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This paper provides a general theory on the asymptotic normal-
ity of plug-in sieve M estimators of possibly irregular functionals of
semi-nonparametric time series models. We show that, even when
the sieve score process is not a martingale difference, the asymp-
totic variances of plug-in sieve M estimators of irregular (i.e., slower
than root-T estimable) functionals are the same as those for indepen-
dent data. Nevertheless, ignoring the temporal dependence in finite
samples may not lead to accurate inference. We then propose an
easy-to-compute and more accurate inference procedure based on a
“pre-asymptotic” sieve variance estimator that captures temporal de-
pendence of unknown forms. We construct a “pre-asymptotic” Wald
statistic using an orthonormal series long run variance (OS-LRV) esti-
mator. For sieve M estimators of both regular (i.e., root-T estimable)
and irregular functionals, a scaled “pre-asymptotic” Wald statistic is
asymptotically F distributed when the series number of terms in the
OS-LRV estimator is held fixed. Simulations indicate that our scaled
“pre-asymptotic” Wald test with F critical values has more accurate
size in finite samples than the conventional Wald test with chi-square
critical values.

1. Introduction. Many economic and financial time series are nonlinear and non-
Gaussian; see, e.g., Granger (2003). For policy analysis, it is important to uncover com-
plicated nonlinear economic relations in structural models. Unfortunately, it is difficult to
correctly parameterize all aspects of nonlinear dynamic functional relations. Due to the
well-known problem of “curse of dimensionality” it is also impractical to estimate a gen-
eral nonlinear time series model fully nonparametrically. These issues motivate the growing
popularity of semiparametric and semi-nonparametric models and methods in economics
and finance.

The method of sieves (Grenander, 1981) is a general procedure for estimating semi-
parametric and nonparametric models, and has been widely used in statistics, economics,
finance, biostatistics and other disciplines. In this paper, we focus on sieve M estimation,
which optimizes a sample average of a random criterion over a sequence of approximating
parameter spaces, sieves, that becomes dense in the original infinite dimensional param-
eter space as the complexity of the sieves grows to infinity with the sample size T'. See
Shen and Wong (1994), Chen (2007) and the references therein for many examples of sieve
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M estimation, including sieve (quasi) maximum likelihood, sieve (nonlinear) least squares,
sieve generalized least squares, and sieve quantile regression.

We consider inference on possibly misspecified semi-nonparametric time series models
via the method of sieve M estimation. For general sieve M estimators with weakly depen-
dent data, White and Wooldridge (1991) establish the consistency, and Chen and Shen
(1998) establish the convergence rate and the VT asymptotic normality of plug-in sieve M
estimators of regular (i.e., v/T estimable) functionals. To the best of our knowledge, there
is no published work on the limiting distributions of plug-in sieve M estimators of irreqular
(i.e., slower than v/T estimable) functionals. There is also no published inferential result
for general sieve M estimators of regular or irregular functionals for possibly misspecified
semi-nonparametric time series models.

We first provide a general theory on the asymptotic normality of plug-in sieve M es-
timators of possibly irregular functionals in semi-nonparametric time series models. The
key insight is to examine the functional of interest on a sieve tangent space where a Riesz
representer always exists regardless of whether the functional is regular or irregular. The
asymptotic normality result is rate-adaptive in the sense that applied researchers do not
need to know a priori whether the functional of interest is v/T estimable or not.

For possibly misspecified semi-nonparametric models with weakly dependent data, Chen
and Shen (1998) establish that the asymptotic variance of a sieve M estimator of any regular
functional depends on the temporal dependence and is equal to the long run variance (LRV)
of a scaled score (or moment) process. In this paper, we show a new result that, regardless
of whether the score process is martingale difference or not, the asymptotic variance of a
sieve M estimator of an irregular functional for weakly dependent data is the same as that
for independent data.

Our asymptotic theory suggests that, for weakly dependent time series data with a
large sample size, temporal dependence could be ignored in making inference on irregular
functionals via the method of sieves. However, simulation studies indicate that inference
procedures based on asymptotic variance estimates ignoring autocorrelation do not perform
well when the sample size is small (relatively to the degree of temporal dependence).
See, e.g., Conley, Hansen and Liu (1997) and Pritsker (1998) for earlier discussion of this
problem with kernel density estimation for interest rate data sets.

To deal with this problem, for inference on both regular and irregular functionals, we
propose to use a “pre-asymptotic” sieve variance that captures temporal dependence of an
unknown form. That is, we treat the underlying triangular array sieve score process as a
generic time series and ignore the fact that it becomes less temporally dependent when
the sieve number of terms in approximating unknown functions grows to infinity as 1" goes
to infinity. This novel “pre-asymptotic” sieve approach enables us to develop a unified
inference framework that can accommodate both regular and irregular functionals.

To derive a simple and more accurate asymptotic approximation under weak conditions,
we compute a “pre-asymptotic” Wald statistic using an orthonormal series LRV (OS-LRV)
estimator. For both regular and irregular functionals, we show that the “pre-asymptotic”
t statistic and a scaled Wald statistic converge to the standard t distribution and F' distri-
bution respectively when the series number of terms in the OS-LRV estimator is held fixed;
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and that the t distribution and F' distribution approach the standard normal and chi-square
distributions respectively when the series number of terms in the OS-LRV estimator goes
to infinity. Our “pre-asymptotic” ¢t and F' approximations achieve triple robustness in the
following sense: they are asymptotically valid regardless of (1) whether the functional is
regular or not; (2) whether there is temporal dependence of unknown form or not; and (3)
whether the series number of terms in the OS-LRV estimator is held fixed or not.

The rest of the paper is organized as follows. Section 2 presents the plug-in sieve M es-
timator of functionals of interest and gives two illustrative examples. Section 3 establishes
the asymptotic normality of the plug-in sieve M estimators of possibly irregular functionals.
Section 4 shows that the asymptotic variances of plug-in sieve M estimators of irregular
functionals for weakly dependent data are the same as if they were for i.i.d. data. Sec-
tion 5 presents the “pre-asymptotic” OS-LRV estimator and F' approximation. Section 6
describes a simple computation method and reports a simulation study using a partially
linear regression model. Appendix contains all the proofs.

Notation. We denote fa(a) (Fa(a)) as the marginal probability density (cdf) of a
random variable A evaluated at a and fap(a,b) (Fap(a,b)) the joint density (cdf) of
the random variables A and B. We use = to introduce definitions. For any vector-valued
A, we let A" denote its transpose and [|Al|p = VA’A, although sometimes we also use
|A| = VA’A without confusion. Denote LP(Q,du), 1 < p < oo, as a space of measurable
functions with ||g]|zr.au) = { /g lg(t)[Pdp(t)}/P < oo, where Q is the support of the
sigma-finite positive measure du (sometimes LP(Q2) and ||g||r» () are used when dpu is the
Lebesgue measure). For any (possibly random) positive sequences {ar}7_; and {br}7_,,
ar = Op(br) means that lim._,o limsupy Pr (ar/br > ¢) = 0; ar = 0,(br) means that
for all ¢ > 0, limp_o Pr(ap/by >¢) = 0; and ar =< by means that there exist two
constants 0 < ¢; < ¢a < oo such that ciar < by < coar. We use Ar = Ay, Hr = Hy,
and Vr =V, to denote various sieve spaces. For simplicity, we assume that dim(Vr) =
dim(Ar) < dim(Hr) =< kr, all of which grow to infinity with the sample size T'.

2. Sieve M Estimation. We assume that the data {Z, = (Y/,X])'}L, is from a
strictly stationary and weakly dependent process defined on an underlying complete prob-
ability space. Let Z C Rdz,l <d, < >, )Y C R% and X C R% be the supports of
Zy, Y; and X, respectively. Let (A, d) denote an infinite dimensional metric space. Let
¢:2Zx A — R be a measurable function and E[/(Z,«)] be a population criterion. For
simplicity we assume that there is a unique ag € (A, d) such that E[¢(Z, ag)] > E[¢(Z, o))
for all a € (A, d) with d(a, ag) > 0. Different models correspond to different choices of the
criterion functions E[¢(Z, «)] and the parameter spaces (A,d). A model does not need to
be correctly specified and ag could be a pseudo-true parameter. Let f : (A,d) — R be a
known measurable mapping. In this paper we are interested in estimation of and inference
on f(ap) via the method of sieves.

Let Ar be a sieve space for the whole parameter space (A, d). Then there is an element
Irag € Ar such that d (Ilrag, ag) — 0 as dim(Ar) — oo (with T'). An approzimate sieve
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M estimator ar € A of ag solves

T

T
1
(2.1) Z (Zy,ar) > Slf —Zf(zt,a)—op(s%),
t=1 aEAT & 4

where the term O, (%) = 0,(T~') denotes the maximization error when ar fails to be
the exact maximizer over the sieve space. We call f(ar) the plug-in sieve M estimator
of f(ap). Under very mild conditions (see, e.g., Chen, 2007, Theorem 3.1 and White and
Wooldridge, 1991), the sieve M estimator ap is consistent for ayg:

d(ar, ag) = Oy {max [d(ar, lrag), d (Ilrag, ag)]} = 0p(1).

Given the consistency, we can restrict our attention to a shrinking d-neighborhood of ag.
We equip A with an inner product induced norm || — ay|| that is weaker than d(a, ap) (i.e.,

lor — ol < ed(er, o) for a constant ¢ > 0), and is locally equivalent to v/ E[¢(Z, ap) — (Zy, )]
in a shrinking d-neighborhood of «y. For strictly stationary weakly dependent data, Chen
and Shen (1998) establish the convergence rate: ||ar — agl| = Op(ér) = 0,(T~/*), where
& = max [[[ar — rao| , | lrao — aol]

The method of sieve M estimation includes many special cases. Different choices of
criterion functions ¢(Z;, ) and different choices of sieves Ap lead to different examples of
sieve M estimation. As an illustration, we provide two examples below. See, e.g., Shen and
Wong (1994) and Chen (2007) for additional examples.

EXAMPLE 2.1.  (Partially additive ARX regression) Suppose that the time series data
{Y{t}tT:1 is generated by

(2.2) Y; = X0 + hot (Yi—1) + hoz (Yi—2) + uy,
with
E [ut’Xtan—lv th—?] — 07
where Xy is a d,—dimensional random vector, and could include finitely many lagged Y;’s
Let 0y € © C R% and hoj € H; for j =1,2. Let ag = (04, hot, hoz) € A =0 x Hi x Ha.

Ezxamples of functionals of interest could be f(ap) = N6y or Vho;(y;) where A € R% and
y; € int(Y) for j =1,2.

For the sake of concreteness we assume that ) is a bounded interval of R and H; =
A% (Y) (a Holder space) for s; > 0.5, j = 1,2, where

715—|s]

A(Y) = {h e Cll(Y) : sup sup ‘Vk < 00, sup

|v[8} (y) — visly (y’)‘
< o0y,
k<[s]y€Y yy'ey ly — /|

where [s] is the largest integer that is strictly smaller than s. The Hélder space A®*(Y) (with
s > 0.5) is a smooth function space that is widely assumed in the semi-nonparametric
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literature. We can then approximate H = H; x Ha by a sieve Hy = Hi 1 X Ha 1, where
for j = 1,2,

(2.3) Hir = h()h() =S Bpia() = B'Pe, (), B € RET

where the known sieve basis ij’T(-) could be polynomial splines, B-splines, wavelets,
Fourier series and others.

Let {(Zs,a) = —[Yi— X}0 — hy (Yii1) — ho (Yi2)]> /4 with a = (0',h1,hy) € A =
© x Hi x Ha. Let Ar = © x Hi 1 x Ha 1 be a sieve for A. We can estimate oy € A by the
sieve least squares (LS) estimator ar = (67},317T,/ﬁ27T)’ c Arp:

2.4 ar = 0(Z;,0,hy, h
(2.4) ar arg(ahﬁgﬁceAT Z t 1,h2).

A functional of interest f(cyg) (such as N6y or Vho; @j)) is then estimated by the plug-in
sieve LS estimator f(dr) (such as Xfr or Vﬁij@j)).

This example is very similar to Example 2 in Chen and Shen (1998), except that we
allow for dynamic mispecification in the sense that E [us| Xy, Y;—1,Y;—2;Y;—; for j > 3] may
not equal to zero. One can slightly modify their proofs to get the convergence rate of ap
and the \/T-asymptotic normality of \ 6A?T. But that paper does not provide a variance
estimator for \ gT. The results in our paper immediately lead to the asymptotic normality
of f(ar) for possibly irregular functionals f(ag) and provide simple, robust inference on

f(ao).

EXAMPLE 2.2. (Possibly misspecified copula-based time series model) Suppose that
{Y,}L | is a sample of strictly stationary first order Markov process generated from (Fy, Co(-
where Fy is the true unknown continuous marginal distribution, and Cy(-,-) is the true un-
known copula for (Y;—1,Y:) that captures all the temporal and tail dependence of {Y;}. The
7-th conditional quantile of Y; given Y'=' = (Y;_1,...,Y]) is

QY ) = Fy* (ot 1Ay ().

where CQ|1[']u] = 8%C’o(u, -) is the conditional distribution of Uy = Fy (Y;) given U1 = u,

and C2|1

yi—1 s

[T|u] is its T-th conditional quantile. The conditional density function of Y; given

PICIYIT) = fyr (Do (Fy (Yeo1), Fyr ()

where fy(-) and co(-,-) are the density functions of Fy(-) and Cy(-,-) respectively. A re-
searcher specifies a parametric form {c(-,-;0) : 0 € O} for the copula density function, but
it could be misspecified in the sense co(-,-) ¢ {c(-,-;0) : 0 € O}. Let Oy be the pseudo true
copula dependence parameter:

0y = argmax/ / c(u, v;0)co(u, v)dudv.

7'));
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Let (Hé,fy)/ be the parameters of interest. Examples of functionals of interest could be
Nbo, fy (W), Fy (y) or Qé/m@) = F;l( 2‘1[ T|Fy (y );00]> for any X\ € R% and some
Y € supp(Vy).

We could estimate (6, fy)’ by the method of sieve quasi ML using different parameter-
izations and different sieves for fy. For example, let hg = \/f_ and ap = (6, ho) be the
(pseudo) true unknown parameters. Then fy () = h§ () / [*o_ h§ (y) dy, and hy € L*(R).
For the identification of hg, we can assume that hg € H:

(2.5) H =1 h( +Zﬁjp] Zﬁj<oo ,

where {p;}}Z is a complete orthonormal basis functions in L? (R), such as Hermite poly-
nomials, wavelets and other orthonormal basis functions. Here we normalize the coefficient
of the first basis function py () to be 1 in order to achieve the identification of hg (-). Other
normalization could also be used. It is now obvious that hg € H could be approximated by
functions in the following sieve space:

(2.6) Hr =S b +Zﬁ]p] 0(-)+ 8Py () : B € R

Let Z, = (Yi_1,Y;), a = (#,h) € A=0O x H and
(2.7)

2 Yio1 2 Y: 2
E(Zt,a)zlog{%}ﬂog{c </Oo f h (y) d f h (y) dy,@)}.

Then oy = (96,h0)/ € A = 0 x H could be estimated by the sieve quasi MLE ar =
(0, hr) € A7 = © x Hr that solves:

h? (Y1)
(2.8) aeg,@upoT {ZE (Zy, ) + log {W}} — Op(e?).

A functional of interest f (ap) (such as N6y, fy (§) = 0/ dy, Fy( ) or
Qo 01(_)) is then estimated by the plug-in sieve quasi MLE f (aT) (such as N0, fy( ) =
Y) /2 b () dy, By 3) = [P, Fr(9)dy or Q501 (5) = FyH(Cyf [T Fy (1); 6)).

Under correct spemﬁcatlon, Chen, Wu and Yi (2009) establish the rate of convergence
of the sieve MLE a7 and provide a sieve likelihood-ratio inference for regular functionals
including f (ag) = N or Fy (3) or Qo1 (7). Under misspecified copulas, by applying Chen
and Shen (1998), we can still derive the convergence rate of the sieve quasi MLE ar and the
VT asymptotic normality of f(ar) for regular functionals. However, the sieve likelihood
ratio inference given in Chen, Wu and Yi (2009) is no longer valid under misspecification.
The results in this paper immediately lead to the asymptotic normality of f(a@r) (such as
Ty (¥) = h2 )/ y) dy) for any possibly irregular functional f(cg) (such as fy (7))
as well as vahd 1nferences under potential misspecification.
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3. Asymptotic Normality of Sieve M Estimators. In this section, we establish
the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of
semi-nonparametric time series models. We also give a closed-form expression for the sieve
Riesz representer that appears in our asymptotic normality result.

3.1. Local Geometry. The convergence rate result of Chen and Shen (1998) implies that
ar € By C By with probability approaching one, where

(3.1) By={aec A:|a—a <C&rlog(log(T))}; Br = ByN Ar.
Hence, we now regard By as the effective parameter space and Br as its sieve space. Let

(3.2) apr € arg min || — agl|.
aEBT

Let Vr = clsp (Br) — {ao 1}, where clsp (Br) denotes the closed linear span of By under
II-l. Then Vr is a finite dimensional Hilbert space under ||-||. Similarly the space V =
clsp (By) — {ap} is a Hilbert space under ||-||. Moreover, Vr is dense in V under ||-||. To
simplify the presentation, we assume that dim(Vr) = dim(Ar) < kr, all of which grow to
infinity with 7. By definition we have (a1 — o, vr) = 0 for all vy € V.

As demonstrated in Chen and Shen (1998), there is lots of freedom to choose such a
norm ||a — ap|| that is locally equivalent to \/E[{(Z, ap) — (Z,)]. In some parts of this
paper, for the sake of concreteness, we present results for a specific choice of the norm ||-||.
We suppose that for all a in a shrinking d-neighborhood of ag, ¢(Z,a) — ¢(Z, o) can be
approximated by A(Z, ag)[a — ap] such that A(Z, ap)[ov — ] is linear in o — a. Denote
the remainder of the approximation as:

(3.3) r(Z,o0)|a — ag,a — ap] = 2{U(Z, ) — U(Z, cp) — A(Z, ap) v — ey } -

When lim_,o[({(Z, g + T[ax — ap]) — U(Z, ap) ) /7] is well defined, we could let A(Z, ap) [ —
ap) = lim,o[(U(Z, ap + T[a — ap]) — €(Z, vp)) /7], which is called the directional derivative
of £{(Z,«) at a in the direction [ — ). Define

(3.4 o — aoll = v/E(=1(Z, o)l — a0, @ — ag)
with the corresponding inner product (-, )
(3.5) (1 — g,y — ) = E{—r(Z, ap)[a1 — v, a2 — ol }

for any a, a in the shrinking d-neighborhood of «yg. In general this norm defined in (3.4)

is weaker than d(-,-). Since ag is the unique maximizer of E[/(Z,«)] on A, under mild

conditions ||a — ap|| defined in (3.4) is locally equivalent to \/E[((Z,ag) — €(Z, a)].

9f () [v]
oo

For any v € V, we define to be the pathwise (directional) derivative of the
functional f (-) at o and in the direction of v =a —ap € V:

df ()
Jda

[v] = W for any v € V.
T

(3.6)

7=0



8 X. CHEN, Z. LTAO AND Y. SUN

For any vr = ar — agr € Vr, we let

0f (« of (« 0f («
(3.7) / 8(&0) [vr] = / 8(a0) [ar — ag] — / 8(&0) [0, — avg).
So %[-] is also a linear functional on V7.

Note that Vr is a finite dimensional Hilbert space. As any linear functional on a finite
dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to
deduce that there is a v}, € Vp such that

d
(3.8) %[v] = (vp,v) forallveVr
and that
af(ao) * * 12 af(Oé()) 2 2

3.9 vp| = ||v = sup |——|v v
(3.9) 50 Lorl = vzl UevT’U#O! 50 L/ 1]
We call v} the sieve Riesz representer of the functional %H on Vr.

We emphasize that the sieve Riesz representation (3.8)—(3.9) of the linear functional
%H on Vr always exists regardless of whether %[-] is bounded on the infinite

dimensional space V' or not. This crucial observation enables us to develop a general and
unified theory that is currently lacking in the literature.

o If %[-] is bounded on the infinite dimensional Hilbert space V, i.e.

* 8f(a0)
(3.10) [0l = sup {l 90 L/ vl < oo,
vEV,v#£0 «
then ||v%|| = O (1) (in fact ||vk| 7 ||[v*]| < oo and [[v* —v}| = 0 as T — o0); we
say that f (-) is regular (at o = ap). In this case, we have %[v] = (v*,v) for all
v €V, and v* is the Riesz representer of the functional %[-] on V. See, e.g., Shen
(1997).
o If %[-] is unbounded on the infinite dimensional Hilbert space V), i.e.
9f(ao)
(3.11) sup {1250/ ol | = e,
veEV w#£0 «

then ||v}]| 7 oo as T'— oo; and we say that f(-) is irregular (at o = ).
As it will become clear later, the convergence rate of f(ar) — f (ap) depends on the

order of ||vk||.

3.2. Asymptotic Normality. To establish the asymptotic normality of f(ar) for possibly
irregular nonlinear functionals, we assume:
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AssuMPTION 3.1 (local behavior of functional).
. a U
(i) suPacs, |f(@) = Flao) — 22 [ — al| = o (T7% o7 )
(ii) |25 (a0 — aol| = o (T7% o7 .

Assumption 3.1.(i) controls the linear approximation error of possibly nonlinear func-
tional f(-). It is automatically satisfied when f (-) is a linear functional, but it may rule
out some highly nonlinear functionals. Assumption 3.1.(ii) controls the bias part due to
the finite dimensional sieve approximation of ag 7 to ag. It is a condition imposed on the
growth rate of the sieve dimension dim(.A7), and requires that the sieve approximation
error Tate is of smaller order than T2 |vy]l. When f(-) is a regular functional, we have
llvp]| 7 [|v*]] < oo, and since (a1 — ag,v5) = 0 (by definition of ag 1), we have:

df (ap)
oo

[ao,r = ao]| = [(v", a0,r — a0)| = [(v" = vp, 0 — ao)| < [[v" = vr|x[laor — aoll,

thus Assumption 3.1.(ii) is satisfied if
(3.12) [0* — Vil X [laor — aol| = o(T~H?)  when f(-) is regular,

which is similar to condition 4.1(ii)(iii) imposed in Chen (2007, p. 5612) for regular func-
tionals.

Next, we make an assumption on the relationship between |v}| and the asymptotic
standard deviation of f(ar) — f(aor). It will be shown that the asymptotic standard
deviation is the limit of the “standard deviation” (sd) norm [[v7[|,, of v7, defined as

T
(3.13) lvplza = Var (T‘”@A(Zt,ao)[v;]).

t=1
Note that Hv}Hi 4 is the finite dimensional sieve version of the long run variance of the score
process A(Z, ag)[v7], and Hv}Hgd = Var (A(Z, ap)[vy]) if the score process {A(Z, ag) [v]] }e<r
is a martingale difference array.

ASSUMPTION 3.2 (sieve variance). |[vg|/[|vp]l,, = O(1).

By definition of ||v%|| given in (3.9), 0 < ||v7|| is non-decreasing in dim(Vr), and hence
is non-decreasing in 7". Assumption 3.2 then implies that liminf7_, [[v7 [, > 0. Define

(3.14) ur = vr/ ozl

to be the normalized version of v%.. Then Assumption 3.2 implies that ||u}| = O(1).

Let ur{g(2)} =T~} Zthl g (Zy) — Eg(Z;)] denote the centered empirical process in-
dexed by the function g. Let ep = o(T~V/ 2). For notational economy, we use the same er
as that in (2.1).
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AssuMPTION 3.3 (local behavior of criterion). (i) ur {A(Z, ap) [v]} is linear in v € V;

(i1) sul%) pr {6(Z, o+ eruly) — 0(Z,a) — A(Z, ap)[£eruly]} = Op(ed);
aebr

* 2 o 2
i) sup |El(Zea) — 6(Ze, o + eputs)] — NOEETUr —0oll” ~ Nl = aollP} )

aEBT 2

Assumptions 3.3.(ii) and (iii) are simplified versions of those in Chen and Shen (1998),
and can be verified in the same way.

AssUMPTION 3.4 (CLT). VTur {A(Z, ap) [wh]} —a N(0,1), where N(0,1) is a stan-
dard normal distribution.

Assumption 3.4 is a very mild one, and can be easily verified by applying any existing
triangular array CLT for weakly dependent data (see, e.g., Hall and Heyde, 1980).

We are now ready to state the asymptotic normality theorem for the plug-in sieve M
estimator.

THEOREM 3.1. Let Assumptions 3.1.(i), 3.2 and 3.3 hold. Then
(3.15) VT[f(@r) = flaom))/ 1v7llsa = VTur {A(Z, a0) [uf]} + 0, (1)
If further Assumptions 3.1.(ii) and 3.4 hold, then
(3.16)  VT[f(@r) - f(ao)l/ 07l = VT ur {A(Z, a0) [u7]} + 0, (1) —a N(0,1).

In light of Theorem 3.1, we call Hv}Hg ; defined in (3.13) the “pre-asymptotic” sieve vari-
ance of the estimator f(ar). When the functional f(ayp) is regular (i.e., [|[v}] = O(1)), we
have [[v}|,, =< [[vp]] = O(1) typically; so f(ar) converges to f(ap) at the parametric rate
of 1/v/T. When the functional f(ay) is irregular (i.e., |[v|| — 00), we have 07| 4q — o0
(under Assumption 3.2); so the convergence rate of f(@r) becomes slower than 1/v/T.
Regardless of whether the “pre-asymptotic” sieve variance Hv}Hg 4 Stays bounded asymp-
totically (i.e., as T' — o0) or not, it always captures whatever true temporal dependence
exists in finite samples.

For regular functionals of semi-nonparametric time series models, Chen and Shen (1998)
and Chen (2007, Theorem 4.3) establish that v/T (f(ar) — f(ag)) —4 N(0,02.) with

T
2 _ -1/2 * — * 12
(3.17) o5 = lim Var (T E A(Zy, ag)[v ]) Tlgl;o lv7]l5g € (0,00).

T—o00
t=1

Our Theorem 3.1 is a natural extension of their results to allow for irregular functionals.
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3.3. Sieve Riesz Representer. 'To apply the asymptotic normality Theorem 3.1 one
needs to verify Assumptions 3.1-3.4. Once we compute the sieve Riesz representer v, € Vr,
Assumptions 3.1 and 3.2 can be easily checked, while Assumptions 3.3 and 3.4 are standard
ones and can be verified in the same ways as those in Chen and Shen (1998) and Chen
(2007) for regular functionals of semi-nonparametric models. Although it may be difficult
to compute the Riesz representer v* € V in a closed form for a regular functional on the
infinite dimensional space V, we can always compute the sieve Riesz representer v}, € Vr
defined in (3.8) and (3.9) explicitly. Therefore, Theorem 3.1 is easily applicable to a large
class of semi-nonparametric time series models, regardless of whether the functionals of
interest are v/T estimable or not.

3.3.1. Sieve Riesz representers for general functionals. For the sake of concreteness, in
this subsection we focus on a large class of semi-nonparametric models where the population
criterion E[¢(Z;,0,h(-))] is maximized at g = (6, ho (-)) € A =0 x H, © is a compact
subset in R% 7 is a class of real valued continuous functions (of a subset of Z;) belonging
to a Holder, Sobolev or Besov space, and Ar = © x Hp is a finite dimensional sieve
space. The general cases with multiple unknown functions require only more complicated
notation.

Let ||| be the norm defined in (3.4) and Vy = R% x {v;, (-) = Pp,.(-)B : B € RFT}
be dense in the infinite dimensional Hilbert space (V,||-||). By definition, the sieve Riesz
representer vj, = (v7'p, V7. (1) = (v5p, Par (V85 € Vi of 2200
optimization problem:

solves the following

2

0L80) yy + 200) [y, ()]

8(1 v:(vé’vh),evTW;ﬁOE(_r (Zt,eo,ho ()) ['U,U])
/F F/
(3.18) _ - 7B Pl
'7:(1}’975/)’6Rd9+k7~7,y¢0 Y RkT’Y
where
Of(ap) Of(a !
o A, = (5 e, 1)

is a (dp + kr) x 1 vector,! and

(3.20) Y Rpy = E (=1 (Z,00,ho (1)) [v,0])  for all v = ('Ué,PkT(')/,B)/ € Vrp,
with
A S VT o (I TP

'"When WH applies to a vector (matrix), it stands for element-wise (column-wise) operations. We
follow the same convention for other operators such as A (Z;, ao) [] and —r (Z¢, ) [, -] in the paper.
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being (dg + k1) x (dg + k1) positive definite matrices. For example if the criterion function
0(z,0,h(-)) is twice continuously pathwise differentiable with respect to (6,h(-)), then

2 ) 2 .

we have Iy = B |~ 208000 gy, — |- ZUI OB (), Py (Y]], Trpe =
02%4(Z+,00,ho(- _

FE 7( 59<§h 0()) [PkT()]} and IT721 = 1%712.
The sieve Riesz representation (3.8) becomes: for all v = (v}, Py, (-)'8)" € Vr,

0
e22) OV g g k) =Ry forally = (0,8 € REH.

It is obvious that the optimal solution of v in (3.18) or in (3.22) has a closed-form
expression:

(3.23) ve = (v5'r, BY) = R} Fy-
The sieve Riesz representer is then given by
vp = (vé‘fT,vZ,T ()), = (U;,/Tvka(')lﬁ;), €Vr.
Consequently,
(3.24) 103 1* = %7 Ript = Fip Ry Fieps

which is finite for each sample size T" but may grow with 7.
Finally the score process can be expressed as

A(Ztv OZO)[U;] = (AG(Zta to, ho ('))/7 Ah(Ztv 0o, ho ())[PkT()/]) ’Y% = SkT(Zt)/’Y’;’
Thus

(3.25) Var (A(Zy, a0)lvr]) =7 E [Skr (Z0)Skr (Z0) | 7

2 T
and 0712, = 73'Var (J5 S Sk (Z0)) 7
To verify Assumptions 3.1 and 3.2 for irregular functionals, it is handy to know the exact
speed of divergence of ||vk:||*. We assume

ASSUMPTION 3.5.  The smallest and largest eigenvalues of Ry, defined in (3.20) are
bounded and bounded away from zero uniformly for all k.

Assumption 3.5 imposes some regularity conditions on the sieve basis functions, which
is a typical assumption in the linear sieve (or series) literature.

REMARK 3.2.  Assumption 3.5 implies that

* * af Qo af @
12 = Il = 11 I = 122009 4 2200 o

Then: f(-) is reqular at o = ay if limy,, ||%[PM()]||2E < oo; f(+) is irreqular at o = g

if limyy. || 22809 [P, ()]||% = oo
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3.3.2. Ezamples. We first consider three typical linear functionals of semi-nonparametric
models.

For the Euclidean parameter functional f(a) = N0, we have Fy, = (X,0;_)" with
05, =[0,...,0];.4,, and hence v} = (v;fT,PkT(-)/ﬁ})/ € Vr with vy 7 = I, B = I3,
and

* (|2 —
[0 )|* = Ff, Ry Frp = NI\

If the largest eigenvalue of I%l, )\maX(L}l), is bounded above by a finite constant uniformly
in k7, then HU}H2 < Amax(IH) x N\ < 0o uniformly in 7', and the functional f(a) = N6 is
regular.

For the evaluation functional f(a) = h(T) for T € X, we have Fj,, = (0 , P}, (%)), and
hence v7. = (vy'p, Per.(-)'B7)" € Vr with vy o = I} P, (%), B = I3 P,.(T), and

2 — — —
W l* = Fp B Fry = P (@)1F Piy (7).

So if the smallest eigenvalue of 122, Apin(I7), is bounded away from zero uniformly in k7,
then [|[uk]|? > Amin(I12)|| Py (T)||% — o0, and the functional f( ) = h(T) is irregular.

For the weighted integration functwnal fla) = [w YW x)dzx for a weighting function
w(x), we have FkT = (0}, [y w(x)Pry (2 )dx), and hence vp = (Vlp, Per(-)' B7) with

UGT—I fX x) Py, (z)dx, 5T—I22fx )Py, (z)dx, and

/
||v}||2=F,zTRk;FkT={ / w<x>PkT<w>dx} 7 [ w@Pp, @)

Suppose that the smallest and largest eigenvalues of I%Q are bounded and bounded avvay
from zero uniformly for all kp. Then ||v§|[* < || [} w(2) Py, (z)dz||3,. Thus f = [y w(
is regular if limy, || [ w(z) Py, (z)dz||% < oo; is irregular if limy,, || [, w( )PkT( )d:c||E =
00.

We finally consider an example of nonlinear functionals that arises in Example 2.2
when the parameter of interest is ag = (Ho,ho) with hZ = fy being the true marginal
density of Y;. Consider the functional f(a) = h*(y)/ [*5 h* (y)dy. Note that f(ag) =

fy (@) = h% () and ho(-) is approximated by the hnear sieve HT given in (2.6). Then
0

Fip = (04, 252 Py (Y]) with
of 8(Zo) [Prp (1)) = 2ho (¥) (Pk;T (@) — ho (7) /_ Z ho (y) Per (y)dy> ,

and hence v} = (v}, Poy () B3) € Vr with v o = IR0 By ()], g5 = 1322050) By ()],

. 01 (00) 0f(a0)
a0 292 g )
o) 1y, (13 2L )
So if the smallest eigenvalue of I?? is bounded away from zero uniformly in kr, then

v ||? > const. x Haf(ao) [Prr()]]|% — oo, and the functional f () 7/ P (y
is irregular at a = «y.

2 _
V7 I* = i, Bycy Frp =

dx
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4. Asymptotic Variances of Sieve Estimators of Irregular Functionals. In
this section, we derive the asymptotic expression of the “pre-asymptotic” sieve variance
Hvi}”i 4 for irregular functionals. We provide general sufficient conditions under which the
asymptotic variance does not depend on the temporal dependence.

4.1. Ezact Form of the Asymptotic Variance. By definition of the “pre-asymptotic”
sieve variance |[v%|[%; and the strict stationarity of the data {Z;}]_,, we have:

1+2j§11 <1 - %) (1)

where {p}.(t)} is the autocorrelation coefficient of the triangular array {A(Z;, ao)[vy] be<r:

(4.1) 07120 = Var (A(Z, ao)[v7]) x

)

E(A(Zy, o) [v7]A(Zi11, o) [vT])
Var (A(Z, ao)[v}])

(4.2) pr(t)

Denote

Cr = sup |E{A(Z1,a0)[vr]A(Zis1, a0)[vr]}H -
te[1,T)

The following high-level assumption captures the essence of the problem.

ASSUMPTION 4.1. (i) |[vh| = 00 as T — oo, and |[vi||* /Var (A(Z, ap)[vi]) = O(1);
(ii) There is an increasing integer sequence {dr € [2,T)} such that

drCr T-1 " . -
© A O [T (1-£) sit0)] = ot

Primitive sufficient conditions for Assumption 4.1 are given in the next subsection.

THEOREM 4.1.  Let Assumption 4.1 hold. Then:
Assumptions 3.1, 3.3 and 3.4 hold, then
VT [f(@r) = fao)]
\/Var (A(Z, a0)[v3])

w112
# o — .
V‘”’(A(Z,ao)[v}]) 1‘ o (1); If further

(4.3) —a N (0,1).

4.2. Sufficient Conditions for Assumption 4.1 . In this subsection, we first provide suf-
ficient conditions for Assumption 4.1 for sieve M estimation of irregular functionals of
general semi-nonparametric models. We then present additional low-level sufficient con-
ditions for sieve M estimation of real-valued functionals of purely nonparametric models.
We show that these sufficient conditions are easily satisfied for sieve M estimation of the
evaluation and the weighted integration functionals.
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4.2.1. Irregular functionals of general semi-nonparametric models. Given the closed-
form expressions of ||v}| and Var (A(Z, ag)[v}]) in Subsection 3.3, it is easy to see that
the following assumption implies Assumption 4.1.(i).

ASSUMPTION 4.2. (i) Assumption 3.5 holds and limy,, Haf(ao [Py (D]||% = oo; (i) The
smallest eigenvalue of E [Sk,(Z¢)Sk,(Z1)'] in (8.25) is bounded away from zero uniformly
for all kp.

Next, we provide some sufficient conditions for Assumption 4.1.(ii). Let fz, z, (-,-) be
the joint density of (Z1,Z;) and fz () be the marginal density of Z. Let p € [1,00). Define

(4.4) 1A(Z, a0)[v7]ll, = (E{IA(Z, o) 5]}

By definition, [|A(Z, ao)[v}]Hg = Var (A(Z,ap)[vy]). The following assumption implies
Assumption 4.1.(ii)(a).

ASSUMPTION 4.3. (1) SUPy>9 SUD(; o) zx 2 | f21,2, (2,2") [ [f2, (2) [z, (2)]] < C for some
constant C > 0; (i) |A(Z, ao)[v7]|l; / | A(Z, o) [v7]|ly = of1).

Assumption 4.3.(1) is mild. When Z; is a continuous random variable, it is equiva-
lent to assuming that the copula density of (77, Z;) is bounded uniformly in ¢ > 2. For
irregular functionals (i.e., |[v}]  00), the L?(fz) norm [|A(Z, ap)[v}]|, diverges (un-
der Assumption 4.1.(i) or Assumption 4.2), Assumption 4.3.(ii) requires that the L'(fz)
norm ||A(Z, ap)[v}]||, diverge at a slower rate than the L?(fz) norm ||A(Z, ag)[v}]]|, as
kr — oo. In many applications the L*(fz) norm ||A(Z, ag)[v}]||, actually remains bounded
as kr — oo and hence Assumption 4.3.(ii) is trivially satisfied.

The following assumption implies Assumption 4.1.(ii)(b).

ASSUMPTION 4.4. (i) {Z:}72, is strictly stationary strong-mizing with mizing coeffi-
cients o (t) satisfying > oy t7[cx (t)]ﬁ < oo for some n >0 and v > 0; (ii) As kr — oo,
1A(Z, a0) o7 ]I} 1A(Z, c0)[v7]
AR
182, a0)lv ][l

Iy =o0(1).

The a-mixing condition in Assumption 4.4.(i) with v > # becomes Condition 1.(iii)
in section 6.6.2 of Fan and Yao (2003) for the pointwise asymptotic normality of their
local polynomial estimator of a conditional mean function. In the next subsection, we
illustrate that v > 5= is also sufficient for sieve M estimation of evaluation functionals of
nonparametric tlme serles models to satisfy Assumption 4.4.(ii).

PROPOSITION 4.2. Let Assumptions 4.2, 4.3 and 4.4 hold. Then: tT:_ll o ()] = o(1)
and Assumption 4.1 holds.

Theorem 4.1 and Proposition 4.2 show that when the functional f(-) is irregular (i.e.,
||lvy|| = o00), time series dependence does not affect the asymptotic variance of a general
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sieve M estimator f(ar). Similar results have been proved for nonparametric kernel and
local polynomial estimators of evaluation functionals of conditional mean and density func-
tions. See for example, Robinson (1983), Fan and Yao (2003) and Gao (2007). However,
whether this is the case for general sieve M estimators of unknown functionals has been a
long standing question. Theorem 4.1 and Proposition 4.2 give a positive answer. This may
seem surprising at first sight as sieve estimators are often regarded as global estimators
while kernel estimators are regarded as local estimators.

4.2.2. Irregular functionals of purely nonparametric models. In this subsection, we pro-
vide additional low-level sufficient conditions for Assumptions 4.1.(i), 4.3.(ii) and 4.4.(ii) for
purely nonparametric models where the true unknown parameter is a real-valued function
ho (-) that solves supycqy E[¢(Z:, h(X¢))]. This includes as a special case the nonparametric
conditional mean model: Y; = ho(X;) + u; with Efuy|X;] = 0. Our results can be easily
generalized to more general settings with only some notational changes.

Let ap = ho (-) € H and let f(-) : X — R be any functional of interest. By the results in
Subsection 3.3, f(hg) has its sieve Riesz representer given by:

50 = P85 € e with g7 — R 20D )

where Ry, is such that
B'Riy = E (=1 (Zt, ho) 8" Prrs P B)) = B'E{ =T (Zt, ho (X4)) Py (X4) Py (X2)'} B
for all B € R*T. Also, the score process can be expressed as
A(Zi, ho)[v7] = A(Zi, ho (X0)) o7 (Xi) = A(Z, ho (X2)) Pey (X2)' B

Here the notations &(Zt, ho (X¢)) and 7 (Z;, ho (X)) indicate the standard first-order and
second-order derivatives of £(Z;, h(X;)) instead of functional pathwise derivatives (for ex-
ample, we have —7 (Z;, ho (X)) = 1 and A(Z;, ho (X¢)) = [Y2 — ho(X}:)] /2 in the nonpara-
metric conditional mean model). Thus,

df(ho) —10f(ho)

lil* = E{B[=F (Z, ho (X)) |X](v5(X))*} = 87 Rir 57 = o Ler O 1Ry, =50 = [P ()],

Var (A(Z.ho)[v3]) = B { B(A(Z.ho (X))21X) (05(X))?).
It is then obvious that Assumption 4.1.(i) is implied by the following condition.
ASSUMPTION 4.5. (i) infyex E[—7(Z, ho (X)) |X =] > ¢1 > 0; (i) supyex E[-7 (Z,ho (X)) | X =
z] < ¢y < 005 (iii) the smallest and largest eigenvalues of E { Py, (X )P, (X)'} are bounded

and bounded away from zero uniformly for all kp, and limy,, ||%[P;W()]||2E = o0; ()
infex E([A(Z, ho (X))2|X =2) > c3 > 0.

It is easy to see that Assumptions 4.3.(ii) and 4.4.(ii) are implied by the following
assumption.
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~ 2+
ASSUMPTION 4.6 (4) E {[v(X)|} = O(1); (ii) sup,cr E “A(Z, ho (X))( "X = x} <
N —(2+n)(y+1)/2 .
e1 < oo; (iii) (E{v5(X)}) B{jv} (X)) = o(1).

It actually suffices to use ess-inf, (or ess-sup, ) instead of inf, (or sup,) in Assumptions
4.5 and 4.6. We immediately obtain the following results.

REMARK 4.3. (1) Let Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6 hold. Then:

T-1 2
107 ]34
o7 (t)| =0o(1) and e — 1| =0 (1).
P 4 Var (A(Z, ao)[vT])
(2) Assumptions 4.5 and 4.6.(ii) imply that
9f (ho)

Var (A(Z,a0)l7]) = E{(Wh(X))*} = [vp]* = [18711E = | [Par (I — 003

oh
hence Assumption 4.6.(iii) is satisfied if E{| Py, (X) ﬁT]2+77}/HﬁTH(2+n (1) =o(1).

Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6.(ii) are all very standard low level sufficient
conditions. Assumptions 4.6.(i) and (iii) are easily satisfied by two typical functionals of
nonparametric models: the evaluation functional and the weighted integration functional.

Consider as an example the evaluation functional f(hg) = ho(Z) with T € X. We
have 2GR0 (P, ()] = Pey(®). vh() = Pip(VB5 = Py (VB Per(®). Then [of]* =
Py (E)R;TIP/CT (T) = vi(T), and ||v5||* < || Pep (F)]|% — oo under Assumption 4.5. (i) (ii) (iii).
Furthermore, we have, for any vy € Vp :

45)  ur (@) = E{E[=7(Z, ho (X)) | X]or(X)vh(X)} / _,or ()6 (@,0) da

where

(4.6) or (Z,2) = E[=7(Z, ho (X)) |X = a]vp (x) fx (x)
= B[-7(Z,ho (X)) |X = 2] P, (T) Ry Pry () fx (2).

By equation (4.5) dr (Z,z) has the reproducing property on Vr, so it behaves like the
Dirac delta function 6 (x —z) on Vp. Therefore v} (z) concentrates in a neighborhood
around x = T and maintains the same positive sign in this neighborhood.

We first verify Assumption 4.6.(i). By equation (4.6), we have

where sign(v}. (x)) = 1if v}, (x) > 0 and sign(v} (z)) = —1if v} (x) <0, and sup,cy |br(z)] <
¢! < 0o under Assumption 4.5.(i). If by (2) € Vr, then by equation (4.5) we have:

v (x x)dx = br(z) = sign (v (7)) 1
/xeX‘ 7 (@)] fx (2) dz = br(2) E[-7(Z,ho (X)) |X ]< 1 =0(1).
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If bp(xz) ¢ Vr but can be approximated by a bounded function o7 (z) € Vp such that
/ (br(z) — o7 ()] 07 (2 2) dx = o(1),
TEX

then, also using equation (4.5), we obtain:

/ [vp ()| fx (z) dx or (z) o7 (Z,z) dox + / [br(x) — 07 (x)] 07 (Z,z) dx
TEX

zeX zeX

7 (7) +o(1) = O (1).

Thus Assumption 4.6.(1) is satisfied.
Similarly we can show that under mild conditions:

—\ 147

. . v (Z)]
E{lor(X) 7} < ELF(Z ho (X)X =7

(1+0(1)) = O (lor(@)"7).

On the other hand,

E {]vr}(X)‘?} — /xEX i (2)|? fx (z) de = FTZ ;:;T((?)) X =7 or (Z,x) de < vp

Therefore
—(24n)(v+1)/2
(B{rrr}) T B () F) = o) @02 — o)

if 1+n—(24+n)(y+1)/2 < 0, which is equivalent to v > 1/(2 + n). That is, when
v >n/(2 +n), Assumption 4.6.(iii) is satisfied.

One may conclude from Theorem 4.1 and Proposition 4.2 that the results and inference
procedures for sieve estimators carry over from iid data to the time series case without
modifications. However, this is true only when the sample size is large and the dependence
is weak. Whether the sample size is large enough so that one can ignore the temporal
dependence depends on the functional of interest, the strength of the temporal dependence,
and the sieve basis functions employed. So it is ultimately an empirical question. In any
finite sample, the temporal dependence does affect the sampling distribution of the sieve
estimator. In the next section, we design an inference procedure that is easy to use and at
the same time captures the time series dependence in finite samples.

5. Autocorrelation Robust Inference. In order to apply the asymptotic normality
Theorem 3.1, we need an estimator of the sieve variance Hv%Hi 4+ In this section we propose
a simple estimator of Hvr}Hi , and establish the asymptotic distributions of the associated ¢
statistic and Wald statistic.

The theoretical sieve Riesz representer v} is not known and has to be estimated. Let
|||l denote the empirical norm induced by the following empirical inner product

T

(5.1) (v1,v2)7 = —% Z 7(Zy, ar)lvr, va),
=1
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for any v1,v2 € Vp. We define an empirical sieve Riesz representer v of the functional

%[-] with respect to the empirical norm ||-[|;, i.e.

~ af@r)y, 112
of(ar) . “ 90V
(5.2) / é D)= sup @
o vevr£0  |[vll7
and
of (@ e
59 FO1) ) — (o550

for any v € Vr. We next show that the theoretical sieve Riesz representer vy can be
consistently estimated by the empirical sieve Riesz representer v, under the norm |-||. In
the following we denote Wr = {v € Vr : |jv|| = 1}.

ASSUMPTION 5.1.  Let {e}} be a positive sequence such that €5 = o(1).
(1) SUPaeBy v1,mewy E{r(Z, @)[v1, v2] — r(Z, ao)[v1, va]} = O(er);
(1) SUPaeBy o1 vaewy 1T {T(Z; @)[V1, v2]} = Op(e7);
0 0
(1) $WPacssy ey | 22 [0] — 252 [o]| = O(e7).

Assumption 5.1.(1) is a smoothness condition on the second derivative of the crite-
rion function with respect to «. In the nonparametric LS regression model, we have
r(Z,a)vr,va] = r(Z, ap)[v1, v2] for all a and vy, ve. Hence Assumption 5.1.(i) is trivially
satisfied. Assumption 5.1.(ii) is a stochastic equicontinuity condition on the empirical pro-
cess T! Zthl r(Z;, a)[v1, v2] indexed by « in the shrinking neighborhood Bz uniformly
in v1,vy € Wyp. Assumption 5.1.(iii) puts some smoothness condition on the functional
9f(a)

0

5o [v] with respect to  in the shrinking neighborhood Br uniformly in v € Wr.

LEMMA 5.1.  Let Assumption 5.1 hold, then

7|

o7

”6;_’0%“ *
1 =01l _ 0, (5.
o7 .

With the empirical estimator v7. satisfying Lemma 5.1, we can now construct an estimate
of the Hv}Hi ,» which is the LRV of the score process A(Z;, ag)[v}]. Many nonparametric
LRV estimators are available in the literature. To be consistent with our focus on the
method of sieves and to derive a simple and robust asymptotic approximation, we use
an orthonormal series LRV (OS-LRV) estimator in this paper. The OS-LRV estimator has
already been used in constructing autocorrelation robust inference on regular functionals of
parametric time series models; see, e.g., Phillips (2005) and Sun (2011a). Let {¢y, }_, be a
sequence of orthonormal basis functions in L? ([0, 1]) with ¢g (-) = 1. Define the orthogonal
series projection

(5.4) —1

= Op(er) and

- 1, t N
(5.5) Ay = Wes tz; $m(5)A(Z, ar)lor]
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and construct the direct series estimator ﬁm = K%I foreachm = 1,2,..., M where M € Z™.
Taking a simple average of these direct estimators yields our OS-LRV estimator |[o%:|2 AT
of [[v7 3, :
1 & 1 &
(5.6) 10130 = 57 D Om =37 2 A
m=1 m=1

where M, the number of orthonormal basis functions used, is the smoothing parameter in
the LRV estimation.

For irregular functionals, our asymptotic result in Section 4 suggests that we can ig-
nore the temporal dependence and estimate ||v}||§d by 62 = T7! Zthl{A(Zt,ao)[ﬁ}]}Q.
However, when the sample size is small, there may still be considerable autocorrelation
in the sieve score process {A(Zy, ap)[vi]}E ;. To capture the possibly large but diminish-
ing autocorrelation in a finite sample, we propose treating {A(Z:, ap)[vi]}L; as a generic
time series and using the same formula as in (5.6) to estimate the asymptotic variance of
71257 A(Zt, ap)[vh]. We call the estimator the “pre-asymptotic” variance estimator.
With a data-driven smoothing parameter choice of M, the “pre-asymptotic” variance es-
timator |[07]|2; 7 should be close to 67 when the sample size is large. On the other hand,
when the sample size is small, the “pre-asymptotic” variance estimator may provide a more
accurate measure of the sampling variation of the plug-in sieve M estimator of irregular
functionals. An extra benefit of the “pre-asymptotic” idea is that it allows us to treat reg-
ular and irregular functionals in a unified framework. So we do not distinguish regular and
irregular functionals in the rest of this section.

To make statistical inference on a scalar functional f(«g), we construct a ¢ statistic as
follows:

(57) ty = \/T [f(iT) B f(aO)] )
H“THsd,T

We proceed to establish the asymptotic distribution of {7 when M is a fixed constant. To
facilitate our development, we make the assumption below.

ASSUMPTION 5.2.  Let VTeiér = o(1) and the following conditions hold:

(i) suDyeyyy aesy T2 0= 6m (t/T) (A(Z1, @) [v] = A(Zr, ap) [v] — B{A(Zy, ) [v]}) =
op(1) form=0,1,...,M;

(it) suPyeyy aesy E{A(Z, @) [v] = A(Zy, a0) [v] = 7(Z, a0) [0, 0 — g} = O (€767 ;

(1) $uDycyvy [T~ 1 6t/ TVA(Zr,00) o] = Op(1) for m = 0.1,.... AL

(iv) For e; ~ iid N(0,1), we have for any x = (x1,...,25) € RM,

T
P (T‘”Q > 6t/ T)A(Zr, 00) [u5] < @y m = 0,1, ,M>
t=1

T
—p (T‘1/2Zq§m(t/T)et < Ty, m=0, 1,...,M> +0(1).

t=1
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Assumption 5.2.(iv) is a slightly stronger version of Assumption 3.4. It is equivalent
to assuming that T2 ST [o(t/T), . .., dm(t/T)) A(Zs, ap) [u] follows a multivariate
CLT. When ¢y, (z) is continuously differentiable in z, Assumption 5.2.(iv) is weaker than

a FCLT of the form: -
Tt

T7YV2N " A(Zy, ag) [up] = W (1)
t=1
where W(7) is the standard Brownian motion process. A FCLT of the above type is often
assumed in parametric time series analysis. When Assumption 5.2.(iv) holds, we write

T T
T2 () A (Z o) 5] £ T2 (e
t=1 =

where ~ signifies that the two sides are asymptotically equivalent in distribution.

THEOREM 5.1.  Let {gbm}%:o be a sequence of orthonormal basis functions in L? ([0, 1]).
Under Assumptions 3.2, 3.3, 5.1 and 5.2, we have, form=1,..., M,

03| A & did N(0,1).
If further Assumption 3.1 holds, then
tr = VT [f(@r) — f(ao)] / |[07 ]| sqr ~ t (M),
where t (M) is the t distribution with degree of freedom M.

Theorem 5.1 shows that when M is fixed, the ¢ statistic converges weakly to a standard
t distribution. This result is very handy as critical values from the ¢ distribution can be
easily obtained from statistical tables or standard software packages. This is an advantage
of using the OS-LRV estimator. When M — oo, t (M) approaches the standard normal
distribution. So critical values from ¢ (M) can be justified even if M = Mp — oo slowly
with the sample size 7. Theorem 5.1 extends the result of Sun (2011a) on robust OS-
LRV estimation for parametric trend regressions to the case of general semi-nonparametric
models.

In some applications, we may be interested in a vector of functionals f = (fi,..., fq)' for
some fixed finite ¢ € Z*. If each f; satisfies Assumptions 3.1-3.3 and their Riesz representer
Vi = (U] 1y, v, ) satisfies the multivariate version of Assumption 3.4:

V3o VT {A(Z, a0) [v]} —a N(0, 1),
then
(5.8) IVillss VT [£(@r) — £(ao)] —a N(0, 1),

where ||vi}||§d =Var (\/T,uTA(Z, ao)[vi}]) is a ¢ x ¢ matrix. A direct implication is that

(5.9) T [f(ar) — f(ao)] V7]l [f(@r) — f(ao)] —a x.
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To estimate HV*TH§ 4» we define the orthogonal series projection A, = (Kﬁ,?, . ,ZA\,(J%))’ with
~ . T
AR =T72Y " bt/ T)A(Ze, ar) [0 1),
=1

where 07 ;- denotes the empirical sieve Riesz representer of the functional 8f]éioalﬂ[-] (j =

1,...,q). The OS-LRV estimator ||V*T||§dT of the sieve variance ||v§||§d is

1 M

~ 112 ~

1950 = 77 2 Andl.
m=1

To make statistical inference on f(ag), we construct the F' test version of the Wald
statistic as follows:

(5.10) Fr =T[f(@r) - f(ao)] [V7ll,77 [£@r) — £(a0)] /q.

We maintain Assumption 5.2 but replace Assumption 5.2(iv) by its multivariate version:
for e, ~iid N(0,1;), we have

T
P (T—W S om(t/TIA(Zs 00) [IVFlod vE] <3 m = 0,1, ,M>
t=1

T
=P (T—1/2Z¢m(t/T)et < X, M= 0,1,...,M> +o0(1)

t=1

for x,, € RY.
Using a proof similar to that for Theorem 5.1, we can prove the theorem below.

THEOREM 5.2. Let {gbm}%zo be a sequence of orthonormal basis functions in L?([0,1]).
Let Assumptions 3.1, 3.2, 3.3, 5.1 and the multivariate version of Assumption 5.2 hold.
Then, for a fized finite integer M :

M—-qg+1
M

where Fy p—qy1 s the F distribution with degree of freedom (¢, M — g+ 1).

Fr —q Fym—q+1,

The weak convergence of the F' statistic can be rewritten as

Xa/4 M 4 M

. —
gt/ M —q+ )M —q+1 "M —g+1

Fr —yq

As M — oo, both X?Wqurl/ (M —q+1) and M/(M — q+ 1) converge to one, and hence
Fr —4 Xg /q. When M is not very large or the number of the restrictions ¢ is large, the
asymptotic distribution Xg /q is likely to produce a large approximation error. This explains
why the F' approximation is more accurate, especially when M is relatively small and g is
relatively large.
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6. Computation and Simulation.

6.1. Computation. To compute the OS-LRV estimator in the previous section, we have
to first find the empirical Riesz representer v}, which is not very appealing to applied
researchers. In this subsection we show that in finite samples we can directly apply the
formula of the OS-LRV estimation derived under parametric assumptions and ignore the
semiparametric/nonparametric nature of the model.

For simplicity, let the sieve space be Ar = © x Hp with © a compact subset of R%
and Hp = {h(-) = Py, (-)/B: B € R} Let agr = (6o, Pry(-) Bo,r) € int(©) x Hp. For
a € Ar = © x Hrp, we write {(Z, ) = £(Zy,0,h () = U(Z;,0, Py, () B) and define
U(Zy,~) = €(Z1,0, Py (1) B) as a function of v = (¢',8) € R% where d,, = dy + ds and
dg = kr. For any given Z;, we view {(Z;, ) as a functional of a on the infinite dimensional
function space A, but £ (Zy,7) as a function of v on the Euclidian space R* whose dimension
d~ grows with the sample size but could be regarded as fixed in finite samples. By definition,

for any o = ( s Py () BJ) , 7 =1,2, we have
ol(Z,,
(6.1) B (13— ) = Ae(Znen) oz — an]

where the left hand side is the regular derivative and the right hand side is the pathwise
functional derivative. By the consistency of the sieve M estimator ap = (07, Py,.(-)' 5r) for
=~ —

apr = (0o, Pe, (-) Bo,r), we have that 7, = (@f,g}) is a consistent estimator of v, =
6y, Bé,T), then the first order conditions for the sieve M estimation can be represented as

T Z 5
t7 T ~

(6.2) i;jg: ~ 0.
These first order conditions are exactly the same as what we would get for parametric
models with d,-dimensional parameter space.

Next, we pretend that ¢(Z;, ) is a parametric criterion function on a finite dimensional
space R%. Using the OS-LRV estimator for the parametric M estimator based on the
sample criterion function 71 Zt 1 (Zt, ), we obtain the asymptotic variance estimator

for /T (37 — vo0,1) as follows: ET = R BTRT , where

:__Za € Zta’YT
ooy’

f Z on (‘) = = f Z Pm (‘) L(gf;w

Now suppose we are interested in a real-valued functional fo 7 = f (a0 7) = f (00, Pe, () Bo.r),
which is estimated by the plug-in sieve M estimator f = f(ar) = f(0r, Py, (-) Br). We
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compute the asymptotic variance of fA‘ mechanically via the Delta method. We can then
estimate the asymptotic variance of vT(f — for) by

I L of(ar) of(a !
Var(f) = F}, SrF,, with FkT:< fa(elT), féhT) [ka(.)q) '

It is easy to verify that for any sample size T, @(f) is numerically identical to Hﬁ}”i AT
our asymptotic variance estimator given in (5.6). The numerical equivalence in variance
estimators and point estimators (i.e., 7) implies that the corresponding test statistics
are also numerically identical. Hence, we can use standard statistical packages designed for
(misspecified) parametric models to compute test statistics for semi-nonparametric models.

6.2. Simulation. To examine the accuracy of our inference procedures in Section 5, we
consider a partially linear regression model in our simulation study:

th = Xiteo + BO(XQL‘) + Uy, E[ut’XltaXQt] = 07 t= 17 <. 7T7

where X5, and u; are scalar processes, Xi; = (Xllt, e ,Xft)’ is a d-dimensional vector
process with independent component X7, for j =1,...,d. Let d =4 and

X{t = IOX{,t—l +v1- P25{t’ Xy = (Xllt ..t X%) /V2d+ et/\/§7
er = pei—1 + /1 — pPect, up = pus—1 + /1 — pPeyy,

where (el,,...,6%, e, eu) are iid N(0,Izy2). Here we have normalized X{t,th, and uy
to have zero mean and unit variance. We take p € {0,0.25,0.5,0.75}.

Without loss of generality, we set #y = 0. We consider ho (X2t) = SlH(XQt) and cos(th)
Such choices are qualitatively similar to that in Hardle, Liang and Gao (2000, pages 52
and 139) who employ sin(7Xo;). We focus on hg(Xa;) = cos(Xa;) below as it is harder to
be approximated by a linear function around the center of the distribution of X4, but the
qualitative results are the same for ﬁo(th) = sin(th).

To estimate the model using the method of sieves on the unit interval [0, 1], we first trans-
form Xo; into [0, 1] via Xo; = log (Xo¢/(1 — Xot)). Then ho(Xo) = cos(log[Xas (1 — Xor)™!])
ho (Xat) . Let Py, (z2) = [p1 (z2),. .., pky (x2)]" be a kp x 1 vector, where {p; (z2) : j > 1}
is a set of basis functions on [0, 1] . We approximate hq (X2;) by Py, (X2;)' 3 for some 8 =
(Bi,. -, Bry) €RFT. Let X, = (X{t,PkT (th)') a 1x (d+kr) vector and X’ = (X, ..., X/)
a (d+ kr) x T matrix. Let Y = (Y1,...,Y7), U = (uq,...,ur) and v = (¢',3')". Then
the sieve LS estimator of v is 4p = (X’X)™" X'Y. In our simulation experiment, we use
AIC and BIC to select kp.

We employ our asymptotic theory to construct confidence regions for 61.; = (0o1, ..., 6p;)"

Equivalently, we test the null of Hy; : 61.; = 0 against the alternative Hy; : at least one
element of 6;.; is not zero. Depending on the value of j, the number of joint hypotheses
under consideration ranges from 1 to d. Let Ry (j) be the first j rows of the identity matrix
Iit 1, then the sieve estimator of 01.; = Ry (j) v is 91 .j = Rg (j) Y7, and so

VT (01— 1) = T‘1/2ZR9 ) (X/X/T) ™" Xy + 0, (1)
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Let (Gy,...,07) =U =Y — X7p, Ags = Ry (j) (X'X/T) ' X}, € R and
T /
) - —1/2 -1/2 i N
= 3y 3 (T e ) (177 ena

be the OS-LRV estimator of the asymptotic variance € of VT ((/9\1;]- — (91;]-) . We can con-
struct the F-test version of the Wald statistic as:

Fy () = (VIR (1) 3r) Qg (VIR () Ar) /i

We refer to the test using critical values from the xj 2/j distribution as the chi-square

test. We refer to the test using critical value M (M —j + 1)~ lfj’ijH as the F' test,

where F7,, .. ;is the (1—7) quantile of the I distribution Fjp/—;41. Throughout the
simulation, we use ¢o,,_1(z) = v2cos(2mnz), o (z) = V2sin(2mnaz),m = 1,...,M/2
as the orthonormal basis functions for the OS-LRV estimation.

To perform either the chi-square test or the F' test, we need to choose M. Here we
choose M to minimize the coverage probability error (CPE) of the confidence region based
on the conventional chi-square test. The CPE-optimal M can be derived in the same
way as that in Sun (2011b) for parametric models, with his kernel bandwidth b = M1,
q=2,c1 =0,c0 =1,p= 7. We obtain:

1
i(47+3) \"
4]tr (BQY)] ’

win

Mcpe =

where B is the asymptotic bias of (AZ, X7 is the (1 — 7) quantile of X? distribution, and
[] is the ceiling function. The parameters B and 2 in M¢opp are unknown but could be
estimated by a standard plug-in procedure as in Andrews (1991). We fit an approximating
VAR(1) model to the vector process Ag; and use the fitted model to estimate Q and B. We
have also implemented choosing M based on the mean square criterion and the simulation
results are qualitatively similar.

We are also interested in making inference on hg (z) . For each given z, let R, = [01x4,
Py, (z)']. Then the sieve estimator of hg (z) = R,y is h(z ) = R,yr. We test Hy: h(z) =
ho () against Hy : h(x) # ho (z) for © = [1 +exp (-7 5)] ' and &y € {—2,0.1,2}. Since
Xop is standard normal, this range of Ty largely covers the support of Xor. Let Amt =
R. (X'X/T)” X;at and

R M T P T P !
Qm4zﬂr*§j(T*ﬂ§j¢m@gAm><T4ﬂ§j¢m@ﬂAm>,
m=1 t=1 t=1

be the OS-LRV estimator of the asymptotic variance € of VT (671;j - (91;]-) . Using the

numerical equivalence result in Section 6.1, we can construct the F-test version of the
Wald statistic as:

(63) Py = (VI RAr — ho @)]) 0y (VI RaAr — o (0)])
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As in the inference for the parametric part, we select the smoothing parameter M based
on the CPE criterion. It is important to point out that the approximating model and
hence the data-driven smoothing parameter M are different for different hypotheses under
consideration.

In Section 4, we have shown that, for evaluation functionals, the asymptotic variance
does not depend on the time series dependence. So from an asymptotic point of view, we

could also use .
~ —~ —~ /
=T Ay (A:tt>

t=1

as the estimator for the asymptotic variance of v/T [R371 — ho ()] and construct the F'
statistic accordingly. Here F is the same as Fj given in (6.3) but with ﬁx M replaced by
Q-

For the nonparametric part, we have three different inference procedures. The first two
are both based on the F), statistic with pre-asymptotic variance estimator, except that one
uses x? approximation and the other uses F1 y approximation. The third one is based on
the F statistic and uses the y? approximation. For ease of reference, we call the first two
tests the pre-asymptotic x? test and the pre-asymptotic F test, respectively. We call the
test based on F* and the x? approximation the asymptotic x? test.

Table 1 gives the empirical null rejection probabilities for testing ¢1.; = 0 for j = 1,2, 3,4
for p > 0. The number of simulation replications is 10,000. We consider two types of sieve
basis functions to approximate h(-): the sine/cosine bases and the cubic spline bases with
evenly spaced knots. The nominal rejection probability is 7 = 5% and kr is selected by
AIC. Results for BIC are qualitatively similar. Several patterns emerge from the table.
First, the F test has a more accurate size than the chi-square test. This is especially true
when the processes are persistent and the number of joint hypotheses being tested is large.
Second, the size properties of the tests are not sensitive to the different sieve basis functions
used for A(-). Finally, as the sample size increases, the size distortion of both the F test
and the chi-square test decreases. It is encouraging that the size advantage of the F test
remains even when 7" = 500.

Figure 1 presents the empirical rejection probabilities for testing Hy : h(xz) = ho ()
against Hy : h(z) # ho (z) for £ = [1 4+ exp (—Z2)] " and &y € {—2,0.1,2}. Tt is clear that
the asymptotic x? test that ignores the time series dependence has a large size distortion
when the process is persistent. To save space, this figure only reports the case with 7" = 100
and spline sieve basis, but the pattern remains the same for both sample sizes and for both
sieve bases. Compared to the pre-asymptotic x? test, the pre-asymptotic F test has more
accurate size when the sample size is not large and the processes are persistent. This,
combined with the evidence for parametric inference, suggests that the pre-asymptotic F
test is preferred for both parametric and nonparametric inference in practical situations.
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TABLE 1
Empirical Null Rejection Probabilities for the 5% F test and Chi-square Test
j=1 j=2 j=3 j=4
F test x* Test F test  x” Test F test x” Test F test x” Test
T = 100, Cosine and Sine Basis
=0 0.0633  0.0860 0.0685  0.0935 0.0825  0.1287 0.1115  0.2008
p=0.25 0.0621 0.1069 0.0677  0.1225 0.0806  0.1696 0.0973  0.2922
=0.50 0.0588 0.1307 0.0635  0.1494 0.0815  0.2225 0.0997  0.3955
p=0.75 0.0521  0.1549 0.0640  0.1764 0.0874  0.2767 0.1016  0.4922
T = 500, Cosine and Sine Basis
p=0 0.0597  0.0848 0.0649  0.0900 0.0760  0.1187 0.0992  0.1896
p=0.25 0.0570 0.1028 0.0648  0.1138 0.0752  0.1611 0.0886  0.2786
=0.50 0.0539 0.1240 0.0621  0.1383 0.0706  0.2093 0.0850  0.3778
p=0.75 0.0440 0.1472 0.0574  0.1716 0.0794  0.2647 0.0904  0.4738
T = 500, Cosine and Sine Basis
p=0 0.0517  0.0566 0.0521  0.0576 0.0500  0.0641 0.0607  0.0901
p=0.25 0.0631 0.0633 0.0522  0.0650 0.0513  0.0786 0.0578  0.1171
p=0.50 0.0545 0.0678 0.0527  0.0713 0.0498  0.0932 0.0512  0.1402
p=20.75 0.0511 0.0676 0.0499  0.0749 0.0447  0.1003 0.0431  0.1636
T = 500, Spline Basis
p=0 0.0487  0.0544 0.0470  0.0547 0.0475  0.0606 0.0562  0.0844
p=0.25 0.0527 0.0608 0.0479  0.0629 0.0494  0.0745 0.0528  0.1108
=0.50 0.0518 0.0656 0.0498  0.0703 0.0472  0.0900 0.0474  0.1339
p=0.75 0.0491  0.0637 0.0465  0.0688 0.0425  0.0959 0.0410  0.1555

Note: j is the number of joint hypotheses.

p=0

=0~ Pre—asymptotic F test
—+— Pre-asymptotic % test| |

““““ Asymptotic XZ test

p=0.25

=0~ Pre—asymptotic F test
=+ Pre—asymptotic xz test
““““ Asymptotic xz test

Fic 1. Empirical Rejection Probabilities Against the value of Xo¢ with Spline Basis and T = 100
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7. Appendix A: Mathematical Proofs.

Proor or THEOREM 3.1. For any a € Br, denote «;, = a£eru} as a local alternative

of « for some e = O(T_%). It is clear that if o € By, then o}, € Br. Since ar € Br with
probability approaching one (wpal), we have that & ; = ar + eruy € Br wpal. By the
definition of air, we have

T T
1 - 1 s
—Oy(e7) < T Zé(Zt,aT) -7 Zg(Ztaau,T)
=1 =1

= Ell(Zs,ar) — U(Zs, d )] + pr {A(Z, 0) [ar — @5, 1] }
+ pr {0(Z,ar) — U(Z, &, 7) — A(Z, a0) [ar — @ 7] }
(7.1) = E[l(Zy, ar) — U(Z, @, 1)) F pr {A(Z, a0)erur]} + Op(et)
by Assumption 3.3.(1)(ii). Next, by Assumptions 3.2 and 3.3.(iii) we have:
E[K(Ztv aT) - g(Ztv aZ,T)]
_ lor £ eruf — aol® — |lér — aol?

2
= tep(Ar — ap, up) + Op(e7).

+Op(et)

Combining these with the definition of & ; and the inequality in (7.1), we deduce that
~O0p(e7) < er(ar — ao, up) F erpr {A(Z, a0)[ur]} + Op(e),

which further implies that

(7.2) (@r — a0, ur) — pr {A(Z, a0)ut]} = Opler) = o, (T7Y2).

By definition of ag 7, we have (a1 — ap,v) = 0 for any v € Vp. Thus (o, — o, u}) =0,
and

(7.3) VT (@r - aor.up) = VT {A(Z.a0) [uil}] = 0,(1).

By Assumptions 3.1.(i) and 3.2, and the Riesz representation theorem,

flar) — flaor)

V7] o
 f(@r) = flao) = 229G — a]  floor) = flao) — 2 agr — ag)
- V7] sa V7] sa
N 0) 57 — ag) — 2229 (o 7 — ay)
17

(7.4) = (ar —ag1,ur) +0p (T_I/Q) .
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It follows from (7.3) and (7.4) that

(7.5) VLD —1©0r) A2, a0) 3]} ] = 0p(1),

107 ]

which establishes the first result of the theorem. The second result follows immediately
from (7.5) and Assumption 3.4. O

ProOOF OF THEOREM 4.1. By Assumption 4.1.(i), we have: 0 < Var (A(Z, ag)[v5]) —
oo. By equation (4.1) and definition of pk.(t), we have:

V7 ]34
Var (A(Z, ao)[v}])

d
& (1 1) E{AZr 00)5A (Zeg, 00) 3
hr =2 Var{A(Z, a0) i}

b= Y (1-7) rto:

t=dr+1

—1= 2[<]1,T + JQ’T], where

and
t=1

By Assumption 4.1.(ii)(a), we have:

drCr
Var{A(Z,ap)[v}]}

(7.6) |Ji7| < =o(1).

Assumption 4.1.(ii)(b) immediately gives |Jo 7| = o(1). Thus

* |12
(77) HUTHsd

Var (A(Z, a0)[v3]) — 1| <2l r| + [or]] = o(1),

which establishes the first claim. This, Assumption 4.1.(i) and Theorem 3.1 together imply
the asymptotic normality result in (4.3). O

PROOF OF PROPOSITION 4.2. For Assumption 4.1.(i), we note that Assumption 4.2.(i)
implies ||v7.|] = oo by Remark 3.2. Also under Assumption 4.2, we have:

% (12 */ *
HUTH _ v By vr < Amax (RkT) _ 0(1)
Var {A(Z, a0)[v3]} 7 E Sk (Z2) Sk (Z2)]9% ~ Amin (B [Skr(2) Sk, (2)']) ’
where Apax (4) and Apin (A) denote the largest and the smallest eigenvalues of a matrix
A. Hence |[v5||? /Var {A(Z, ho)[vi]} = O(1). For Assumption 4.1.(ii)(a), we have, under

Assumption 4.3.(i),

[E{A(Z1; a0)[vr] A(Z:, ao)[vr]}]

/ A(z1, a0) [vp] Azt o) [v7] f2,,2. (21, 21)
Z21€EZ J€Z

[z (21) fz (2t)

2
<C (/zlez |A (21, ) [v7]| fz (21) dz1> =C|A(Z, Oéo)[vi}]H%,

fz (1) fz (2) dz1dz
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which implies that Cr < C ||A(Z, ao)[vﬂﬂf. This and Assumption 4.3.(ii) imply the ex-
istence of a growing dr — oo such that drCr/||A(Z, ao)[v}]Hg — 0, thus Assumption
4.1.(ii)(a) is satisfied. Under Assumption 4.4.(ii), we could further choose dr — oo to
satisfy

JA(Z, a0)llll? x dr
1A(Z, a0)w]l

IA(Z, a0) (08 ]l

|1A(Z, a0) oI5

=o0(l) and dj =

— oo for some v > 0.

It remains to verify that such a choice of dr and Assumption 4.4.(i) together imply Assump-
tion 4.1.(ii)(b). Under Assumption 4.4.(i), {Z;} is a strictly stationary and strong-mixing
process, {A(Z;, ap)[vy] : t > 1} forms a triangular array of strong-mixing processes with
the same decay rate. We can then apply Davydov’s Lemma (Hall and Heyde 1980, Corollary
A2) and obtain:

|E{A(Z1, 00) W5 A(Zis1, a0) 3]} < 8lalt)] 7 | AZ, a0)[vF] 134, -
Then:

| E{A(Z1,00)[07]A(Zesr, o) v}
2 stz il

1A(Z, a0) w354, o Z |7 = o(1)
HA Z Oé() UT HQ t=dr

provided that

1A(Z, Oéo)[vT]HHnd,V 0
O(1) and E t7a(t)] 2+ < oo for some v > 0,
1A(Z. a0) w75

wh1ch verifies Assumption 4.1.(ii)(b). Actually, we have established the stronger result:

S (b)) = o(1). O

PrROOF OF LEMMA 5.1. First, using Assumptions 5.1.(i)-(ii) and the triangle inequality,
we have

771 S (2 @)for, va] = E{r(Ze,c0)vn, val}
sup  sup

o e < TorT Tzl
T

TN 1(Zes @)1, vl — E{r(Zs, a)[or, 02}
t=1

(7.8) + sup  sup |E{r(Z, a)vi,ve] —r(Z,ap)[vi,va]}| = Opler).
aEBT v1,v2EWr

< sup sup
aEBp v1,v2EWT

Let o = ap, v1 = v} and vy = v. Then it follows from (7.8), the definitions of (-,-) and
(-,-)p that

T 02 @) 7, o] = E{r(Ziao) 5.0l

5%l

(o, v)r — (07, v)
(el

(7.9) = 0,(c}).
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Combining this result with Assumption 5.1.(iii) and using

@)1y _ (52 v)p and 220010 = (o o),

Oa —\r oo -\
we can deduce that
of(ar) [v] — 9f(ao) [v] 3 o *
* C ) T v ) — U 7’U
Op(eT) = sup O Oa = sup < T > < T > ” ” _|_< T >
veVr [[v]] veVr 75| [l [[v]]
U — U, v)
710) = sup |00 o, (e 3.
veEVT ||UH
This implies that
ok *
(7.11) sup | VL0 0| _ o (s a5)
veEVT HUH
Letting v = v, — v} in (7.11), we get
ok * ~k
(712) HUT *UTH — Op e%H’UZ‘H )
H”TH H”TH
It follows from this result that
[ ‘_ 75— vzll _ (u@u)
* * * - * =Up | €r *
Foell = | = | Tol ~ T o7 o7
(7.13) -0, < H”TH—1>+0(*
. p (e7)
o7
from which we deduce that
(7.14) . p(eT).
HUTH
Combining the results in (7.12), (7.13), and (7.14), we get o7 H - | orll - O,(€r) as desired. O
T
PROOF OF THEOREM 5.1. Part (i) For m =1,2,..., M, we write A as

Z% ) {A(Ze,ar) [0 — B(A(Z, @r)[57]) — AlZe, a0)[07] + B(A(Z2, a0)[07)}
+ LT z O () {B(A(Z0,3r)[07) — B(A(Zs, 00)[F5]) — B(r(Z4, a0) [, 87 — o))}

T
+— Z ¢m r(Zy, o) [0, G — o)) Z A(Zy, ) [0

= m,l + Im,Q + Im,S + Im,4-
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Using Assumption 5.2.(1)-(ii), we have 1 = op (||7%]]) and o = O, (\/Te*TfT Hﬁ%\l)- So

~ 1 1«
A= tzl(pm(%)A(Zt, coliil + 723 O (VD (2 00) 0 — 5]
T
-z > om() | [VT (0,8 — ao) + VT (0 — v, — ao)]
(715) o, (5l + Oy (VIeier 55

Under Assumptions 3.2 and 3.3, we can invoke equation (7.2) in the proof of Theorem 3.1
to deduce that

T
* || — kA~ 1 * || — *
(116) VT bl 0, 6r — an) = il - AZa0)lvf] + op(1).
t=1

Using Lemma 5.1 and the Holder inequality, we get
(A7) VT (5 = viar — ao)| < VT [57 — vill a7 — aoll = Op(VT vl éxr).

Next, by Assumption 5.2.(iii) and Lemma 5.1,

1 & t
77 2 Oml)AZ, 00) B - o7
t=1

(7.18) < 55 — vl sup
veEWr

= Op(llvrll er)-

1 & N
ﬁ;%(f) (Zs, o) [v]

Now, using Lemma 5.1, (7.15)-(7.18), Assumption 3.2 (|[v}|| = O (||v}],,)), Assumption
5.2.(iv) and VTenér = o(1), we can deduce that

—1 7%
[v7llsq Am

A(Zt, ao)[vr] + 0p(1)

o (£) -+ 3 0n (1)
o (3) - 2200 (3)

Since {¢, (1) ,m =0,1,..., M} is a set of orthonormal functions and ¢ (-) = 1, we have
(m ~iid N(0,1) for m = 1,..., M, and hence ||[v}]|) A ~ iid N(0,1) for m =1,..., M.
Part (ii) It follows from part (i) that

1 T
= ﬁ HUTHsdlz

etECm

o 1L
(7.19) Nﬁ;

2 L1y 12 \2e 1y
s | —1 ||k * ||— * (=173 a
(7200 okl 198 Ior I = 57 2 (Ir i Be) ™ 52 D G

m=1 m=1
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which, combined with Theorem 3.1, further implies that

= U)o/
’UTHsd ”UTHsd

_ VT [f(ar) _f(ozo)]/ M1 i (HU;H—lf\ )2
» sd M

(El =t

o0
\ M1 Z%:l ¢

where ¢y = T—1/2 Z 1 e¢. Since both (y and ¢, are approximately standard normal and

e

(7.21)

T

cov (Co,Gm) = T™" Y 6 (t/T) = 0 (1),

t=1

. . . o . . a
m = g e ey . ~ .
(o is asymptotically independent of (,, for m = 1 M. This implies that t7 ~ ¢ (M). O

Proor orF THEOREM 5.2. Using similar arguments as in proving Theorem 5.1, we can
show that

€ =

(7.22) Vil Am ~T1/ZZ[ (t/T) - lqum (s/T)

and (, ~ iid N(0,1,). It then follows that

M
!/
(7.23) Vil 195 2z (VEI ) & MY Gt
m=1
Using the results in (5.8) and (7.23), we have

Fr =T [£@r) — £(a0)] |95 [E(@r) = £(a0)] /a

. <T1/2 zet> {Ml S <m<;ﬂ} <T1/2 zet> /a
t=1 m=1 t=1
M -1
(7.24) = G {M‘1 > cmcin} Cos
m=1

where ¢y = T-1/2 Zt e;. Since ¢y, (), m =1,2,..., M are orthonormal and integrate to

Zero, we have
-1

M
3 (Ml > fm»s;@) &0
m=1

where &,, ~ iid N (0,1;) for m = 0,...,M. This is exactly the same distribution as
Hotelling (1931)’s T2 distribution. Using the well-known relationship between the T? dis-
tribution and F distribution, we have [(M — ¢+ 1) /M| Fr ~ F, yj_4+1 as desired. O
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