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Abstract

We consider identi�cation in a class of nonseparable nonparametric simultaneous equa-
tions models introduced by Matzkin (2008). These models combine standard exclusion
restrictions with a requirement that each structural error enter through a �residual
index�function. We provide constructive proofs of identi�cation under several sets of
conditions, demonstrating tradeo¤s between restrictions on the support of the instru-
ments, restrictions on the joint distribution of the structural errors, and restrictions on
the form of the residual index function.
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1 Introduction

There is substantial recent interest in the identi�cation of nonparametric economic models

that feature endogenous regressors and nonseparable errors. For a simultaneous equations

setting, a general nonparametric model can be written

mj(Y; Z; U) = 0 j = 1; : : : ; J (1)

where J � 2, Y = (Y1; : : : ; YJ) 2 RJ are the endogenous variables, U = (U1; : : : ; UJ) 2 RJ

are the structural errors, and Z is a vector of exogenous variables. Assuming m is invertible

in U , this system of equations can be written in its �residual�form

Uj = �j(Y; Z) j = 1; : : : ; J: (2)

Unfortunately, there are no known identi�cation results for this fully general model, and

most recent work has considered a triangular restriction of (1) that rules out many important

economic applications.

In this paper we consider identi�cation in a class of fully simultaneous models introduced

by Matzkin (2008). These models take the form

mj(Y; Z; �) = 0 j = 1; : : : ; J:

where � = (�1 (Z;X1; U1) ; : : : ; �J (Z;XJ ; UJ))
0 and

�j (Z;Xj; Uj) = gj (Z;Xj) + Uj: (3)

Here X = (X1; : : : ; XJ) 2 RJ are observed exogenous variables speci�c to each equation and

each gj (Z;Xj) is assumed to be strictly increasing in Xj.

This formulation respects traditional exclusion restrictions in that Xj is excluded from

equations k 6= j (e.g., a �demand shifter� enters only the demand equation). However, it
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restricts (1) by requiring Xj and Uj to enter through a �residual index��j (Z;Xj; Uj). If we

again assume invertibility of m (now in �� see the examples below), we obtain the analog of

(2),

�j (Z;Xj; Uj) = rj (Y; Z)j j = 1; : : : ; J

or, equivalently,

rj (Y; Z) = gj (Z;Xj) + Uj j = 1; : : : ; J: (4)

Below we provide several examples of important economic applications in which this structure

can arise.

Matzkin (2008, section 4.2) considered a two-equation model of the form (4) and showed

that it is identi�ed when X has large support and the joint density of U satis�es certain

shape restrictions.1 Matzkin (2010), relying on the same proof of identi�cation, considers

estimation of a restricted version of this model, where each function �j is linear in Xj (with

coe¢ cient normalized to 1).2 We provide a further investigation of identi�cation in this class

of models under several alternative sets of conditions.

We begin with the model and assumptions of Matzkin (2008). We o¤er a constructive

proof of identi�cation and show that the model is overidenti�ed. We then move to the main

contribution of the paper, where we show that there is a trade-o¤between assumptions on the

support of X, on the joint density of U , and on the functions gj(Z;Xj).3 We �rst show that

Matzkin�s (2008, 2010) large support assumption can be dropped if one modi�es the density

restriction. Here we provide two results. The �rst (Theorem 2) leaves each gj (Z;Xj)

fully nonparametric and requires only arbitrarily little variation in the �instruments�X.

However, like Matzkin�s results, it requires a global restriction on the density of U . The

second result (Theorem 3) imposes the linear residual index structure of Matzkin (2010) but

1Precise statements of these restrictions and other technical conditions are given below.
2In Matzkin (2010) the index structure and restriction gj (Xj) = Xj follow from Assumption 3.2 (see also

equation T.3.1).
3To our knowledge these results are all new with exception of Theorem 4, which was �rst shown by Berry

and Haile (2010) for a system of simultaneous equations obtained from a model of di¤erentiated products
supply and demand.
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allows trade-o¤s between the strength of the density restrictions and the variation in the

instruments. We then show (Theorem 4) that one can take this trade-o¤ to the opposite

extreme: under the linear index structure, by retaining the large support assumption, all

restrictions on the joint density can be dropped. Finally, we explore an alternative rank

condition for which we lack su¢ cient conditions on primitives, but which could in principle

be checked in applications.

All our proofs are constructive; i.e., they provide a mapping from the observables to

the functions that characterize the model. Constructive proofs can make clear how observ-

able variation reveals the economic primitives of interest. They may also suggest possible

estimation approaches, although that is a topic we leave for future work.

Prior Results for Nonparametric Simultaneous Equations Brown (1983), Roehrig

(1988), Brown and Matzkin (1998), and Brown and Wegkamp (2002) have previously con-

sidered identi�cation of simultaneous equations models, assuming one structural error per

equation and focusing on cases where the structural model (1) can be inverted to solve for

the �residual equation�(2). A claim made in Brown (1983) and relied upon by the others

implied that traditional exclusion restrictions would identify the model when U is indepen-

dent of Z. Benkard and Berry (2006) recently showed that this claim is incorrect, leaving

uncertain the nonparametric identi�ability of fully simultaneous models.

For models of the form (2) with U independent of Z, Matzkin (2008) provided a new

characterization of observational equivalence and showed how this could be used to prove

identi�cation in several special cases. These included a linear simultaneous equations model,

a single equation model, a triangular (recursive) model, and a fully simultaneous nonpara-

metric model (her �supply and demand� example) of the form (4) with J = 2. To our

knowledge, the last of these is the only prior result demonstrating identi�cation in a fully

simultaneous nonparametric model with nonseparable errors.

Relation to Transformation Models The model (4) considered here can be interpreted

as a generalization of the transformation model to a system of simultaneous equations. The
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usual (single-equation) semiparametric transformation model (e.g., Horowitz (1996)) takes

the form

t (Yj) = Zj� + Uj (5)

where Yi 2 R, Ui 2 R, and the unknown transformation function t is strictly increasing.

In addition to replacing Zj� with gj (Z;Xj),4 (4) generalizes (5) by (a) allowing a vector of

outcomes Y to enter the unknown transformation function, (b) dropping the requirement of

a monotonic transformation function, and (c) allowing most exogenous variables (all besides

X) to enter the fully nonparametric transformation functions rj.

Relation to Triangular Models Much recent work has focused on models with a tri-

angular (recursive) structure (see, e.g., Chesher (2003), Imbens and Newey (2009), and

Torgovitsky (2010)). A two-equation version of the triangular model is

Y1 = m1(Y2; Z;X1; U1)

Y2 = m2(Z;X1; X2; U2)

with U2 a scalar monotonic error and with X2 excluded from the �rst equation. In a supply

and demand system, for example, Y1 might be the quantity of the good, with Y2 being

its price. The �rst equation would be the structural demand equation, in which case the

second equation would be the reduced-form equation for price, with X2 as a supply shifter

excluded from demand. However, in a supply and demand context� as in many other

traditional simultaneous equations settings� the triangular structure is di¢ cult to reconcile

with economic theory. Typically both the demand error and the supply error will enter the

reduced form for price. Thus, one obtains a triangular model only in the special case that

the two structural errors monotonically enter the reduced form for price through a single

index.

4A recent paper by Chiappori and Komunjer (2009) considers a nonparametric version of the single-
equation transformation model. See also the related paper by Berry and Haile (2009).
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The triangular framework therefore requires that at least one of the reduced-form equa-

tions feature a monotone index of the all original structural errors. This is an index as-

sumption that is simply di¤erent from the index restriction of the model we consider. Our

structure arises naturally from a fully simultaneous structural model with a nonseparable

residual index; the triangular model will be generated by other kinds of restrictions on the

functional form of simultaneous equations models. Examples of simultaneous models that

do reduce to a triangular system can be found in Benkard and Berry (2006), Blundell and

Matzkin (2010) and Torgovitsky (2010). Blundell and Matzkin (2010) have recently provided

a necessary and su¢ cient condition for the simultaneous model to reduce to the triangular

model, pointing out that this condition is quite restrictive.

Outline We begin with some motivating examples in section 2. Section 3 then completes

the setup of the model. Our main results are presented in sections 4 through 6, followed by

our exploration of a rank condition in section 7.

2 Examples

Example 1. Consider a nonparametric version of the classical simultaneous equations model,

where the structural equations are given by

Yj = �j (Y�j; Z;Xj; Uj) j = 1; : : : ; J:

Examples include classical supply and demand models or models of peer e¤ects. The residual

index structure is imposed by requiring

�j (Y�j; Z;Xj; Uj) = j (Y�j; Z; �j (Z;Xj; Uj)) 8j

where �j (Z;Xj; Uj) = gj (Z;Xj) + Uj. This model features nonseparable structural errors

but requires them to enter the nonseparable nonparametric function �j through the index
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�j (Z;Xj; Uj). If each function j is invertible (e.g., strictly increasing) in �j (Z;Xj; Uj) then

one obtains (4) from the inverted structural equations by letting rj = �1j . Identi�cation of

the functions rj and gj implies identi�cation of �j.

Example 2. Consider a nonparametric version of the Berry, Levinsohn, and Pakes (1995)

model of di¤erentiated products markets. Market shares of each product j in market t are

given by

Sjt = �j (Pt; g (Xt) + �t) (6)

where g (Xt) = (g1 (X1t) � � � gJ (XJt))
0, Pt 2 RJ are the prices of products 1; : : : ; J , Xt 2 RJ

is a vector of product characteristics (all other observables have been conditioned out), and

�t 2 RJ is a vector of unobserved characteristics associated with each product j and market t.

Prices are determined through oligopoly competition, yielding a reduced form pricing equation

Pjt = �j (Xt; g (Xt) + �; h(Zt) + �t) j = 1; : : : ; J (7)

where Zt 2 RJ is a vector of observed cost shifters associated with each product (other

observed cost shifters have been conditioned out), and �t 2 RJ is a vector of unobserved cost

shifters. Parallel to the demand model, h takes the form h (Zt) = (h1 (Z1t) � � � hJ (ZJt))0,

with each hj strictly increasing. Berry and Haile (2010) show that this structure follows from

a nonparametric random utility model of demand and standard oligopoly models of supply

under appropriate residual index restrictions on preferences and costs. Unlike Example 1,

here the structural equations specify each endogenous variable (Sjt or Pjt) as a function of

multiple structural errors. Nonetheless, Berry, Gandhi, and Haile (2011) and Berry and

Haile (2010) show that the system can be inverted, yielding a 2J � 2J system of equations

gj (Xjt) + �jt = ��1j (St; Pt)

hj (Zjt) + �jt = ��1j (St; Pt)

where St = (S1t; : : : ; SJt), Pt = (P1t; : : : ; PJt). This system takes the form of (4). Berry
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and Haile (2010) show that identi�cation of the functions ��1j and ��1j for all j allows

identi�cation of demand, marginal costs, and the mode of imperfect competition among �rms.

Example 3. Consider identi�cation of a production function in the presence of unobserved

shocks to the marginal product of each input. Output is given by Q = F (Y; U), where Y 2 RJ

is a vector of inputs and U 2 RJ is a vector of unobserved productivity shocks. Let P and

W denote the (exogenous) prices of the output and inputs, respectively. The observables are

(Q;P;W; Y ). With this structure, input demand is determined by a system of �rst-order

conditions

p
@F (y; u)

@yj
= wj j = 1; : : : ; J (8)

whose solution can be written

yj = �j (p; w; u) j = 1; : : : ; J:

Observe that the reduced form for each Yj depends on the entire vector of shocks U . The

index structure is imposed by assuming that each structural error Uj enters as a multiplicative

shock to the marginal product of the associated input, i.e.,

@F (y; u)

@yj
= fj (y)uj

for some function fj. The �rst-order conditions (8) then take the form (after taking logs)

ln (fj (y)) = ln

�
wj
p

�
� ln (uj) j = 1; : : : ; J:

which have the form of our model (4). The results below will imply identi�cation of the

functions fj and, therefore, the realizations of each Uj. Since Q is observed, this implies

identi�cation of the production function F .
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3 Model

3.1 Setup

The observables are (Y;X;Z). The exogenous observables Z, while important in applications,

add no complications to the analysis of identi�cation. Thus, from now on we drop Z from

the notation. All assumptions and results should be interpreted to hold conditional on a

given value of Z.

Stacking the equations in (4), we then consider the model

r (Y ) = g (X) + U (9)

where g = (g1; : : : ; gJ)
0 and each gj is a strictly increasing continuously di¤erentiable func-

tion of Xj. We let X = int(supp(X)), require X 6= ;, and assume that the cumulative

distribution of X is strictly increasing on X . We let Y = int(supp (Y )). We assume r is twice

continuously di¤erentiable and one-to-one. The latent random variables U are independent

of X and have a continuously di¤erentiable joint density fU with support RJ : Finally, we

assume that the determinant jJ(y)j of the Jacobian matrix

J(y) =

26664
@r1(y)
@y1

: : : @r1(y)
@yJ

...
. . .

...

@rJ (y)
@y1

: : : @rJ (y)
@yJ

37775
is nonzero for all y 2 Y.

Some useful implications of these assumptions are summarized in the following lemma.

Lemma 1. (i) 8y 2 Y, supp(XjY = y) =supp(X); (ii) 8x 2 X ,supp(Y jX = x) =supp(Y );

(iii) Y is path-connected.

Proof. Part (i) follows from (9) and the assumption that U is independent of X with support

RJ . Because r is one-to-one, continuously di¤erentiable, and has nonzero Jacobian determi-

nant, it has a continuous inverse r�1 such that Y = r�1 (g(X)+U). Since supp(U jX) = RJ ,
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part (ii) follows immediately while part (iii) follows from the fact that the image of a path-

connected set (here RJ) under a continuous mapping is path-connected. �

3.2 Normalizations

We make two types of normalizations without loss.5 First, we normalize the location and

scale of the unobservables Uj. To do this, we use (9), take an arbitrary x0 2 X and y0 2 Y

(recalling part (i) of Lemma 1) and set

rj
�
y0
�
� gj(x0j) = 0 8j (10)

@gj
�
x0j
�

@xj
= 1 8j: (11)

Second, since adding a constant �j to both sides of (9) would leave all relationships between

(Y;X; U) unchanged, we can normalize the location of one of the functions rj or gj for each

j. We therefore set

rj
�
y0
�
= 0 8j: (12)

With (10), this implies

gj
�
x0j
�
= 0 8j: (13)

3.3 Change of Variables

All of our arguments below start with the standard strategy of relating the joint density

of observables to the joint distribution of the unobservables U . Let � (y; x) denote the

(observable) conditional density of Y jX evaluated at y 2 Y, x 2 X . This density exists

under the conditions above and can be expressed as

� (y; x) = fU (r (y)� g(x)) jJ(y)j : (14)

5Alternatively we could follow Matzkin (2008), who makes no normalizations in her supply and demand
example, instead showing that the derivatives of r and g are identi�ed up to scale.
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We treat � (y; x) as known for all x 2 X , y 2 Y :

Taking logs of (14) and di¤erentiating, we obtain

@ ln� (y; x)

@xj
= �@ ln fU (r (y)� g(x))

@uj

@gj (xj)

@xj
(15)

@ ln� (y; x)

@yk
=

X
j

@ ln fU (r (y)� g(x))
@uj

@rj (y)

@yk
+
@ ln jJ(y)j
@yk

: (16)

Substituting (15) into (16) gives

@ ln� (y; x)

@yk
=
X
j

�@ ln� (y; x)
@xj

@rj (y) =@yk
@gj (xj) =dxj

+
@ ln jJ(y)j
@yk

: (17)

4 A Constructive Proof of Matzkin�s Result

We begin by providing a constructive proof of the identi�cation result in Matzkin (2008,

section 4.2), which relies on the following additional assumptions.6

Assumption 1. supp(g (X)) = RJ :

Assumption 2. 9�u 2 RJ such that @fU (�u)
@uj

= 0 8j:

Assumption 3. For all j and almost all ûj 2 R, 9 û�j 2 RJ�1 such that for û = (ûj; û�j) ;
@fU (û)
@uj

6= 0 and @fU (û)
@uk

= 0 8k 6= j:

Theorem 1. Under Assumptions 1�3, the model (r; g; fU) is identi�ed.

Proof. For every y 2 Y, Assumptions 1 and 2 imply that there exists �x (y) such that

@fU (r (y)� g (�x (y)))
@uj

= 0 8j:

6We allow J > 2 although this does not change the argument, as observed by Matzkin (2010). Our
Assumption 3 is weaker than its analog in Matzkin (2008), which uses the quanti�er �for all ûj�instead of
�for almost all ûj .� We interpret the weaker version as implicit in Matzkin (2008). The stronger version
would rule out many standard densities; for example, with a standard gaussian distribution, @fu(û)@uj

= 0 for
all û�j when ûj = 0.
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With (15), the maintained hypothesis @gj(xj)
@xj

> 0 implies

@fU (r (y)� g (x))
@uj

= 0 i¤
@ ln� (y; x)

@xj
= 0 (18)

so �x (y) may be treated as known for all y 2 Y. Further, by (16),

@ ln� (y; �x (y))

@yk
=
@ ln jJ(y)j
@yk

so we can rewrite (17) as

@ ln� (y; x)

@yk
� @ ln� (y; �x (y))

@yk
=
X
j

�@ ln� (y; x)
@xj

@rj (y) =@yk
@gj (xj) =@xj

: (19)

Take an arbitrary (j; xj) and observe that with (18) and U j= X, Assumptions 1 and 3 imply

that for almost all y there exists x̂j (y; xj) 2 RJ such that x̂jj (y; xj) = xj and

@ ln� (y; x̂j (y; xj))

@xj
6= 0 (20)

@ ln� (y; x̂j (y; xj))

@xk
= 0 8k 6= j: (21)

Since the derivatives @ ln�(y;x)
@x`

are observed, the points x̂j (y; xj) can be treated as known.

Taking xj = x0j , (11), (19) and (21) yield

@ ln�
�
y; x̂j

�
y; x0j

��
@yk

� @ ln� (y; �x (y))
@yk

= �
@ ln�

�
y; x̂j

�
y; x0j

��
@xj

@rj (y)

@yk
k = 1; : : : ; J:

By (20) and continuity of @rj(y)
@yk

, these equations identify @rj(y)

@yk
for all j; k, and y 2 Y. Now

�x Y at an arbitrary value ~y 2 Y. For any j and xj 6= x0j , (19) and (21) yield

@ ln� (~y; x̂j (~y; xj))

@yk
� @ ln� (~y; �x (~y))

@yk
= �@ ln� (~y; x̂

j (y; xj))

@xj

@rj (~y) =@yk
@gj (xj) =dxj

k = 1; : : : ; J:

(22)

11



By (20), (22) uniquely determines @gj (xj) =dxj as long as the known value
@rj(~y)

@yk
is nonzero

for some k. This is guaranteed by the maintained assumption jJ(y)j 6= 0 8y 2 Y. Thus,
@gj(x)

@xj
is identi�ed for all j and x 2 X . With the boundary conditions (12) and (13) and

part (iii) of Lemma 1, we then obtain identi�cation of the functions gj and rj. Identi�cation

of fu then follows from (9). �

The argument also makes clear that the model is overidenti�ed, since the choice of ~y

before (22) was arbitrary.

Remark 1. Under Assumptions 1�3, the model is testable.

Proof. Solving (22) for @gj (xj) =dxj at ~y = y0 and at ~y = y00, we obtain the overidentifying

restrictions

@ ln�(y0;x̂j(y0;xj))
@xj

@rj(y
0)

@yk

@ ln�(y0;x̂j(y0;xj))
@yk

� @ ln�(y0;�x(y0))
@yk

=

@ ln�(y00;x̂j(y00;xj))
@xj

@rj(y
00)

@yk

@ ln�(y00;x̂j(y00;xj))
@yk

� @ ln�(y00;�x(y00))
@yk

for all j; k; xj and y0; y00 2 Y. �

5 Identi�cation without Large Support

A large support assumption (Assumption 1 above) is not essential. Drop Assumptions 1�3

and instead assume the following.7

Assumption 4. For all j, supp(Xj) is convex.

Assumption 5. fU is twice continuously di¤erentiable, with
@2 ln fU (u)
@u@u0 nonsingular almost

everywhere:

7For a twice di¤erentiable function 	 on RJ , we use the notation @2	(z)
@z@z0 to denote the matrix2664

@2	(z)
@z1@z1

� � � @2	(z)
@zJ@z1

...
. . .

...
@2	(z)
@z1@zJ

� � � @2	(z)
@zJ@zJ

3775 :
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Assumption 4 requires a weak notion of connected support for X, but allows this support

to be arbitrarily small.8 Assumption 5 is a density restriction satis�ed by many standard

joint probability distributions. One su¢ cient condition is that@
2 ln fU (u)
@u@u0 be negative de�nite

almost everywhere� a restriction on the class of log-concave densities (see, e.g., Bagnoli and

Bergstrom (2005) and Cule, Samworth, and Stewart (2010)). Examples of densities that

violate this condition are those with �at or log-linear regions.

Theorem 2. Under Assumptions 4 and 5, the model (r; g; fU) is identi�ed.

Proof. For any y 2 Y, di¤erentiating (16) at x0 gives

@2 ln� (y; x0)

@yk@x`
=
X
j

�@
2 ln fu (r (y)� g (x0))

@uj@u`

@rj (y)

@yk
8k; `: (23)

Further, di¤erentiating (15) at x0 gives

@2 ln fu (r (y)� g (x0))
@uj@u`

=
@2 ln� (y; x0)

@xj@x`
: (24)

Thus, we obtain

A = B C

where A =
@2 ln�(y;x0)

@y@x0 ; B = �@2 ln�(y;x0)
@x@x0 , and C = J (y). The matrices A and B are known

and, given (24) and Assumption 5, B is invertible for almost all y. This gives identi�cation

of @rj(y)
@yk

for all j; k and y 2 Y. To complete the proof, observe that with each @rj(y)

@yk
known,

evaluating (17) at x0 identi�es @ lnjJ(y)j
@yk

for all k; y 2 Y. So (17) can be rearranged as

D = �E F

8If supp(Xj) were instead the union of two or more intervals, the argument below would still prove
identi�cation of r, of @gj (xj) =@xj for all j and xj ; and of each gj on one of the intervals (that containing
x0j ). Identi�cation of gj on each additional interval would hold up to an additional unknown location
parameter. This partial identi�cation would be su¢ cient to answer some types of questions.
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where D = @
@y
[ln� (y; x)� ln jJ (y)j] and is known, E = J (y)0 and is known, and

F =

0BBB@
@ ln�(y;x)

@x1
1

@g1(x1)=@x1
...

@ ln�(y;x)
@xJ

1
@gJ (xJ )=@xJ

1CCCA :

Since
��J (y)0�� is nonzero, each element @ ln�(y;x)

@xj

1
@gj(xj)=@xj

of the matrix F is uniquely deter-

mined at every x 2 X ; y 2 Y. This implies that @gj(xj)
@xj

is identi�ed for all xj 2supp(Xj) as

long as for each such xj the (known) value of
@ ln�(y;(xj ;x�j))

@xj
is nonzero for some y and x�j.

To con�rm this, take any xj and any x�j and suppose to the contrary that
@ ln�(y;(xj ;x�j))

@xj
= 0

for all y. Then by (15), @ ln fU (r(y)�g(x))
@uj

= 0 for all y. This requires @
@yk

�
@ ln fU (r(y)�g(x))

@uj

�
= 0

for all y; k, i.e.,
JX
`=1

@2 ln fU (r (y)� g (x))
@uj@u`

@r` (y)

@yk
= 0 8y; k:

Stacking these J equations, we obtain

J (y)0 z = 0

where

z =

0BBB@
@2 ln fU (r(y)�g(x))

@uj@u1
...

@2 ln fU (r(y)�g(x))
@uj@uJ

1CCCA :
Since J (y)0 is full rank, this requires z = 0 for all y, which is ruled out by Assumption

5. This contradiction implies that @gj(xj)

@xj
is identi�ed for all j; xj. The remainder of the

proof then follows that for Theorem 1, using the boundary conditions (12) and (13) with

Assumption 4. �

As with the assumptions of Theorem 1, Assumptions 4 and 5 lead to overidenti�cation.

Remark 2. Under Assumptions 4 and 5, the model is testable.

Proof. In the �nal step (beginning with �To con�rm: : :�) of the proof of Theorem 2, we
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demonstrated that @ ln�(y;(xj ;x�j))
@xj

is nonzero for some y given any x = (xj; x�j), leading to

identi�cation of @gj(xj)
@xj

. Letting @~gj(xj ;x�j)
@xj

be the value of @gj(xj)
@xj

implied when x = (xj; x�j),

we obtain the testable restrictions

@~gj
�
xj;x

0
�j
�

@xj
=
@~gj

�
xj;x

00
�j
�

@xj
8j; xj; x0�j; x00�j:

�

We can weaken the global restriction on the density (Assumption 5) if we assume that

each function gj is known up to scale or, equivalently, that gj (xj) = xj�j.

Assumption 6. gj (xj) = xj�j 8j; xj:

Assumption 7. (i) fU is twice continuously di¤erentiable; and (ii) for almost all y 2 Y

there exists x� (y) 2 X such that the matrix @2 ln fU (r(y)�g(x�(y)))
@u@u0 is nonsingular.

With Assumption 6 we are still free to make the scale normalization (11); thus, without

further loss we set �j = 1 8j. The restricted model we consider here is then identical to that

studied in Matzkin (2010). Assumption 7 weakens Assumption 5 by requiring invertibility

of the matrix @2 ln fU (u)
@u@u0 only at one (unknown) point in supp(U jY = y).

Theorem 3. Under Assumptions 6 and 7 the model (r; fU) is identi�ed.

Proof. Di¤erentiation of (16) gives (after setting gj (xj) = xj)

@2 ln� (y; x)

@yk@x`
=
X
j

�@
2 ln fu (r (y)� x)

@uj@u`

@rj (y)

@yk
8y; x; k; `:

Assumption 7 ensures that for almost all y; @
2 ln fU (r(y)�x)

@u@u0 is invertible at a point x = x� (y),

giving identi�cation of @rj(y)

@yk
for all j; k; y 2 Y. Identi�cation of r (y) then follows as in

Theorem 1, using the boundary condition (12). Identi�cation of fU then follows from the

equations Uj = rj(Y )�Xj. �

This result o¤ers a trade-o¤ between assumptions on the support of X and restrictions

on the density fU . At one extreme, Assumption 7 holds with arbitrarily little variation

15



in X when fU satis�es Assumption 5. At the opposite extreme, with large support for

X, Assumption 7 holds when there is a single point u� at which @2 ln fU (u
�)

@u@u0 is nonsingular.

Between these extremes are cases in which @2 ln fU (u)
@u@u0 is nonsingular in a neighborhood (or set

of neighborhoods) that can be reached for any value of Y through the available variation in

X.

6 Identi�cation without Density Restrictions

The trade-o¤ illustrated above can be taken to the opposite extreme. If we restrict attention

to linear residual index functions by requiring gj (xj) = xj�j, then under the large support

condition of Matzkin (2008) there is no need for any restriction on the joint density fU . The

following result was �rst given in Berry and Haile (2010) for a class of models of demand

and supply in di¤erentiated products oligopoly markets.

Theorem 4. Under Assumptions 1 and 6, the model (r; fu) is identi�ed.

Proof. Recall that we have normalized �j = 1 8j without loss. Since

Z 1

�1
� � �
Z 1

�1
fU (r (y)� x) dx = 1;

from (14) we obtain

fU (r (y)� x) =
� (y; x)R1

�1 � � �
R1
�1 � (y; t) dt

:

Thus the value of fU (r (y)� x) is uniquely determined by the observables for all (y; x).

Since Z
~xj�xj ;~x�j

fU (r (y)� x̂) dx̂ = FUj (rj (y)� xj) (25)

the value of FUj (rj (y)� xj) is identi�ed for every (y; x). By the normalization (11),

FUj
�
rj
�
y0
�
� x0j

�
= FUj (0) :
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For any y we can then �nd the value
o
x (y) such that FUj

�
rj (y)�

o
x (y)

�
= FUj (0), which

reveals rj (y) =
o
x (y). This identi�es each function rj. Identi�cation of fU then follows as

in the previous results. �

The restricted model considered here is identical to that considered by Matzkin (2010).

We have retained her large support condition but dropped all restrictions on derivatives of

fU . Thus, this result provides an even stronger foundation for estimation of this type of

model, using the methods proposed in Matzkin (2010) or others.

7 A Rank Condition

Here we explore an alternative invertibility condition that is su¢ cient for identi�cation and

may allow additional trade-o¤s between the support of X and the properties of the joint

density fU . Like the classical rank condition for linear models (or completeness conditions

for nonparametric models� e.g., Newey and Powell (2003) or Chernozhukov and Hansen

(2005)) the condition we obtain is not easily derived from primitives. However, in principle

it could be checked in applications.

For simplicity, we restrict attention here to the case J = 2. Fix Y = y and consider

seven values of X;

x0 = (x01; x
0
2) ; x

2 = (x01; x
0
2) ;

x1 = (x01; x
0
2) ; x

3 = (x01; x
0
2) ; x

5 = (x001; x
0
2) ;

x4 = (x01; x
00
2) ; x6 = (x001; x

00
2)

(26)

where x0 is as in (11), and x00j 6= x0j 6= x0j . For ` 2 f0; 1; : : : ; 6g, rewrite (17) as

A`k = B`1
@r1 (y) =@yk

@g1
�
x`1
�
=@x1

+B`2
@r2 (y) =@yk

@g2
�
x`2
�
=@x2

+
@

@yk
jJ (y)j k = 1; 2 (27)
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where

A`k =
@ ln�

�
y; x`

�
@yk

B`j =
@ ln�

�
y; x`

�
@xj

:

A`k and B`j are known. Stacking the equations (27) obtained at all `; we obtain a system

of fourteen linear equations in the fourteen unknowns

@rj (y) =@yk
@gj (xj) =@xj

j; k = 1; 2; xj 2
�
x0j ; x

0
j; x

00
j

�
(28)

@

@yk
jJ (y)j k = 1; 2:

These unknowns are identi�ed if the 14 �14 matrix26666666666666666666666666666666666666664

B01 0 B02 0 0 0 0 0 0 0 0 0 1 0

0 B01 0 B02 0 0 0 0 0 0 0 0 0 1

0 0 B12 0 B11 0 0 0 0 0 0 0 1 0

0 0 0 B12 0 B11 0 0 0 0 0 0 0 1

B21 0 0 0 0 0 B22 0 0 0 0 0 1 0

0 B21 0 0 0 0 0 B22 0 0 0 0 0 1

0 0 0 0 B31 0 B32 0 0 0 0 0 1 0

0 0 0 0 0 B31 0 B32 0 0 0 0 0 1

0 0 0 0 B41 0 0 0 0 0 B42 0 1 0

0 0 0 0 0 B41 0 0 0 0 0 B42 0 1

0 0 0 0 0 0 B52 0 B51 0 0 0 1 0

0 0 0 0 0 0 0 B52 0 B51 0 0 0 1

0 0 0 0 0 0 0 0 B61 0 B62 0 1 0

0 0 0 0 0 0 0 0 0 B61 0 B62 0 1

37777777777777777777777777777777777777775

(29)

representing the known coe¢ cients of the linear system (27) has full rank. This holds i¤ the
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determinant

(B12B31B42B51B22B01 �B12B31B62B51B22B01 �B12B31B42B61B22B01 (30)

+B21B02B42B61B52B31 +B42B61B52B31B12B01 �B42B61B52B31B12B21

+B12B51B62B41B22B01 �B21B02B11B32B42B51 +B21B02B11B32B62B51

�B21B02B32B51B62B41 �B32B51B62B41B12B01 +B32B51B62B41B12B21

�B21B02B11B42B61B52 +B21B02B11B32B42B61)2

is nonzero. With (17) and our normalizations, knowledge of @jJ(y)j
@yk

and @rj(y)=@yk

@gj(x0j)=@xj
for all y,

j, and k leads to identi�cation of the model following the arguments above. Thus, we can

state the following proposition.

Proposition 5. Suppose that for almost all y 2 Y there exist points x0; x1; : : : ; x6 with the

structure (26) such that x` 2supp(XjY = y) 8` = 0; 1; : : : ; 6, and such that (30) is nonzero.

Then the model (r; g; fU) is identi�ed.

Our approach here exploits linearity of the system (27) in the ratios @rj(y)=@yk

@gj(x`j)=@xj
in order

to provide a rank condition that is su¢ cient for identi�cation, despite the highly nonlinear

model. Two observations should be made, however. One is that we have not used all the

information available from the seven values of X; in particular, we used only @
@yk
jJ (y)j and

@rj(y)=@yk

@gj(x0j)=@xj
at each y; j,k to identify the model, yet the values of @rj(y)=@yk

@gj(x`j)=@xj
for ` 6= 0 are also

directly obtained by solving (27). This provides a set of overidentifying restrictions and

suggests that it may be possible to obtain identi�cation under weaker conditions. Second,
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at each value of y the 14 linear unknowns in (28) are determined by just 10 unknown values

@rj (y)

@yk
j; k = 1; 2

@gj (xj) =@xj j = 1; 2; xj 2
�
x0j; x

00
j

�
@

@yk
jJ (y)j k = 1; 2:

Although conditions for invertibility of a nonlinear system are much more di¢ cult to obtain,

this again suggests overidenti�cation, at least in some cases.

8 Conclusion

Simultaneous equations models play an important role in many economic applications. Un-

fortunately, identi�cation results have been limited almost exclusively to parametric models

or to settings admitting a recursive structure.

We have examined the identi�ability of a class of nonparametric nonseparable simultane-

ous equations models with a residual index structure �rst explored by Matzkin (2008). The

model incorporates standard exclusion restrictions and a requirement that each structural

error enter the system through an index that also depends on the corresponding instrument.

This is a signi�cant restriction, but one that allows substantial generalization of standard

functional form restrictions in a variety of economic contexts. With this structure, nonpara-

metric identi�cation can be obtained in a fully simultaneous system despite the challenges

pointed out by Benkard and Berry (2006). Indeed, we have provided constructive proofs of

identi�cation for this model under several alternative sets of su¢ cient conditions, illustrating

trade-o¤s between the assumptions one places on the support of instruments, on the joint

density of the structural errors, and on the form of the residual index.
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