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Abstract

This paper considers nonparametric identification of nonstationary dynamic discrete choice

models when the agent’s time horizon extends beyond the length of the data. We show

conditions under which flow payoffs are identified subject to standard normalizations and,

when the payoff function does not depend directly on time, show identification even when the

time horizon extends beyond the length of the data. We further establish identification for

a class of nonstationary dynamic discrete choice games and show how the nonstationarity of

the problem can be helpful in unbundling the agent’s state-specific payoffs from the expected

payoffs where the expectation is taken over the actions of the agent’s competitors.

∗We acknowledge support from National Science Foundation Grant Awards SES0721059 and SES0721098. Pre-

liminary and Incomplete. Comments welcome.
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1 Introduction

In this paper we consider identification of dynamic discrete choice models when the environment

is non-stationary, analyzing both single and multi-agent settings. Further, we consider cases where

individual’s are forming expectations about events far beyond what is seen in the data and the

researcher is unwilling to make assumptions about how expectations are formed in time periods

beyond what is seen in the data.

Our identification results build on the insight of Arcidiacono and Miller (2011) who note that

future payoffs can be represented as flow payoffs for any decision rule over the full time horizon

plus correction terms that only depend on the conditional choice probabilities. By exploiting

the structure of the model, a clever choice of which decision rule to write the future value term

with respect to can result in the future value term–or differences in future value terms across two

choices–only depending on a few period ahead conditional choice probabilities and flow payoffs.

For a particular class of models, we show identification, subject to standard normalizations, of a

set of non-stationary flow payoff functions (i.e. the flow payoff depends directly on t) even when the

length of the panel is shorter than the time horizon. The class of models includes renewal problems

such as in Rust (1987) or games where there is an exit decision. Hence, with a short panel we are

able to obtain identification of a class of non-stationary dynamic games.

In cases where the flow payoff function does not depend on time directly but only through the

state variables, we are able to show identification for a much larger class of models, again even

when the time horizon extends beyond what is seen in the data. Here the non-stationarity occurs

either because the transitions of the states depend on time or because the time horizon is finite.

Indeed, our results suggest that non-stationarity can serve as an aid in identification when the

model obeys certain properties. We show, for example, that in some cases the flow payoff for one
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choice in one state needs to be normalized as opposed to the flow payoff for one choice in all states.

We further consider identification in non-stationary dynamic games, first considering identifi-

cation of expected payoffs of a particular choice where the expectation is taken over the actions of

the agent’s competitors. Here too finite dependence is helpful in establishing identification and we

show how to obtain finite dependence paths in games. Further, we show how nonstationarity aids

in unbundling state-specific payoffs from the expected payoffs.

The rest of the paper proceeds as follows. First, we consider the single agent setting, covering

both cases where the full time horizon is seen in the data and other cases where the time horizon

goes beyond the observed data. We show identification results in this latter case when there is

either a terminal or a renewal action or when the flow payoff function does not depend directly on

time. Next, we cover games and show how to recover finite dependence paths and how these finite

dependence paths facilitate identification of expected payoffs. Finally, we show nonstationarity can

aid in the unbundling of state-specific payoffs from expected payoffs.

2 Framework

We first develop the framework for single agent case, following closely Arcidiacono and Miller (2011)

section 3. In each period until T , for T ≤ ∞, an individual chooses among J mutually exclusive

actions. Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero otherwise. The current

period payoff for action j at time t depends on the state xt ∈ {1, . . . , X}. If action j is taken at

time t, the probability of xt+1 occurring in period t+ 1 is denoted by fjt(xt+1|xt).

The individual’s current period payoff from choosing j at time t is also affected by a choice-

specific shock, εjt, which is revealed to the individual at the beginning of the period t. We assume

the vector εt ≡ (ε1t, . . . , εJt) has continuous support and is drawn from a probability distribution
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that is independently and identically distributed over time with density function g (εt). We model

the individual’s current period payoff for action j at time t by ujt(xt) + εjt.

The individual takes into account both the current period payoff as well as how his decision

today will affect the future. Denoting the discount factor by β ∈ (0, 1), the individual chooses the

vector dt ≡ (d1t, . . . , dJt) to sequentially maximize the discounted sum of payoffs:

E

{
T∑
t=1

J∑
j=1

βt−1djt [ujt(xt) + εjt]

}
(1)

where at each period t the expectation is taken over the future values of xt+1, . . . , xT and εt+1, . . . , εT .

Expression (1) is maximized by a Markov decision rule which gives the optimal action conditional

on t, xt, and εt. We denote the optimal decision rule at t as dot (xt, εt), with jth element dojt(xt, εt).

The probability of choosing j at time t conditional on xt, pjt(xt), is found by taking dojt(xt, εt) and

integrating over εt:

pjt(xt) ≡
∫
dojt (xt, εt) g (εt) dεt (2)

We then define pt(xt) ≡ (p1t(xt), . . . , pJt(xt)) as the vector of conditional choice probabilities.

Denote Vt(xt), the (ex-ante) value function in period t, as the discounted sum of expected future

payoffs just before εt is revealed and conditional on behaving according to the optimal decision rule:

Vt(xt) ≡ E

{
T∑
τ=t

J∑
j=1

βτ−tdojτ (xτ , ετ ) (ujτ (xτ ) + εjτ )

}

Given state variables xt and choice j in period t, the expected value function in period t + 1,

discounted one period into the future is:

β
X∑

xt+1=1

Vt+1(xt+1)fjt (xt+1|xt)
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Under standard conditions, Bellman’s principle applies and Vt(xt) can be recursively expressed as:

Vt(xt) = E

{
J∑
j=1

dojt (xt, εt)

[
ujt(xt) + εjt + β

X∑
xt+1=1

Vt+1(xt+1)fjt (xt+1|xt)

]}

=
J∑
j=1

∫
dojt (xt, εt)

[
ujt(xt) + εjt + β

X∑
xt+1=1

Vt+1(xt+1)fjt (xt+1|xt)

]
g (εt) dεt (3)

where the second line integrates out the disturbance vector εt. We then define the choice-specific

conditional value function, vjt(xt), as the flow payoff of action j without εjt plus the expected future

utility conditional on following the optimal decision rule from period t+ 1 on:1

vjt(xt) = ujt(xt) + β
X∑

xt+1=1

Vt+1(xt+1)fjt (xt+1|xt) (4)

3 Identification in Single Agent Settings

Let T ≤ T denoted the date the panel ends. We differentiate between two scenarios. When

T = T < ∞, or when T = ∞ and the environment is stationary, we extend the results of and

Thesmar (2002) and Pesendorfer and Schmidt-Dengler (2008), who analyze identification when the

conditional choice probabilities are known. Identification when T < T < ∞, or T = ∞ and the

environment is nonstationary, is trickier. In this case the method of solving and imposing the

solution of the underlying discrete choice problem on the data generating process is not feasible

without making strong parametric assumptions about features of the framework that affect the

flow payoffs and state variable transitions between dates T and T . We show, however, that the

model is partially identified under much weaker assumptions involving specializations of the finite

dependence property.

We adopt several normalizations commonly made in the static and dynamic discrete choice

literature. Since only choices are observed rather than utility levels, we normalize the flow payoff

1For ease of exposition we refer to vjt(xt) as the conditional value function in the remainder of the paper.
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function for one of the choices to zero in every time period, setting u1t(xt) = 0 for all xt and t.2

Absent observations on utility, we also assume the distribution of the transitory vector of shocks,

G (εt), is known. Finally because the time-subscripted utility functions depend in an unrestricted

way upon the time period, the subjective discount factor β must also be normalized.3

Our identification results follow from the representation theorems given in Arcidiacono and

Miller (2011). Lemma 1 of Arcidiacono and Miller (2011) shows that the value function given in

(3) can be expressed as a function of the conditional choice probabilities, pt(xt) and one conditional

value function, vjt(xt). Specifically they show the there exists a real-valued function ψj for every

j ∈ {1, . . . , J} such that:

ψj[pt(xt)] ≡ Vt(xt)− vjt(xt) (5)

Substituting (5) into the right hand side of (4) we obtain:

vjt(xt) = ujt(xt) + β
X∑

xt+1=1

[vkt+1(xt+1) + ψk [pt+1(xt+1)]] fjt (xt+1|xt) (6)

Equation (6) shows that the conditional value function can be expressed as the flow payoff of the

choice plus a function of the one period ahead conditional choice probabilities and the one period

ahead conditional value function for any choice.

Arcidiacono and Miller use this result to show that the value function can be expressed as a

function of the flow payoffs associated with any decision rule that covers period t to T plus functions

of the conditional choice probabilities. Consider a sequence of decisions from t to T . The first choice

in the sequence is the initial choice j which sets d∗jt(xt, j) = 1. For periods τ ∈ {t+ 1, . . . , T}, the

2As noted by Pesendorfer and Schmidt-Dengler (2008, page 913), in some situations, such when a firm exits

an industry, the future value of the choice to exit may be known, providing an empirical justification for the

normalization.
3Later in the paper we show how exclusion restrictions can be used to recover β and components of the utility

levels of the normalized choice.
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choice sequence maps xτ and the initial choice j into d∗τ (xτ , j) ≡ {d∗1τ (xτ , j), . . . , d∗Jτ (xτ , j)}. The

choices in the sequence then must satisfy d∗kτ (xτ , j) ≥ 0 and
∑J

k=1 d
∗
kτ (xτ , j) = 1. Note that the

choice sequence can depend upon new realizations of the state and may also involve mixing over

choices.

Now consider the probability of being in state xτ+1 conditional on following the choices in the

sequence. Denote this probability as κ∗τ (xτ+1|xt, j) which is recursively defined by:

κ∗τ (xτ+1|xt, j) ≡


fjt(xt+1|xt) for τ = t∑X

xτ=1

∑J
k=1 d

∗
kτ (xτ , j) fkτ (xτ+1|xτ )κ∗τ−1(xτ |xt, j) for τ = t+ 1, . . . , T

(7)

The future value term can now be expressed relative to the conditional value functions for the

choices in the sequence. Theorem 1 of Arcidiacono and Miller (2011) shows that continuing to

express the future value term relative to the value of the next choice in the sequence yields an

alternative expression for vjt(xt):

vjt(xt) = ujt(xt) +
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t [ukτ (xτ ) + ψk[pτ (xτ )]] d
∗
kτ (xτ , j)κ

∗
τ−1(xτ |xt, j) (8)

Note this expression holds for any decision sequence. It is this representation that we exploit in

showing identification.

Before doing so, however, we slightly relax Theorem 1 of Arcidiacono and Miller (2011). Namely,

the only requirement we place on d∗kτ (xτ , j) is that
∑J

k=1 d
∗
kτ (xτ , j) = 1. That is, we can place

negative weights on particular choice paths so long as the sum of the weights equals one in every

time period.

Lemma 1 vjt(xt) can be expressed as in (8) for all decision sequences such that
∑J

k=1 d
∗
kτ (xτ , j) = 1

for all τ .

As shown below, applying negative weights can be useful in establishing identification for some

problems.
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3.1 When the setting is stationary or T = T

Building on the results of Magnac and Thesmar (2002), we begin by showing how to recover

flow payoff functions when the sampling period is the same as the horizon or when the problem is

stationary. Theorem 2 and Corollary 3 of Magnac and Thesmar (2002, pages 807 and 808) establish

exact identification of the differences in conditional value functions when T is finite. An equivalent

result holds for the identification of flow utilities. Let d∗1τ (xτ ) = 1 for all τ in equation (8) and

subtract v1t(xt) from vjt(xt) to obtain:

vjt(xt)− v1t(xt) = ujt(xt) +
T∑

τ=t+1

X∑
xτ=1

βτ−tψ1[pτ (xτ )]
[
κ∗τ−1(xτ |xt, j)− κ∗τ−1(xτ |xt, 1)

]
(9)

An alternative expression for this difference can be obtained by differencing the expressions for

ψ1(xt) and ψt(xt) given in equation (5):

vjt(xt)− v1t(xt) = ψ1[pt(xt)]− ψj[pt(xt)] (10)

As shown in Theorem 1 below, the two expressions for vjt(xt) − v1t(xt) can then be used to

form expressions for ujt(xt) as a function of the transition probabilities, the conditional choice

probabilities, and the discount factor. Further, Theorem 1 shows how the problem simplifies in

the stationary case where the time subscripts are dropped from the flow payoffs and the transition

functions and when the time horizon is infinite.

Theorem 1 For all j, t, and xt, the flow payoff ujt(xt) can be expressed as.

ujt(xt) = ψ1[pt(xt)]− ψj[pt(xt)] +
T∑

τ=t+1

X∑
xτ=1

βτ−tψ1[pτ (xτ )]
[
κ∗τ−1(xτ |xt, 1)− κ∗τ−1(xτ |xt, j)

]
(11)

When the environment is stationary, let I denote the X dimensional identity matrix and define

uj ≡


uj(1)

...

uj(X)

 , Fj ≡


fj(1|1) . . . fj(X|1)

...
. . .

...

fj(1|X) . . . fj(X|X)

 , Ψj ≡


ψj[p(1)]

...

ψj [p(X)]


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Then [I − βF1] is invertible and for all j:

uj = Ψj −Ψ1 + β (F1 −Fj) [I − βF1]
−1 Ψ1 (12)

Given the assumptions made at the beginning of this section regarding the state transitions,

conditional choice probabilities, the discount factor, and the distribution of the structural errors,

everything on the right hand side of both (11) and (12) is known and, therefore, both systems

are exactly identified. However, by putting further structure on the flow payoff function, the error

distribution can be made more flexible and the discount factor may be identified.

3.2 When the setting is nonstationary and T < T

When no data on choices or state transitions are available for the last part of the lifecycle, the

expressions derived above cannot aid identification, because there are no conditional choice proba-

bilities or transition functions past T . In this section we show two cases where it is is possible to

recover the same flow payoffs as in section 3.1 until time T − 1. We then show for an expanded

class of models that it is possible to recover flow payoffs when the flow payoff function does not

depend on time directly, but only through the values of the states.

3.2.1 Renewal and terminal choices

The first case where identification can be restored for payoff functions until T −1 is when there is a

terminal choice–a choice where no future decisions are made. Normalize the payoff of the terminal

choice to zero. Since the value function can be expressed relative to the conditional value functions

for one of the choices plus a function of the conditional choice probabilities, we can express the value

function relative to the conditional value function of the terminal choice. But since the terminal

choice has no future component, the conditional value function is zero.
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A second case occurs when there is a renewal action, an action which, when taken, resets the

states that were influenced by past actions. An example is the bus-engine replacement problem

in Rust (1987). Replacing the engine resets the bus mileage regardless of when the engine was

replaced previously. Labeling the renewal action as action 1, a renewal action at t+ 1 satisfies:

X∑
xt+1=1

f1,t+1(xt+2|xt+1)fjt(xt+1|xt) =
X∑

xt+1=1

f1,t+1(xt+2|xt+1)fj′t(xt+1|xt) (13)

for all xt and all {j, j′} ∈ [1, . . . , J ].

We normalize the flow payoff of the renewal action in each time period to zero. Expressing the

future value term for the flow payoff at time t for action j relative to the renewal choice implies (4)

can be written as:

vjt(xt) = ujt(xt) + β
X∑

xt+1=1

[v1t+1(xt+1) + ψ1 [pt+1(xt+1)]] fjt (xt+1|xt) (14)

= ujt(xt) + β
X∑

xt+1=1

[
ψ1 [pt+1(xt+1)] +

X∑
xt+2=1

βVt+2(xt+2)f1t+1(xt+2|xt+1)

]
fjt (xt+1|xt)

Expressing v1t(xt) in a similar way implies that the period t+2 value function on the right hand

side of (14) will enter in the same way in the two expressions. Differencing the two expressions,

rearranging terms, and substituting in for vjt(xt)− v1t(xt) with (10) yields:

ujt(xt) = ψ1[pt(xt)]− ψj[p1(xt)] +
X∑

xt+1=1

βψ1[pt+1(xt+1)] [f1t(xt+1|xt)− fjt(xt+1|xt)] (15)

Given known functional forms for ψ, the conditional choice probabilities through T , and β, the

flow payoffs up until T − 1 are identified. The reason the flow payoffs for T are not identified is

that we need the one-period-ahead conditional choice probabilities and the data only extend until

T .

Example 1: Exclusion restrictions and identification of β
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Note that identification at this point has not relied on the presence of exclusion restrictions:

the same variables that affect the transitions of the states also affect the flow payoffs. Suppose we

can partition the state vector x into a set of variables that affect both the flow payoffs, x1, and

a set that affect both the flow payoffs and the transitions, x2. In this case, we can use exclusion

restrictions to potentially identify discount factor or the normalized flow payoffs as in Norets and

Tang (2012). Here we show that when an exclusion restriction is present and there is a renewal

choice, there is a closed form expression for β and β is over-identified.

Consider the set of individuals whose state variables at time t have the same values of x1t. Now

consider two different values of x2t, x
A
2t and xB2t. Differencing (15) across the two different values of

x2t yields:

0 = ψ1[pt(x1t, x
A
2t)]− ψj[pt(x1t, xA2t)] +

X∑
xt+1=1

βψ1[pt+1(xt+1)]
[
f1t(xt+1|x1t, xA2t)− fjt(xt+1|x1t, xA2t)

]
+ ψj[pt(x1t, x

B
2t)]− ψ1[pt(x1t, x

B
2t)] +

X∑
xt+1=1

βψ1[pt+1(xt+1)]
[
fjt(xt+1|x1t, xB2t)− f1t(xt+1|x1t, xB2t)

]
Solving for β yields:

β =
ψ1[pt(x1t, x

A
2t)]− ψj[pt(x1t, xA2t)] + ψj[pt(x1t, x

B
2t)]− ψ1[pt(x1t, x

B
2t)]∑X

xt+1=1 ψ1[pt+1(xt+1)] [fjt(xt+1|x1t, xA2t)− f1t(xt+1|x1t, xA2t) + f1t(xt+1|x1t, xB2t)− fjt(xt+1|x1t, xB2t)]
(16)

3.2.2 Under-identification and stability of the payoff function

Absent a renewal or terminal choice, we cannot establish identification of the flow payoffs for the

first T − 1 periods. However, we can describe the degree of under-identification. In particular,

similar to Magnac and Thesmar (2002), we show under-identification relative to the value function

at T + 1.

Given that we do not see state transitions and conditional choice probabilities after T , we
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express ujt as in (11) relative to choice 1 (the normalized choice) for the first T periods and then

use the value function at T + 1. This leads to the following expression for ujt:

ujt(xt) = ψ1[pt(xt)]− ψj[pt(xt)] +
T∑

τ=t+1

X∑
xτ=1

βτ−tψ1[pτ (xτ )]
[
κ∗τ−1(xτ |xt, 1)− κ∗τ−1(xτ |xt, j)

]
+

X∑
xT+1=1

VT +1(xT +1)] [κ∗T (xT +1|xt, 1)− κ∗T (xT +1|xt, j)] (17)

Note that is is the last term that leads to under-identification, the degree of which is specified in

theorem 2.

Theorem 2 Given β, G(ε) and u1t(xt) = 0 for all t and xt, the degree of under-identification for

the first T flow payoffs is at most X − 1.

Progress can be made, however, when the payoff function is stable over time, ujt(x) = ujt′(x)

for all t, t′ and for all j ∈ [1, . . . , J ]. In this case the non-stationarity comes from either the state

transitions or the time horizon.

To illustrate the nature of identification in the case where there are incomplete histories, suppose

there are only two choices each period, and the data covers two periods, t and t+1. We now assume

u2t(x) = u2t+1(x) = u2(x) for all x ∈ {1, . . . , X} and adopt the normalization u1t(x) = u1t+1(x) = 0.

Applying Theorem 1 to the second period:

u2(x) = ψ1[pt+1(x)]− ψ2[pt+1(x)] +
X∑
x′=1

βV3(x
′) [f1t+1(x

′|x)− f2t+1(x
′|x)]

= ψ1[pt+1(x)]− ψ2[pt+1(x)] +
X−1∑
x′=1

βVt+2(x
′) [f1t+1(x

′|x)− f2t+1(x
′|x)] (18)
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Applying Theorem 1 to the first and second periods:

u(x) = ψ1[pt(x)]− ψ2[pt(x)]

+
X∑
x′=1

βψ1[pt+1(x
′)] [f1t(x

′|x)− f2t(x′|x)] +
X∑
x′=1

β2Vt+2(x
′)
[
κ∗t+1(x

′|x, 1)− κ∗t+1(x
′|x, 2)

]
= ψ1[pt(x)]− ψ2[pt(x)] (19)

+
X−1∑
x′=1

βψ1[pt+1(x
′)] [f1t(x

′|x)− f2t(x′|x)] +
X−1∑
x′=1

β2Vt+2(x
′)
[
κ∗t+1(x

′|x, 1)− κ∗t+1(x
′|x, 2)

]
Subtracting the first equation (18) from the second (19) yields:

ψ1[pt+1(x)]− ψ2[pt+1(x)] +
X−1∑
x′=1

βVt+2(x
′) [f1t+1(x

′|x)− f2t+1(x
′|x)]

= ψ1[pt(x)]− ψ2[pt(x)] +
X−1∑
x′=1

βψ1[pt+1(x
′)] [f1t(x

′|x)− f2t(x′|x)]

+
X−1∑
x′=1

β2Vt+2(x
′)
[
κ∗t+1(x

′|x, 1)− κ∗t+1(x
′|x, 2)

]
for each x ∈ {1, . . . , X} , and collecting terms:

X−1∑
x′=1

Vt+2(x
′)
[
βf1t+1(x

′|x)− βf2t+1(x
′|x)− β2κ∗t+1(x

′|x, 1) + β2κ∗t+1(x
′|x, 2)

]
= ψ1[pt(x)]− ψ2[pt(x)]− ψ1[pt+1(x)] + ψ2[pt+1(x)]

+
X−1∑
x′=1

βψ1[p2(x
′)] [f1t(x

′|x)− f2t(x′|x)]
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We write the X − 1 dimensional vectors:

Vt+2 ≡


Vt+2 (1)

...

Vt+2 (X − 1)



Ψ ≡



ψ1[pt (1)]− ψ2[pt (1)]− ψ1[pt+1 (1)] + ψ2[pt+1 (1)]

+
∑X−1

x′=1 βψ1[pt+1(x
′)] [f1t(x

′|1)− f2t(x′|1)]

...

ψ1[pt (X − 1)]− ψ2[pt (X − 1)]− ψ1[pt+1 (X − 1)] + ψ2[pt+1 (X − 1)]

+
∑X

x′=1 βψ1[pt+1(x
′)] [f1t(x

′|X − 1)− f2t(x′|X − 1)]


and the X dimensional square matrix:

A ≡


A(1,1) . . . A(1,X−1)

...
. . .

...

A(X−1,1) . . . A(X−1,X−1)


where:

A(x,x′) ≡
[
βf1t+1(x

′|x)− βf2t+1(x
′|x)− β2κ∗t+1(x

′|x, 1) + β2κ∗t+1(x
′|x, 2)

]
In matrix form now:

Ψ = AVt+2

so if A is invertible

Vt+2 = A−1Ψ

and hence

u2(x) = ψ1[pt+1(x)]− ψ2[pt+1(x)] +
X−1∑
x′=1

βVt+2(x
′) [f1t+1(x

′|x)− f2t+1(x
′|x)]

= ψ1[pt+1(x)]− ψ2[pt+1(x)] +
X−1∑
x′=1

β (F1x − F2x)A
−1Ψ
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where

Fjx = (fjt+1(1|x) . . . fjt+1(X − 1|x))

So the question of identification turns on the invertibility of A. Note the elements of A are solely

mappings from the transitions, model primitives, not conditional choice probabilities.

3.2.3 Finite dependence

While identification may be achieved in non stationary models where the flow payoffs are stable,

establishing identification may be impractical due to having to invert a matrix with dimension

equal to the size of the state space. We next consider a class of models that satisfy an expanded

version of the finite dependence property of Arcidiacono and Miller (2011). We show that exploiting

the finite dependence property can often make it much easier to establish identification as well as

showing how to construct finite dependence paths.

Recall that Arcidiacono and Miller (2011) Theorem 1 established that the future utility term

could be expressed as a sequence of flow payoffs from any decision rule plus a function of the

conditional choice probabilities. Lemma 1 expanded the decision rules such that the weight on a

particular choice in a particular state could be negative as long as the sum of weights on all choices

conditional on a particular state sum to one.

Consider two sequences of decision weights, one that begins with choice j and the other with

choice j′. We say that the pair of choices {j, j′} exhibits ρ-period dependence at state xt if there

exists sequences of decision weights from j and j′ such that:

κ∗t+ρ(xt+ρ+1|xt, j) = κ∗t+ρ+1(xt+ρ+1|xt, j′) (20)

for all xt+ρ+1. That is, the probabilities of being in each state are the same across the two paths

after ρ periods. Under finite dependence, and assuming stability of the payoff function over time,
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uj(xt) can be expressed as:

uj(xt) = ψ1[pt(xt)]−ψj[pt(xt)]+
t+ρ∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t {uk(xτ ) + ψk[pτ (xτ )]} [κ∗τ (xτ |xt, j)− κ∗τ (xτ |xt, 1)]

(21)

We then have the following identification results:

Theorem 3 If there there exists decision sequences for all pairs choices {1, j}, j ∈ [2, . . . , J ] and

for all xt, such that for some ρ (20) holds, then uj(xt) is identified for all j > 1 and all xt subject

to a rank condition when T > ρ.

Corollary 4 If there exists decision sequences for some pairs of choices {1, j}, j ∈ [2, . . . , J ] and

for all xt such that for some ρ (20) holds and the decision sequences only include choices where there

exists sequences such that (20) holds for ρ, then the flow payoffs for those choices are identified for

all xt subject to a rank condition when T > ρ.

The first corollary establishes that when all choices exhibit finite dependence relative to choice

1 then all flow payoff terms can be covered if a rank condition is satisfied. The second corollary

states that identification of some of the flow payoff terms can be achieved even if all choices do

not exhibit finite dependence relative to choice 1. Namely, if the finite dependence paths for the

choices do not involve the choice where there is no finite dependence path, identification of the flow

payoffs for choices that do have finite dependence paths is preserved.

Note that, in contrast to previous examples, flow payoff terms are on both sides of (21). Note

further that there are (J − 1)× (T − ρ)×X equations but only (J − 1)×X unknowns. Hence, if

a rank condition on the equations is met and conditional on one flow payoff being normalized, the

remaining flow payoff terms may be recovered. Further, since the number of equations exceed the
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number of unknowns, it may also possible to parameters such as the flow payoffs of the normalized

choice for some states, the discount factor, or the correlation patterns of the structural errors.

Example 2: Identification in a non-stationary search model

To illustrate how non-stationarity helps with identification as well as showing how negative

weights are useful in obtaining finite dependence, we consider a simple search model. In each

period t, t ∈ [1, . . . , T ] an individual receives a job offer with probability λ. When the individual

receives an offer, he can either stay home or accept the offer, d1t = 1 and d2t = 1 respectively. The

value of the offer depends on the experience of the individual, x ∈ [0, . . . , X]. If the individual

accepts the offer, his experiences increases by one unit with probability πt > 0 and remains at

the current level otherwise. Jobs last only one period so the dynamics of the model come strictly

through experience.4 An individual who does not receive an offer must set d1t = 1. As above, we

assume that ujt(xt) = uj(xt) for all t.

This example satisfies the finite dependence property but not through a renewal action. Consider

the sequence of choices d2t = 1, d1t+1 = 1. Note that this sequence of choices is feasible because

the option of staying home is available regardless of whether the individual receives an offer. Now

consider the sequence beginning with d1t = 1. With probability (1− λ) the individual must choose

d1t+1 = 1. However, we can line up the probabilities of each experience level across the two paths

by weighting d2t+1 = 1 by π1/(λπt+1) along the path where the offer occurs. Note that this weight

can be greater than one, implying a negative weight on d1t+1 = 1 along the path where an offer

arrives at t + 1. Using these finite dependence paths, we show that the flow payoff for only one

4The example can easily be extended to the case where the individual can choose to stay with his current job.

We focus on the simpler case here for ease of exposition.
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state-choice combination needs to be normalized. Hence, not only does a finite dependence path

exist, but the non-stationarity results in baseline utilities being recovered for all states but one.

Theorem 5 Given conditional choice probabilities pjt(xt) for all j, t ∈ [1, . . . , T ] and xt ∈ [0, . . . , X],

given the distribution of the ε’s and β, and setting u1(0) = 0, uj(x) is identified for all j, x, as long

as T ≥ 2 and πt 6= πt′ for some pair {t, t′} ∈ [1, . . . , T ].

The intuition behind the proof is that we can consider two individuals with the same values of x

but in different time periods. By writing out the finite dependence paths for the two time periods,

we can see that the two equations are not redundant and can solve for closed form expressions of the

payoffs for every state-choice combination subject to normalizing the payoffs for one state-choice

combination to zero.

3.2.4 Establishing Finite Dependence

In the previous section we established identification conditional on finite dependence holding. Here

we establish conditions under which finite dependence holds for a pair of choices {j, j′}. In the

process, we also show simple ways of checking for finite dependence.

Define Kτ (j, xt) as an N∗τ+1(j, xt) vector containing the probabilities of transitioning to each of

the N∗τ+1(j, xt) attainable states given the choice sequence beginning with j and state xt. Denote

D∗kτ+1(j) as a vector giving the weight placed on choice k ∈ [1, . . . , J ] for each of the Nτ+1(j)
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possible states at t+ 1. Let Dτ+1(j) be a (J − 1)Nτ+1(j, xt) vector defined by:

Dτ+1(j) =



D∗2τ+1(j, xt) ◦ Kτ (j, xt)

...

D∗kτ+1(j, xt) ◦ Kτ (j, xt)

...

D∗Jτ+1(j) ◦ Kτ (j, xt)


where ◦ refers to element-by-element multiplication.

Denote Fkτ+1(j) as an Nτ+1(j) × (N∗τ+2 − 1) which gives the probability of transitioning from

each of the Nτ+1(j) attainable states given initial choice j to the N∗τ+2−1 attainable states at τ +2

given either initial choice j or j′. Define Fτ+1(j) as an (N∗τ+2− 1)× ((J − 1)Nτ+1(j)) matrix given

by:

Fτ+1(j) =



F2τ+1(j)− F1τ+1(j)

...

Fkτ+1(j)− F1τ+1(j)

...

FJτ+1(j)− F1τ+1(j)



T

Theorem 6 If the rank of

[
Fτ+1(j, xt) −Fτ+1(j

′, xt)

]
is N∗τ+2 − 1 then finite dependence can

be achieved in τ − t+ 1 periods.

The proof for Theorem 6 shows that the N∗τ+2 − 1 system of equations we need to solve can be

expressed as:

[
Fτ+1(j, xt) −Fτ+1(j

′, xt)

] Dτ+1(j, xt)

Dτ+1(j
′, xt)

 = F1τ+1(j
′, xt)

TKτ (j′, xt)− F1τ+1(j, xt)
TKτ (j, xt)

(22)
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4 Games

4.1 Multi-agent framework

In the games setting, we assume that there are I players making choices in periods [1, . . . , T ],

T ≤ ∞. The systematic part of payoffs to the ith player not only depends on his own choice in period

t, denoted by d
(i)
t ≡

(
d
(i)
1t , . . . , d

(i)
Jt

)
, the state variables xt, but also the choices of the other players,

which we now denote by d
(−i)
t ≡

(
d
(1)
t , . . . , d

(i−1)
t , d

(i+1)
t , . . . , d

(I)
t

)
. Denote by U

(i)
jt

(
xt, d

(−i)
t

)
+ ε

(i)
jt

the current utility of agent i in period t, where ε
(i)
jt is an identically and independently distributed

random variable that is private information to the firm. Although the players all face the same

observed state variables, these state variables will affect each of the players in different ways. For

example, a characteristic of player i may affect the payoff for player i differently than a characteristic

of player i′. Hence, the payoff function is superscripted by i.

Players make simultaneous choices in each period. We denote Pt

(
d
(−i)
t |xt

)
as the probability

firm i’s competitors choose d
(−i)
t at time t conditional on the state variables xt. Since ε

(i)
t is

independently distributed across all the firms, Pt

(
d
(−i)
t |xt

)
has the product representation:

Pt

(
d
(−i)
t |xt

)
=

I∏
i′=1
i′ 6=i

(
J∑
j=1

d
(i′)
jt p

(i′)
jt (xt)

)
(23)

We impose rational expectations on the player’s beliefs about the choices of its competitors

and assume a Markov-perfect equilibrium is played. Hence, the beliefs of the firm match the

probabilities given in equation (23). Taking the expectation of U
(i)
jt

(
xt, d

(−i)
t

)
over d

(−i)
t , we define

the systematic component of the current utility of firm i as a function of the firm’s state variables

as

u
(i)
jt (xt) =

∑
d
(−i)
t ∈JI−1

Pt

(
d
(−i)
t |xt

)
U

(i)
jt

(
xt, d

(−i)
t

)
(24)
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The values of the state variables at period t + 1 are determined by the period t choices by all

the players as well as the period t state variables. Denote Fjt

(
xt+1

∣∣∣xt, d(−i)t

)
as the probability of

xt+1 occurring given action j by firm i in period t, when its state variables are xt and the other

firms in its markets choose d
(−i)
t . The probability of transitioning from xt to xt+1 given action j by

firm i in then given by:

f
(i)
jt (xt+1 |xt ) =

∑
d
(−i)
t ∈JI−1

Pt

(
d
(−i)
t |xt

)
Fjt

(
xt+1

∣∣∣xt, d(−i)t

)
(25)

The expressions for the conditional value functions for player i are then no different than what

was described in Section 3 subject to the fact that we are now working with expected flow payoffs

where the expectation is taken over the decisions of the other palavers. Equation (6) is modified

in the games environment to:

v
(i)
jt (xt) = u

(i)
jt (xt) + β

X∑
xt+1=1

[
v
(i)
kt (xt+1) + ψk

[
p
(i)
t (xt+1)

]]
f
(i)
jt (xt+1|xt) (26)

where k indexes any feasible choice in period t+ 1.

As in Section 3, we can then consider a sequence of decisions by player i from t to T and the

corresponding probabilities of being in each state given this sequence. Denote the first choice in

the sequence as j and denote d
∗(i)
kτ (xτ , j) as the mixing weight placed on choice k at time τ , given

that the sequence began with choice j and the state is xτ . The probability of being in state xτ+1

conditional on following the choices in the sequence can then be defined recursively in a similar

manner to equation (7):

κ∗(i)τ (xτ+1|xt, j) ≡


f
(i)
jt (xt+1|xt) for τ = t∑X
xτ=1

∑J
k=1 d

∗(i)
kτ (xτ , j) f

(i)
kτ (xτ+1|xτ )κ∗(i)τ−1(xτ |xt, j) for τ = t+ 1, . . . , T

(27)

Our discussion of identification in multi-agent settings is then broken down into two parts.

First, is non-parametric identification of the expected payoffs. Here, the same results as in the
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single agent setting apply, though satisfying finite dependence may be more difficult. Second is

disentangling the state-specific payoffs from the expected payoffs of a particular action.

4.2 Identification of expected payoffs when the environment is station-

ary

When the environment is stationary, identification of expected utility can be shown as a simple

extension of Theorem 1 , assuming that only one equilibrium is played in the data. As in the

single agent setting, we normalize the expected payoff for one of the choices to be zero.5 Without

loss of generality, label this assumption as choice 1. Given this normalization, we can express the

conditional value function for any choice as the flow payoff for that choice plus functions of the

conditional choice probabilities and state transitions, yielding the following theorem:

Theorem 7 Let I denote the X dimensional identity matrix and define

u
(i)
j ≡


u
(i)
j (1)

...

u
(i)
j (X)

 , F
(i)
j ≡


f
(i)
j (1|1) . . . f

(i)
j (X|1)

...
. . .

...

f
(i)
j (1|X) . . . f

(i)
j (X|X)

 , Ψ
(i)
j ≡


ψ

(i)
j [p(1)]

...

ψ
(i)
j [p(X)]


Then

[
I − βF (i)

1

]
is invertible and for all j:

u
(i)
j = Ψ

(i)
j −Ψ

(i)
1 + β

(
F (i)

1 −F
(i)
j

) [
I − βF (i)

1

]−1
Ψ

(i)
1 (28)

where F (i) and Ψ(i) are evaluated using the choice probabilities for the equilibrium played in the

data.

5We relax this assumption in some of the non-stationary cases we describe below.
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4.3 Terminal and renewal actions

When the environment is non-stationary, the infinite horizon implies immediately that the problem

is severely under-identified. However, as in the single agent case, there are two scenarios under

which a subset of the expected payoff functions can be identified: where there is a terminal or a

renewal action. Many problems in industrial organization have a terminal choice such as games

where there is an exit decision. For renewal, there must be a way for one of the agents to reset the

state for all players. As in the single agent setting, label the renewal action as action 1 where a

renewal action at time t+ 1 satisfies:

X∑
xt+1=1

f
(i)
1,t+1(xt+2|xt+1)f

(i)
jt (xt+1|xt) =

X∑
xt+1=1

f
(i)
1,t+1(xt+2|xt+1)f

(i)
j′t (xt+1|xt) (29)

for all xt and all {j, j′} ∈ [1, . . . , J ]. When there is either a terminal or renewal choice, a subset of

the expected payoff functions are identified, subject to standard normalizations.

Theorem 8 When (29) holds or when there is a choice such that no further decisions are made,

J − 1× T − 1×X expected payoffs are identified.

Note that embedded in f
(i)
1,t+1(xt+2|xt+1) are how the state transitions are affected by the deci-

sions by the other players. Renewal can still occur, however, when a decision by the agent makes

the past decisions of the other players irrelevant. An example is making a decision to adopt a

frontier technology, rendering the technologies of the other firms obsolete.

4.4 Finite dependence and games

We now apply our finite dependence results to games. Similar to the single agent case, a pair of

choices {j, j′} exhibits ρ-period dependence at state xt if there exists a sequence of choices from j
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and j′ such that:

κ
∗(i)
t+ρ(xt+ρ+1|xt, j) = κ

∗(i)
t+ρ(xt+ρ+1|xt, j′) (30)

Showing a model exhibits finite dependence becomes complicated because the decisions of a

player today affects the decisions of the other players tomorrow. However, for many games settings

the structure of the game gives a natural way of obtaining finite dependence. The structure we

have considered is one in which the current action of the player does not affect the choices of the

other players. The basic idea for games is to first line up the states of the other players through

the period t+ 1 action and then line up the agent’s state at t+ 2, assuming the agent can line up

his own state in one period.

Note that F (i)
t+1(j) contains transition probabilities from t + 1 to t + 2 given initial choice j by

player i. Note also that the choice of one’s competitors at t + 2 does not depend on the player’s

choice at t + 2 except through expectations over the choice conditional on the state. What we

would like is that the choice at t+ 2 of one’s competitors lines up the competitors’ states at t+ 3.

Denote N∼it+3 as all possible competitor states that can result from choice sequences beginning with

j or j′. Denote P∼it+2 as the transpose of the transition matrix from N∗t+2 feasible period 2 states to

the N∼it+3 − 1 competitor states at t+ 3.

P∼it+2

[
F (i)
t+1(j) −F

(i)
t+1(j

′)

] D
(i)
t+1(j)

D(i)
t+1(j

′)

 = P∼it+2

[
F

(i)
1t+1(j

′)TF
(i)
j′t (xt)− F

(i)
1t+1(j)

TF
(i)
jt (xt)

]
(31)

This leaves us with an N∼it+3 − 1 system of equations. If the rank of P∼it+2

[
F (i)
t+1(j) −F

(i)
t+1(j

′)

]
=

N∼it+3 − 1, then we have a sufficient condition for competitor states lining up at t+ 2. If we further

assume that one’s own state can be lined up with the period t+ 2 decision, we are done.

Example 4: Finite dependence in a coordination game
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We now give an example of how to construct finite dependence sequences in a games environ-

ment. The game we consider has two players, each of whom can decide whether or not to compete

in the market. When d
(i)
1t = 1 player i does not compete at time t and the flow payoff i receives is

ε
(i)
1t . Note that this payoff does not depend on the other player’s choice, nor does it depend on past

choices of player i. The expected payoff for entering at time t, d
(i)
2t = 2, is given by u

(i)
2t (xt) where

xt are the relevant state variables. In this case, the dynamics come through the expected payoffs

depending on the decisions to compete in the previous period, xt = {d(1)2t−1, d
(2)
2t−1}. The expected

payoffs for competing are given by:

u
(i)
2t (xt) =

2∑
j=1

p
(i)
jt (xt)U

(i)
2t

(
d
(i)
2t−1, j

)
+ ε

(i)
2t (32)

where the flow payoff for entering is allowed to vary over time.

Per the discussion above, the first step in establishing finite dependence is choosing weights on

the decisions at t + 1 such that after the t + 2 decision the competitor’s states will be the same

across the two choice paths. In this case, there is only one competitor state variable which is

whether or not the competitor will be in the market at t + 2. Hence, the number of rows in P(2)
t+2

is one, implying that as long as the one of the columns of P(2)
t+2

[
Ft+1(1) −Ft+1(2)

]
is not zero,

there exists a choice path such that the expected probability of the competitor begin in the market

after the period t+ 2 decision in the same across the initial choice of being in or out of the market

at period t. Further, we can ensure that player 1’s state is the same after the t + 2 decision by

normalizing the t + 2 choice to be the same across the two paths. This has no effect on player 2’s

choice at t+ 2 since it is not one of player 2’s state variables at t+ 2. The following theorem then

establishes that a finite dependence path does indeed exist.

Theorem 9 Finite dependence can be achieved after two periods for all xt
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4.5 Recovery of flow payoffs

Example 5: Unbundling state-specific payoffs in an entry/exit game

To illustrate how non-stationarity aids in the recovery of flow payoffs, we consider an entry/exit

game. Markets can have at most two firms. An incumbent firm can choose to remain in the market

or exit. Exit is a terminal choice. An exiting firm is replaced by a potential entrant in the next

period who faces the choices: remain in the market (enter) or exit. Let d
(i)
jt = 1 if action j is taken

by player i at time t and is zero otherwise. Label exit as action 1 and entry as action 2. The time

horizon is infinite.

The flow payoff of exiting is normalized to ε
(i)
1t , a transitory shock that is private information

to player i. Since it is a terminal choice, there are no future payoffs for exiting. Current period

payoffs for entering or remaining in the market depend on three state variables:

1. whether there is another firm in the market d∼i2t ,

2. whether the firm is an incumbent and therefore does not have to pay the entry cost, di2t,

3. and a discrete market state variable x1t ∈ X with state transitions given by ft(x1t+1|x1t)¿0

for all x1t+1 ∈ X.

Note that the transitions on the market state variable depends on time.

Conditional on the other player’s action, the flow payoff for i at time t for entering the market

is U
(i)
2 (d

(∼i)
2t , d

(i)
t−1, x1t). The expected payoffs of entering depends on the xt ≡

{
d
(∼i)
2t−1, d

(i)
2t−1, x1t

}
. It

is then defined as:

u
(i)
2t (xt) =

∑
j

p
(∼i)
jt (xt)U

(i)
2 (j, d

(i)
2t−1, x1t) (33)
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The total expected payoff for taking action 2 are then given by u
(i)
2t (xt)+ε

(i)
2t where ε

(i)
2t is a transitory

shock to the payoff for action 2 that is private information to player i.

Given exit is a terminal choice, we can express the conditional value function for entering the

market as:

v
(i)
2t (xt) = u

(i)
2t (xt) + β

∑
j

∑
x1t+1

p
(∼i)
jt V

(i)
t+1(j, 1, x1t+1)ft(x1t+1|x1t)

= u
(i)
2t (xt) + β

∑
j

∑
x1t+1

p
(∼i)
jt ψ2

[
p
(i)
t+1(j, 1, x1t+1)

]
ft(x1t+1|x1t) (34)

implying we can express u
(i)
2t (xt) as:

u
(i)
2t (xt) = ψ1t

[
p
(i)
t (xt)

]
− ψ2t

[
p
(i)
t (xt)

]
− β

∑
j

∑
x1t+1

p
(∼i)
jt ψ2

[
p
(i)
t+1(j, 1, x1t+1)

]
ft(x1t+1|x1t) (35)

Note that under our assumptions everything on the right hand side of (35) is known. Substi-

tuting in on the left hand side with (33) yields:

∑
j

p
(∼i)
jt (xt)U

(i)
2 (j, d

(i)
2t−1, x1t) = ψ1t

[
p
(i)
t (xt)

]
−ψ2t

[
p
(i)
t (xt)

]
−β
∑
j

∑
x1t+1

p
(∼i)
jt ψ2

[
p
(i)
t+1(j, 1, x1t+1)

]
ft(x1t+1|x1t)

(36)

There are then two unknowns on the left hand side of equation (36). By evaluating this expression

at a particular value of xt and then using those same values just in a different time period, we

obtain two equations and two unknowns. The following theorem then establishes identification of

the U
(i)
2 ’s:

Theorem 10 Given a known distribution for ε where ε is independent across players and time, β,

u
(i)
1 (x) = ε

(i)
1t , and p

(i)
2t (xt) 6= p

(i)
2t+1(xt), then U

(i)
2

(
j, d

(i)
2t−1, x1t

)
is identified for all j if T ≥ 2.
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5 Conclusion

A Proofs

Proof of Theorem 1. Substituting in for vjt(zt)−v1t(zt) in (9) with the corresponding expression

in (10) implies:

ψ1[pt(zt)]− ψj[pt(zt)] = ujt(zt) +
T∑

τ=t+1

Z∑
zτ=1

βτ−tψ1[pτ (zτ )]
[
κ∗τ−1(zτ |zt, j)− κ∗τ−1(zτ |zt, 1)

]
Solving for ujt(zt) completes the first part of the theorem:

ujt(zt) = ψ1[pt(zt)]− ψj[pt(zt)] +
T∑

τ=t+1

Z∑
zτ=1

βτ−tψ1[pτ (zτ )]
[
κ∗τ−1(zτ |zt, 1)− κ∗τ−1(zτ |zt, j)

]
(37)

To prove the second part, note that the two decision sequences set the initial choices such that

djt = 1 or d1t = 1 and then both decision sequences set d1t′ = 1 for all t′ > t. From the definition

of F1, the columns of F τ
1 gives the probabilities of being in each state after τ periods conditional

choosing alternative 1 in each of those periods. The rows indicate how these probabilities differ

given the initial state. Hence, for τ ≥ 1, the (z, z′) element of F τ
1 is κ∗t+τ−1(z

′|z, 1). Similarly, the

(z, z′) element of FjF
τ is κ∗t+τ−1(z

′|z, j).

Using the matrix notation defined in the theorem, we can express uj as:

uj = Ψj −Ψ1 +
∞∑
τ=1

βτ (F1 − Fj)F τ−1
1 Ψ1 = Ψj −Ψ1 + β (F1 − Fj)

(
∞∑
τ=0

βτF τ
1

)
Ψ1 (38)

Noting that βfj(z
′|z) > 0 for all (j, z, z′) and β

∑Z
z′=1 fj(z

′|z) = β < 1 for all (j, z) , the existence

of [I − βF1]
−1 follows from Hadley (page 118, 1961) with:

Q ≡
∞∑
τ=0

βτF τ
1 = I + βQF1 = [I − βF1]

−1

Substituting the expression for Q into (38) we obtain:

uj = Ψj −Ψ1 + β (F1 − Fj) [I − βF1]
−1 Ψ1
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which proves the theorem.

Proof of Theorem 5.

We first write down the conditional value function for working at time t with zero years of work

experience, v2t(0), normalizing the flow payoff for not working with zero years of work experience

to zero.

v2t(0) = u2(0) + βπt [λVt+1(1) + (1− λ)v1t+1(1)] + β(1− πt) [λVt+1(0) + (1− λ)v1t+1(0)]

= u2(0) + βπt [λψ1(pt+1(1)) + v1t+1(1)] + β(1− πt) [λψ1(pt+1(0)) + v1t+1(0)]

= u2(0) + βπtu1(1) + β(1− πt)u1(0) + βπtλψ1(pt+1(1)) + β(1− πt)ψ1(pt+1(0)) (39)

+β2π1 [λVt+2(1) + (1− λ)v1t+2(1)] + β2(1− π1) [λVt+2(0) + (1− λ)v1t+2(0)]

After expressing the corresponding finite dependence path for an initial decision of staying home,

differencing the two expressions will result in the bottom line of (39) canceling out.

We can express v1t(0) as follows, again treating u1(0) as zero:

v1t(0) = βλ

(
πt

πt+1λ
[ψ2(pt+1(0)) + v2t+1(0)] +

(
1− πt

πt+1λ

)
[ψ1(pt+1(0)) + v1t+1(0)]

)
+ β(1− λ)v1t+1(0)

=
βπt
πt+1

[ψ2(pt+1(0)) + u2(0)] + β2(1− λ) [λVt+2(0) + (1− λ)v1t+2(0)]

+β2πt [λVt+2(1) + (1− λ)v1t+2(1)] +
β2πt(1− πt+1)

πt+1

[λVt+2(0) + (1− λ)v1t+2(0)]

+βλ

(
1− πt

πt+1λ

)
[ψ1(pt+1(0)) + λβVt+2(0) + (1− λ)βv1t+2(0)]

=
βπtu2(0)

πt+1

+
βπtψ2(pt+1(0))

πt+1

+ β

(
λ− πt

πt+1

)
ψ1(pt+1(0)) (40)

+β2πt [λVt+2(1) + (1− λ)v1t+2(1)] + β2(1− πt) [λVt+2(0) + (1− λ)v1t+2(0)]

Differencing (40) from (39) and recognizing that v2t(0)− v1t(0) = ψ1(pt(0))− ψ2(pt(0)) yields:

ψ1(pt(0))− ψ2(pt(0)) = u2(0)

(
1− βπt

πt+1

)
+ βπtu1(1) + βπtλψ1(pt+1(1)) (41)

+β

(
1− λ− πt +

πt
πt+1

)
ψ1(pt+1(0))− βπtψ2(pt+1(0))

πt+1
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Forming the similar difference at t′ yields:

ψ1(pt′(0))− ψ2(pt′(0)) = u2(0)

(
1− βπt′

πt′+1

)
+ βπt′u1(1) + βπt′λψ1(pt′+1(1)) (42)

+β

(
1− λ− πt′ +

πt′

πt′+1

)
ψ1(pt′+1(0))− βπt′ψ2(pt′+1(0))

πt′+1

Since by assumption πt > 0 for all t and πt′ 6= πt, the system of equations defined by (41) and (42)

is of full rank and both u2(0) and u1(1) can be recovered. Then, proceeding by induction we can

recover the remaining flow payoff for experience levels of one and above.

Proof of Theorem 9. We can establish that a finite dependence path exists by showing that

the rank of:

P2
t+2

[
F (1)
t+1(2) −F (1)

t+1(1)

]
is one.

We begin by defining the terms in the above expression:

P(2)
t+2 =

[
p
(2)
2t+2(2, 2) p

(2)
2t+2(2, 1) p

(2)
2t+2(1, 2) p

(2)
2t+2(1, 1)

]
(43)

[
F (1)
t+1(2) −F (1)

t+1(1)

]
=



p
(2)
2t+1(2, 2) p

(2)
2t+1(2, 1) −p(2)2t+1(1, 2) −p(2)2t+1(1, 1)

p
(2)
1t+1(2, 2) p

(2)
1t+1(2, 1) −p(2)1t+1(1, 2) −p(2)1t+1(1, 1)

−p(2)2t+1(2, 2) −p(2)2t+1(2, 1) p
(2)
2t+1(1, 2) p

(2)
2t+1(1, 1)

−p(2)1t+1(2, 2) −p(2)1t+1(2, 1) p
(2)
1t+1(1, 2) p

(2)
1t+1(1, 1)


(44)

These terms will then multiply:

 D
(1)
t+1(2, xt)

D
(1)
t+1(1, xt)

 =



D∗2t+1(2, 2)p
(2)
2t (xt)

D∗2t+1(2, 1)p
(2)
1t (xt)

D∗2t+1(1, 2)p
(2)
2t (xt)

D∗2t+1(1, 1)p
(2)
1t (xt)


(45)
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Since the D∗2t+1’s are weights on choices, we can set the weights on D∗2t+1(1, 2) and D∗2t+1(1, 1) to

zero. Now consider the other two weights. Multiplying the matrices and rearranging terms yields

the following expression:

D∗2t+1(2, 2)p
(2)
2t (xt)

(
p
(2)
2t+2(2, 1)− p(2)2t+2(1, 1) + p

(2)
2t+1(2, 2)

[
p
(2)
2t+2(2, 2) + p

(2)
2t+2(1, 1)− p(2)2t+2(2, 1)− p(2)2t+2(1, 2)

])
+D∗2t+1(2, 1)p

(2)
2t (xt)

(
p
(2)
2t+2(2, 1)− p(2)2t+2(1, 1) + p

(2)
2t+1(2, 1)

[
p
(2)
2t+2(2, 2) + p

(2)
2t+2(1, 1)− p(2)2t+2(2, 1)− p(2)2t+2(1, 2)

])
Note that the expression multiplying each of the D∗2t+1’s are the same except for the weights on the

terms in brackets. Since we have assumed all the states are relevant for the decision, then the term

multiplying D∗2t+1(2, 2) and the term multiplying D∗2t+1(2, 1) cannot both be zero. Hence, there

exist decision weights at t+ 1 such that the probability of each of player 2’s states is the same on

both choice paths. Since player 1’s state will be the same if the same action is chosen on each path

at period t+ 2, the theorem is proved.

Proof of Theorem 10. Denote P (̃i) as a 2× 2 matrix given by:

P (̃i) =

 p
(̃i)
1t (x) p

(̃i)
2t (x)

p
(̃i)
1t+1(x) p

(̃i)
2t+1(x)

 (46)

Noting that xt provides all the relevant state variables expect for the choice of the competitors,

define U
(i)
2 as:

U
(i)
2 =

 U
(i)
2 (1, x)

U
(i)
2 (2, x)

 (47)

Finally, define A as:

A =

 ψ1t

[
p
(i)
t (x)

]
− ψ2t

[
p
(i)
t (x)

]
− β

∑
j

∑
x1t+1

p
(∼i)
jt ψ2

[
p
(i)
t+1(j, 1, x1t+1)

]
ft(x1t+1|x)

ψ1

[
p
(i)
t+1(x)

]
− ψ2

[
p
(i)
t+1(x)

]
− β

∑
j

∑
x1t+2

p
(∼i)
jt+1ψ2

[
p
(i)
t+2(j, 1, x1t+2)

]
ft+1(x1t+2|x)

 (48)

The system of equation is then:

P (̃i)U
(i)
2 = A (49)
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Since by assumption the choice probabilities vary between t and t + 1, the rank of P (̃i), implying

we can invert P (̃i) and solve for U
(i)
2 .
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