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Abstract

A key obstacle to coordination and cooperation in many networked environments is

that behavior in each bilateral relationship is not observable to individuals outside that

relationship: that is, information is local. This paper investigates when players can

use communication to replicate any outcome that would have been sustainable were

this information public. A benchmark result is that if only cheap talk communication

is possible then public information can only be replicated if the network is 2-connected:

that is, if no player can prevent the �ow of information to another. In contrast, the

main result is that public information can always be replicated if in addition to cheap

talk the players have access to undi¤erentiated tokens that can be freely transferred

among neighbors (which bear some resemblance to certain models of �at money). Nec-

essary conditions are provided for such tokens to expand the equilibrium payo¤ set,

relative to what would be achievable without explicit communication or with cheap

talk communication only.
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1 Introduction

Consider three people� 1, 2, and 3� arranged on a line: 1 and 2 have a relationship, and 2

and 3 have a relationship, but 1 and 3 do not. In this situation, 1 and 3 might hope to keep

2 on good behavior by threatening �community enforcement�: if 2 cheats 1, then 3 cheats

2. But if 2 cheats 1, how does 3 �nd out? She doesn�t have a relationship with 1, and 2

clearly can�t be trusted to tell her. So the group has a problem.

In this example, the obstacle to sustaining cooperation is that information about indi-

viduals�past behavior in a bilateral relationship is local : it is common knowledge within the

relationship, but is not observable to outsiders. In addition, letting the players communicate

locally does not enable them to sustain certain outcomes� like �cooperation�� that would

have been sustainable if this information were public to all players. In the language of this

paper, local communication does not replicate public information in these examples.1

The goal of this paper is to compare two communication technologies� cheap talk and

physical tokens� in terms of their ability to replicate public information. I study a fairly

general model of repeated games on networks, in which monitoring is public within relation-

ships but nonexistent across relationships (locally public monitoring), and say that a given

communication technology replicates public information if it enables the players to sustain

any payo¤ vector that would have been sustainable if monitoring were public to all players.

A benchmark result is that if only cheap talk communication with one�s neighbors is available

then public information can be replicated only if the network is 2-connected (i.e., it remains

connected after any node is removed).2 The intuition is simple: under 2-connectedness,

there are always at least two independent paths through which a piece of information can

reach each player, so no single player can prevent information from reaching another (i.e.,

1This informational impediment to community enforcement is potentially widely relevant, as community
enforcement on networks is thought to be a key feature of the economics of risk-sharing (Bloch, Genicot, and
Ray, 2008; Ambrus, Möbius, and Szeidl, 2010), favor-trading (Karlan, Möbius, Rosenblat, and Szeidl, 2009;
Jackson, Rodriguez-Barraquer, and Tan, 2011), and trade without external enforcement (Milgrom, North,
and Weingast, 1990; Dixit, 2003; Greif, 2006).

2This is related to a result of Renault and Tomala (1998). The precise connection is discussed below.
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there are no �information gatekeepers�), and therefore the players can coordinate as well as

if all information were public. Conversely, if the network is not 2-connected then there are

games in which the local nature of monitoring imposes costs on the players, as the above

example shows.

Indeed, this example suggests that to overcome local monitoring players must be allowed

not only to talk but also to exchange some form of evidence. In this paper, I focus on a very

speci�c form of evidence: the players are endowed with undi¤erentiated, divisible tokens

that they can freely transfer to their neighbors. The crucial di¤erence between tokens and

talk is that one player cannot send another more tokens than she has, while a player can

always send any cheap talk message. In particular, �talk�messages can be manipulated

arbitrarily, while �token�messages can only be manipulated downward.

The main result of the paper is that public information can always be replicated with to-

kens: that is, tokens allows players to overcome the �information gatekeeper�problem associ-

ated with non-2-connected networks. The main idea is to initially endow �leaf players�� like

1 and 3 in the examples� with tokens, and to endow �non-leaf players�� like 2� with none.

Non-leaf players must then obtain tokens from leaf players in order to convince others that

they have behaved well, which disciplines their behavior. In particular, non-leaf players are

prevented from cheating some leaf players while concealing this information from others.3

The result is presented in quite a general setting, however, which necessitates the use of

somewhat complicated sequences of tokens transfers to ensure that non-leaf players cannot

misrepresent their information.

I then apply this result to study when tokens are essential, in that the equilibrium payo¤

set is strictly larger with tokens than with no communication, or strongly essential, in that

the equilibrium payo¤ set is strictly larger with tokens than with cheap talk alone.4 I

show that a su¢ cient condition for tokens to be essential is that the network contains a

�nice� subnetwork, which is a subtree in which every bilateral relationship has a product

structure (Fudenberg and Levine, 1994) and in which there is some payo¤ vector that can

be sustained in equilibrium with public monitoring that cannot be sustained in a �locally

3However, the result holds for any strictly positive vector of initial token endowments, so it is not actually
necessary that non-leaf players start with no tokens.

4The terminology here is borrowed from the literature on monetary theory (e.g., Lagos and Wright, 2008).
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public equilibrium�(a generalization of perfect public equilibrium) with private monitoring.

In many games, the condition that the network contains a nice subnetwork reduces to the

condition that it contains a subtree of size at least three.

I study tokens rather than some other form of evidence for two reasons. First, tokens are

intuitively a fairly minimal form of evidence. Allowing more sophisticated forms of evidence,

like tokens that are tagged with di¤erent colors, or letters with signatures that cannot be

forged, would only make the positive results of this paper easier to prove. Conversely, the

main result fails if� contrary to my assumptions� initial token endowments are uncertain or

tokens are indivisible. Second, tokens are inspired by the �tangible useless objects�(Wallace,

2001) used to model �at money in the literature on the microfoundations of money (Kiyotaki

and Wright, 1989, 1993).5 Unlike that literature, this paper is not in any way intended to

provide a theory of how money is used in reality. However, examining the limits of what

agents can achieve by transferring abstract tokens in arbitrarily complicated ways may be

informative about what restrictions on agents� information or behavior may be useful in

monetary models. I brie�y discuss this possibility in the conclusion.

The paper proceeds as follows: Section 2 relates the paper to the literatures on repeated

games, networks, and the microfoundations of money. Section 3 presents the model. Section

4 contains benchmark results on replicating public information with cheap talk. Section 5

presents the main result on replicating public information with tokens. Section 6 presents

examples showing that various conditions for the main result cannot be dispensed with.

Section 7 shows how the main result can be applied to show when tokens are essential in a

broad class of games. Section 8 concludes. Omitted proofs are contained in the Appendix.

2 Related Literature

The seminal paper on community enforcement in repeated games is Kandori (1992), who

shows that cooperation is sustainable in the repeated prisoner�s dilemma with anonymous

random matching with a simple form of hard evidence: exogenously determined labels,

such as �guilty� or �innocent� (cf Ellison, 1994; Okuno-Fujiwara and Postlewaite, 1995).

5For example, this paper is closely related to Kocherlakota (1998, 2002), as discussed below.

3



However, most of the subsequent literature on community enforcement has not considered

hard evidence.6 There is also a literature on the folk theorem in general private monitor-

ing repeated games with communication, dating back to Compte (1998) and Kandori and

Matsushima (1998). The main di¤erences between my paper and this literature is that I

restrict attention to repeated games on networks and compare the equilibrium payo¤ set

with di¤erent communication technologies for a �xed discount factor.7

The is also a rapidly growing literature on repeated games on networks, which often

emphasizes the role of communication. The folk theorems of Ben-Porath and Kahneman

(1996) and Renault and Tomala (1998) are related to the benchmark results of Section 4

and are discussed there.8 Most of the rest of the literature studies more speci�c games.

For example, Ahn and Suominen (2001) and Balmaceda and Escobar (2011) study how local

communication among buyers can dissuade a seller from providing a low-quality good, and

Lippert and Spagnolo (2011) and Ali and Miller (2012) study how local communication can

help sustain cooperation in a repeated prisoner�s dilemma.

Also related is the large computer science-based literature on secure information trans-

mission in networks. See Linial (1994) for a survey aimed at game theorists and see Tomala

(2011), Renou and Tomala (2011), and Renault, Renou, and Tomala (2012) for recent contri-

butions by game theorists. More broadly, Koessler and Forges (2008) survey the literature

on multistage communication with certi�able information, and Forges (2009) surveys the lit-

erature on implementing communication equilibrium outcomes with private communication.

In particular, the latter paper discusses how communication equilibrium outcomes may be

implemented using private authentication keys or sealed envelopes (Ben-Porath, 1998; Kr-

ishna, 2007; Izmalkov, Lepinski, and Micali, 2011). However, to the best of my knowledge,

no papers in this literature consider communication technologies resembling physical to-

kens. From this perspective, one interpretation of the results of this paper is that they show

that undi¤erentiated tokens can often substitute for private authentication keys or sealed

6See Fujiwara-Greve, Okuno-Fujiwara, and Suzuki (2012) for a recent exception.
7McLean, Obara, and Postlewaite (2012) investigate when players in private monitoring repeated games

are willing to publicly report their observations. Their results rest on players being �informationally small,�
which is not the case in my model.

8A recent series of papers by Laclau (2012a, 2012b, 2012c) provides additional folk theorems for repeated
games on networks with various communication technologies. None of these technologies resemble physical
tokens.
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envelopes in facilitating secure information transmission in networks.9

Finally, this paper relates to the large literature on the microfoundations of money.

Much of this literature is concerned with the informational role of money� often modeled

as undi¤erentiated physical tokens� albeit in models that are very di¤erent from mine. In

particular, I provide su¢ cient conditions for tokens to be essential in games with a �nite,

non-anonymous population of players interacting on a �xed network, relative to what could

be achieved with cheap talk alone, when tokens may be used in arbitrarily complicated

ways. In contrast, most of the monetary theory literature considers games with a continuum

of anonymous players interacting at random, does not compare money with cheap talk,

and focuses on simple exchanges of money for goods; for example, this is the setting in

Kiyotaki and Wright (1993).10 A natural question here is why models with non-anonymous

agents have any relevance for monetary theory, given that the fact that money is used

�anonymously� is sometimes taken as one of its de�ning characteristics (e.g., Ostroy and

Starr, 1974). While this is a hard question to answer a priori, the fact that money is

often repeatedly exchanged in non-anonymous, long-run relationships (risk-sharing, inter-

bank lending, etc.) raises the possibility that models with anonymous agents may not tell

the whole story.

A prominent paper on monetary theory that shares with mine the goal of comparing

physical tokens with other information technologies is Kocherlakota (1998). Kocherlakota�s

main result is that money is often inessential in the presence of a form of public information.11

In contrast, I show that tokens are often essential when only private information is avail-

9Relative to this literature, tokens are a way of making a player�s message set depend on the past messages
she has sent and received. If a player�s message set could be made to depend on past messages in an arbitrary
way, ensuring truthful information transmission would be trivial: simply specify that a player must pass on
all messages she receives. Thus, the advantage of tokens per se is that they are a natural and easily
interpretable way of introducing a dependence of message sets on past messages.
10There are some exceptions, however. Araujo (2004) adapts the arguments of Kandori and Ellison to

show that money is essential in su¢ ciently large �nite games with anonymous random matching. Aliprantis,
Camera, and Puzzello (2007) present a model with an in�nite but non-anonymous population where money
is essential even though players occasionally meet in centralized markets. Kocherlakota and Wallace (1998)
show that money is essential with a continuum of players and random matching in the presence of su¢ ciently
unreliable public monitoring of individual actions. Corbae, Temzelides, and Wright (2003) investigate the
essentiality of money in a model with directed matching that in some cases resembles trade on a network.
11More precisely, Kocherlakota�s notion of memory is perfect information about one�s partners�past play,

their partners�past play, and so on. The idea that a primary role of money is replicating public information
(�memory,��record-keeping�) goes back at least at Starr (1972), Ostroy (1973), and Ostroy and Starr (1974).
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able. Kocherlakota also gives an example in which (indivisible) money can replicate public

information and an example in which it cannot. In my model, tokens can replicate public

information quite generally; the primary reason for this di¤erence is that players in my model

are non-anonymous, which makes tokens� and repeated game e¤ects more generally� much

more powerful than in Kocherlakota�s model.

In a follow-up paper, Kocherlakota (2002) allows money to be in�nitely divisible and

shows that undi¤erentiated money can then replicate public information if money holdings

are observable (the �one-money theorem�), and that tagged money (e.g., red money and

black money) can replicate public information even if� as in my model� players can conceal

money (the �two-money theorem�).12 In contrast, in mymodel plain, undi¤erentiated tokens

can replicate public information even if tokens are concealable.13 They key di¤erence is again

that my players are non-anonymous and can make more complicated sequences of transfers.14

3 Model

This section describes the repeated game without communication and the notion of repli-

cating public information. I add cheap talk to the model in Section 4 and add tokens in

Section 5.

Players: There is a �nite set of players N = f1; : : : ; ng arranged on an undirected

and connected network L � P2 (N), the set of 2-element subsets of N , where fi; jg 2 L

denotes a link between players i and j.15 The network is �xed over time and players �know�

the entire network. The network will determine the structure of players�actions, payo¤s,

information, and� in subsequent sections� communication. In particular, it will become

clear that the assumption that L is connected is essentially without loss of generality, as the

fact that players only �interact�with their neighbors implies that if L is not connected one

12A very similar idea appears in Townsend (1987). See also Townsend (1980) for a canonical monetary
theory model emphasizing �spatial separation�of agents.
13I also show that in my model in�nite divisibility of tokens can be replaced by targeted disbursements of

tokens from a �central planner.�
14However, even with tagged tokens my results would not follow from Kocherlakota�s. Among other

di¤erences, Kocherlakota�s model involves �trading mechanisms,�while there are no mechanisms or contracts
in my model (i.e., all transfers of tokens are completely voluntary).
15Links are denoted with braces rather than parentheses to emphasize that fi; jg and fj; ig refer to the

same link.
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can replicate the analysis on each connected component of L. Let Ni = fj : fi; jg 2 Lg be

the set of player i�s neighbors, and let d (i; j) be the distance (shortest path length) between

players i and j.

Stage game: Player i�s stage-game action set is Ai =
Q
j2Ni Ai;j, where the Ai;j are

arbitrary �nite sets interpreted as player i�s possible actions toward player j. There is a

set of signal pro�les Z =
Q
fi;jg2L Zi;j, where the Zi;j = Zj;i are arbitrary �nite sets in-

terpreted as the signals that can be generated by the interaction between players i and j.

It is assumed that the signal zi;j is �locally public,� in that it is identically equal to zj;i

but is completely uninformative about any other zi0;j0. In particular, there are probability

distributions �i;j (�jai;j; aj;i) = �j;i (�jaj;i; ai;j) such that the probability of signal zi;j condi-

tional on action pair (ai;j; aj;i) is �i;j (zi;jjai;j; aj;i), independent of the signal realizations for

other pairs of players, so that the probability of signal pro�le z = (zi;j)fi;jg2L given action

pro�le a = (ai)i2N is given by � (zja) =
Q
fi;jg2L �i;j (zi;jjai;j; aj;i).16 Hence, Player i�s

stage-game expected payo¤ is ui (a) =
P

j2Ni
P

zi;j2Zi;j �i;j (zi;jjai;j; aj;i)u
�
i;j (zi;j; ai;j), where

u�i;j : Zi;j � Ai;j ! R gives player i�s realized payo¤ from her interaction with player j. To

save on notation, let ui;j (ai;j; aj;i) =
P

zi;j2Zi;j �i;j (zi;jjai;j; aj;i)u
�
i;j (zi;j; ai;j), and note that

ui (a) =
P

j2Ni ui;j (ai;j; aj;i). Thus, ui;j : Ai;j � Aj;i ! R gives player i�s expected payo¤

from her interaction with player j. For fi; jg 2 L, I will refer to the two-player game

(Ai;j; Aj;i; Zi;j; �i;j; ui;j; uj;i), which captures the direct relationship between i and j, as the

(i; j)-game.

I assume throughout the paper that each (i; j)-game has a mutual-minmax Nash equi-

librium. That is, I assume that every mixed action set �(Ai;j) contains an element ��i;j

such that the mixed action pro�le �� = (��i )i2N =
��
��i;j
�
j2Ni

�
i2N

is a stage-game Nash

equilibrium and

ui;j
�
��i;j; �

�
j;i

�
= min

�j;i2�(Aj;i)
max

�i;j2�(Ai;j)
ui;j (�i;j; �j;i) for all fi; jg 2 L.

This assumption ensures that the worst possible punishments can be delivered �link by

link,�and thus do not require punishers to coordinate. It is needed for my results, because

16Recall that fi; jg = fj; ig, so there are the same number of terms in this product as there are links in
the network.
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generally an outsider will be able to tell when a deviation occurs in the relationship between

two players but will not be able to tell which one of them deviated.

Repeated game: The players play a repeated game in discrete time. At the beginning

of period t 2 f0; 1; : : :g, each player i chooses an action ai;t 2 Ai. The signal zt is then

drawn from � (�ja), payo¤s are realized, and player i observes (zi;j;t)j2Ni.
17 Letting hi;t =�

ai;t; (zi;j;t)j2Ni

�
, player i�s time t history is hti = (hi;� )

t�1
�=0 for t � 1, and every player has

trivial initial history h0i = h0; in addition, let hi;j;t = (ai;j;t; zi;j;t) so that player i�s time t

(i; j)-game history is hti;j = (hi;j;� )
t�1
�=0. Letting H

t
i be the set of player i�s time-t histories, a

behavior strategy of player i�s is a map �i : H t
i ! �(Ai), and player i�s behavior strategy

in the (i; j)-game, �i;j : H t
i ! �(Ai;j), is given by projecting �i (hti) onto �(Ai;j). Players

have common discount factor � 2 (0; 1). Denote the resulting repeated game by �PRI , where

the subscript PRI emphasizes that signal zi;j is private to the pair of players fi; jg (though

it is locally public between i and j).

Solution concept: The solution concept for the benchmark results concerning cheap

talk communication is sequential equilibrium (SE).18 For the main result concerning com-

munication with tokens, it will be important that tokens are in�nitely divisible. This makes

action spaces in�nite, which necessitates using perfect Bayesian equilibrium (PBE) for the

main result. I de�ne an appropriate version of PBE for this model in Section 5.

Replicating public information: Let �PUB be the game in which the entire signal

z is public. That is, �PUB is derived from �PRI by letting hi;t equal (ai;t; zt) rather than�
ai;t; (zi;j;t)j2Ni

�
. Let EPUB be the set of SE payo¤s of game �PUB, and let ~EPUB be the

set of PBE payo¤s of game �PUB. Below, I will de�ne games �PUBCTPRI , �PRICTPRI , and �TOKPRI

by adding public cheap talk, private (i.e., local) cheap talk, or tokens to the game �PRI .

The solution concept for �PUBCTPRI and �PRICTPRI is SE, and the corresponding SE payo¤ sets

are denoted EPUBCTPRI and EPRICTPRI , respectively. The solution concept for �TOKPRI is PBE,

and the corresponding PBE payo¤ set is denoted ~ETOKPRI . I will say that public cheap

talk (resp., private cheap talk, tokens) can replicate public information if EPUBCTPRI � EPUB
17Thus, player i observes her own payo¤.
18As usual, sequential equilibrium in repeated games with �nite information sets in every period is de�ned

by putting the product topology on the space of beliefs.
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(resp., EPRICTPRI � EPUB, ~ETOKPRI � ~EPUB).19 Informally, communication replicates public

information if any payo¤vector that can be attained in equilibrium when all local information

is made public can also be attained with communication.

4 Replicating Public Information with Cheap Talk

This section establishes benchmark results on when cheap talk may be used to replicate

public information. I start with the fairly trivial benchmark of public cheap talk and then

move to the more signi�cant benchmark of private cheap talk. The results of this section are

broadly similar to results in the literature and I do not view them as primary contributions of

this paper; rather, they give a point of departure for the main analysis of Sections 5 through

7.

4.1 Public Cheap Talk

A game with public cheap talk �PUBCTPRI (Y ) is derived by augmenting the game �PRI with a �-

nite message set Y = (Y1; : : : ; Yn) such that after players observe their private signals they si-

multaneously send public messages yi 2 Yi. Formally, letting hi;t =
�
ai;t; (zi;j;t)j2Ni ; (yj;t)j2N

�
,

there are now two kinds of histories for every time t, denoted ht�i = (hi;� )
t�1
�=0 (called action

histories) and ht+i =
�
(hi;� )

t�1
�=0 ; ai;t; (zi;j;t)j2Ni

�
(called communication histories), and a

strategy maps action histories to �(Ai) and maps communication histories to �(Yi).20 Let

EPUBCTPRI (Y ) be the SE payo¤ set of �PUBCTPRI (Y ), and let EPUBCTPRI =
S
Y E

PUBCT
PRI (Y ), where

the union is taken over all �nite sets Y .

The �rst benchmark result is that public cheap talk can always replicate public informa-

tion. The proof is very simple: Take a SE strategy pro�le �PUB in the public monitoring

game �PUB. Specify that after every round of play the players publicly report what signals

they observe and then play according to �PUB, taking the reported signals as the true ones.

If any reports disagree, play the mutual-minmax pro�le �� forever. This strategy pro�le

19There are games for which these inclusions are strict. I omit the proof of this fact, since it is not used
in the paper.
20I continue to denote generic histories by hti. That is, hti may denote either an action history or a

communication history.
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yields the same payo¤s as �PUB, and it can be shown to be a SE pro�le.21

Theorem A Public cheap talk can replicate public information (i.e., EPUBCTPRI � EPUB).

In addition, the proof of Theorem A shows that there is a single �nite message set Y such

that EPUBCTPRI (Y ) � EPUB. The same will be true of the later results on communication

through private cheap talk or tokens. Thus, in all cases there is no need to tailor the message

set (or the initial endowment of tokens) to the desired payo¤ vector.

Theorem A is related to Theorem 1 of Ben-Porath and Kahneman (1996), which estab-

lishes the folk theorem for repeated games with public communication where each player is

perfectly observed by at least two others. Here, it is enough that i and j observe the same

zi;j, because there is a mutual-minmax Nash equilibrium. Also, Theorem A is not a folk

theorem but rather a result about replicating public information for �xed �.

4.2 Private Cheap Talk

In this paper, �private cheap talk�means communication along the links of the network.

That is, with private cheap talk players can communicate directly with their neighbors

but not with other players. However, players can communicate indirectly with players to

whom they are not linked by passing information from one link to another. This requires

multiple rounds of communication after every round of play, which I allow. Indeed, in any

communication round a player may learning something that she would like to pass on. To

accommodate this, I allow for in�nitely many rounds of communication after each round of

play.22

A game with private cheap talk �PRICTPRI (Y ) is derived by augmenting the game �PRI with

a �nite message set Y =
�
(Yi;j)j2Ni

�
i2N

such that after players observe their private signals

21This argument clearly relies heavily on the assumption that signal zi;j is locally public between i and j.
If signals were not even locally public, then one would be in the setting of general repeated games with private
monitoring, and public information could not be replicated even with public communication. However, it
may be the case that if signals are �almost�locally public then public communication can �almost�replicate
public information. I do not pursue this question here.
22An alternative to having in�nitely many rounds of communication would be having a �nite but un-

bounded number of rounds, where communication continues only as long as some player keeps talking.
However, in this alternative model it is not clear how to interpret the assumption that the players know
when everyone is done talking and it is time to move to the next period. In any case, only �nitely many
rounds of communication are needed on-path.
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they have in�nitely many opportunities to simultaneously send private messages yki;j 2 Yi;j
to their neighbors, where the subscript denotes a message from i to j and the superscript

k 2 N denotes the number of the communication round. Formally, the stage game is now

a long cheap talk game as modeled by Aumann and Hart (2003). That is, letting hi;t =�
ai;t; (zi;j;t)j2Ni ;

�
yki;j;t; y

k
j;i;t

�
j2Ni;k2N

�
, there are now in�nitely many kinds of histories for

every period t, denoted ht�i = (hi;� )
t�1
�=0 (action histories), h

t;0
i =

�
(hi;� )

t�1
�=0 ; ai;t; (zi;j;t)j2Ni

�
,

and ht;ki =
�
(hi;� )

t�1
�=0 ; ai;t; (zi;j;t)j2Ni ;

�
yk

0
i;j;t; y

k0
j;i;t

�
j2Ni;k02f1;:::;kg

�
, for k 2 N (communication

histories). A strategy �i is now a measurable function that maps action histories ht�i to

�(Ai) and maps communication histories h
t;k
i to �

�
(Yi;j)j2Ni

�
. Let EPRICTPRI (Y ) be the SE

payo¤ set of �PRICTPRI (Y ), and let EPRICTPRI =
S
Y E

PRICT
PRI (Y ).23

The second benchmark result is that private cheap talk can replicate public information

for all games if and only if the network L is 2-connected. Recall that a network is 2-connected

if there are at least two independent paths (i.e., two paths with disjoint sets of internal nodes)

between every pair of nodes. The main idea is again quite simple: Start with a SE pro�le

�PUB in game �PUB. Specify that after every round of play there are multiple rounds of

communication in which players report both the signals they have observed directly and the

signals that have been reported to them in earlier rounds, until all signals have been reported

to all players. The players then play according to �PUB, taking the reported signals as the

true ones. If a player sends or receives an inconsistent report, she then reports that there

has been a deviation, and the news of the deviation spreads throughout the network and

leads all players to play the mutual-minmax pro�le ��. The assumption that the network

is 2-connected implies that no player can deceive another about the signals: if a player i

lies about a signal to one of her neighbors, the neighbor will eventually receive a con�icting

report via a path that does not include i, and will then revert to ��.

Conversely, if the network L is not 2-connected then there are three players� call them 1,

2, and 3� such that 1 and 2 are linked, 2 and 3 are linked, and the unique path from 1 to 3 is

the one through 2. It is not di¢ cult to �nd speci�cations of the (1; 2) and (2; 3) games such

23Aumann and Hart prove that in a single long cheap talk game the induced mapping from strategies to
payo¤s is measurable, so that the game is well-de�ned. Their proof immediately extends to the current
repeated game model with �nite players, actions, signals, and messages. It also immediately extends to the
model of Section 5, where introducing divisible tokens makes the message sets countably in�nite.
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that, when all other (i; j) games are taken to be trivial games with ui;j (ai;j; aj;i) = 0 for all

(ai;j; aj;i) 2 Ai;j �Aj;i, it follows that private cheap talk cannot replicate public information.

In particular, it su¢ ces to take the (1; 2) and (2; 3) games to be the asymmetric prisoner�s

dilemmas described in the example below (to which I return later in the paper).

Theorem B Private cheap talk can replicate public information (i.e., EPRICTPRI � EPUB) if

the network L is 2-connected.

Conversely, if the network L is not 2-connected, then there exists a game (A;Z; �; u; �) for

which private cheap talk cannot replicate public information (i.e., EPUBnEPRICTPRI 6= ;).

The �rst part of Theorem B is related to Theorem 2.6 of Renault and Tomala (1998),

which gives a Nash folk theorem for repeated games with a 2-connected monitoring network

without explicit communication. Theorem B avoids some complications that emerge in their

paper by allowing explicit communication and assuming a mutual-minmax Nash equilibrium

(though Theorem B is for sequential equilibrium rather than Nash). Moreover, the results

di¤er in that Theorem B is about replicating public information for �xed �.

4.2.1 Example: Asymmetric Prisoner�s Dilemma on a Line

There are three players on a line and each relationship is a prisoner�s dilemma with �lo-

cally perfect�monitoring (players 1 and 3 take female pronouns; player 2 takes male pro-

nouns). Formally, L = ff1; 2g ; f2; 3gg, Ai;j = fC;Dg for fi; jg 2 L, Zi;j = Ai;j � Aj;i,

�i;j ((ai;j; aj;i) jai;j; aj;i) = 1, and the payo¤ matrix in the (1; 2) game is

C D

C 1; 1 �l1; 1 + g2;1
D 1 + g1;�l2;1 0; 0

while the payo¤ matrix in (2; 3) game is

C D

C 1; 1 �l3; 1 + g2;3
D 1 + g3;�l2;3 0; 0

12



where in both matrices player 2 is the column player (so 1 is the row player in the �rst

matrix and 3 is the row player in the second). Assume that for each matrix the sum of the

players�payo¤s is maximized at outcome (C;C).24 In addition, assume the following.

g1 �
�

1� � ; g3 �
�

1� � ; g2;1 >
�

1� � ; g2;3 <
�

1� � ; g2;1 + g2;3 � 2
�

1� � :

The following result shows that private cheap talk may fail to replicate public information

when the network is not 2-connected. The intuition is that with public monitoring player 2

can be made to cooperate in the (1; 2) game by specifying that defection in the (1; 2) game

leads to permanent defection in both games, but with private cheap talk player 2 can can

defect in the (1; 2) game while concealing this deviation from player 3 and continuing to

cooperate in the (2; 3) game.

Proposition 1 In this example of an asymmetric prisoner�s dilemma on a line, private

cheap talk cannot replicate public information.

Proof. I show that the payo¤ vector (1; 2; 1) is an element of EPUB but not EPRICTPRI , which

proves the result.

The payo¤ vector (1; 2; 1) can be attained only if the outcome in both games is (C;C)

in every period. To see that this is possible in EPUB, consider the multilateral grim trigger

pro�le when players play C (in both games, in the case of player 2) if the outcome in both

games has always been (C;C), and play D otherwise. Then player 1 has no pro�table

deviation under the assumption g1 � �
1�� , player 3 has no pro�table deviation under the

assumption g3 � �
1�� , and player 2 has no pro�table deviation under the assumption g2;1 +

g2;3 � 2 �
1�� (this last observation follows because player 2�s is most tempted to simultaneously

deviate to D in both games, as a deviation in either game leads to (D;D) forever in both).

Now suppose toward a contradiction that for some message set Y there exists in �PRICTPRI (Y )

a SE pro�le � in which the outcome in both games is (C;C) in every period. Replace �2;3 with

a strategy ~�2;3 that for each action history ht�2 depends only on
�
z2;3;� ;

�
yk2;3;� ; y

k
3;2;�

�
k2N

�t�1
�=0

but has the same marginals over A2;3 conditional on
�
z2;3;� ;

�
yk2;3;� ; y

k
3;2;�

�
k2N

�t�1
�=0

as does �2;3,

24That is, assume that g2;1 � l1, g1 � l2;1, g2;3 � l3, and g3 � l2;3 are all less than 1.
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and similarly for communication histories. Then, when player 3 plays �3, the distribution

of outcomes in the (2; 3) game when player 2 plays (2; 3) game strategy ~�2;3 is the same

as when he plays (2; 3) game strategy �2;3, which is to say that the outcome is (C;C) in

every period. Hence, if player 2 deviates to always playing D in the (1; 2) game and playing

~�2;3 in the (2; 3) game, his payo¤ is (1� �) (1 + g2;1) + � (0) + 1, which is greater than his

equilibrium payo¤ of 2 under the assumption g2;1 > �
1�� . So there can be no such SE.

5 Replicating Public Information with Tokens

I now turn to the main part of the analysis, where players have access to tokens in addition

to private cheap talk.

A game with tokens �TOKPRI is similar to a game with private cheap talk, except that in

addition to sending cheap talk messages players can also transfer quantities of undi¤eren-

tiated, in�nitely divisible tokens to each other.25 The di¤erence between cheap talk and

tokens is that a player can send any cheap talk message she wants, but can only send tokens

that she is currently holding: for example, any player can say �message number 5,�but only

a player with at least 5 tokens can make a 5 token transfer. Thus, tokens are a natural way

of making a player�s �message set�depend on the past messages she has sent or received,

which turns out to allow players to replicate public information.

Formally, a game with tokens �TOKPRI (Y;m
0) is derived from the game with private cheap

talk �PRICTPRI (Y ) by specifying an initial endowment of tokens m0 = (m0
1; : : : ;m

0
n), with

m0
i 2 Q+ for all i 2 N (where Q+ denotes the non-negative rationals), and allowing players

to transfer tokens concurrently with their messages. That is, at every history in �PRICTPRI (Y )

where player i chooses a message yi;j 2 Yi;j to send to player j, she now chooses a pair

(yi;j;mi;j) 2 Yi;j � R+ to send to player j, subject to the constraint that
P

j2Nimi;j � mi,

where mi is player i�s current token holding, and the vector of token holding is then updated

25It would be essentially equivalent to let players transfer only tokens and not also cheap talk messages:
simply replace the cheap talk messages with transfers of tiny amount of tokens that nonetheless convey a
large amount of information. The current approach of allowing both cheap talk and tokens is slightly easier
to exposit.
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to

m0
i = mi +

X
j2Ni

(mj;i �mi;j) :
26

A strategy is feasible if it satis�es
P

j2Nimi;j � mi at every communication history h
t;k
i . I

also now allow players to send messages and transfers concurrently with actions (i.e., at an

action history ht�i , player i now chooses a triple
�
ai; (yi;j)j2Ni ; (mi;j)j2Ni

�
).27

Assuming that tokens are in�nitely divisible makes action spaces in�nite and necessitates

using a version of PBE rather than SE (the motivation for divisible tokens, as well as alterna-

tive models, are discussed below). There is no o¤-the-shelf version of PBE that seems appro-

priate in this model. For example, consider 4 players on a line: L = ff1; 2g ; f2; 3g ; f3; 4gg.

On the one hand, assuming that player 1 does not update her belief about player 3�s private

history after observing a 0-probability move by player 2 seems too strong, as this move may

have been a response to a deviation by player 3. On the other hand, letting player 2 update

his beliefs about player 3�s private history after observing a 0-probability move by player

1 seems implausible, as 1�s play can only a¤ect 3 via 2. To take care of these concerns,

I introduce an extension of weak perfect Bayesian equilibrium that captures the idea that

information can only �ow along the links of the network.28 Let Ln fig denote the network

L with node i removed, and let Cij denote the component of Ln fig containing j.29 Let

�i
�
htjjhti

�
denote player i�s belief that player j�s private history is htj when player i�s private

history is hti.

De�nition 1 A network weak perfect Bayesian equilibrium (PBE) is a weak perfect Bayesian

equilibrium satisfying the following two additional properties:

1. If j 2 Ni and j0 =2 Cij, then �i
�
htj0jhti

�
does not depend on hti;j.

26The point of allowing players to transfer only rational quantities of tokens is to ensure that strategy
spaces remain countable.
27This modi�cation plays a �technical�role in the proof of the main result, discussed in footnote 54. It is

not needed either if monitoring in all (i; j) games is (locally) perfect or if monitoring in all (i; j) games has
full support.
28Recall that a weak perfect Bayesian equilibrium is an assessment (�; �) such that �i is sequentially

rational given beliefs �i about the vector of private histories
�
htj
�n
j=1

and �i is updated according to Bayes�
rule whenever possible.
29That is, Cij is the set of players j

0 2 L such that there is a path in L from j to j0 that does not contain
i.
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2. If j 2 Ni, then for all j0 2 N , �i
�
ht;kj0 jh

t;k
i

�
does not depend on yt;k

0

i;j for k
0 > k�d (j; j0),

and does not depend on zti;j if k < d (j; j
0).

The �rst requirement says that information does not �jump over�player i. The second

requirement says that information does not propagate faster than one link per round of

communication. In particular, these requirements rule out �grim trigger�beliefs, where a

player who observes a single deviation believes that all of her opponents immediately revert

to ��.30

The following is the main result of the paper. Here, ~ETOKPRI =
S
(Y;m0)

~ETOKPRI (Y;m
0),

where ~ETOKPRI (Y;m
0) is the (network weak) PBE payo¤ set in �TOKPRI (Y;m

0).

Theorem 1 Tokens can replicate public information (i.e., ~ETOKPRI � ~EPUB).

Theorem 1 shows that in networked environments tokens enable players to sustain any

payo¤ vector that would be sustainable were all information public, even in non-2-connected

networks in which the presence of information gatekeepers rules out this possibility when

only cheap talk is available. The fact that tokens can replicate public information even

when the network is not 2-connected will form the basis of the later results on when tokens

are essential.

To see the overall approach of the proof, suppose for simplicity that L is a tree (so that,

in particular, L is not 2-connected). Let �PUB be a PBE strategy pro�le in game �PUB.

Initially, endow each of the �leaf players�in L (i.e., players with only one neighbor) with a

large number of tokens, and endow �non-leaf players�with none. Have players initially play

as in �PUB. After each round of play, �rst have players repeatedly report their signals to

each other as in the model with private cheap talk: this is called the �reporting subphase�in

30While sequential equilibrium is traditionally de�ned only for �nite games (Kreps and Wilson, 1982), the
de�nition extends immediately to games with countably in�nite action spaces. Thus, one could technically
apply sequential equilibrium in the current model. However, in games with countably in�nite action spaces
sequential equilibrium imposes strong restrictions that go well beyond Krep and Wilson�s original motivation.
For example, in community enforcement games it is often convenient to specify that players believe that
deviations in period t are much more likely than deviations in period t� 1, so that 0-probability moves are
always interpreted as deviations rather than as responses to earlier deviations. But this is impossible when
action spaces are countably in�nite, as there must be some actions that are vanishingly unlikely to occur
as deviations in period t. This di¢ culty and others make it extremely di¢ cult to work with sequential
equilibrium in the current model.
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the proof. Then have players use tokens to check that no players have misreported signals:

this is called the �con�rmation subphase�and is described below. In the next round, have

players play according to �PUB, taking the reported signals as the true ones.

As in Theorems A and B, if players can be induced to report their signals truthfully,

the above construction yields an equilibrium with the same payo¤s as �PUB. Thus, the

key insight behind Theorem 1 is that the con�rmation subphase can be constructed so as to

ensure that no player can mislead another about the value of any signal. The construction is

as follows: Assign a natural number q to every possible vector of signals z. At the beginning

of the period t con�rmation subphase, each leaf player i thinks that the true vector of period

t signals is some ẑi (where all the ẑi�s are the same on path). The con�rmation subphase

starts with some leaf player� say, player 1� sending q1 tokens down the (unique) path toward

another leaf player� call him player 2� where q1 is the number assigned to ẑ1. The non-leaf

players on this path then pass these tokens on to player 2. When player 2 receives the

tokens, he checks whether the number of tokens received equals the number q2 assigned to

ẑ2. If it does, he adds an additional q2 tokens to the transfer he received, and passes this

new larger �pot�of tokens on to the next leaf player, player 3. This process continues until

each leaf player gets the chance to add tokens to the pot, and the pot is then returned to

player 1. Finally, if this returned pot is of the size she expected, player 1 then sends an

additional large transfer down the path to each leaf player in turn, each of whom returns

this transfer to player 1.31

In the proof itself, every number qi in the preceding paragraph is replaced by qi=2t.

That is, the size of the transfers made in the con�rmation subphase halve each period. As

discussed below, this trick serves to keep leaf players from running out of tokens.

While it is hard to give a complete intuition for why this construction works without just

31The point of these last transfers may be seen in the example of three players on a line (where player
2 is the middle (non-leaf) player, contrary to the numbering scheme used in the proof): Suppose player 2
reports outcome 10 to player 1 and outcome 5 to player 3. Then player 1 begins the con�rmation phase by
transfering 10 tokens to player 2. Player 2 is now supposed to pass the 10 tokens on to player 3, but suppose
he instead passes only 5 tokens to her. Player 3 then sees the report of outcome 5 con�rmed, and passes 5
tokens back to player 2. Now player 1 expects to receive a transfer of 20 tokens from player 2, but player 2
only has 15 tokens, so no matter how much player 2 sends her she will learn that there has been a deviation.
But� crucially� player 3 will not learn this: she will continue to think the outcome is 5. Adding the �nal
transfers from player 1 to the other leaf players �xes this problem, as now all leaf players learn about any
deviation that player 1 discovers.
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proving the theorem, it is worth noting the following three important facts. First, if some

player fails to pass on the correct number of tokens toward the next leaf player, then player

1 does not get back a pot of the correct size, and thus does not make the �nal con�rmation

transfers to the other leaf players (who can then infer that a deviation occurred). Second,

if any two players disagree about the vector of period t signals, then player 1 again does not

get back a pot of the correct size, and since signals are locally public at least one player will

disagree with any misreported signal. Finally, the transfers can be constructed so that a

player can never save enough tokens in an earlier round to mislead another player in a later

round.32

To illustrate the construction, consider the asymmetric prisoner�s dilemma on a line

of Section 4.2.1. Assign a number between 1 and 16 to each of the 16 possible stage

game outcomes, ((C;C) ; (C;C)), ((C;C) ; (C;D)), . . . , ((D;D) ; (D;D)). For concreteness,

suppose the number 1 is assigned to outcome ((C;C) ; (C;C)) (the desired outcome, which

as we have seen cannot be sustained in �PRICTPRI ). Initially, endow players 1 and 3 with a

large number of tokens (the number used in the proof would be 128 here, although since

tokens are in�nitely divisible one could also have normalized this number to 1), and endow

player 2 with none.

On-path, play in period t proceeds as follows: Players cooperate, yielding outcome

((C;C) ; (C;C)). In the reporting subphase, players truthfully report their observations to

their neighbors; in particular, player 2 tells player 1 that the outcome in the (2; 3) game was

(C;C) and tells player 3 that the outcome in the (1; 2) game was (C;C). At this point,

players 1 and 3 both believe that the overall outcome was ((C;C) ; (C;C)), but this has not

yet been �con�rmed.� The con�rmation subphase starts with player 1 sending 1=2t tokens

(i.e., q1=2t tokens, recalling that 1 is the number assigned to ((C;C) ; (C;C))) to player 2

(the next player on the path from 1 to 3). In the next round, player 2 then sends these

1=2t tokens to player 3. Player 3 now notes that 1=2t equals q3=2t (as she also believes

32Another issue in the proof of Theorem 1 is that explicitly describing o¤-path play is intractable. This
is because when player i sees player j deviate, player i may wish to conceal this information if passing it on
would lead the other players to punish her (and, if the network is not 2-connected, she may be able to do
this). Therefore, I specify that when player i observes a deviation by player j, she only minmaxes player j
himself as well as the other players in Cij . The rest of o¤-path play is speci�ed implicitly by a procedure
described in the Appendix.
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that the outcome was ((C;C) ; (C;C))), and she indicates this by sending a total of 2=2t

tokens back to player 2, who then sends these 2=2t tokens to player 1. Player 1 notes

that the extra 1=2t tokens contributed by player 3 matches her beliefs that the outcome was

((C;C) ; (C;C)). She therefore sends a large �con�rmation� transfer to player 2 (in the

proof, this transfer would consist of 128� 64=2t tokens), who then sends these tokens on to

player 3. Finally, player 3 sends these tokens back to player 2, who then sends them back

to player 1, completing the con�rmation subphase.

In contrast, suppose player 2 deviates toD in the (1; 2)-game in period t, yielding outcome

((C;D) ; (C;C)). Then in the reporting subphase, player 2 may still report to player 3 that

the outcome was ((C;C) ; (C;C)) (e.g., this is what he would do if the players tried to

sustain ((C;C) ; (C;C)) in �PRICTPRI ). But this misreport will be detected in the con�rmation

subphase as follows. Since player 1 observes an o¤-path action by player 2 at an on-path

history, she punishes player 2 by both playing D forever and never again sending him tokens.

Player 3 now expects to receive 1=2t tokens from player 2, but player 2 has no tokens to

send her (recall that he started period t with no tokens, as he returned all tokens to player

1 at the end of period t � 1� of course, the proof must also verify that he could not have

pro�tably deviated by retaining tokens in period t � 1). So when no tokens arrive, this

constitutes an o¤-path (lack of a) transfer from player 2 at an on-path history, and player

3 also punishes player 2 by playing D forever and never again sending him tokens. Hence,

player 2 is punished by both players 1 and 3 for deviating in the (1; 2)-game, and as in

�PUBCTPRI this deters the deviation.

I conclude this section with two remarks on Theorem 1. First, the choice of initial token

endowmentm0 is not crucial. As a consequence, even in setting where initial endowments are

exogenously determined (rather than being a �choice variable,�as I have assumed), public

information can still be replicated for a wide range of initial endowments; for example,

Theorem 1 goes through whenever all players start with a positive number of tokens. The

idea is that if any non-leaf players are endowed with tokens, they can be induced to transfer

all of their tokens to player 1 at the beginning of the game. Formally, one can show the

following result:33

33A spanning tree is a connected subnetwork with no cycles that contains all the nodes in the original
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Proposition 2 Suppose the initial token endowmentm0 is exogenously given. If there exists

a spanning tree L0 � L such that m0
i > 0 for all leaf players i in L

0, then ~ETOKPRI (Y;m
0) �

~EPUB, where Y is the message set from the proof of Theorem 1.

However, Proposition 2 does continue to assume that the initial token endowment m0 is

common knowledge. Proposition 4 below shows that Theorem 1 may fail with uncertain

endowments.

Second, Theorem 1 relies on the assumption that tokens are in�nitely divisible. This

assumption serves two roles in the proof. First, it lets one ensure that leaf players never run

out of tokens. This could potentially be addressed by instead �rebalancing�token holdings

between rounds, although doing this is not trivial. Second� and more importantly� it

allows the size of the �nal con�rmation transfer in each period to increase over time. This

ensures that a player who deviates by saving some tokens in one period cannot use them to

mimic a later con�rmation transfer. Both of these roles of in�nite divisibility could instead

be �lled by simply disbursing more tokens to the leaf players every period, if this were

allowed (contrary to my assumptions). For example, Theorem 1 would go through if tokens

are indivisible but jZj tokens are disbursed from the �planner�to each leaf player in every

period. In contrast, Proposition 5 below shows that Theorem 1 may fail with indivisible

tokens if such disbursements are not allowed.

6 Examples

This section presents examples showing that the assumptions that the network and the

initial token endowment are commonly known and that tokens are in�nitely divisible cannot

be completely dispensed with.

6.1 Unknown Network

Consider the following model: There are three players. At the beginning of the game,

Nature �ips two independent fair coins to determine whether players 1 and 2 linked and

network.
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whether players 2 and 3 are linked, respectively. Only players 1 and 2 observe whether they

become linked, and similarly for players 2 and 3. Thus, the network is stochastic and is

realized once-and-for-all at the start of the game, and there is common knowledge of the ex

ante distribution over networks but not of the realization.

If players 1 and 2 are linked, they play the following (1; 2)-game; if players 2 and 3 are

linked, they play the following (2; 3)-game (player 2 is always the column player).

(1; 2) -game (2; 3) -game

A B

A 1;�1 0; 0

X Y

X 3; 3 0; 0

Y 0; 0 1; 1

Thus, in the (1; 2)-game player 2 has the chance to transfer a util to player 1, and the

(2; 3)-game is a coordination game. Assume � � 1
2
.

Take the public information benchmark here, �PUB, to be as in the main model, with

the modi�cation that all players observe the realized network at the beginning of the game.

To give the players a chance to replicate this benchmark with private information, introduce

a round of communication after the network is realized but before the �rst action phase.

In this model, a small extension of Theorem A shows that public cheap talk can replicate

public information (in particular, the players can be induced to truthfully report the realized

network by specifying Nash reversion in case of disagreement). However, the following result

shows that tokens cannot replicate public information here.

Proposition 3 In this example with an unknown network, tokens cannot replicate public

information.

Proof. I show that payo¤ vector
�
1
4
; 5
4
; 3
2

�
is in ~EPUB but not ~ETOKPRI .

For �PUB, consider the following strategy pro�le.

� If realized network is ff1; 2g ; f2; 3gg, 2 and 3 play X in the (2; 3)-game if 2 has always

played A in the (1; 2)-game, and otherwise play Y . 2 plays A in the (1; 2)-game if he

has always played in A in the (1; 2)-game, and otherwise plays B.
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� If realized network is ff1; 2gg, 2 always plays B.

� If realized network is ff2; 3gg, 2 and 3 always play X.

� If realized network is f;g, there is nothing to play.

This is a PBE under the assumption � � 1
2
(as this is the condition that ensures that

it is not pro�table for 2 to deviate to B in the (1; 2)-game when the realized network is

ff1; 2g ; f2; 3gg), and it yields payo¤ vector
�
1
4
; 5
4
; 3
2

�
(as each possible network is realized

with probability 1
4
). So

�
1
4
; 5
4
; 3
2

�
2 ~EPUB.

Now suppose toward a contradiction that
�
1
4
; 5
4
; 3
2

�
2 ~ETOKPRI . Note that if the realized

network is ff1; 2gg then 2 always plays B. Hence, for 1 to get payo¤ 1
4
, 2 must play

A with probability 1 if the realized network is ff1; 2g ; f2; 3gg. In addition, for 3 to get

payo¤ 3
2
, the outcome in every period of the (2; 3)-game must be (X;X) with probability

1 if the realized network is ff2; 3gg. However, any (2; 3)-game strategy that is feasible for

2 when the realized network is ff2; 3gg is also feasible for 2 when the realized network is

ff1; 2g ; f2; 3gg, as 2 has the option of never passing tokens to 1 (and of ignoring any tokens

he might receive from 1). Let �fff2;3ggg2;3 be player 2�s equilibrium (2; 3)-game strategy when

the realized network is ff2; 3gg. Then when the realized network is ff1; 2g ; f2; 3gg, it is

feasible for 2 to deviate to always playing B in the (1; 2)-game while playing �fff2;3ggg2;3 in

the (2; 3)-game, and this deviation yields payo¤ 3
2
(as the distribution of outcomes in the

(2; 3)-game depends only on players 2 and 3�s strategies in the (2; 3)-game, which after this

deviation are the same as they are in equilibrium when the realized network is ff2; 3gg),

which is greater than his equilibrium payo¤ of 5
4
. Hence,

�
1
4
; 5
4
; 3
2

�
=2 ~ETOKPRI .

6.2 Unknown Initial Endowment of Tokens

Consider the asymmetric prisoner�s dilemma on a line of Section 4.2.1. Suppose players

1 and 3 start with m tokens each, while player 2 starts with 0 tokens with probability 1
2

and starts with m tokens with probability 1
2
, where only he knows which event obtains.

Denote this stochastic token endowment by ~m. Note that the network in this example,

L = ff1; 2g ; f2; 3gg, is itself a tree and the leaf players 1 and 3 always start with a positive
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number of tokens, so Proposition 2 shows that ~ETOKPRI (Y;m
0) � ~EPUB whenm0 is taken to be

either the deterministic endowment where player 2 starts with 0 tokens or the deterministic

endowment where player 2 starts with m tokens. In contrast, the following result shows

that public information cannot be replicated with the assumed stochastic endowment.

Proposition 4 In this example with an unknown initial endowment of tokens, public infor-

mation cannot be replicated with the assumed stochastic endowment (i.e., ~EPUBn ~ETOKPRI (Y; ~m) 6=

;, where ~ETOKPRI (Y; ~m) is the PBE payo¤ set with stochastic endowment ~m).

Proof. I show that payo¤ vector (1; 2; 1) is in ~EPUB but not ~ETOKPRI (Y; ~m). That (1; 2; 1) 2
~EPUB was already proved in the proof of Proposition 1.

Suppose toward a contradiction that (1; 2; 1) 2 ~ETOKPRI (Y; ~m). Then in every period the

outcome in both the (1; 2)-game and the (2; 3)-game must be (C;C) with probability 1, for

both possible initial endowments. However, if a (2; 3)-game strategy �02;3 is feasible for 2

when his realized endowment is 0 and he plays his equilibrium (1; 2)-game strategy, then

strategy �02;3 is also feasible for 2 when his realized endowment is m and he plays any (1; 2)-

game strategy that never involves passing tokens to 1, as in every period his token holding is

at least as great in the second case as in the �rst.34 Therefore, when 2�s realized endowment

is m, it is feasible for him to deviate to always playing D in the (1; 2)-game while playing

�02;3 in the (2; 3)-game (and never passing tokens to 1), and this deviation yields payo¤ at

least (1� �) (1 + g2;1)+ � (0)+ 1, which is greater than his equilibrium payo¤ of 2 under the

maintained assumption g2;1 > �
1�� . Hence, (1; 2; 1) =2 ~ETOKPRI (Y; ~m).

6.3 Indivisible Tokens

In this subsection only, assume that players can only transfer integer quantities of tokens

(i.e., tokens are indivisible). Consider the game given by L = ff1; 2g ; f2; 3gg with (1; 2)-

game and (2; 3)-game as in Section 6.1 (i.e., the game is exactly as in Section 6.1 but with the

network known to be ff1; 2; g ; f2; 3gg). The following result shows that indivisible tokens

cannot replicate public information in this example.

34In particular, in the second case his token holding is m plus his net transfer from 3, while in the �rst
case his token holding is his net transfer from 1 plus his net transfer from 3, and his net transfer from 1
cannot exceed 1�s initial endowment m.
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Proposition 5 In this example, indivisible tokens cannot replicate public information.

Proof. I show that with indivisible tokens payo¤ vector (1; 2; 3) is in ~EPUB but not ~ETOKPRI .

For �PUB, the grim trigger strategy pro�le, �2 and 3 play X in the (2; 3)-game if 2 has

always played A in the (1; 2)-game, and otherwise play Y ; 2 plays A in the (1; 2)-game if

he has always played in A in the (1; 2)-game, and otherwise plays B,� is a PBE under the

assumption � � 1
2
and yields payo¤ (1; 2; 3).

Suppose toward a contradiction that (1; 2; 3) 2 ~ETOKPRI . Then for some (Y;m0) there

exists a PBE in �TOKPRI (Y;m
0) in which the outcome is ((A) ; (X;X)) in every period. Note

that player 3�s token holding is measurable with respect to ht2, as it simply equals m
0
3 plus

the net transfer of tokens from player 2 to player 3. Let ht2 be a history such that player 3�s

token holding is maximal over all on-path ht2 (this exists because tokens are indivisible and

�nite in number).

I claim that player 2 has a pro�table deviation at ht2. Note that for every subsequent

on-path history h�2, the net token transfer from player 2 to player 3 between histories h
t
2 and

h�2 is non-positive, as otherwise player 3�s token holding would be greater at h
�
j than at h

t
j.

Hence, player 2�s equilibrium (2; 3)-game continuation strategy is feasible for him regardless

of his continuation strategy against player 1, so long as he does not transfer tokens to player

1. Therefore, it is a pro�table deviation for player 2 to play B in every subsequent period in

the (1; 2)-game, never again transfer tokens to player 1, and continue to play his equilibrium

continuation strategy against player 3. Hence, (1; 2; 3) =2 ~ETOKPRI .

7 From Replication to Essentiality

A �nal set of results shows how Theorem 1 can be used to show that tokens are essential� in

that the PBE payo¤ set is larger with tokens than without them� in a broad class of games.

I use the following de�nition.35

De�nition 2 Tokens are essential if ~ETOKPRI ) ~EPRI .

35In this section, I consider PBE rather than SE in �PRI and �PRICTPRI , to facilitate comparison with �TOKPRI .
The PBE concept here is as in Section 5, with the exception that the second additional requirement imposed
there is not applicable in �PRI . Consistent with the notation in the rest of the paper, ~EPRI and ~EPRICTPRI

are the PBE payo¤ sets in �PRI and �PRICTPRI , respectively.
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Tokens are strongly essential if ~ETOKPRI ) ~EPRICTPRI .

The latter property is indeed stronger because ~EPRICTPRI (Y ) � ~EPRI for every message set

Y , as messages can always be ignored.

How can one tell whether tokens are essential in a particular game? Recall that ~EPRI ,

~EPRICTPRI , and ~ETOKPRI are PBE payo¤ sets in private monitoring games for �xed discount

factors. Such sets are usually impossible to characterize. However, this section shows that

essentiality can often be veri�ed by building on Theorem 1.

A �rst observation is that ~ETOKPRI � ~EPRI and ~ETOKPRI � ~EPRICTPRI are trivially true: any

PBE in �PRI or �PRICTPRI can be turned into a payo¤-equivalent PBE in �TOKPRI by specify-

ing that players never make transfers and ignore transfers if they are made (in particular,

~ETOKPRI (Y;m
0) � ~EPRI and ~ETOKPRI (Y;m

0) � ~EPRICTPRI (Y ) for any (Y;m0)). Combining this

observation with Theorem 1 yields the following corollary.

Corollary 1 Tokens are essential if ~EPUBn ~EPRI 6= ;. Tokens are strongly essential if

~EPUBn ~EPRICTPRI 6= ;.

Proof. By Theorem 1, ~ETOKPRI � ~EPUB. So ~EPUBn ~EPRI 6= ; (resp., ~EPUBn ~EPRICTPRI 6= ;) im-

plies that ~ETOKPRI n ~EPRI 6= ; (resp., ~ETOKPRI n ~EPRICTPRI 6= ;). The observation that ~ETOKPRI � ~EPRI

completes the proof for �essential,�and the observation that ~ETOKPRI � ~EPRICTPRI completes the

proof for �strongly essential.�

Combining Corollary 1 and Proposition 1 shows that tokens are strongly essential in the

asymmetric prisoner�s dilemma of Section 4.2.1. However, in general it can be hard to

know when ~EPUBn ~EPRI 6= ; or ~EPUBn ~EPRICTPRI 6= ;. Fortunately, one can often establish

essentiality while restricting attention to the following much more tractable class of strategies.

De�nition 3 A locally public strategy �i is a strategy in �PRI where �i;j depends only on

(zi;j;� )
t�1
�=0, for all j 2 Ni. A locally public equilibrium (LPE) in �PRI is a PBE in �PRI in

locally public strategies. Denote the LPE payo¤ set in �PRI by ELPEPRI .

A local cheap talk strategy �i is a strategy in �PRICTPRI where �i;j depends only onn
zi;j;� ;

�
yki;j;� ; y

k
j;i;�

�
k2N

ot�1
�=0
, for all j 2 Ni. A local cheap talk equilibrium (LCTE) in

�PRICTPRI is a PBE in �PRICTPRI in local cheap talk strategies. Denote the LCTE payo¤ set in

�PRICTPRI by ELCTEPRI .
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Thus, a locally public strategy is one where player i conditions her play in her relationship

with player j only on the history of locally public signals between i and j, and a local cheap

talk strategy is one where player i conditions her play in her relationship with player j

(including the messages she sends to j) only on the history of locally public signals and

cheap talk between i and j. Locally public equilibrium is the natural analog of the standard

perfect public equilibrium (PPE) in repeated games with imperfect public monitoring, and

local cheap talk equilibrium is the natural analog of PPE when players can send messages

only about mutually public information.36 Note that with local cheap talk strategies players

have very little to talk about, since they do not condition their messages on information that

the receiver does not already have. In particular, one can show that the set of LCTE payo¤s

is simply the set of LPE payo¤s in the auxiliary game where each pair of players is given

access to a public randomizing device.

I now show that the condition that ~EPUBn ~EPRI 6= ; (resp., ~EPUBn ~EPRICTPRI 6= ;) in

Corollary 1 may be replaced with something like ~EPUBnELPEPRI 6= ; (resp., ~EPUBnELCTEPRI 6= ;).

To do this, I introduce the notion of a �nice�subnetwork.

For any subnetwork M � L, let ~EjM be the PBE payo¤ set in the game where M is the

original network, or equivalently the PBE payo¤ set in the game where all links fi; jg =2 M

are deleted (so that ~EPRI jM is the PBE payo¤ set in this game with private monitoring,

~EPUBjM is the PBE payo¤ set in this game with public monitoring, etc.). For future

reference, the game where M is the original network will be denoted �jM . Finally, for any

set X, let co (X) denote the convex hull of X. I now introduce a key de�nition.37

De�nition 4 A subnetwork M � L is nice if it has the following three properties.

1. M is a subtree of L. That is, for any two players i; j 2 M , there is a unique path

from i to j in L, and every node in this path is contained in M .38

36In particular, it is straightforward to verify that PBE and SE strategy pro�les coincide once one restricts
to locally public or local cheap talk strategies, so De�nition 3 could equivalently have been stated with
reference to SE.
37I slightly abuse notation here by letting M stand for both a subnetwork of L and the set of nodes in

that subnetwork.
38This is stronger than the condition that M is itself a tree: it is not enough that there is a unique path

from i to j in M .
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2. For all fi; jg 2 M , the (i; j)-game has a product structure. That is, Zi;j = Zii;j � Z
j
i;j

and �i;j (zi;jjai;j; aj;i) = �ii;j
�
zii;jjai;j

�
�ji;j

�
zji;jjaj;i

�
.

3. ~EPUBjMn co
�
ELPEPRI jM

�
6= ;.

In addition,M is truly nice if the last condition can be strengthened to ~EPUBjMn co
�
ELCTEPRI jM

�
6=

;.

The following theorem is the key tool for determining when tokens are essential.

Theorem 2 Tokens are essential if L contains a nice subnetwork. Tokens are strongly

essential if L contains a truly nice subnetwork.

For example, if L is a tree, all (i; j)-games in L have a product structure, and ~EPUBn co
�
ELPEPRI

�
6=

;, then Theorem 2 says that tokens are essential.39 However, Theorem 2 is much more gen-

eral that this because L itself need not be nice. In particular, the condition that L is a

tree is very strong, but the condition that L contains a subtree is trivial. However, not

any subtree will do: in particular, if every (i; j)-game in M has a product structure, then

~EPUBjMn co
�
ELPEPRI jM

�
6= ; can hold only if M contains at least three players. Conversely,

in many games� including the �trading favors�example discussed below� it is possible to

show that any subtree of size at least three is truly nice, and conclude that tokens is strongly

essential whenever L contains a subtree of size at least three. This condition provides a

very simple method of verifying essentiality in these applications even though characterizing

~EPRI , ~EPRICTPRI , and ~ETOKPRI remains intractable.

The intuition for Theorem 2 is as follows: If M is a tree and all (i; j)-games in M

have a product structure, then in the game where M is the original network it is without

loss of generality to restrict attention to LPE. If in addition M is a subtree of L, then

the equilibrium payo¤ set on L equals the sum of the equilibrium payo¤ set on M and the

equilibrium payo¤ set on LnM (in �PRI). So if tokens expands the equilibrium payo¤ set

onM while restricting attention to LPE, then it also expands the (unrestricted) equilibrium

payo¤ set on L.40

39Technically, one can show that EPUBnELPEPRI 6= ; is su¢ cient in this case.
40It may be seen from the proof of Theorem 2 that� consistent with this intuition� tokens only circulate

among players in M and the expansion in the equilibrium payo¤ set on L comes entirely from expanding
the payo¤ set available to players in M .
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A previous version of this paper considered some leading classes of games in which the

results of this section may be used to show that tokens are essential. In particular, it is

shown there that Theorem 1 may be adapted to cover continuous time �trading favors�

games (Möbius, 2000; Hauser and Hopenhayn, 2010), and that in such games every subtree

of size at least three is truly nice, implying that tokens are essential if the network contains

a subtree of size at least three.

8 Conclusion

This paper has compared cheap talk and divisible, undi¤erentiated, physical tokens as means

of replicating public information in repeated games on networks. The main result is that

public information can always be replicated when tokens are available� in contrast, it can

only be replicated when the network is 2-connected if tokens are unavailable. In addition,

the tokens considered in this paper are �close� to the minimal communication technology

needed for this result, in that the result may fail if the initial endowment of tokens is unknown

or if tokens are indivisible.

In addition, the main result on replicating public information leads to a simple su¢ cient

condition for tokens to expand the equilibrium payo¤ set: tokens are essential in this sense if

the network contains a nice subnetwork (that is, a subtree on which replicating public infor-

mation may be shown to be valuable while restricting attention to locally public equilibria).

In many games, this condition reduces to the property that the network contains a subtree

of size at least three� a simple and easily veri�able condition.

The physical tokens studied in this paper bear a strong technological resemblance to the

�tangible useless objects� (Wallace, 2001) used to model �at money in monetary theory,

while the way they are used in the proof of the main result bears no resemblance to the way

money is used in reality. This suggests that an important direction for future research is to

consider limits on players�information or �rationality�that might make simpler and more

realistic ways of using tokens constrained optimal. For example, it might be useful to study

models where players are �more anonymous�than in this paper but �less anonymous�than

in standard continuum agent�random matching models of money, or models where players
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use maxmin optimal strategies or other boundedly rational rules in the face of uncertainty

about the distribution of tokens.

Appendix

Proof of Theorem A

Let Yi =
Q
j2Ni Zi;j. I show that E

PUBCT
PRI (Y ) � EPUB.

Let �PUB be a SE strategy pro�le in game �PUB. De�ne a strategy pro�le �PRI in game

�PUBCTPRI (Y ) as follows:

� Initially, play as in �PUB (i.e., �PRIi (h0�) = �PUBi (h0�)).

� Always report all signals truthfully (i.e., �PRIi (ht+) = (zi;j;t)j2Ni for all h
t+).

� Let ẑi;j;t be the (i; j) coordinate of yi;t. At history ht�i , if ẑi0;j0;� = ẑj0;i0;� for all fi0; j0g 2

L and all � < t, then let �PRIi

�
ht�i
�
= �PUBi

�
ĥti

�
, where ĥti =

�
ai;� ; (ẑi0;j0;� )fi0;j0g2L

�t�1
�=0
.41

If instead ẑi0;j0;� 6= ẑj0;i0;� for some fi0; j0g 2 L and � < t, then let �PRIi

�
ht�i
�
= ��i .

Clearly, �PRI yields the same payo¤ vector as �PUB. It remains only to show that �PRI

is a SE pro�le. To see this, note �rst that player i does not have a pro�table deviation at an

action history ht�i with ẑi0;j0;� = ẑj0;i0;� for all fi0; j0g 2 L and all � < t. This follows because

her continuation payo¤ from playing any action ai at history ht�i under �PRI is the same as

her continuation payo¤ from playing ai at history ĥti under �
PUB, and �PUB is a SE. Second,

player i does not have a pro�table deviation at an action history ht�i with ẑi0;j0;� 6= ẑj0;i0;�

for some fi; jg 2 L and � < t, because starting from such a history her opponents play

���i forever and �
�
i is a best response to �

�
�i. Finally, player i does not have a pro�table

deviation at a communication history ht+. In the case where ẑi;j;� = ẑj;i;� for all fi; jg 2 L

and all � < t, this follows because her continuation payo¤when she conforms to �PRI equals

her expected continuation payo¤ under �PUB conditional on reaching history ĥti, playing

41To clarify the notation here, note that the reported signals ẑi;j;t and ẑj;i;t are not indentically equal
(unlike the true signals zi;j;t and zj;i;t), so in general the vector (ẑi;j;t)fi;jg2L is not well-de�ned (recalling
that fi; jg = fj; ig by de�nition). But this vector is well-de�ned whenever ẑi;j;t = ẑj;i;t for all fi; jg 2 L.
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ai;t, and observing signals (zi;j;t)j2Ni, while her continuation payo¤when she deviates equals

ui (�
�), which is weakly less. In the case where ẑi;j;� 6= ẑj;i;� for some fi; jg 2 L and � < t,

it follows because her continuation payo¤ equals ui (��) whether she conforms or deviates.

Hence, player i does not have a pro�table deviation at any history, so �PRI is a SE pro�le.

Proof of Theorem B

For the converse, let the (1; 2) and (2; 3) games be as in Section 4.2.1, and let all other (i; j)

games be trivial games with ui (ai;j; aj;i) = 0 for all (ai;j; aj;i) 2 Ai;j � Aj;i. Arguing as in

the proof of Proposition 1 now implies that payo¤ vector (1; 2; 1; 0; : : : ; 0) 2 EPUBnEPRICTPRI .

For the main part of the theorem, I �rst introduce one unorthodox piece of terminology.

Throughout the Appendix, say that an (action or communication) history hti is on-path under

strategy pro�le � if it is reached with positive probability under � or if there exists another

history ~hti that di¤ers from h
t
i only in player i�s past actions (ai;� )

t
�=0 such that

~hti is reached

with positive probability under �. A history is o¤-path otherwise.42

Let Yi;j =
Q
fi0;j0g2L (Zi0;j0 [ f0i0;j0g)[falertg, where alert and 0i0;j0 are arbitrary disjoint

messages not contained in any Zi0;j0. If a message yi;j is not alert and the fi0; j0g coordinate

of yi;j is an element of Zi0;j0 (rather than 0i0;j0), then I refer to the fi0; j0g coordinate of yi;j
as an fi0; j0g report.43 I show that EPRICTPRI (Y ) � EPUB.

Let �PUB be a SE strategy pro�le in game �PUB. I construct a strategy pro�le �PRI

in game �PRICTPRI (Y ) which will be shown to be a SE pro�le with the same payo¤ vector as

�PUB. I �rst describe play at action histories, then describe play at on-path communication

histories, and �nally describe play at o¤-path communication histories.

Action Histories: Initially, play as in �PUB (i.e., �PRIi (h0�) = �PUBi (h0�)). At subse-

quent on-path action histories, �PRIi

�
ht�i
�
= �PUBi

�
ĥti

�
, where ĥti =

�
ai;� ; (ẑi0;j0;� )fi0;j0g2L

�t�1
�=0

and ẑi0;j0;� is the fi0; j0g report player i received in the period � communication phase.

If player i received con�icting fi0; j0g reports in some period � < t, or did not receive
42The point of this terminology is that if player i �trembles�at an action history but nonetheless an on-path

signal is generated, then player i will want to �forget�about the deviation. By calling the resulting history
�on-path,� it will be possible to insist that player i plays her mutual-minmax action ��i at all �o¤-path�
histories, which is convenient for constructing equilibria.
43In contrast, 0i0;j0 may be interpreted as a null report meaning �no report of zi0;j0�.
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an fi0; j0g report in some period � < t, then ht�i is an o¤-path history (as will become

clear from the description of the communication phase below). At o¤-path action

histories, �PRIi

�
ht�i
�
= ��i .

On-Path Communication Histories: In round 1, each player i sends message�
(zi;j;t)j2Ni ; (0i0;j0;t)fi0;j0g6=fi;j2Nig

�
to every player j 2 Ni. In subsequent rounds, if

all fi0; j0g reports that player i has sent or received so far equal ẑi0;j0;t, then player i

sends every j 2 Ni the message with fi0; j0g report ẑi0;j0;t for those fi0; j0g for which she

has received a report and with fi0; j0g coordinate 0i0;j0;t for those fi0; j0g for which she

has not yet received a report. Consequently, if player i has sent or received con�ict-

ing fi0; j0g reports for some fi0; j0g, or has sent or received alert, then her history is

o¤-path.

O¤-Path Communication Histories: Send alert to all j 2 Ni.

Note that if all players follows �PRI , then for every player i 2 N and every on-path action

history ht�i , �
PRI
i

�
ht�i
�
= �PUBi

�
ĥti

�
, where ĥti =

�
ai;� ; (zi0;j0;� )fi0;j0g2L

�t�1
�=0
. Therefore, �PRI

yields the same payo¤ vector as �PUB. It remains to show that �PRI is a SE pro�le.44

I �rst claim that if any player i deviates from �PRI at any communication history ht;ki ,

then every player j 6= i plays ��j in all subsequent periods.

The �rst step in proving the claim is showing that if player i deviates from �PRI at any

communication history ht;ki , then some other player reaches an o¤-path history during the

period t communication phase. This is clearly true if player i deviates by sending alert, as

alert is never sent on-path. It is also true if player i deviates by sending (to some j 2 Ni)

a message with fi0; j0g coordinate 0i0;j0;t rather than sending an fi0; j0g report, or by sending

an fi0; j0g report rather than 0i0;j0;t, as player j �knows�at what rounds player i sends an

fi0; j0g report on-path.45 The only remaining possibility is that player i deviates by sending

an fi0; j0g report ẑi0;j0;� 6= zi0;j0;� to some j 2 Ni. Assume without loss of generality that

i0 6= i. Let (i0; j1; : : : ; jl; j) be a path from i0 to j that does not include i, which exists by

2-connectedness. Then in round 1 player i0 sends fi0; j0g report zi0;j0;� to player j1, and by
44As in the proof of Theorem A, I will show that

�
�PRI ; �

�
is a SE for any consistent belief system �.

45In particular, player i sends an fi0; j0g report at round k if and only if k � min fd (i; i0) ; d (i; j0)g+ 1.
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induction in round l0 + 1 player jl0 either sends fi0; j0g reports zi0;j0;� to player jl0+1 or sends

alert to player jl0+1. In either case, player j receives either fi0; j0g report zi0;j0;� or alert in

round l + 1, so ht;maxfk+1;l+1gj is an o¤-path history.

The second� and �nal� step in proving the claim is showing that if all players except

possibly i conform to �PRI and some player j 6= i reaches an o¤-path history during the period

t communication phase, then every player i0 6= i plays ��i0 in all subsequent periods. To see

this, note that at an o¤-path history reached by player j during the period t communication

phase (call it ht;kj ), player j sends alert to all of his neighbors. By induction, each player

i0 6= i receives alert in round k+d, where d is the length of the shortest path between j and i0

that does not include i (which exists by 2-connectedness). Hence, every player i0 6= i reaches

an o¤-path history during the period t communication phase. Therefore, every subsequent

action history is o¤-path for all i0 6= i, so all i0 6= i play ��i0 in all subsequent periods.

It follows from the claim that no player has a pro�table deviation at an on-path history:

First, at any on-path action history ht�i , player i�s continuation payo¤from playing any action

ai is the same as her continuation payo¤ from playing ai at history ĥti under �
PUB, and �PUB

is a SE. Second, at any on-path communication history ht;ki , player i�s continuation payo¤

from conforming to �PRI equals her continuation payo¤ under �PUB conditional on reaching

history ĥti, playing ai;t, and observing some subset of the period t signals (zi;j;t)fi;jg2L, while

her continuation payo¤ from deviating equals ui (��), which is weakly less.

Finally, I argue that no player has a pro�table deviation at an o¤-path history. The key

observation is that if player i is at an o¤-path history then regardless of her future play all

of her opponents will play �� in every subsequent period. This is immediate from the claim

if player i is the only player that has deviated from �PRI and player i has deviated at a

communication history. If player i deviated from �PRI at an action history and an o¤-path

signal zi;j was generated, then player j is at an o¤-path history.46 Similarly, if some player

j 6= i has deviated from �PRI , then that player is at an o¤-path history. In either of these

cases, the second paragraph of the proof of the claim implies that all players i0 6= i play �� in

every subsequent period. Therefore, if i conforms to �PRI her continuation payo¤ is ui (��),

46If player i deviated at an action history and an on-path signal was generated, then player i�s resulting
history is classi�ed as on-path.
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while if she deviates her continuation payo¤ is weakly less.

Proof of Theorem 1

Let Yi;j =
Q
fi0;j0g2L (Zi0;j0 [ f0i0;j0g) [ falertg, as in the proof of Theorem B. To de�ne m0,

�rst let L0 be an arbitrary spanning tree of L (i.e., a connected subnetwork with no cycles

that contains all the nodes in L), and let N 0
i � Ni be the set of player i�s neighbors in

L0. Renumber the players such that the leaf players in L0 (i.e., the players with only one

neighbor in L0) are numbered 1; 2; : : : ; n0.47 Now de�ne m0 by letting m0
i = 4n0 jZj for

all i 2 f1; : : : ; n0g and m0
i = 0 for all i 2 fn0 + 1; : : : ; ng (in particular, only leaf players

start with tokens). In addition, number the elements of Z from 1 to jZj. I show that

~ETOKPRI (Y;m
0) � ~EPUB.

Let �PUB be a PBE strategy pro�le in �PUB. I construct a pro�le �PRI in �TOKPRI (Y;m
0)

which will be shown to be an PBE pro�le with the same payo¤s as �PUB. I �rst describe

play at on-path action phase histories, then describe play at on-path communication phase

histories (which are now broken into a �reporting subphase� followed by a �con�rmation

subphase�), and �nally describe o¤-path play and beliefs.

Actions (On-Path): Initially, play as in �PUB (i.e., �PRIi (h0�) = �PUBi (h0�)). In sub-

sequent periods, �PRIi

�
ht�i
�
= �PUBi

�
ĥti

�
, where ĥti =

�
ai;� ; (ẑi0;j0;� )fi0;j0g2L

�t�1
�=0

and

ẑi0;j0;� is the fi0; j0g report player i received in the period � reporting subphase. If

player i received con�icting fi0; j0g reports or did not receive an fi0; j0g report in some

period � < t, then ht�i is an o¤-path history (as will become clear from the description

of the reporting subphase below) and �PRIi

�
ht�i
�
is therefore given by the description

of o¤-path play below.

Reporting Subphase (On-Path): The reporting subphase consists of the �rst n�1 rounds

of the communication phase, during which the players report all signals of which they

have been informed to their neighbors in L0 and do not make transfers.48 In particular,

47That is, the set of leaf players is fi : jN 0
i j = 1g, not to be confused with fi : jNij = 1g. The set of players

fi : jNij = 1g also plays a role in the proof, but I reserve the terminology �leaf players�for fi : jN 0
i j = 1g.

48Throughout, transfer means transfer of tokens.
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player i sends message (0i0;j0)fi0;j0g2L to every player j 2 NinN 0
i in every round of the re-

porting subphase. In round 1, player i sends message
�
(zi;j0;t)j02Ni ; (0i0;j0;t)fi0;j0g6=fi;j2Nig

�
to every player j 2 N 0

i . In rounds 1 through n � 1, player i sends every j 2 N 0
i the

message with fi0; j0g report ẑi0;j0;t if all fi0; j0g reports she has sent or received in earlier

rounds equal ẑi0;j0;t, and with fi0; j0g coordinate 0i0;j0 if she has not yet received an

fi0; j0g report. (Note that if all players conform then they all learn all of the true

signals in the course of the reporting subphase.)

Con�rmation Subphase (On-Path): The con�rmation subphase consists of all but the

�rst n� 1 communication rounds. In every round of the con�rmation subphase, every

player i sends message (0i0;j0)fi0;j0g2L to all j 2 Ni, and in addition one player transfers

tokens to one of her neighbors (until a certain round is reached after which no tokens are

transferred). I now describe the details of these transfers for the time t con�rmation

subphase.49 In what follows, let ẑi =
�
ẑii0;j0

�
fi0;j0g2L be the vector of fi

0; j0g reports

received by player i in the time-t reporting subphase (noting that if a con�rmation

subphase history of player i�s is on-path then player i must have received consistent

(i.e., non-con�icting) fi0; j0g reports for all fi0; j0g 2 L in the reporting subphase), and

let qi be the number between 1 and jZj assigned to ẑi.50 In addition, let pi;j denote

the (unique) path from player i to player j in L0, and let pli;j denote the l
th player in

this path, for l 2 f1; : : : ; d (i; j) + 1g.51 Finally denote a transfer of x tokens by $x.

� Round n +
Pi�1

j=1 d (j; j + 1) + l � 1, i 2 f1; : : : ; n0 � 1g, l 2 f1; : : : ; d (i; i+ 1)g:

Player pli;i+1 sends $iqi=2
t to player pl+1i;i+1.

� Round n +
Pn0�1

j=1 d (j; j + 1) + l � 1, l 2 f1; : : : ; d (n0; 1)g: Player pln0;1 sends

$n0qn0=2
t to player pl+1n0;1.

� Round n +
Pn0�1

j=1 d (j; j + 1) + d (n
0; 1) + 2

Pi�1
j=2 d (1; j) + l � 1, i 2 f2; : : : ; n0g,

l 2 f1; : : : ; d (1; i)g: Player pl1;i sends $ (4� 1=2t�1)n0 jZj to player pl+11;i .

49The description given here is concise and complete but perhaps di¢ cult to read. See Section 5 for a
verbal description of on-path play in the con�rmation subphase.
50Note that on-path qi = qj for all i; j, but if some player has deviated then it may be the case that players

i and j are both at on-path histories and yet qi 6= qj .
51Note that pi;j 6= pj;i. In particular, pli;j = p

d(i;j)�l+2
j;i . For example, p1i;j = i = p

d(i;j)+1
j;i .
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� Round n +
Pn0�1

j=1 d (j; j + 1) + d (n
0; 1) + 2

Pi�1
j=2 d (1; j) + d (1; i) + l � 1, i 2

f2; : : : ; n0g, l 2 f1; : : : ; d (1; i)g: Player pli;1 sends $ (4� 1=2t�1)n0 jZj to player

pl+1i;1 .

� Round k � n +
Pn0�1

j=1 d (j; j + 1) + d (n
0; 1) + 2

Pn0

j=2 d (1; j): No transfers are

made.

O¤-Path Play and Beliefs: For players i and j 2 Ni, say that player i punishes player

j at history hti if player i plays �
�
i;j at all subsequent action histories, sends alert to

player j at all subsequent communication histories, and never again transfers tokens

to player j.52 I �rst specify the following aspects of o¤-path play:

1. If player i receives alert from player j at any history hti (on or o¤-path), then i

punishes every player j0 2 Ni \ Cij.

2. If player i satis�es jNij = 1 and i sends an o¤-path signal zi;j, message yi;j, or

transfer zi;j to j at an on-path history hti (i.e., a signal, message, or transfer that

i never sends to j at hti under the speci�cation of on-path play), then i punishes

j.53

3. If player i receives a transfer mj;i > 0 from a player j =2 N 0
i at any history h

t
i (on

or o¤-path), then i punishes every player j0 2 Ni \ Cij.

4. Player i never sends a transfer mi;j > 0 to a player j =2 N 0
i .

O¤-path beliefs and the remaining aspects of o¤-path play are jointly de�ned by the follow-

ing recursive procedure, which partitions histories according to their �number of steps

o¤-path.� As will become evident, the beliefs generated by this procedure satisfy the

property that a player at a d step o¤-path history believes that with probability 1 all

other players are at histories that are at most d steps o¤-path.

� Classify history hti as 0 steps o¤-path if it is on-path. Thus, we have already

speci�ed play and beliefs at 0 step o¤-path histories.
52Note that, by de�nition, if player i punishes player j at history hti and history h

t0
i is a successor of h

t
i

then i punishes j at ht0i .
53To be precise, say that the fi; jg signal zi;j is both �sent�from i to j and �received�by i from j (there

is no such ambiguity for reports or transfers).
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� Say that a signal, message, or transfer received by player i from player j (resp.,

sent from player i to player j) at a d step o¤-path history hti is d + 1 steps o¤-

path if is never received by i from j (resp., sent from i to j) at hti under i�s beliefs

�i (�jhti) and the speci�cation of play at f0; : : : ; dg step o¤-path histories. Classify

the resulting history ht0i as d+ 1 steps o¤-path.

� Specify that if player i receives a d + 1 step o¤-path signal, message, or transfer

from j at a d step o¤-path history hti, then i punishes every player j
0 2 Ni \ Cij.

� Specify that if player i receives a d+1 step o¤-path signal, message or transfer from

player j at a d step o¤-path history hti, she believes that every player j
0 2 Cijn fjg

received alert from every player inNj0\Cij at history htj0.54 The remaining aspects

of i�s beliefs about players j0 2 Cij are arbitrary, subject to the requirement that

with probability 1 history htj0 was at most d steps o¤-path. Beliefs about players

in NnCij are determined by i�s beliefs at f0; : : : ; dg step o¤-path histories and the

assumption (necessary for PBE) that they do not depend on hi;j. In particular,

after receiving a d+1 step o¤-path message from player j, player i remains certain

that players in NnCij are at histories at most d steps o¤-path.

� If player i sends a d + 1 step o¤-path signal, message or transfer to player j

at a d step o¤-path communication history, then her beliefs about all players are

determined by her beliefs at f0; : : : ; dg step o¤-path histories and the speci�cation

of play at f0; : : : ; dg step o¤-path histories.

� Observe that if player i sends or receives a d+1 step o¤-path message or transfer at

a d step o¤-path communication history, she now faces a distribution of opposing

(i; j)-game action plans for all j 2 Ni determined by her beliefs, the speci�cation

of play at f0; : : : ; dg step o¤-path histories, and the fact that any player j at a

d0 step o¤-path history htj punishes i if he receives a d
0 + 1 step o¤-path signal,

message, or transfer from i, for all d0 � d.55 Specify that player i�s continuation

54If hti is an action history, this would not be possible if players were not allowed to send messages
concurrently with actions. However, this contingency cannot arise if monitoring in all (i; j) games has full
support, and if monitoring in all (i; j) games is perfect then one could specify that player i believes that
every player j0 2 Cijn fjg observed an o¤-path action rather than receiving alert.
55Note that the distribution of opposing (i; j)-action plans but not opposing strategies is speci�ed, as we
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play at histories consistent with this distribution of opposing action plans is (Nash)

optimal.56

� Classify history ht0i as d + 1 steps o¤-path if it reached with positive probability

following a d step o¤-path history hti given the above continuation play and beliefs.

Thus, we have speci�ed play and beliefs at d+ 1 step o¤-path histories.

This completes the description of o¤-path play and beliefs, and thus completes the descrip-

tion of �PRI .

It is clear that �PRI yields the same payo¤s as �PUB. I now show that �PRI is a PBE.

A preliminary observation, which I will use repeatedly, is that a leaf player i never transfer

tokens at an o¤-path history hti if she has conformed to �
PRI in the past. To see this, note

that at any o¤-path history hti where i has conformed to �
PRI in the past, i has received an

o¤-path signal, message, or transfer from some player j at an earlier on-path history, and

hence i punishes every player j0 2 Ni \ Cij at hti. Since L0 spans L and i is a leaf player,

Cij = Nn fig. Hence, i never again transfers tokens to any player.

I now prove a key lemma, which says that if player i deviates from �PRI then each of her

neighbors either minmaxes her or plays as if she had conformed to �PRI .

Lemma 1 For every pair of players i and j 2 Ni, every strategy �i, and every action history

ht+1�j reached under strategy pro�le
�
�i; �

PRI
�i
�
, �PRIj;i

�
ht+1�j

�
2
n
��j;i; �

PUB
j;i

�
ĥt+1j

�o
, where

ĥt+1j =
�
aj;� ; (zi0;j0;� )fi0;j0g2L

�t
�=0
.

Proof. Suppose, toward a contradiction, that �PRIj;i

�
ht+1�j

�
=2
n
��j;i; �

PUB
j;i

�
ĥt+1j

�o
for some

j 2 Ni. Note that if j ever received an o¤-path signal, transfer, or message, then the player

j0 from whom he received it must be in Cji (since only i deviates from �PRI), so j plays ��j;i

have not yet speci�ed player j�s play towards his other neighbors after a deviation by i, nor have we speci�ed
his play toward i after deviations by his other neighbors. However, these aspects of player j�s strategy are
irrelevant for computing player i�s optimal continuation play.
56One might worry that player i could fail to have a �best response�here becausemi;j can take on in�nitely

many values. However, mi;j takes on only �nitely many values on-path, and we have speci�ed that playing
any o¤-path mi;j leads every j0 2 Ni \ Cij to punish i. In addition, player i�s continuation payo¤ against
players j0 =2 Cij is non-decreasing in her token holding, as more continuation strategies against players j0 =2 Cij
are feasible when she holds more tokens. Hence, any o¤-path mi;j is �weakly dominated�by mi;j = 0, so
in e¤ect player i need only choose among the �nitely many on-path values on mi;j and mi;j = 0.
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(as j punishes every player in Ni \Cjj0, and j0 2 C
j
i implies C

j
j0 = C

j
i ). Hence, history h

t+1�
j

must be on-path, and there must be a period t0 � t such that in the period t0 communication

phase j received a consistent vector of fi0; j0g reports that does not equal (zi0;j0;t0)fi0;j0g2L. I

consider three cases, deriving a contradiction in each:

Case 1: Player i is a leaf player. Since only i deviates from �PRI , if player j is at an

on-path history with incorrect reports then it must be that some player j0 2 Nin fjg received

an o¤-path signal, transfer, or message from player i at an on-path history ht
0
j0 with t

0 � t

(note that it is not possible that j0 received an incorrect but on-path report from i, because

the fact that j is i�s only neighbor in L0 implies that all reports received by j0 from i are

o¤-path). Then j0 sends alert to all players in Nj0 \ Cj
0

i , which because i is a leaf player

includes player p2j0;j. By induction, all players in pj0;j, including player j, receive alert during

the period t0 communication phase. This contradicts the hypothesis that ht+1�j is on-path.

Case 2: Player i is not a leaf player, and history ht
0;0
1 is o¤-path. Let t0 � t0 be the

�rst time � such that history h�;01 is o¤-path. I will show that player j does not receive the

$ (4� 1=2t0�1)n0 jZj transfer in period t0, which contradicts hypothesis that history ht+1�j is

on-path.

I �rst claim that no non-leaf player has any tokens at the beginning of period � for all

� � t0 � 1. The proof is by induction on � . The claim is immediate for � = 0. Suppose it

is true for some � � t0 � 2. Then if player 1�s �rst transfer in the period � communication

phase equals q1 and some non-leaf player does not fully pass on one or more of the transfers

he receives in the period � communication phase, then player 1 does not receive either the

$n0q1=2
� transfer or the $ (4� 1=2��1)n0 jZj transfer in period � (since all leaf players are

following �PRI and no non-leaf player has any tokens at the beginning of period �). But

then history h�+11 would be o¤-path, and since � +1 < t0 this would contradict the de�nition

of t0. Hence, it must be that no non-leaf player has any tokens at the beginning of period

� + 1. The claim follows by induction.

Next, I claim that the joint token holdings of all non-leaf players at the beginning of

period t0 is at most $ (4� 1=2t0�2)n0 jZj. To see this, suppose that the non-leaf players

collectively try to maximize their joint token holdings in the period t0 � 1 communication

phase. Note that every token that the non-leaf players do not pass on to a leaf player out
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of any on-path transfer they receive reduces the size of the next on-path transfer sent by a

leaf player by more than one token, and that leaf players do not send transfers at o¤-path

histories. So the joint token holdings of the non-leaf players is maximized when they pass

on all on-path transfers except the last one, which is of size $ (4� 1=2t0�2)n0 jZj.

Now if player j receives a transfer of size $ (4� 1=2t0�1)n0 jZj in period t0 it must be

that the joint token holdings of the non-leaf players (including player j if he is a non-

leaf player) reaches $ (4� 1=2t0�1)n0 jZj at some point during period t0. However, it can

be seen that the joint token holdings of the non-leaf players at any point in period t0 is

no more than $ (4� 1=2t0�2)n0 jZj + (n0 � 1) jZj =2t0, since they start the period with at

most $ (4� 1=2t0�2)n0 jZj and can obtain at most $ (n0 � 1) jZj =2t0 more in the course of

the communication phase (by sending $ jZj =2t0 to player 2 in the appropriate round and

eventually receiving $n0 jZj =2t0 from player n0). Finally,

�
4� 1=2t0�2

�
n0 jZj+ (n0 � 1) jZj =2t0 <

�
4� 1=2t0�1

�
n0 jZj .

Hence, player j does not receive the $ (4� 1=2t0�1)n0 jZj transfer in period t0.

Case 3: Player i is not a leaf player, and history ht
0;0
1 is on-path. If player 1 does not

receive a consistent vector of reports in the period t0 reporting subphase, then the argument is

as in Case 2. So suppose that she does, and denote this vector by (ẑi0;j0)fi0;j0g2L. Note that it

is not possible for all players other than i to have the same consistent� but incorrect� vector

of reports at the start of the period t0 con�rmation phase, as if ẑi0;j0 6= zi0;j0 then players i0

and j0 cannot have consistent vector (ẑi0;j0)fi0;j0g2L. So there is some player i0 =2 f1; ig who

at the start of con�rmation phase is either o¤-path or is on-path with consistent vector

(~zi0;j0)fi0;j0g2L 6= (ẑi0;j0)fi0;j0g2L. Let q be the number assigned to (ẑi0;j0)fi0;j0g2L, and let q0 6= q

be the number assigned to (~zi0;j0)fi0;j0g2L.

Consider two cases:

1. q < q0: Let � be the communication round where player i0 �rst receives a transfer

on-path. I �rst claim that player i0 punishes every player in Ni0 \ Ci
0
i at round �+ 1.

To see this, �rst note that no non-leaf player begins period t0 with any tokens, by the

same argument as in Case 2 (because ht
0;0
1 is on-path). Hence, for no joint strategy of
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the non-leaf players is their joint token holding at round � greater than q=2t
0
times the

number of leaf players who send transfers prior to round �. Since i0 receives a transfer

of q0=2t
0
times this number under �PRI , any transfer she receives at round � is o¤-path.

In addition, since only i deviates from �PRI , the �rst player j0 from whom i receives

an on-path signal, transfer, or message must be in Ci
0
i . Hence, player i

0 punishes every

player in Ni0 \ Ci
0
j0 = Ni0 \ Ci

0
i at round �+ 1.

I now consider two subcases, and show that in each one player 1 does not receive her

expected $n0q=2t
0
transfer in period t0. First, suppose i0 lies on the path from 1 to

i in L0. Let l 6= i be a leaf player such that i lies on path from 1 to l in L0 (which

exists since i is not a leaf player). Then neither i nor l receive a transfer in period t0,

because i0 punishes every player in Ni0 \Ci
0
i at round �+1 and all players except i only

transfer tokens along the links of L0 (even o¤-path). Hence, l never sends a transfer in

period t0 (as leaf players do not send transfers o¤-path), no leaf player sends a transfer

that is more than $q=2t
0
greater than the transfer she receives, and non-leaf players

begin period t0 with no tokens, so player 1 does not receive the $n0q=2t
0
transfer. Next,

suppose i0 does not lie on the path from 1 to i in L0. Let l0 be a leaf player (possibly

equal to i0) such that i0 lies on path from 1 to l0 in L0. Then any transfer sent by l0

will not reach either i or 1, because i0 punishes every player in Ni0 \Ci
0
i at round �+1

and all players except i only transfer tokens along the links of L0. So again player 1

does not receive the $n0q=2t
0
transfer.

Now since player 1 does not receive the $n0q=2t
0
transfer, she does not send the

$
�
4� 1=2t0�1

�
n0 jZj transfer. Finally, as argued in Case 2, the non-leaf players can

collectively obtain no more than $ (n0 � 1) jZj =2t0 < $
�
4� 1=2t0�1

�
n0 jZj in the course

of the period t0 con�rmation phase, so it follows that player j does not receive the

$
�
4� 1=2t0�1

�
n0 jZj transfer. This contradicts the hypothesis that history ht+1�j is

on-path.

2. q > q0: If player i0 receives an o¤-path transfer at round � (as well as if she punishes

every player in Ni0 \Ci
0
i at round �+1 due to an earlier deviation), the argument is as

in the q < q0 case. The remaining case is where in round � player i0 receives a transfer
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equal to q0=2t
0
times the number of leaf players who send transfers prior to round �.

Let l be a leaf player (possibly equal to i0) such that i0 lies on the path from 1 to l in

L0. Then the �rst transfer l receives in the period t0 con�rmation phase is at most

q0=2t
0
times the number of leaf players who send transfers prior to this round. Hence,

l then sends a transfer that is at most q0=2t
0
greater than the transfer she received.

It follows that player 1 does not receive her expected $n0q=2t
0
transfer in period t0,

because non-leaf players begin period t0 with no tokens, no leaf player sends a transfer

that is more than $q=2t
0
greater than the transfer she receives, and some leaf player

(player l) sends a transfer that is only at most $q0=2t
0
greater than the transfer she

receives. This yields a contradiction as in the q < q0 case.

Lemma 1 is not quite enough to rule out on-path deviations. The following lemma will

also be needed.

Lemma 2 Suppose that under strategy pro�le
�
�i; �

PRI
�i
�
an o¤-path action history ht�j is

reached for some j 2 Ni . Then �PRIj0;i

�
ht

0�
j0

�
= ��j0;i for all t

0 > t and all j0 2 Ni.

Proof. It su¢ ces to show that if ht�j is o¤-path for some j 2 Ni then the next action history

ht+1�j0 is o¤-path for all j0 2 Ni. For if ht+1�j0 is o¤-path then the �rst o¤-path signal, transfer,

or message received by player j0 must have come from a player j00 2 Cj
0

i = C
j0

j00, and hence

�PRIj0;i

�
ht

0�
j0

�
= ��j0;i for all t

0 > t.

I now show that ht+1�j0 is o¤-path for all j0 2 Ni, considering three cases.

Case 1: Player i is a leaf player. Since i is a leaf player, any incorrect report she sends

is o¤-path, as on-path she only sends reports to her neighbor j0 2 N 0
i and j

0 observes zi;j0.

Hence, since ht�j is o¤-path, player i must have sent an o¤-path signal, transfer or message

to some player j0 2 Ni at some time t0 < t. The same argument as in Case 1 of the proof of

Lemma 1 now implies that every player j00 2 Ni receives alert in the period t0 communication

phase. So ht+1�j00 is o¤-path for all j00 2 Ni.

Case 2: Player i is not a leaf player and history ht;01 is o¤-path. The same argument as

in Case 2 of the proof of Lemma 1 implies that no player receives the $ (4� 1=2t0�1)n0 jZj

transfer in the �rst period t0 at which h
t0;0
1 is o¤-path. So ht+1�j0 is o¤-path for all j0 2 Ni.
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Case 3: Player i is not a leaf player and history ht;01 is on-path. Since only i deviates

from �PRI , the �rst player j0 from whom player j received an o¤-path signal, transfer, or

message must lie in Cji , as only i deviates from �
PRI . Hence, player j punishes every player

in Ni0 \Cjj0 = Ni0 \C
j
i at history h

t;0
j . The same argument as in the �rst subcase of Case 3

of the proof of Lemma 1 now implies that no player receives the $ (4� 1=2t�1)n0 jZj transfer

in period t. So ht+1�j00 is o¤-path for all j00 2 Ni.

Together, Lemmas 1 and 2 imply that there are no pro�table deviations at on-path

histories, as follows. It is clear that there are no pro�table deviations at on-path action

histories, as playing any action ai at an on-path action history ht�i under �PRI yields the

same continuation payo¤ as does playing action ai at history ĥti under �
PUB. Now suppose,

toward a contradiction, that player i has a pro�table deviation at an on-path period t

communication history. By Lemmas 1 and 2, such a deviation must lead some of i�s neighbors

to start minmaxing i in period t+1 and lead the rest of them to play �PUBj;i

�
ĥt+1j

�
in period

t + 1 and then start minmaxing i in period t + 2. Such a deviation is weakly worse for

i than conforming to �PRI in the period t communication phase, deviating to her myopic

best response in the period t + 1 action phase, and playing ��i from period t + 2 on, since

the latter deviation yields a weakly higher payo¤ in period t + 1 (as best-responding to an

arbitrary mixed action gives a weakly higher payo¤ than best-responding to the minmax

mixed action) and the same payo¤ in all subsequent periods. But the latter deviation is

not pro�table, since there are no pro�table deviations at on-path action histories, so the

proposed deviation cannot be pro�table, either.

Finally, I argue that there are no pro�table deviations at o¤-path histories. Start with

a lemma.

Lemma 3 If the speci�cation of o¤-path play requires that player i punishes player j at

history hti, then player i believes that every player j
0 2 Ni \ Cij punishes player i at history

ht0j0, where h
t0
j0 is the history immediately following h

t
j0 (i.e., h

t0
j0 = h

t;k+1
j0 if hti = h

t;k
i ; h

t0
j0 = h

t;0
j0

if hti = h
t�
i ).

Proof. Player i is only required to punish j at o¤-path histories. I consider each of the

di¤erent ways in which i may reach an o¤-path history.
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First, i may receive an o¤-path signal, message, or transfer from a player j0 2 Ni \Cij at

an on-path history h�i . If
��Cij�� = 1, then j0 = j, so jNjj = 1 and j sent an o¤-path signal,

message, or transfer to i at on-path history h�j (as if Nj = fig and h�i is on-path then h�j
must be on-path as well), so j punishes i. If

��Cij�� 6= 1, then if j 6= j0 then i believes that j
received alert from a player j00 2 Ni \ Cij0 at history h�j . Hence, i believes that j punishes

every player in Nj \Cij00, which includes i, at h�i . Alternatively, if
��Cij�� 6= 1 and j = j0, then

i believes that some player j00 2 Nj (with j00 6= i) received alert from j at on-path history h�j ,

and hence that j will receive alert from j00 at history h� 0j . Hence, i believes that j punishes

i at history ht0j0.

Second, i may have sent or received an o¤-path signal, message, or transfer to/from a

player outside of Ni \ Cij at an on-path history h�i . Then if i is required to punish j it is

because i subsequently (1) received alert from a player j0 2 Ni \ Cij, (2) received a transfer

from a player j0 2 Ni \ CijnN 0
i , or (3) received a d + 1 step o¤-path signal, message, or

transfer from a player j0 2 Ni \ Cij at a d step o¤-path history. Since transfers are never

sent along links outside of L under �PRI , (2) also represents a d + 1 step o¤-path transfer.

So, since j 2 Ni \ Cij0, both (2) and (3) lead i to believe that j received alert from a player

j00 2 Ni \ Cij0 at history h�j . Hence, i believes that j punishes every player in Nj \ Cij00,

which includes i. For (1), if this alert represents a d + 1 step o¤-path message, the same

argument applies. If not, then it must be that some player j0 2 Ni \ Cij received an o¤

path signal, message, or transfer from i. In this case, i believes that j received alert from a

player j00 2 Cij0, and hence punishes every player in Nj \ Cij00, which includes i.

Finally, i may have sent an o¤-path signal, message, or transfer to a player j0 2 Ni \ Cij
at an on-path history h�i . If jNij = 1, then since h�i is on-path i believes that h�j is on-path,

and in addition i believes that this signal, message, or transfer is never received by j from i

at h�j under �
PRI (as in this case h�i is measurable with respect to h

�
j , so any signal, message,

or transfer that is never sent from i to j at h�i is also never received by j from i at h�j ).

Hence, i believes that j punishes i. If instead jNij 6= 1, then i is required to punish j only

if i subsequently received alert from a player j0 2 Ni \ Cij, received a transfer from a player

j0 2 Ni \ CijnN 0
i , or received a d+ 1 step o¤-path signal, message, or transfer from a player

j0 2 Ni\Cij at a d step o¤-path history, in which case the same argument as in the preceding
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paragraph applies.

Note that the only path in L from a player in Ni \ Cij to a player in NinCij is the one

through i, so if player i�s continuation strategy against players j0 2 Ni \ Cij maximizes her

(i; j0)-game continuation payo¤ for all j0 2 Ni \ Cij as well as the transfer she receives from

every player j0 2 Ni \ Cij in every round then it maximizes her payo¤ overall (for any �xed

continuation strategy against players j0 2 NinCij). By Lemma 3, at any o¤-path history hti
where �i;j is speci�ed, player i punishes every player j0 2 Ni \ Cij and player i believes that

every player j0 2 Ni \Cij punishes player i punishes i at history ht0i regardless of i�s strategy.

Therefore, every player j0 2 Ni \Cij plays ��j0;i and does not transfer tokens to player i at all

future histories. Hence, it is optimal for player i to play ��i;j0, send alert, and not transfer

tokens to every player j0 2 Ni \Cij at all future histories. Finally, transferring mi;j > 0 to a

player j =2 N 0
i leads all j

0 2 Ni \ Cij to punish player i, so it is optimal for player i to never

make such a transfer. It follows that player i does not have a pro�table deviation at any

o¤-path history, completing the proof.

Proof of Proposition 1

I sketch the necessary modi�cation of the proof of Theorem 1, omitting the details.

Let L0 be such a spanning tree, and renumber the leaf players in L0 by 1; : : : ; n0, as in the

proof of Theorem 1. Let " = mini2f1;:::;n0gm0
i . Add a new �redistribution subphase�to the

start of the period 0 communication phase. In it, all non-leaf players pass all their tokens

to player 1. Let x =
Pn

i=n0+1m
0
i be the joint initial token holding of the non-leaf players,

so that player 1 receives $x in the redistribution subphase. The rest of the strategy pro�le

is as in the proof of Theorem 1, except that throughout $qi=2t is replaced with $
qi
2t

�
"

4n0jZj

�
and $ (4� 1=2t�1)n0 jZj is replaced with $x+ (1� 1=2t+1) ", re�ecting the fact that players

2; : : : ; n0 now end the redistribution subphase with as little as $" rather than $4n0 jZj and

player 1 ends the redistribution subphase with as little as $x+ " rather than $4n0 jZj.

The proof that this is a SE pro�le is a minor extension of the proof of Theorem 1.

Intuitively, the facts that non-leaf players end the redistribution subphase with no tokens

and that the �con�rmation transfer� $x + (1� 1=2t+1) " is greater than $x and increases

each period imply that no player can mislead another about the history of signals.
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Proof of Theorem 2

I �rst prove the result for �essential,�and then describe how it must be modi�ed for �strongly

essential.�

I start by introducing the notion of an M-local public equilibrium (M -LPE), where M is

an arbitrary subnetwork of L. This is de�ned to be a PBE in �PRI in which �i;j (hti) depends

only on (zi;j;� )
t�1
�=0 for all fi; jg 2M , and �i;j (hti) depends only on

�
(ai;j0;� ; zi;j0;� )fi;j0g2LnM

�t�1
�=0

for all i 2M and j =2M . That is, aM -LPE is a PBE in which players inM condition their

play in a relationship with another player in M only on past play in that relationship, and

condition their play in a relationship with a player outsideM only on past play with players

outside M . Denote the M -LPE payo¤ set in �PRI by ~EMLPE
PRI .

For the rest of the proof, assume that M is a nice subnetwork of L.

First, I claim that ~EPRI = ~EMLPE
PRI . The argument adapts the proof of Theorem 5.2

of Fudenberg and Levine (1994), which shows that the SE payo¤ set and PPE payo¤ set

coincide in repeated games with imperfect public monitoring and a product structure. In

particular, �x a PBE � in �PRI , any let fi; jg 2 M . Because M is a subtree of L, player

i�s beliefs at history hti about player j�s private history depend only on (ai;j;� ; zi;j;� )
t�1
�=0; this

follows from the �rst additional requirement in the de�nition of PBE. Given this, the fact

that �PRI has a product structure implies that player i�s beliefs about player j�s private

history depend only on (zi;j;� )
t�1
�=0, by Bayes rule. Now replace �i;j with a strategy that

depends only on (zi;j;� )
t�1
�=0 but has the same marginals over Ai;j conditional on (zi;j;� )

t�1
�=0 as

does �i;j. Do this for every fi; jg 2M . In addition, again because M is a subtree of L, for

any fi; jg 2 L with i 2M and j =2M , player i�s beliefs at history hti about player j�s private

history depends only on
�
(ai;j0;� ; zi;j0;� )fi;j0g2LnM

�t�1
�=0
. For any such i; j, replace �i;j with a

strategy that depends only on
�
(ai;j0;� ; zi;j0;� )fi;j0g2LnM

�t�1
�=0

but has the same marginals over

Ai;j conditional on
�
(ai;j0;� ; zi;j0;� )fi;j0g2LnM

�t�1
�=0

as does �i;j. Then the resulting strategy

pro�le (after both kinds of replacements) is a M -LPE with the same payo¤s as �; this is

because for every pure strategy of any player i, she faces the same distribution over outcomes

whether her opponents follow the original strategy pro�le or the modi�ed strategy pro�le.
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Second, I claim that ~EMLPE
PRI = ELPEPRI jM + ~EPRI jLnM .57 To see this, given a LPE �0 in

�PRI jM and a PBE �00 in �PRI jLnM , de�ne a strategy pro�le � in �PRI by letting �i;j (hti) =

�0i;j
�
(zi;j;� )

t�1
�=0

�
if fi; jg 2 M and �i;j (hti) = �00i;j

��
(ai;j0;� ; zi;j0;� )fi;j0g2LnM

�t�1
�=0

�
if fi; jg 2

LnM . Then it is straightforward to check that � is aM -LPE in �PRI and that payo¤s under

� are the sum of payo¤s under �0 and �00, so ~EMLPE
PRI � ELPEPRI jM + ~EPRI jLnM . Similarly,

given a M -LPE in �PRI , �, de�ne strategy pro�les �0 in �PRI jM and �00 in �PRI jLnM by

�0i;j (h
t
i) = �i;j (h

t
i) for all fi; jg 2 M and �00i;j (h

t
i) = �i;j (h

t
i) for all fi; jg =2 M . Then

�0 is a LPE in �PRI jM , �00 is a PBE in �PRI jLnM , and payo¤s under � are the sum of

payo¤s under �0 and �00, so ~EMLPE
PRI � ELPEPRI jM + ~EPRI jLnM . Combining the inclusions yields

~EMLPE
PRI = ELPEPRI jM + ~EPRI jLnM .

Third, I claim that ~ETOKPRI jM � ELPEPRI jM and ~ETOKPRI jMn co
�
ELPEPRI jM

�
6= ;. The inclusion

follows because ~ETOKPRI jM � ~EPRI jM (by the observation preceding Corollary 1) and ~EPRI jM �

ELPEPRI jM (because LPE re�nes PBE). The inequality follows because ~ETOKPRI jM � ~EPUBjM
(by Theorem 1) and ~EPUBjMn co

�
ELPEPRI jM

�
6= ; (because M is nice).

Finally, I claim that ~ETOKPRI � ~ETOKPRI jM + ~EPRI jLnM . To see this, for any message set

and vector of initial token holdings
�
~Y ; ~m0

�
in �PRI jM , de�ne message set and initial token

holdings (Y;m0) in �PRI by Yi;j = ~Yi;j if fi; jg 2 M , Yi;j = ; if fi; jg =2 M , m0
i = ~m0

i

if i 2 M , and m0
i = 0 if i =2 M . Then ~ETOKPRI (Y;m

0) � ~ETOKPRI

�
~Y ; ~m0

�
jM + ~EPRI jLnM ,

as given a PBE �0 in ~ETOKPRI

�
~Y ; ~m0

�
jM and a PBE �00 in ~EPRI jLnM one can construct a

PBE � in ~ETOKPRI (Y;m
0) with payo¤s equal to the sum of payo¤s under �0 and �00 by letting

�i;j (h
t
i) = �0i;j

�
~hti

�
if fi; jg 2 M , where ~hti is derived from hti by deleting actions, signals,

messages, and transfers along links fi; jg =2M , and letting �i;j (hti) = �00i;j
�
ĥti

�
if fi; jg =2M ,

where ĥti is derived from h
t
i by deleting actions and signals along links fi; jg 2M and deleting

all messages and transfers.

Combining the four claims, one has

~ETOKPRI � ~ETOKPRI jM + ~EPRI jLnM ) ELPEPRI jM + ~EPRI jLnM = ~EMLPE
PRI = ~EPRI ,

where the strict inclusion uses the fact that, for any sets X, X 0, and W , if X � X 0 and

57The notation here is that for sets A;B � Rn, A+B = fa+ b : a 2 A; b 2 Bg.
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Xn co(X 0) 6= ; then X + W ) X 0 + W (as can be seen from a separating hyperplane

argument). Therefore, ~ETOKPRI ) ~EPRI .

The proof for �strongly essential�is almost identical. In place of a M -local public equi-

librium, de�ne a M -local cheap talk equilibrium to be a PBE in �PRICTPRI in which players

in M condition their play (including messages) in a relationship with another player in M

only on past play in that relationship, and condition their play in a relationship with a

player outside M only on past play with players outside M . Let ~EMLCTE
PRI be the set of

M -local cheap talk equilibrium payo¤s in �PRICTPRI . Then ~EPRICTPRI = ~EMLCTE
PRI by the same

argument as for ~EPRI = ~EMLPE
PRI , with the addition that strategies about which message to

send may also need to be replaced byM -local cheap talk strategies with the same marginals.

Next, ~EMLCTE
PRI = ELCTEPRI jM + ~EPRI jLnM by the same argument as for ~EMLPE

PRI = ELPEPRI jM +
~EPRI jLnM , and ~ETOKPRI jM � ELCTEPRI jM and ~ETOKPRI jMn co

�
ELCTEPRI jM

�
6= ; by the same argu-

ment as for ~ETOKPRI jM � ELPEPRI jM and ~ETOKPRI jMn co
�
ELPEPRI jM

�
6= ; (where the statement that

~EPUBjMn co
�
ELPEPRI jM

�
6= ; is strengthened to ~EPUBjMn co

�
ELCTEPRI jM

�
6= ;, which is possible

when M is truly nice). Combining these inclusions with ~ETOKPRI � ~ETOKPRI jM + ~EPRI jLnM as

in the �essential�case yields ~ETOKPRI ) ~EPRICTPRI .
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