VT with β∗

T = R−1
kT

∂f(h0)

∂h
[PkT (·)],

where RkT is such that

β′RkT β = E
(−r (Zt, h0) [β

′PkT , P
′
kT
β]
)
= β′E

{−r̃ (Zt, h0 (Xt))PkT (Xt)PkT (Xt)
′}β

for all β ∈ R
kT . Also, the score process can be expressed as

Δ(Zt, h0)[v
∗
T ] = Δ̃(Zt, h0 (Xt))v

∗
T (Xt) = Δ̃(Zt, h0 (Xt))PkT (Xt)

′β∗
T .

Here the notations Δ̃(Zt, h0 (Xt)) and r̃ (Zt, h0 (Xt)) indicate the standard first-order and
second-order derivatives of �(Zt, h(Xt)) instead of functional pathwise derivatives (for ex-
ample, we have −r̃ (Zt, h0 (Xt)) = 1 and Δ̃(Zt, h0 (Xt)) = [Yt − h0(Xt)] /2 in the nonpara-
metric conditional mean model). Thus,

‖v∗T ‖2 = E
{
E[−r̃ (Z, h0 (X)) |X](v∗T (X))2

}
= β∗′

T RkT β
∗
T =

∂f(h0)

∂h
[PkT (·)′]R−1

kT

∂f(h0)

∂h
[PkT (·)],

V ar (Δ(Z, h0)[v
∗
T ]) = E

{
E([Δ̃(Z, h0 (X))]2|X)(v∗T (X))2

}
.

It is then obvious that Assumption 4.1.(i) is implied by the following condition.

Assumption 4.5. (i) infx∈X E[−r̃ (Z, h0 (X)) |X = x] ≥ c1 > 0; (ii) supx∈X E[−r̃ (Z, h0 (X)) |X =
x] ≤ c2 < ∞; (iii) the smallest and largest eigenvalues of E {PkT (X)PkT (X)′} are bounded

and bounded away from zero uniformly for all kT , and limkT ||∂f(h0)
∂h [PkT (·)]||2E = ∞; (iv)

infx∈X E([Δ̃(Z, h0 (X))]2|X = x) ≥ c3 > 0.

It is easy to see that Assumptions 4.3.(ii) and 4.4.(ii) are implied by the following
assumption.
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Assumption 4.6. (i) E {|v∗T (X)|} = O(1); (ii) supx∈X E

[∣∣∣Δ̃(Z, h0 (X))
∣∣∣2+η |X = x

]
≤

c4 < ∞; (iii)
(
E{|v∗T (X)|2}

)−(2+η)(γ+1)/2
E{|v∗T (X)|2+η} = o(1).

It actually suffices to use ess-infx (or ess-supx) instead of infx (or supx) in Assumptions
4.5 and 4.6. We immediately obtain the following results.

Remark 4.3. (1) Let Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6 hold. Then:

T−1∑
t=1

|ρ∗T (t)| = o(1) and

∣∣∣∣∣ ‖v∗T ‖2sd
V ar

(
Δ(Z,α0)[v

∗
T ]
) − 1

∣∣∣∣∣ = o (1) .

(2) Assumptions 4.5 and 4.6.(ii) imply that

V ar (Δ(Z,α0)[v
∗
T ]) � E

{
(v∗T (X))2

} � ‖v∗T ‖2 � ||β∗
T ||2E � ||∂f(h0)

∂h
[PkT (·)]||2E → ∞;

hence Assumption 4.6.(iii) is satisfied if E{|PkT (X)′β∗
T |2+η}/||β∗

T ||(2+η)(γ+1)
E = o(1).

Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6.(ii) are all very standard low level sufficient
conditions. Assumptions 4.6.(i) and (iii) are easily satisfied by two typical functionals of
nonparametric models: the evaluation functional and the weighted integration functional.

Consider as an example the evaluation functional f(h0) = h0(x) with x ∈ X . We

have ∂f(h0)
∂h [PkT (·)] = PkT (x), v∗T (·) = PkT (·)′β∗

T = PkT (·)′R−1
kT

PkT (x). Then ‖v∗T ‖2 =

P ′
kT
(x)R−1

kT
PkT (x) = v∗T (x), and ‖v∗T ‖2 � ||PkT (x)||2E → ∞ under Assumption 4.5.(i)(ii)(iii).

Furthermore, we have, for any vT ∈ VT :

(4.5) vT (x̄) = E {E[−r̃ (Z, h0 (X)) |X]vT (X)v∗T (X)} ≡
∫
x∈X

vT (x) δT (x̄, x) dx,

where

δT (x̄, x) = E[−r̃ (Z, h0 (X)) |X = x]v∗T (x) fX (x)(4.6)

= E[−r̃ (Z, h0 (X)) |X = x]P ′
kT
(x)R−1

kT
PkT (x)fX (x) .

By equation (4.5) δT (x̄, x) has the reproducing property on VT , so it behaves like the
Dirac delta function δ (x− x̄) on VT . Therefore v∗T (x) concentrates in a neighborhood
around x = x̄ and maintains the same positive sign in this neighborhood.

We first verify Assumption 4.6.(i). By equation (4.6), we have∫
x∈X

|v∗T (x)| fX (x) dx =

∫
x∈X

sign (v∗T (x))

E[−r̃ (Z, h0 (X)) |X = x]
δT (x̄, x) dx ≡

∫
x∈X

bT (x)δT (x̄, x) dx,

where sign(v∗T (x)) = 1 if v∗T (x) > 0 and sign(v∗T (x)) = −1 if v∗T (x) ≤ 0, and supx∈X |bT (x)| ≤
c−1
1 < ∞ under Assumption 4.5.(i). If bT (x) ∈ VT , then by equation (4.5) we have:∫

x∈X
|v∗T (x)| fX (x) dx = bT (x̄) =

sign (v∗T (x̄))

E[−r̃ (Z, h0 (X)) |X = x̄]
≤ c−1

1 = O (1) .
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If bT (x) /∈ VT but can be approximated by a bounded function ṽT (x) ∈ VT such that∫
x∈X

[bT (x)− ṽT (x)] δT (x̄, x) dx = o(1),

then, also using equation (4.5), we obtain:∫
x∈X

|v∗T (x)| fX (x) dx =

∫
x∈X

ṽT (x) δT (x̄, x) dx+

∫
x∈X

[bT (x)− ṽT (x)] δT (x̄, x) dx

= ṽT (x̄) + o(1) = O (1) .

Thus Assumption 4.6.(i) is satisfied.
Similarly we can show that under mild conditions:

E
{
|v∗T (X)|2+η

}
≤ |v∗T (x̄)|1+η

E[−r̃ (Z, h0 (X)) |X = x̄]
(1 + o (1)) = O

(
|v∗T (x̄)|1+η

)
.

On the other hand,

E
{
|v∗T (X)|2

}
=

∫
x∈X

|v∗T (x)|2 fX (x) dx =

∫
x∈X

v∗T (x)
E[−r̃ (Z, h0 (X)) |X = x]

δT (x̄, x) dx � v∗T (x̄).

Therefore(
E
{
|v∗T (X)|2

})−(2+η)(γ+1)/2
E
{
|v∗T (X)|2+η

}
� |v∗T (x̄)|1+η−(2+η)(γ+1)/2 = o(1)

if 1 + η − (2 + η)(γ + 1)/2 < 0, which is equivalent to γ > η/(2 + η). That is, when
γ > η/(2 + η), Assumption 4.6.(iii) is satisfied.

One may conclude from Theorem 4.1 and Proposition 4.2 that the results and inference
procedures for sieve estimators carry over from iid data to the time series case without
modifications. However, this is true only when the sample size is large and the dependence
is weak. Whether the sample size is large enough so that one can ignore the temporal
dependence depends on the functional of interest, the strength of the temporal dependence,
and the sieve basis functions employed. So it is ultimately an empirical question. In any
finite sample, the temporal dependence does affect the sampling distribution of the sieve
estimator. In the next section, we design an inference procedure that is easy to use and at
the same time captures the time series dependence in finite samples.

5. Autocorrelation Robust Inference. In order to apply the asymptotic normality
Theorem 3.1, we need an estimator of the sieve variance ‖v∗T ‖2sd. In this section we propose

a simple estimator of ‖v∗T ‖2sd and establish the asymptotic distributions of the associated t
statistic and Wald statistic.

The theoretical sieve Riesz representer v∗T is not known and has to be estimated. Let
‖·‖T denote the empirical norm induced by the following empirical inner product

(5.1) 〈v1, v2〉T = − 1

T

T∑
t=1

r(Zt, α̂T )[v1, v2],
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for any v1, v2 ∈ VT . We define an empirical sieve Riesz representer v̂∗T of the functional
∂f(α̂T )

∂α [·] with respect to the empirical norm ‖·‖T , i.e.

(5.2)
∂f(α̂T )

∂α
[v̂∗T ] = sup

v∈VT ,v �=0

|∂f(α̂T )
∂α [v]|2
‖v‖2T

< ∞

and

(5.3)
∂f(α̂T )

∂α
[v] = 〈v, v̂∗T 〉T

for any v ∈ VT . We next show that the theoretical sieve Riesz representer v∗T can be
consistently estimated by the empirical sieve Riesz representer v̂∗T under the norm ‖·‖. In
the following we denote WT ≡ {v ∈ VT : ‖v‖ = 1}.

Assumption 5.1. Let {ε∗T } be a positive sequence such that ε∗T = o(1).
(i) supα∈BT ,v1,v2∈WT

E{r(Z,α)[v1, v2]− r(Z,α0)[v1, v2]} = O(ε∗T );
(ii) supα∈BT ,v1,v2∈WT

μT {r(Z,α)[v1, v2]} = Op(ε
∗
T );

(iii) supα∈BT ,v∈WT

∣∣∣∂f(α)∂α [v]− ∂f(α0)
∂α [v]

∣∣∣ = O(ε∗T ).

Assumption 5.1.(i) is a smoothness condition on the second derivative of the crite-
rion function with respect to α. In the nonparametric LS regression model, we have
r(Z,α)[v1, v2] = r(Z,α0)[v1, v2] for all α and v1, v2. Hence Assumption 5.1.(i) is trivially
satisfied. Assumption 5.1.(ii) is a stochastic equicontinuity condition on the empirical pro-
cess T−1

∑T
t=1 r(Zt, α)[v1, v2] indexed by α in the shrinking neighborhood BT uniformly

in v1, v2 ∈ WT . Assumption 5.1.(iii) puts some smoothness condition on the functional
∂f(α)
∂α [v] with respect to α in the shrinking neighborhood BT uniformly in v ∈ WT .

Lemma 5.1. Let Assumption 5.1 hold, then

(5.4)

∣∣∣∣∣ ‖v̂∗T ‖∥∥v∗T∥∥ − 1

∣∣∣∣∣ = Op(ε
∗
T ) and

‖v̂∗T − v∗T ‖∥∥v∗T∥∥ = Op(ε
∗
T ).

With the empirical estimator v̂∗T satisfying Lemma 5.1, we can now construct an estimate
of the ‖v∗T ‖2sd , which is the LRV of the score process Δ(Zt, α0)[v

∗
T ]. Many nonparametric

LRV estimators are available in the literature. To be consistent with our focus on the
method of sieves and to derive a simple and robust asymptotic approximation, we use
an orthonormal series LRV (OS-LRV) estimator in this paper. The OS-LRV estimator has
already been used in constructing autocorrelation robust inference on regular functionals of
parametric time series models; see, e.g., Phillips (2005) and Sun (2011a). Let {φm}∞m=0 be a
sequence of orthonormal basis functions in L2 ([0, 1]) with φ0 (·) ≡ 1. Define the orthogonal
series projection

(5.5) Λ̂m =
1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α̂T )[v̂

∗
T ]
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and construct the direct series estimator Ω̂m = Λ̂2
m for eachm = 1, 2, . . . ,M whereM ∈ Z

+.
Taking a simple average of these direct estimators yields our OS-LRV estimator ||v̂∗T ||2sd,T
of ‖v∗T ‖2sd :

(5.6) ‖v̂∗T ‖2sd,T ≡ 1

M

M∑
m=1

Ω̂m =
1

M

M∑
m=1

Λ̂2
m,

where M , the number of orthonormal basis functions used, is the smoothing parameter in
the LRV estimation.

For irregular functionals, our asymptotic result in Section 4 suggests that we can ig-
nore the temporal dependence and estimate ‖v∗T ‖2sd by σ̂2

v = T−1
∑T

t=1{Δ(Zt, α0)[v̂
∗
T ]}2.

However, when the sample size is small, there may still be considerable autocorrelation
in the sieve score process {Δ(Zt, α0)[v

∗
T ]}Tt=1. To capture the possibly large but diminish-

ing autocorrelation in a finite sample, we propose treating {Δ(Zt, α0)[v
∗
T ]}Tt=1 as a generic

time series and using the same formula as in (5.6) to estimate the asymptotic variance of
T−1/2

∑T
t=1 Δ(Zt, α0)[v

∗
T ]. We call the estimator the “pre-asymptotic” variance estimator.

With a data-driven smoothing parameter choice of M , the “pre-asymptotic” variance es-
timator ||v̂∗T ||2sd,T should be close to σ̂2

v when the sample size is large. On the other hand,
when the sample size is small, the “pre-asymptotic” variance estimator may provide a more
accurate measure of the sampling variation of the plug-in sieve M estimator of irregular
functionals. An extra benefit of the “pre-asymptotic” idea is that it allows us to treat reg-
ular and irregular functionals in a unified framework. So we do not distinguish regular and
irregular functionals in the rest of this section.

To make statistical inference on a scalar functional f(α0), we construct a t statistic as
follows:

(5.7) tT ≡
√
T [f(α̂T )− f(α0)]∥∥v̂∗T∥∥sd,T .

We proceed to establish the asymptotic distribution of tT when M is a fixed constant. To
facilitate our development, we make the assumption below.

Assumption 5.2. Let
√
Tε∗T ξT = o(1) and the following conditions hold:

(i) supv∈WT ,α∈BT
T−1/2

∑T
t=1 φm (t/T ) (Δ(Zt, α) [v]−Δ(Zt, α0) [v]− E{Δ(Zt, α) [v]}) =

op(1) for m = 0, 1, . . . ,M ;
(ii) supv∈WT ,α∈BT

E {Δ(Z,α) [v]−Δ(Zt, α0) [v]− r(Z,α0) [v, α − α0]} = O (ε∗T ξT ) ;

(iii) supv∈WT

∣∣∣T−1/2
∑T

t=1 φm(t/T )Δ(Zt, α0)[v]
∣∣∣ = Op(1) for m = 0, 1, . . . ,M ;

(iv) For et ∼ iid N(0, 1), we have for any x = (x1, . . . , xM )′ ∈ R
M ,

P

(
T−1/2

T∑
t=1

φm(t/T )Δ(Zt, α0) [u
∗
T ] < xm, m = 0, 1, . . . ,M

)

= P

(
T−1/2

T∑
t=1

φm(t/T )et < xm, m = 0, 1, . . . ,M

)
+ o (1) .
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Assumption 5.2.(iv) is a slightly stronger version of Assumption 3.4. It is equivalent
to assuming that T−1/2

∑T
t=1 [φ0(t/T ), . . . , φm(t/T )]′ Δ(Zt, α0) [u

∗
T ] follows a multivariate

CLT. When φm (x) is continuously differentiable in x, Assumption 5.2.(iv) is weaker than
a FCLT of the form:

T−1/2

[Tτ ]∑
t=1

Δ(Zt, α0) [u
∗
T ] →d W (τ)

where W (τ) is the standard Brownian motion process. A FCLT of the above type is often
assumed in parametric time series analysis. When Assumption 5.2.(iv) holds, we write

T−1/2
T∑
t=1

φm(
t

T
)Δ(Zt, α0) [u

∗
T ]

a
∼ T−1/2

T∑
t=1

φm(
t

T
)et

where
a
∼ signifies that the two sides are asymptotically equivalent in distribution.

Theorem 5.1. Let {φm}Mm=0 be a sequence of orthonormal basis functions in L2 ([0, 1]).
Under Assumptions 3.2, 3.3, 5.1 and 5.2, we have, for m = 1, . . . ,M,

‖v∗T ‖−1
sd Λ̂m

a
∼ iid N(0, 1).

If further Assumption 3.1 holds, then

tT ≡
√
T [f(α̂T )− f(α0)] / ‖v̂∗T ‖sd,T

a
∼ t (M) ,

where t (M) is the t distribution with degree of freedom M .

Theorem 5.1 shows that when M is fixed, the tT statistic converges weakly to a standard
t distribution. This result is very handy as critical values from the t distribution can be
easily obtained from statistical tables or standard software packages. This is an advantage
of using the OS-LRV estimator. When M → ∞, t (M) approaches the standard normal
distribution. So critical values from t (M) can be justified even if M = MT → ∞ slowly
with the sample size T . Theorem 5.1 extends the result of Sun (2011a) on robust OS-
LRV estimation for parametric trend regressions to the case of general semi-nonparametric
models.

In some applications, we may be interested in a vector of functionals f = (f1, . . . , fq)
′ for

some fixed finite q ∈ Z
+. If each fj satisfies Assumptions 3.1–3.3 and their Riesz representer

v∗
T = (v∗1,T , . . . , v

∗
q,T ) satisfies the multivariate version of Assumption 3.4:

‖v∗
T ‖−1

sd

√
TμT {Δ(Z,α0) [v

∗
T ]} →d N(0, Iq),

then

(5.8) ‖v∗
T ‖−1

sd

√
T [f(α̂T )− f(α0)] →d N(0, Iq),

where ‖v∗
T ‖2sd = V ar

(√
TμTΔ(Z,α0)[v

∗
T ]
)
is a q × q matrix. A direct implication is that

(5.9) T [f(α̂T )− f(α0)]
′ ‖v∗

T ‖−2
sd [f(α̂T )− f(α0)] →d χ2

q.
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To estimate ‖v∗
T ‖2sd , we define the orthogonal series projection Λ̂m = (Λ̂

(1)
m , . . . , Λ̂

(q)
m )′ with

Λ̂(j)
m = T−1/2

T∑
t=1

φm(t/T )Δ(Zt, α̂T )[v̂
∗
j,T ],

where v̂∗j,T denotes the empirical sieve Riesz representer of the functional
∂fj(α̂T )

∂α [·] (j =

1, . . . , q). The OS-LRV estimator ||v̂∗
T ||2sd,T of the sieve variance ‖v∗

T ‖2sd is

‖v̂∗
T ‖2sd,T =

1

M

M∑
m=1

Λ̂mΛ̂′
m.

To make statistical inference on f(α0), we construct the F test version of the Wald
statistic as follows:

(5.10) FT ≡ T [f(α̂T )− f(α0)]
′ ‖v̂∗

T ‖−2
sd,T [f(α̂T )− f(α0)] /q.

We maintain Assumption 5.2 but replace Assumption 5.2(iv) by its multivariate version:
for et ∼ iid N(0, Iq), we have

P

(
T−1/2

T∑
t=1

φm(t/T )Δ(Zt, α0)
[
‖v∗

T ‖−1
sd v∗

T

]
< xm, m = 0, 1, . . . ,M

)

= P

(
T−1/2

T∑
t=1

φm(t/T )et < xm, m = 0, 1, . . . ,M

)
+ o (1)

for xm ∈ R
q.

Using a proof similar to that for Theorem 5.1, we can prove the theorem below.

Theorem 5.2. Let {φm}Mm=0 be a sequence of orthonormal basis functions in L2([0, 1]).
Let Assumptions 3.1, 3.2, 3.3, 5.1 and the multivariate version of Assumption 5.2 hold.
Then, for a fixed finite integer M :

M − q + 1

M
FT →d Fq,M−q+1,

where Fq,M−q+1 is the F distribution with degree of freedom (q,M − q + 1).

The weak convergence of the F statistic can be rewritten as

FT →d

χ2
q/q

χ2
M−q+1/ (M − q + 1)

M

M − q + 1
=d Fq,M−q+1

M

M − q + 1
.

As M → ∞, both χ2
M−q+1/ (M − q + 1) and M/(M − q + 1) converge to one, and hence

FT →d χ2
q/q. When M is not very large or the number of the restrictions q is large, the

asymptotic distribution χ2
q/q is likely to produce a large approximation error. This explains

why the F approximation is more accurate, especially when M is relatively small and q is
relatively large.
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6. Computation and Simulation.

6.1. Computation. To compute the OS-LRV estimator in the previous section, we have
to first find the empirical Riesz representer v̂∗T , which is not very appealing to applied
researchers. In this subsection we show that in finite samples we can directly apply the
formula of the OS-LRV estimation derived under parametric assumptions and ignore the
semiparametric/nonparametric nature of the model.

For simplicity, let the sieve space be AT = Θ × HT with Θ a compact subset of Rdθ

and HT =
{
h (·) = PkT (·)′β : β ∈ R

kT
}
. Let α0,T = (θ0, PkT (·)′β0,T ) ∈ int(Θ) × HT . For

α ∈ AT = Θ × HT , we write �(Zt, α) = �(Zt, θ, h (·)) = �(Zt, θ, PkT (·)′β) and define
�̃(Zt, γ) = �(Zt, θ, PkT (·)′β) as a function of γ = (θ′, β′)′ ∈ R

dγ where dγ = dθ + dβ and
dβ ≡ kT . For any given Zt, we view �(Zt, α) as a functional of α on the infinite dimensional
function spaceA, but �̃(Zt, γ) as a function of γ on the Euclidian space Rdγ whose dimension
dγ grows with the sample size but could be regarded as fixed in finite samples. By definition,

for any αj =
(
θ′j, PkT (·)′βj

)′
, j = 1, 2, we have

(6.1)
∂�̃(Zt, γ1)

∂γ′
(γ2 − γ1) = Δ�(Zt, α1) [α2 − α1]

where the left hand side is the regular derivative and the right hand side is the pathwise
functional derivative. By the consistency of the sieve M estimator α̂T = (θ̂′T , PkT (·)′β̂T ) for
α0,T = (θ0, PkT (·)′β0,T ), we have that γ̂′T ≡ (θ̂′T , β̂

′
T ) is a consistent estimator of γ′0,T =

(θ′0, β
′
0,T ), then the first order conditions for the sieve M estimation can be represented as

(6.2)
1

T

T∑
t=1

∂�̃(Zt, γ̂T )

∂γ
≈ 0.

These first order conditions are exactly the same as what we would get for parametric
models with dγ-dimensional parameter space.

Next, we pretend that �̃(Zt, γ) is a parametric criterion function on a finite dimensional
space R

dγ . Using the OS-LRV estimator for the parametric M estimator based on the
sample criterion function T−1

∑T
t=1 �̃(Zt, γ), we obtain the asymptotic variance estimator

for
√
T (γ̂T − γ0,T ) as follows: Σ̂T = R̂−1

T B̂T R̂
−1
T , where

R̂T = − 1

T

T∑
t=1

∂2�̃(Zt, γ̂T )

∂γ∂γ′
,

B̂T =
1

M

M∑
m=1

[
1√
T

T∑
t=1

φm

(
t

T

)
∂�̃(Zt, γ̂T )

∂γ

] [
1√
T

T∑
t=1

φm

(
t

T

)
∂�̃(Zt, γ̂T )

∂γ′

]
.

Now suppose we are interested in a real-valued functional f0,T = f (α0,T ) = f (θ0, PkT (·)′β0,T ),
which is estimated by the plug-in sieve M estimator f̂ = f (α̂T ) = f(θ̂T , PkT (·)′β̂T ). We
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compute the asymptotic variance of f̂ mechanically via the Delta method. We can then
estimate the asymptotic variance of

√
T (f̂ − f0,T ) by

V̂ ar(f̂) = F̂ ′
kT
Σ̂T F̂kT , with F̂kT =

(
∂f(α̂T )

∂θ′
,
∂f(α̂T )

∂h
[PkT (·)′]

)′
.

It is easy to verify that for any sample size T , V̂ ar(f̂) is numerically identical to ‖v̂∗T ‖2sd,T ,
our asymptotic variance estimator given in (5.6). The numerical equivalence in variance
estimators and point estimators (i.e., γ̂T ) implies that the corresponding test statistics
are also numerically identical. Hence, we can use standard statistical packages designed for
(misspecified) parametric models to compute test statistics for semi-nonparametric models.

6.2. Simulation. To examine the accuracy of our inference procedures in Section 5, we
consider a partially linear regression model in our simulation study:

Yt = X ′
1tθ0 + h̃0(X̃2t) + ut, E[ut|X1t, X̃2t] = 0, t = 1, . . . , T,

where X̃2t and ut are scalar processes, X1t = (X1
1t, . . . ,X

d
1t)

′ is a d-dimensional vector
process with independent component Xj

1t for j = 1, . . . , d. Let d = 4 and

Xj
1t = ρXj

1,t−1 +
√
1− ρ2εj1t, X̃2t =

(
X1

1t + . . .+Xd
1t

)
/
√
2d+ et/

√
2,

et = ρet−1 +
√

1− ρ2εet, ut = ρut−1 +
√

1− ρ2εut,

where (ε11t, . . . , ε
d
1t, εet, εut)

′ are iid N(0, Id+2). Here we have normalized Xj
1t, X̃2t, and ut

to have zero mean and unit variance. We take ρ ∈ {0, 0.25, 0.5, 0.75}.
Without loss of generality, we set θ0 = 0. We consider h̃0(X̃2t) = sin(X̃2t) and cos(X̃2t).

Such choices are qualitatively similar to that in Härdle, Liang and Gao (2000, pages 52
and 139) who employ sin(πX̃2t). We focus on h̃0(X̃2t) = cos(X̃2t) below as it is harder to
be approximated by a linear function around the center of the distribution of X̃2t, but the
qualitative results are the same for h̃0(X̃2t) = sin(X̃2t).

To estimate the model using the method of sieves on the unit interval [0, 1], we first trans-
form X̃2t into [0, 1] via X̃2t = log (X2t/(1 −X2t)). Then h̃0(X̃2t) = cos(log[X2t (1−X2t)

−1]) ≡
h0 (X2t) . Let PkT (x2) = [p1 (x2) , . . . , pkT (x2)]

′ be a kT × 1 vector, where {pj (x2) : j ≥ 1}
is a set of basis functions on [0, 1] . We approximate h0 (X2t) by PkT (X2t)

′ β for some β =
(β1, . . . , βkT )

′ ∈ R
kT . Let Xt =

(
X ′

1t, PkT (X2t)
′) a 1×(d+kT ) vector and X′ = (X′

1, ...,X
′
T )

a (d + kT ) × T matrix. Let Y = (Y1, . . . , YT )
′, U = (u1, . . . , uT )

′ and γ = (θ′, β′)′ . Then
the sieve LS estimator of γ is γ̂T = (X′X)−1 X′Y. In our simulation experiment, we use
AIC and BIC to select kT .

We employ our asymptotic theory to construct confidence regions for θ1:j = (θ01, . . . , θ0j)
′.

Equivalently, we test the null of H0j : θ1:j = 0 against the alternative H1j : at least one
element of θ1:j is not zero. Depending on the value of j, the number of joint hypotheses
under consideration ranges from 1 to d. Let Rθ (j) be the first j rows of the identity matrix
Id+kT , then the sieve estimator of θ1:j = Rθ (j) γ is θ̂1:j = Rθ (j) γ̂T , and so

√
T
(
θ̂1:j − θ1:j

)
= T−1/2

T∑
t=1

Rθ (j)
(
X′X/T

)−1
X′

tut + op (1) .
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Let (û1, . . . , ûT )
′ = Û = Y −Xγ̂T , Δ̂θt = Rθ (j) (X

′X/T )−1 X′
tût ∈ R

j and

Ω̂θM =
1

M

M∑
m=1

(
T−1/2

T∑
t=1

φm(
t

T
)Δ̂θt

)(
T−1/2

T∑
t=1

φm(
t

T
)Δ̂θt

)′

be the OS-LRV estimator of the asymptotic variance Ω of
√
T
(
θ̂1:j − θ1:j

)
. We can con-

struct the F-test version of the Wald statistic as:

Fθ (j) =
(√

TRθ (j) γ̂T

)′
Ω̂−1
θM

(√
TRθ (j) γ̂T

)
/j.

We refer to the test using critical values from the χ2
j/j distribution as the chi-square

test. We refer to the test using critical value M (M − j + 1)−1Fτ
j,M−j+1 as the F test,

where Fτ
j,M−j+1 is the (1− τ) quantile of the F distribution Fj,M−j+1. Throughout the

simulation, we use φ2m−1(x) =
√
2 cos(2mπx), φ2m(x) =

√
2 sin(2mπx),m = 1, . . . ,M/2

as the orthonormal basis functions for the OS-LRV estimation.
To perform either the chi-square test or the F test, we need to choose M. Here we

choose M to minimize the coverage probability error (CPE) of the confidence region based
on the conventional chi-square test. The CPE-optimal M can be derived in the same
way as that in Sun (2011b) for parametric models, with his kernel bandwidth b = M−1,
q = 2, c1 = 0, c2 = 1, p = j. We obtain:

MCPE =

⎡⎢⎢⎢⎢
⎛⎝ j

(
X τ
j + j

)
4 |tr (BΩ−1)|

⎞⎠
1
3

T
2
3

⎤⎥⎥⎥⎥ ,

where B is the asymptotic bias of Ω̂, X τ
j is the (1− τ) quantile of χ2

j distribution, and
�·� is the ceiling function. The parameters B and Ω in MCPE are unknown but could be
estimated by a standard plug-in procedure as in Andrews (1991). We fit an approximating
VAR(1) model to the vector process Δ̂θt and use the fitted model to estimate Ω and B. We
have also implemented choosing M based on the mean square criterion and the simulation
results are qualitatively similar.

We are also interested in making inference on h0 (x) . For each given x, let Rx = [01×d,
PkT (x)′]. Then the sieve estimator of h0 (x) = Rxγ is ĥ (x) = Rxγ̂T . We test H0 : h (x) =
h0 (x) against H1 : h (x) �= h0 (x) for x = [1 + exp (−x̃2)]

−1 and x̃2 ∈ {−2, 0.1, 2}. Since
X̃2t is standard normal, this range of x̃2 largely covers the support of X̃2t. Let Δ̂xt =
Rx (X

′X/T )−1X′
tût and

Ω̂xM = M−1
M∑

m=1

(
T−1/2

T∑
t=1

φm(
t

T
)Δ̂xt

)(
T−1/2

T∑
t=1

φm(
t

T
)Δ̂xt

)′
,

be the OS-LRV estimator of the asymptotic variance Ω of
√
T
(
θ̂1:j − θ1:j

)
. Using the

numerical equivalence result in Section 6.1, we can construct the F-test version of the
Wald statistic as:

(6.3) Fx =
(√

T [Rxγ̂T − h0 (x)]
)′

Ω̂−1
xM

(√
T [Rxγ̂T − h0 (x)]

)
.
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As in the inference for the parametric part, we select the smoothing parameter M based
on the CPE criterion. It is important to point out that the approximating model and
hence the data-driven smoothing parameter M are different for different hypotheses under
consideration.

In Section 4, we have shown that, for evaluation functionals, the asymptotic variance
does not depend on the time series dependence. So from an asymptotic point of view, we
could also use

Ω̂∗
xM = T−1

T∑
t=1

Δ̂xt

(
Δ̂xt

)′
as the estimator for the asymptotic variance of

√
T [Rxγ̂T − h0 (x)] and construct the F ∗

x

statistic accordingly. Here F ∗
x is the same as Fx given in (6.3) but with Ω̂xM replaced by

Ω̂∗
xM .
For the nonparametric part, we have three different inference procedures. The first two

are both based on the Fx statistic with pre-asymptotic variance estimator, except that one
uses χ2

1 approximation and the other uses F1,M approximation. The third one is based on
the F ∗

x statistic and uses the χ2
1 approximation. For ease of reference, we call the first two

tests the pre-asymptotic χ2 test and the pre-asymptotic F test, respectively. We call the
test based on F ∗

x and the χ2
1 approximation the asymptotic χ2 test.

Table 1 gives the empirical null rejection probabilities for testing θ1:j = 0 for j = 1, 2, 3, 4
for ρ ≥ 0. The number of simulation replications is 10,000. We consider two types of sieve
basis functions to approximate h(·): the sine/cosine bases and the cubic spline bases with
evenly spaced knots. The nominal rejection probability is τ = 5% and kT is selected by
AIC. Results for BIC are qualitatively similar. Several patterns emerge from the table.
First, the F test has a more accurate size than the chi-square test. This is especially true
when the processes are persistent and the number of joint hypotheses being tested is large.
Second, the size properties of the tests are not sensitive to the different sieve basis functions
used for h(·). Finally, as the sample size increases, the size distortion of both the F test
and the chi-square test decreases. It is encouraging that the size advantage of the F test
remains even when T = 500.

Figure 1 presents the empirical rejection probabilities for testing H0 : h (x) = h0 (x)
against H0 : h (x) �= h0 (x) for x = [1 + exp (−x̃2)]

−1 and x̃2 ∈ {−2, 0.1, 2}. It is clear that
the asymptotic χ2 test that ignores the time series dependence has a large size distortion
when the process is persistent. To save space, this figure only reports the case with T = 100
and spline sieve basis, but the pattern remains the same for both sample sizes and for both
sieve bases. Compared to the pre-asymptotic χ2 test, the pre-asymptotic F test has more
accurate size when the sample size is not large and the processes are persistent. This,
combined with the evidence for parametric inference, suggests that the pre-asymptotic F
test is preferred for both parametric and nonparametric inference in practical situations.
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Table 1

Empirical Null Rejection Probabilities for the 5% F test and Chi-square Test

j = 1 j = 2 j = 3 j = 4
F test χ2 Test F test χ2 Test F test χ2 Test F test χ2 Test

T = 100, Cosine and Sine Basis
ρ = 0 0.0633 0.0860 0.0685 0.0935 0.0825 0.1287 0.1115 0.2008
ρ = 0.25 0.0621 0.1069 0.0677 0.1225 0.0806 0.1696 0.0973 0.2922
ρ = 0.50 0.0588 0.1307 0.0635 0.1494 0.0815 0.2225 0.0997 0.3955
ρ = 0.75 0.0521 0.1549 0.0640 0.1764 0.0874 0.2767 0.1016 0.4922

T = 500, Cosine and Sine Basis
ρ = 0 0.0597 0.0848 0.0649 0.0900 0.0760 0.1187 0.0992 0.1896
ρ = 0.25 0.0570 0.1028 0.0648 0.1138 0.0752 0.1611 0.0886 0.2786
ρ = 0.50 0.0539 0.1240 0.0621 0.1383 0.0706 0.2093 0.0850 0.3778
ρ = 0.75 0.0440 0.1472 0.0574 0.1716 0.0794 0.2647 0.0904 0.4738

T = 500, Cosine and Sine Basis
ρ = 0 0.0517 0.0566 0.0521 0.0576 0.0500 0.0641 0.0607 0.0901
ρ = 0.25 0.0531 0.0633 0.0522 0.0650 0.0513 0.0786 0.0578 0.1171
ρ = 0.50 0.0545 0.0678 0.0527 0.0713 0.0498 0.0932 0.0512 0.1402
ρ = 0.75 0.0511 0.0676 0.0499 0.0749 0.0447 0.1003 0.0431 0.1636

T = 500, Spline Basis
ρ = 0 0.0487 0.0544 0.0470 0.0547 0.0475 0.0606 0.0562 0.0844
ρ = 0.25 0.0527 0.0608 0.0479 0.0629 0.0494 0.0745 0.0528 0.1108
ρ = 0.50 0.0518 0.0656 0.0498 0.0703 0.0472 0.0900 0.0474 0.1339
ρ = 0.75 0.0491 0.0637 0.0465 0.0688 0.0425 0.0959 0.0410 0.1555

Note: j is the number of joint hypotheses.
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Fig 1. Empirical Rejection Probabilities Against the value of X2t with Spline Basis and T = 100
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7. Appendix A: Mathematical Proofs.

Proof of Theorem 3.1. For any α ∈ BT , denote α
∗
u = α±εTu

∗
T as a local alternative

of α for some εT = o(T− 1
2 ). It is clear that if α ∈ BT , then α∗

u ∈ BT . Since α̂T ∈ BT with
probability approaching one (wpa1), we have that α̂∗

u,T = α̂T ± εTu
∗
T ∈ BT wpa1. By the

definition of α̂T , we have

−Op(ε
2
T ) ≤

1

T

T∑
t=1

�(Zt, α̂T )− 1

T

T∑
t=1

�(Zt, α̂
∗
u,T )

= E[�(Zt, α̂T )− �(Zt, α̂
∗
u,T )] + μT

{
Δ(Z,α0)

[
α̂T − α̂∗

u,T

]}
+ μT

{
�(Z, α̂T )− �(Z, α̂∗

u,T )−Δ(Z,α0)
[
α̂T − α̂∗

u,T

]}
= E[�(Zt, α̂T )− �(Zt, α̂

∗
u,T )]∓ μT {Δ(Z,α0)[εTu

∗
T ]}+Op(ε

2
T )(7.1)

by Assumption 3.3.(i)(ii). Next, by Assumptions 3.2 and 3.3.(iii) we have:

E[�(Zt, α̂T )− �(Zt, α̂
∗
u,T )]

=
||α̂T ± εTu

∗
T − α0||2 − ||α̂T − α0||2

2
+Op(ε

2
T )

= ±εT 〈α̂T − α0, u
∗
T 〉+Op(ε

2
T ).

Combining these with the definition of α̂∗
u,T and the inequality in (7.1), we deduce that

−Op(ε
2
T ) ≤ ±εT 〈α̂T − α0, u

∗
T 〉 ∓ εTμT {Δ(Z,α0)[u

∗
T ]}+Op(ε

2
T ),

which further implies that

(7.2) 〈α̂T − α0, u
∗
T 〉 − μT {Δ(Z,α0)[u

∗
T ]} = Op(εT ) = op

(
T−1/2

)
.

By definition of α0,T , we have 〈α0,T −α0, v〉 = 0 for any v ∈ VT . Thus 〈α0,T −α0, u
∗
T 〉 = 0,

and

(7.3)
∣∣∣√T 〈α̂T − α0,T , u

∗
T 〉 −

√
TμT {Δ(Z,α0) [u

∗
T ]}

∣∣∣ = op(1).

By Assumptions 3.1.(i) and 3.2, and the Riesz representation theorem,

f(α̂T )− f(α0,T )∥∥v∗T∥∥sd
=

f(α̂T )− f(α0)− ∂f(α0)
∂α [α̂T − α0]∥∥v∗T∥∥sd − f(α0,T )− f(α0)− ∂f(α0)

∂α [α0,T − α0]∥∥v∗T∥∥sd
+

∂f(α0)
∂α [α̂T − α0]− ∂f(α0)

∂α [α0,T − α0]∥∥v∗T∥∥sd
= 〈α̂T − α0,T , u

∗
T 〉+ op

(
T−1/2

)
.(7.4)
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It follows from (7.3) and (7.4) that

(7.5)

∣∣∣∣∣√T
f(α̂T )− f(α0,T )∥∥v∗T∥∥sd −

√
TμT {Δ(Z,α0) [u

∗
T ]}

∣∣∣∣∣ = op(1),

which establishes the first result of the theorem. The second result follows immediately
from (7.5) and Assumption 3.4.

Proof of Theorem 4.1. By Assumption 4.1.(i), we have: 0 < V ar (Δ(Z,α0)[v
∗
T ]) →

∞. By equation (4.1) and definition of ρ∗T (t), we have:

||v∗T ||2sd
V ar

(
Δ(Z,α0)[v

∗
T ]
) − 1 = 2[J1,T + J2,T ], where

J1,T =

dT∑
t=1

(
1− t

T

)
E {Δ(Z1, α0)[v

∗
T ]Δ(Zt+1, α0)[v

∗
T ]}

V ar{Δ(Z,α0)[v
∗
T ]}

and

J2,T =
T−1∑

t=dT+1

(
1− t

T

)
ρ∗T (t).

By Assumption 4.1.(ii)(a), we have:

(7.6) |J1,T | ≤ dTCT

V ar{Δ(Z,α0)[v
∗
T ]}

= o(1).

Assumption 4.1.(ii)(b) immediately gives |J2,T | = o(1). Thus

(7.7)

∣∣∣∣∣ ||v∗T ||2sd
V ar

(
Δ(Z,α0)[v

∗
T ]
) − 1

∣∣∣∣∣ ≤ 2[|J1,T |+ |J2,T |] = o(1),

which establishes the first claim. This, Assumption 4.1.(i) and Theorem 3.1 together imply
the asymptotic normality result in (4.3).

Proof of Proposition 4.2. For Assumption 4.1.(i), we note that Assumption 4.2.(i)
implies ‖v∗T ‖ → ∞ by Remark 3.2. Also under Assumption 4.2, we have:

‖v∗T ‖2
V ar

{
Δ(Z,α0)[v∗T ]

} =
γ∗′T RkT γ

∗
T

γ∗′T E [SkT (Z)SkT (Z)′] γ∗T
≤ λmax (RkT )

λmin (E [SkT (Z)SkT (Z)′])
= O(1),

where λmax (A) and λmin (A) denote the largest and the smallest eigenvalues of a matrix
A. Hence ‖v∗T ‖2 /V ar {Δ(Z, h0)[v

∗
T ]} = O(1). For Assumption 4.1.(ii)(a), we have, under

Assumption 4.3.(i),

|E {Δ(Z1, α0)[v
∗
T ]Δ(Zt, α0)[v

∗
T ]}|

=

∣∣∣∣∫
z1∈Z

∫
zt∈Z

Δ(z1, α0) [v
∗
T ]Δ(zt, α0) [v

∗
T ]

fZ1,Zt (z1, zt)

fZ (z1) fZ (zt)
fZ (z1) fZ (zt) dz1dzt

∣∣∣∣
≤ C

(∫
z1∈Z

|Δ(z1, α0) [v
∗
T ]| fZ (z1) dz1

)2

= C ‖Δ(Z,α0)[v
∗
T ]‖21 ,
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which implies that CT ≤ C ‖Δ(Z,α0)[v
∗
T ]‖21. This and Assumption 4.3.(ii) imply the ex-

istence of a growing dT → ∞ such that dTCT / ‖Δ(Z,α0)[v
∗
T ]‖22 → 0, thus Assumption

4.1.(ii)(a) is satisfied. Under Assumption 4.4.(ii), we could further choose dT → ∞ to
satisfy

‖Δ(Z,α0)[v
∗
T ]‖21 × dT∥∥Δ(Z,α0)[v∗T ]

∥∥2
2

= o (1) and dγT �
‖Δ(Z,α0)[v

∗
T ]‖22+η∥∥Δ(Z,α0)[v∗T ]

∥∥2
2

→ ∞ for some γ > 0.

It remains to verify that such a choice of dT and Assumption 4.4.(i) together imply Assump-
tion 4.1.(ii)(b). Under Assumption 4.4.(i), {Zt} is a strictly stationary and strong-mixing
process, {Δ(Zt, α0)[v

∗
T ] : t ≥ 1} forms a triangular array of strong-mixing processes with

the same decay rate. We can then apply Davydov’s Lemma (Hall and Heyde 1980, Corollary
A2) and obtain:

|E {Δ(Z1, α0)[v
∗
T ]Δ(Zt+1, α0)[v

∗
T ]}| ≤ 8[α(t)]

η
2+η ‖Δ(Z,α0)[v

∗
T ]‖22+η .

Then:

T−1∑
t=dT

∣∣∣∣∣E {Δ(Z1, α0)[v
∗
T ]Δ(Zt+1, α0)[v

∗
T ]}∥∥Δ(Z,α0)[v∗T ]

∥∥2
2

∣∣∣∣∣
≤ 8

‖Δ(Z,α0)[v
∗
T ]‖22+η∥∥Δ(Z,α0)[v∗T ]

∥∥2
2

d−γ
T

T−1∑
t=dT

tγ [α(t)]
η

2+η = o(1)

provided that

‖Δ(Z,α0)[v
∗
T ]‖22+η∥∥Δ(Z,α0)[v∗T ]

∥∥2
2

d−γ
T = O(1) and

∞∑
t=1

tγ [α(t)]
η

2+η < ∞ for some γ > 0,

which verifies Assumption 4.1.(ii)(b). Actually, we have established the stronger result:∑T−1
t=1 |ρ∗T (t)| = o(1).

Proof of Lemma 5.1. First, using Assumptions 5.1.(i)-(ii) and the triangle inequality,
we have

sup
α∈BT

sup
v1,v2∈VT

∣∣∣T−1
∑T

t=1 r(Zt, α)[v1, v2]− E {r(Zt, α0)[v1, v2]}
∣∣∣

‖v1‖ ‖v2‖

≤ sup
α∈BT

sup
v1,v2∈WT

∣∣∣∣∣T−1
T∑
t=1

r(Zt, α)[v1, v2]− E {r(Zt, α)[v1, v2]}
∣∣∣∣∣

+ sup
α∈BT

sup
v1,v2∈WT

|E {r(Z,α)[v1, v2]− r(Z,α0)[v1, v2]}| = Op(ε
∗
T ).(7.8)

Let α = α̂T , v1 = v̂∗T and v2 = v. Then it follows from (7.8), the definitions of 〈·, ·〉 and
〈·, ·〉T that

(7.9)

∣∣∣T−1
∑T

t=1 r(Zt, α̂T )[v̂
∗
T , v]− E {r(Zt, α0)[v̂

∗
T , v]}

∣∣∣∥∥v̂∗T∥∥ ‖v‖ =

∣∣∣∣∣ 〈v̂∗T , v〉T − 〈v̂∗T , v〉∥∥v̂∗T∥∥ ‖v‖
∣∣∣∣∣ = Op(ε

∗
T ).



SIEVE INFERENCE ON TIME SERIES MODELS 31

Combining this result with Assumption 5.1.(iii) and using

∂f(α̂T )

∂α
[v] = 〈v̂∗T , v〉T and

∂f(α0)

∂α
[v] = 〈v∗T , v〉,

we can deduce that

Op(ε
∗
T ) = sup

v∈VT

∣∣∣∣∣
∂f(α̂T )

∂α [v]− ∂f(α0)
∂α [v]

‖v‖

∣∣∣∣∣ = sup
v∈VT

∣∣∣∣∣ 〈v̂∗T , v〉T − 〈v̂∗T , v〉∥∥v̂∗T∥∥ ‖v‖ ‖v̂∗T ‖+
〈v̂∗T − v∗T , v〉

‖v‖

∣∣∣∣∣
= sup

v∈VT

∣∣∣∣ 〈v̂∗T − v∗T , v〉
‖v‖

∣∣∣∣+Op(ε
∗
T ‖v̂∗T ‖).(7.10)

This implies that

(7.11) sup
v∈VT

∣∣∣∣〈v̂∗T − v∗T , v〉
‖v‖

∣∣∣∣ = Op(ε
∗
T ‖v̂∗T ‖).

Letting v = v̂∗T − v∗T in (7.11), we get

(7.12)
||v̂∗T − v∗T ||∥∥v∗T∥∥ = Op

(
ε∗T

||v̂∗T ||∥∥v∗T∥∥
)
.

It follows from this result that∣∣∣∣∣ ‖v̂∗T ‖∥∥v∗T∥∥ − 1

∣∣∣∣∣ ≤
∥∥∥∥∥ v̂∗T∥∥v∗T∥∥ − v∗T∥∥v∗T∥∥

∥∥∥∥∥ =
||v̂∗T − v∗T ||∥∥v∗T∥∥ = Op

(
ε∗T

||v̂∗T ||∥∥v∗T∥∥
)

= Op

(
ε∗T

∣∣∣∣∣ ||v̂∗T ||∥∥v∗T∥∥ − 1

∣∣∣∣∣
)

+Op (ε
∗
T )(7.13)

from which we deduce that

(7.14)

∣∣∣∣∣ ||v̂∗T ||∥∥v∗T∥∥ − 1

∣∣∣∣∣ = Op(ε
∗
T ).

Combining the results in (7.12), (7.13), and (7.14), we get
||v̂∗T−v∗T ||
‖v∗T‖ = Op(ε

∗
T ) as desired.

Proof of Theorem 5.1. Part (i) For m = 1, 2, . . . ,M, we write Λ̂m as

Λ̂m =
1√
T

T∑
t=1

φm(
t

T
) {Δ(Zt, α̂T )[v̂

∗
T ]− E(Δ(Zt, α̂T )[v̂

∗
T ])−Δ(Zt, α0)[v̂

∗
T ] + E(Δ(Zt, α0)[v̂

∗
T ])}

+
1√
T

T∑
t=1

φm(
t

T
) {E(Δ(Zt, α̂T )[v̂

∗
T ])− E(Δ(Zt, α0)[v̂

∗
T ])− E(r(Zt, α0) [v̂

∗
T , α̂T − α0])}

+
1√
T

T∑
t=1

φm(
t

T
)E(r(Zt, α0) [v̂

∗
T , α̂T − α0]) +

1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α0)[v̂

∗
T ]

≡ Îm,1 + Îm,2 + Îm,3 + Îm,4.
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Using Assumption 5.2.(i)-(ii), we have Îm,1 = op (‖v̂∗T ‖) and Îm,2 = Op

(√
Tε∗T ξT ‖v̂∗T ‖

)
. So

Λ̂m =
1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α0)[v

∗
T ] +

1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α0)[v̂

∗
T − v∗T ]

−
[
1

T

T∑
t=1

φm(
t

T
)

] [√
T 〈v∗T , α̂T − α0〉+

√
T 〈v̂∗T − v∗T , α̂T − α0〉

]
+ op (‖v̂∗T ‖) +Op

(√
Tε∗T ξT ‖v̂∗T ‖

)
.(7.15)

Under Assumptions 3.2 and 3.3, we can invoke equation (7.2) in the proof of Theorem 3.1
to deduce that

(7.16)
√
T ‖v∗T ‖−1

sd 〈v∗T , α̂T − α0〉 = 1√
T

‖v∗T ‖−1
sd

T∑
t=1

Δ(Zt, α0)[v
∗
T ] + op(1).

Using Lemma 5.1 and the Hölder inequality, we get

(7.17)
∣∣∣√T 〈v̂∗T − v∗T , α̂T − α0〉

∣∣∣ ≤ √
T ‖v̂∗T − v∗T ‖ ‖α̂T − α0‖ = Op(

√
T ‖v∗T ‖ ε∗T ξT ).

Next, by Assumption 5.2.(iii) and Lemma 5.1,∣∣∣∣∣ 1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α0)[v̂

∗
T − v∗T ]

∣∣∣∣∣
≤ ‖v̂∗T − v∗T ‖ sup

v∈WT

∣∣∣∣∣ 1√
T

T∑
t=1

φm(
t

T
)Δ(Zt, α0)[v]

∣∣∣∣∣ = Op(‖v∗T ‖ ε∗T ).(7.18)

Now, using Lemma 5.1, (7.15)-(7.18), Assumption 3.2 (‖v∗T ‖ = O
(‖v∗T ‖sd)), Assumption

5.2.(iv) and
√
Tε∗T ξT = o(1), we can deduce that

‖v∗T ‖−1
sd Λ̂m

=
1√
T

‖v∗T ‖−1
sd

T∑
t=1

[
φm

(
t

T

)
− 1

T

T∑
t=1

φm

(
t

T

)]
Δ(Zt, α0)[v

∗
T ] + op(1)

a
∼

1√
T

T∑
t=1

[
φm

(
t

T

)
− 1

T

T∑
s=1

φm

( s

T

)]
et ≡ ζm(7.19)

Since {φm (·) ,m = 0, 1, . . . ,M} is a set of orthonormal functions and φ0 (·) = 1, we have
ζm

a
∼ iid N(0, 1) for m = 1, . . . ,M , and hence ‖v∗T ‖−1

sd Λ̂m
a
∼ iid N(0, 1) for m = 1, . . . ,M .

Part (ii) It follows from part (i) that

(7.20) ‖v∗T ‖−1
sd ‖v̂∗T ‖2sd,T ‖v∗T ‖−1

sd =
1

M

M∑
m=1

(
‖v∗T ‖−1

sd Λ̂m

)2 a
∼

1

M

M∑
m=1

ζ2m.
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which, combined with Theorem 3.1, further implies that

tT =

√
T [f(α̂T )− f(α0)]∥∥v∗T∥∥sd

/ ‖v̂∗T ‖sd,T∥∥v∗T∥∥sd
=

√
T [f(α̂T )− f(α0)]∥∥v∗T∥∥sd

/√√√√M−1

M∑
m=1

(∥∥v∗T∥∥−1

sd
Λ̂m

)2

a
∼

ζ0√
M−1

∑M
m=1 ζ

2
m

.(7.21)

where ζ0 = T−1/2
∑T

t=1 et. Since both ζ0 and ζm are approximately standard normal and

cov (ζ0, ζm) = T−1
T∑
t=1

φm (t/T ) = o (1) ,

ζ0 is asymptotically independent of ζm for m = 1, . . . ,M . This implies that tT
a
∼ t (M).

Proof of Theorem 5.2. Using similar arguments as in proving Theorem 5.1, we can
show that

(7.22) ‖v∗
T ‖−1

sd Λ̂m
a
∼ T−1/2

T∑
t=1

[
φm (t/T )− T−1

T∑
s=1

φm (s/T )

]
et ≡ ζm

and ζm
a
∼ iid N(0, Iq). It then follows that

(7.23) ‖v∗
T ‖−1

sd ‖v̂∗
T ‖2sd,T

(
‖v∗

T ‖−1
sd

)′ a
∼ M−1

M∑
m=1

ζmζ ′m.

Using the results in (5.8) and (7.23), we have

FT = T [f(α̂T )− f(α0)]
′ ‖v̂∗

T ‖−2
sd,T [f(α̂T )− f(α0)] /q

a
∼

(
T−1/2

T∑
t=1

et

)′{
M−1

M∑
m=1

ζmζ ′m

}−1(
T−1/2

T∑
t=1

et

)
/q

= ζ ′0

{
M−1

M∑
m=1

ζmζ ′m

}−1

ζ0,(7.24)

where ζ0 ≡ T−1/2
∑T

t=1 et. Since φm (·) , m = 1, 2, . . . ,M are orthonormal and integrate to
zero, we have

FT
a
∼ ξ0

(
M−1

M∑
m=1

ξmξ′m

)−1

ξ0

where ξm ∼ iid N (0, Iq) for m = 0, . . . ,M. This is exactly the same distribution as
Hotelling (1931)’s T 2 distribution. Using the well-known relationship between the T 2 dis-
tribution and F distribution, we have [(M − q + 1) /M ]FT

a
∼ Fq,M−q+1 as desired.
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