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Abstract

This paper characterizes a subset of equilibrium payoffs for Markovian games with

private information as the discount factor vanishes. Monitoring might be imperfect,

transitions may depend on the action profile, types might be correlated or not, values

can be private or interdependent. It focuses on equilibria in which players report their

information truthfully in every period. This characterization generalizes those obtained

for repeated (and stochastic) games with public monitoring, and reduces to a collection

of Bayesian games with transfers. These Bayesian games can be analyzed using standard

techniques from static mechanism design: in the case of independent private values,

Pareto-efficient payoffs are obtained by means of a version of the AGV mechanism; in

the case of correlated types, the results of Crémer and McLean (1988) can be brought

to bear, resulting in a folk theorem.
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1 Introduction

This paper studies the asymptotic equilibrium payoff set of repeated Bayesian games. In do-

ing so, it generalizes methods that were developed for repeated games (Fudenberg and Levine,

1994) and later extended to stochastic games (Hörner, Sugaya, Takahashi and Vieille).
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Serial correlation in the payoff-relevant private information (or type) of a player makes

the analysis of such repeated games difficult. Therefore, asymptotic results in this literature

have been obtained by means of increasingly elaborate constructions, starting with Athey

and Bagwell (2008) and culminating with Escobar and Toikka (2013).1 These constructions

are difficult to extend beyond a certain point, however; instead, our methods allow us to

deal with

- moral hazard (imperfect monitoring);

- endogenous serial correlation (actions affecting transitions);

- correlated types (across players) or/and interdependent values.

Allowing for such features is not merely of theoretical interest. There are many applications

in which some if not all of them are relevant. In insurance markets, for instance, there is

clearly persistent adverse selection (risk types), moral hazard (accidents and claims having

a stochastic component), interdependent values, action-dependent transitions (risk-reducing

behaviors) and, in the case of systemic risk, correlated types. The same holds true in financial

asset management, and in many other applications of such models (taste or endowment

shocks, etc.)

More precisely, we assume that the state profile –each coordinate of which is private

information to a player– follows a controlled autonomous irreducible Markov chain. (Irre-

ducibility refers to its behavior under any fixed Markov strategy.) In the stage game, players

privately take actions, and then a public signal realizes (whose distribution may depend both

on the state and action profile) and the next period state profile is drawn. Cheap-talk com-

munication is allowed, in the form of a public message at the beginning of each round. Our

focus is on truthful equilibria, in which players truthfully reveal their type at the beginning

of each period, after every history.

Our main result characterizes a subset of the limit set of equilibrium payoffs as δ → 1.

While the focus on truth-telling equilibria is restrictive in the absence of any commitment,

it nevertheless turns out that this limit set generalizes the payoffs obtained in all known

special cases so far –with the exception of the lowest equilibrium payoff in Renault, Solan

1This not to say that the recursive formulations of Abreu, Pearce and Stacchetti (1990) cannot be adapted

to such games. See, for instance, Cole and Kocherlakota (2001), Fernandes and Phelan (2000), or Doepke

and Townsend (2006). These papers provide methods that are extremely useful for numerical purposes

for a given discount rate, but provide little guidance regarding qualitative properties of the (asymptotic)

equilibrium payoff set.
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and Vieille, who also characterize Pareto-inferior “babbling” equilibria. When types are

independent (though still possibly affected by one’s own action), and payoffs are private,

for instance, all Pareto-optimal payoffs that are individually rational (i.e., dominate the

stationary minmax payoff) are limit equilibrium payoffs. The subset that is characterized

is larger than this, but just as in the static case with independent types, admits no known

simple description. When types are correlated, then all feasible and individually rational

payoffs can be obtained in the limit.

Those findings mirror those obtained in static mechanism design, e.g. those of Arrow

(1979), d’Aspremont and Gérard-Varet (1979) for the independent case, and those of Crémer

and McLean (1988) in the correlated case. This should come as no surprise, as our char-

acterization is a reduction from the repeated game to a (collection of) one-shot Bayesian

game with transfers, to which the standard techniques can be adapted. If there is no incom-

plete information about types, this one-shot game collapses to the algorithm developed by

Fudenberg and Levine (1994) to characterize public perfect equilibrium payoffs.

This stands in contrast with the techniques based on review strategies (see Escobar

and Toikka for instance) whose adaptation to incomplete information is inspired by the

linking mechanism described in Fang and Norman (2006) and Jackson and Sonnenschein

(2007). Our results imply that, as for repeated games with public monitoring, transferring

continuation payoffs across players is a mechanism that is sufficiently powerful to dispense

with explicit statistical tests. Of course, this mechanism requires that deviations in the

players’ announcements can be statistically distinguished, a property closely related to the

budget-balance constraint from static mechanism design. Therefore, our sufficient conditions

are reminiscent of conditions in this literature, such as the weak identifiability condition

introduced by Kosenok and Severinov (2008).

While the characterization turns out to be a natural generalization of the one from

repeated games with public monitoring, it still has several unexpected features, reflecting

difficulties in the proof that are not present either in stochastic games with observable states.

Consider the case of independent types for instance. Note that the long-run (or asymptotic)

payoff must be independent of the current state of a player, because this state is unobserved

and the Markov chain is irreducible. Relative to a stochastic game with observable states,

there is a collapse of dimensionality as δ → 1. Yet the “transient” component of the payoff,

which depends on the state, must be taken into account: the action in a round having

possibly an impact on the state in later rounds affects a player’s incentives. It must be

taken into account, but it cannot be treated as a transfer that can be designed to convey

incentives. This stands in contrast with the standard technique used in repeated games
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(without persistent types): there, incentives are provided by continuation payoffs which,

as players get patient, become arbitrarily large relative to the per-period rewards, so that,

asymptotically, the continuation play can be summarized by a transfer. But with private,

irreducible types, the differences in continuation payoffs across types of a given player do not

become arbitrarily large relative to the flow payoff (they fade out exponentially fast) and so

cannot be replaced by a (possibly unbounded) transfer.

So: the transient component cannot be ignored, but cannot be exploited as a transfer

either. But, for a given transfer rule and a Markov strategy, this component is easy to

compute, using the average cost optimality equation (ACOE) from dynamic programming.

This equation converts the relative future benefits of taking a particular action, given the

current state, into an additional per-period reward. So it can be taken into account, and

since it cannot be exploited, incentives will be provided by transfers that are independent

of the type (though not of the report). After all, this independence is precisely a feature of

transfers in static mechanism design, and our exclusive reliance on this channel illustrates

again the lack of linkage in our analysis. What requires considerable work, however, is to

show how such type-independent transfers can get implemented, and why we can compute

the transient component as if the equilibrium strategies were Markov, which they are not.

Games without commitment but with imperfectly persistent private types were first in-

troduced in Athey and Bagwell (2008) in the context of Bertrand oligopoly with privately

observed cost. Athey and Segal (2007) allow for transfers and prove an efficiency result for

ergodic Markov games with independent types. Their team balanced mechanism is closely

related to a normalization that is applied to the transfers in one of our proofs. Related con-

tributed in dynamic mechanism design include Battaglini (2005), Bergemann and Välimäki

(2010) and Pavan, Toikka and Segal (2012). Ultimately, though, given that our results rely

on a reduction to a one-shot Bayesian game, the mechanisms that are used in the proof bear

a stronger resemblance to those in static mechanism design, as discussed. There is also a

literature on undiscounted zero-sum games with such a Markovian structure, see Renault

(2006), which builds on ideas introduced in Aumann and Maschler (1995). Not surpris-

ingly, the average cost optimality equation plays an important role in this literature as well.

Because of the importance of such games for applications in industrial organization and

macroeconomics (Green, 1987), there is an extensive literature on recursive formulations for

fixed discount factors (Fernandes and Phelan, 1999; Cole and Kocherlakota, 2001; Doepke

and Townsend, 2006). In game theory, recent progress has been made in the case in which

the state is observed, see Fudenberg and Yamamoto (2012) and Hörner, Sugaya, Takahashi

and Vieille (2011) for an asymptotic analysis, and Pęski and Wiseman (2012) for the case in

4



which the time lag between consecutive moves goes to zero. There are some similarities in

the techniques used, although incomplete information introduces significant complications.

More related are the papers by Escobar and Toikka (2013), already mentioned, Barron

(2012) and Renault, Solan and Vieille (2013). All three papers assume that types are in-

dependent across players. Barron (2012) introduces imperfect monitoring in Escobar and

Toikka, but restricts attention to the case of one informed player only. This is also the case

in Renault, Solan and Vieille. This is the only paper that allows for interdependent values,

although in the context of a very particular model, namely, a sender-receiver game with

perfect monitoring. In none of these papers do transitions depend on actions.

2 The Model

We consider dynamic games with imperfectly persistent incomplete information. The stage

game is as follows. The set of players is I, finite. Each player i ∈ I has a finite set Si of

(private) states, and a finite set Ai of actions. The state si ∈ Si is private information.

We denote by S := ×i∈IS
i and A := ×i∈IA

i the sets of state profiles and action profiles

respectively.

In each stage n ≥ 1, timing is as follows:

1. players first privately observe their own state (sin);

2. players simultaneously make reports (mi
n) ∈ M i, where M i is finite. These reports are

publicly observed;

3. the outcome of a public correlation device is observed. For concreteness, it is a draw

from the uniform distribution on [0, 1];

4. players choose actions (ain);

5. a public signal yn ∈ Y , a finite set, and the next state profile sn+1 = (sin+1)i∈I are

drawn according to a distribution p(· | sn, an) ∈ ∆(S × Y ).

Throughout, we assume that p(s, y | s̄, ā) > 0 whenever p(y | s̄, ā) > 0, for all (s, s̄, ā). This

means that (i) the Markov chain (sn) is irreducible, (ii) public signals, whose probability

might depend on (s̄, ā) do not allow players to rule out some type profiles s. This is consistent
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with perfect monitoring. Note that actions might affect transitions.2 The irreducibility of the

Markov chain is a strong assumption, ruling out among others the case of perfectly persistent

types (see Aumann and Maschler, 1995; Athey and Bagwell, 2008). Unfortunately, it is well

known that the asymptotic analysis is very delicate without such an assumption (see Bewley

and Kohlberg, 1976).

The stage-game payoff function is a function g : S×Y ×Ai → R
I and as usual we define

the reward r : S × A → R
I as its expectation, r(s, a) = E[g(s, y, ai) | a], a function whose

domain is extended to mixed action profiles in ∆(A).

Given the sequence of realized rewards (rin), player i’s payoff in the dynamic game is

given by
∑

(1− δ)δn−1rin,

where δ ∈ [0, 1) is common to all players. (Short-run players can be accommodated for, as

will be discussed.)

The dynamic game also specifies an initial distribution p0 ∈ ∆(S), which plays no role

in the analysis, given the irreducibility assumption and the focus on equilibrium payoffs as

δ → 1.

A special case of interest is independent private values. This is defined as the case in

which (i) payoffs of a player only depend on his private state, not the others’, i.e. for all

(i, s, a), ri(s, a) = ri(si, a), (ii) conditional on the public signal y, types are independently

distributed (and p0 is a product distribution), i.e., for all (s, y, s̄, ā),

p(s | y, s̄, ā) = ×ip(s
i | y, s̄, ai).

But we do not restrict attention to private values or independent types. In the case of

interdependent values, this raises the question whether players observe their payoffs or not.

It is possible to deal with the case in which payoffs are privately observed: simply define

a player’s private state as including his last realized payoff. As we shall see, the reports

of a player’s opponents in the next period is taken into account when evaluating a player’s

report, so that we can build on the results of Mezzetti (2004, 2007) in static mechanism

design with interdependent valuations. Given our interpretation of a player’s private state,

we assume that his private actions, his private states and the public signals and reports are

2Accommodating observable (public) states, as modeled in stochastic games, requires minor adjustments.

One way to model them is to append such states as a component to each player’s private state, perfectly

correlated across players.
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all the information that is available to a player.3

Monetary transfers are not allowed. We view the stage game as capturing all possible

interactions among players, and there is no difficulty in interpreting some actions as monetary

transfers. In this sense, rather than ruling out monetary transfers, what is assumed is limited

liability.

We consider a subset of perfect Bayesian equilibria of this dynamic game, to be defined,

corresponding to a particular choice of M i, namely M i = (Si)2, that we discuss next.

3 Equilibrium

The game defined above allows for public communication among players. In doing so, we fol-

low most of the literature on such dynamic games, Athey and Bagwell (2001, 2008), Escobar

and Toikka (2013), Renault, Solan and Vieille (2013), etc.4 As in static Bayesian mechanism

design, communication is necessary for coordination, and makes it possible to characterize

what restrictions on behavior are driven by incentives. Unlike in static mechanism design,

however, there is no commitment in the dynamic game. As a result, the revelation principle

does not apply. As is well known (see Bester and Strausz, 2000, 2001), both the focus on

direct mechanisms and on obedient behavior are restrictive. It is not known what the “right”

message set is.

At the very least, one would like players to be able to announce their private states,

motivating the choice of M i as (a copy of) Si that is usually made in this literature. Making

this (or any other) choice completes the description of the dynamic game. Following standard

arguments, given discounting, such a game admits at least one perfect Bayesian equilibrium.

There is no reason to expect that such an equilibrium displays truthful reporting, as Example

1 illustrates makes clear.

Example 1 (Renault, 2006). This is a zero-sum two-player game in which player 1 has

two private states, s1 and ŝ1, and player 2 has a single state, omitted. Player 1 has actions

A1 = {T,B} and player 2 has actions A2 = {L,R}. Player 1’s reward is given by Figure

1. Both states s1 and ŝ1 are equally likely in the initial period, and the transition is action-

3One could also include a player’s realized action in his next state, to take advantage of the insights of

Kandori (2003), but again this is peripheral to our objective.
4This is not to say that introducing a mediator would be without interest, to the contrary. Following

Myerson (1986), we could then appeal to a revelation principle, though without commitment this would

simply shift the inferential problem to the stage of recommendations.
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L R

T 1 0

B 0 0

s1

L R

T 0 0

B 0 1

ŝ1

Figure 1: The payoff of player 1 in Example 1

independent, with p ∈ [1/2, 1) denoting the probability that the state remains the same from

one stage to the next. There is a single message (i.e., no meaningful communication).

The value of the game described in Example 1 is unknown for p > 2/3.5 It can be (implicitly)

characterized as the solution of an average cost optimality equation, or ACOE (see Hörner,

Rosenberg, Solan and Vieille, 2010). However, this is a functional equation that involves as

unknown a function of the belief assigned by the uninformed player, player 2, to the state

being s1. Clearly, in this game, player 1 cannot be induced to give away any information

regarding his private state.

Non-existence of truthful equilibria is not really new. The ratchet effect that arises in

bargaining and contracting is another manifestation of the difficulties in obtaining truth-

telling when there is lack of commitment. See, for instance, Freixas, Guesnerie and Tirole

(1985).

Example 1 illustrates that small message sets are just as difficult to deal with as very

large ones. In general, one cannot hope for equilibrium existence without allowing players

to hide their private information, which in turn requires their opponents to entertain beliefs

that are complicated to keep track of.

In light of this observation, it is somewhat surprising that the aforementioned papers

(Athey and Bagwell (2001, 2008), Escobar and Toikka (2013), Renault, Solan and Vieille

(2013)) manage to get positive results while insisting on equilibria that insist on truthful

reporting (at least, after sufficiently many histories for efficiency to be achieved). Given that

our purpose is to obtain a tractable representation of equilibrium payoffs, we will insist on it

as well. The price to pay is not only that existence is lost in some classes of games (such as

the zero-sum game with one-sided incomplete information), but also that one cannot hope

for more than pure-strategy equilibria in general. This is illustrated in Example 2.

5It is known for p ∈ [1/2, 2/3] and some specific values. Pęski and Toikka (private communication) have

recently established the intuitive but nontrivial property that this value is decreasing in p.
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Example 2 This is a two-player game in which player 1 has two private states, s1 and ŝ1,

and player 2 has a single state, omitted. Player 1 has actions A1 = {T,B} and player 2

has actions A2 = {L,R}. Rewards are given by Figure 2. The two types s1 and ŝ1 are i.i.d.

L R

T 1, 1 1,−1

B 0,−1 0, 1

s1

L R

T 0, 1 0,−1

B 1,−1 1, 1

ŝ1

Figure 2: A two-player game in which the mixed minmax payoff cannot be achieved.

over time and equally likely. Monitoring is perfect. Note that values are private. To minmax

player 2, player 1 must randomize between both his actions, independently of his type. Yet

in any equilibrium in which player 1 always reports his type truthfully, there is no history

after which player 1 is indifferent between both actions, for both types simultaneously.6

Note that this example still leaves open the possibility of a player randomizing for one of

his types. This does not suffice to achieve player 2’s mixed minmax payoff, but it still

improves on the pure-strategy minmax payoff. Such refinements introduce complications

that are mainly notational. We will not get into them, but there is no particular difficulty

in adapting the proofs to cover special cases in which mixing is desirable, as when a player

has only one type, the standard assumption in repeated games. Instead, our focus will be

on strict equilibria.

So we restrict attention to equilibria in which players truthfully (or obediently) report

their private information. This raises two related questions: what is their private information,

and should the requirement of obedience be imposed after all histories?

6To see this, fix such a history, and consider the continuation payoff of player 1, V 1, which we index by

the announcement and action played. Note that this continuation payoff, for a given pair of announcement

and action, must be independent of player 1’s current type. Suppose that player 1 is indifferent between

both actions whether his type is s1 or ŝ1. If his type is s1, we must then have

(1− δ) + δV 1(s1, T ) = δV 1(s1, B) ≥ max{(1− δ) + δV 1(1ŝ1, T ), δV 1(ŝ1, B)},

which implies that (1 − δ) + δV 1(s1, T ) + δV 1(s1, B) ≥ (1 − δ) + δV 1(ŝ1, T ) + δV 1(ŝ1, B), or V 1(s1, T ) +

V 1(s1, B) ≥ V (ŝ1, T )+V (ŝ1, B). The constraints for type ŝ1 imply the opposite inequality, so that V 1(s1, T )+

V 1(s1, B) = V (ŝ1, T ) + V (ŝ1, B). Revisiting the constraints for type s1, it follows that the inequality must

hold with equality, and that V 1(T ) := V 1(s1, T ) = V 1(ŝ1, T ), and V 1(B) := V (s1, B) = V 1(ŝ1, B). The two

indifference conditions then give 1−δ
δ

= V 1(B)− V 1(S) = − 1−δ
δ

, a contradiction.
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As in repeated games with public monitoring, players have private information that is not

directly payoff-relevant, yet potentially useful: namely, their history of past private actions.

Private strategies are powerful but still poorly understood in repeated games, and we will

follow most of the literature in focusing on equilibria in which players do not condition

their continuation strategies on this information.7 What is payoff-relevant, however, are the

players’ private states sn. Because player i does not directly observe s−i
n , his beliefs about

these states become relevant (both to predict −i’s behavior and because values need not be

private). This is what creates the difficulty in analyzing games such as Example 1: because

player 1 does not want to disclose his state, player 2 must use all available information to

make the best prediction. Player 2’s belief relies on the entire history of play.8 Here, however,

we restrict attention to equilibria in which players report truthfully their information, so that

player i knows s−i
n−1; to predict s−i

n , this is a sufficient statistic for the entire history of player

i, given (sin−1, s
i
n). Note that sin−1 matters, because the Markov chains (sin) and (sin−1) need

not be independent across players, and sn need not be independent of sn−1 either.

Given the public information available to player i, which –if players −i do not lie– includes

s−i
n−1, his conditional beliefs about the future evolution of the Markov chain (sn′)n′≥n are then

determined by the pair (sin−1, s
i
n). This is his “belief-type,” which pins down his payoff-type.

This is why we fix M i = (Si)2.

Truthful reporting in stage n, then, implies reporting both player i’s private state in

stage n and his private state in stage n− 1. Along the equilibrium path, this involves a lot

of repetition. It makes a difference, however, when a player has deviated in round n − 1,

reporting incorrectly sin−1 (alongside sin−2). Note that players −i cannot detect such a lie,

so this deviation is “on-schedule,” using the terminology of Athey and Bagwell (2008). If

we insist on truthful reporting after such deviations, the choice of M i makes a difference:

by setting M i = Si (with the interpretation of the current private state), player i is asked

to tell the truth regarding his payoff-type, but to lie about his belief-type (which will be

incorrectly believed to be determined by his announcement of sin−1, along with his current

report.) Setting M i = (Si)2 allows him to report both truthfully.

It is easy to see that the choice is irrelevant if obedience is only required on the equilibrium

path. However, we will impose obedience after all histories. The choice M i = (Si)2 is not

only conceptually more appropriate, but also allows for a very simple adaptation of the AGV

7See Kandori and Obara (2006) for an illuminating analysis.
8It is well-known that existence cannot be expected within the class of strategies that would rely on finite

memory or that could be implemented via finite automata. There is a vast literature on this topic, starting

with Ben-Porath (1993).
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mechanism (Arrow, 1979; d’Aspremont and Gérard-Varet, 1979).

The solution concept then, is truthful-obedient perfect Bayesian equilibrium, where we

insist on obedience after all histories. Because type, action and signal sets are finite, and

given our “full-support” assumption on S, there is no difficulty in adapting Fudenberg and

Tirole (1991a and b)’s definition to our set-up –the only issue that could arise is due to the

fact that we have not imposed full support on the public signals. In our proofs, actions do

not lead to further updating on beliefs, conditional on the reports. This is automatically the

case when signals have full support, and hopefully uncontroversial in the general case.9

4 Characterization

4.1 Dimension

Before stating the program, there are two “modeling” choices to be made.

First, regarding the payoff space. There are two possibilities. Either we associate to each

player i a unique equilibrium payoff, corresponding to the limit as δ → 1 of his equilibrium

payoff given the initial type profile, focusing on equilibria in which this limit does not depend

on the initial type profile. Or we consider payoff vectors in R
I×S, mapping each type profile

into a payoff for each player. When the players’ types follow independent Markov chains and

values are private, the case usually considered in the literature, this makes no difference, as

the players’ limit equilibrium payoff must be independent of the initial type profile. This

is an immediate consequence of low discounting, the irreducibility of the Markov chain on

states, and incentive-compatibility. On the other hand, when types are correlated, it is

possible to assign different (to be clear, long-run) payoffs to a given player, depending on the

initial state, using ideas along the lines of Crémer and McLean (1988). To provide a unified

analysis, we will focus on payoffs in R
I , though our analysis will be tightly linked to Crémer

and McLean when types are correlated, as will be clear.10

Indeed, to elicit obedience when types are correlated across players, it is natural to “cross-

check” player i’s report about his type, (sin−1, s
i
n), with the reports of others, regarding the

9Note however that our choice M i = (Si)2 means that, even when signals have full support, there are

histories off the equilibrium path, when a player’s reported type conflict with his previous announcement.

Beliefs of players −i assign probability 1 to the latest report as being correct.
10That is to say, incentives will depend on “current” types, and this will be achieved by exploiting the

possible correlation across players. When types are correlated across players, the long-run payoffs could

further depend on the initial types, despite the chain being ergodic.
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realized state s−i
n . In fact, one should use all statistical information that is or will be available

and correlates with his report to test it.

One such source of information correlated with his current report is player i’s future

reports. This information is also present in the case of independent Markov chains, and

this “linkage” is the main behind some of the constructions in this literature (see Escobar

and Toikka, 2013, building on the static insight of Fang and Norman, 2006, and Jackson

and Sonnenschein, 2007). Such statistical tests are remarkably ingenious, but, as we show,

unnecessary to generalize all the existing results. One difficulty with using this information

is that player i can manipulate it. Yet the AGV mechanism in the static setting suggests

that no such statistical test is necessary to achieve efficiency when types are independently

distributed. We will see that the same holds true in this dynamic setting. And when types

are correlated, we can use the others ’ players reports to test player i’s signal –just as is done

in static Bayesian mechanism design with correlated types, i.e., in Crémer and McLean.

One difficulty is that the size of the type space that we have adopted is |Si|2, yet the state

profile of the other players in round n is only of size |S−i|; of course, players −i also report

their previous private state in round n−1, but this is of no use, as player i can condition his

report on it. Whereas we cannot take advantage of i’s previous report regarding his state in

period n− 1, because it is information that he can manipulate.

This looks unpromising, as imposing as an assumption that |Si|2 ≤ |S−i| for all i (and

requiring the state distribution to be “generic” in a sense to be made precise) is stronger than

what is obtained in the static framework; in particular, it rules out the two-player case. This

should not be too surprising: Obara (2008) provides an instructive analysis of the difficulties

encountered when attempting to generalize the results of Crémer and McLean to dynamic

environments.

Fortunately, this ignores that player −i’s future reports are in general correlated with

player i’s current type. Generically, s−i
n+1 depend on sin, and there is nothing that player i

can do about these future reports. Taking into account these reports when deciding how

player i should be punished or rewarded for his stage n-report is the obvious solution, and

restores the familiar “necessary and generically sufficient” condition |Si| ≤ |S−i|.

But as the next example makes clear, it is possible to get even much weaker conditions,

unlike in the static set-up.

Example 3 There are two players. Player 1 has K + 1 types, S1 = {0, 1, . . . , K}, while

player 2 has only two types, S2 = {0, 1}. Transitions do not depend on actions (ignored),

and are as follows. If s1n = k > 0, then s2n = 0 and s1n+1 = s1n − 1. If s1n = 0, then s2n = 1
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and s1n+1 is drawn randomly (and uniformly) from S1. In words, s1n stands for the number

of stages until the next occurrence of s2 = 1. By waiting no more than K periods, all reports

by player 1 can be verified.

The logic behind this example is that potentially many future states s−i
n′ are correlated with

sin: the “signal” that can be used is the entire sequence (s−i
n′ )n′≥n. This raises an interesting

statistical question: are signals occurring arbitrarily late in this sequence useful, or is the

distribution of this sequence, conditional on (sin, sn−1), summarized by the distribution of

an initial segment? This question has been raised by Blackwell and Koopmans (1957) and

answered by Gilbert (1959): it is enough to consider the next 2|Si|+1 values of the sequence

(s−i
n′ )n′≥n.

11

This leads us to our second modeling choice. We will only include s−i
n+1 as additional

signal, because it already suffices to recover the condition that is familiar from static Bayesian

mechanism design. We will return to this issue at the end of the paper.

4.2 The main theorem

In this section, M = S × S. Messages are written m = (mp, mc), where mp (resp mc) are

interpreted as reports on previous (resp. current) states.

We set Ωpub := M × Y , and we refer to the pair (mn, yn) as the public outcome of stage

n. This is the additional public information available at the end of stage n. We also refer

to (sn, mn, an, yn) as the outcome of stage n, and denote by Ω := Ωpub × S × A the set of

possible outcomes in any given stage.

4.2.1 Admissible contracts

Let ρ : Ωpub ×M → A be a map which specifies an action profile contingent on the previous

public outcome and on the current reports. We refer to such maps as (profiles) of plans of

action.12 Assuming reports are always truthful, any such map ρ induces a Markov chain over

Ω, with a unique ergodic set. We denote by µ[ρ] ∈ ∆(Ω × Ω × S) the (unique) stationary

distribution of consecutive outcomes and states. That is, µ[ρ](ω̄, ω, t) is the (stationary)

11The reporting strategy defines a hidden Markov chain on pairs of states, messages and signals that

induces a stationary process over messages and signals; Gilbert assumes that the hidden Markov chain is

irreducible and aperiodic, which here need not be (with truthful reporting, the message is equal to the state),

but his result continues to hold when these assumptions are dropped, see for instance Dharmadhikari (1963).
12As opposed to strategies.
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probability that the outcomes be ω̄ then ω, next the state profiles be t in three consec-

utive stages. Since reports are truthful, the distribution µ[ρ] is concentrated on vectors

(s̄, m̄, ȳ, ā, s,m, y, a, t) such that m̄c = s̄ and m = (s̄, s).

Let now a map x specify transfers. Incentivizing transfers in stage n will depend on the

public outcome in stages n− 1 and n and on other players’ (reported) states in stage n+ 1.

Hence, x maps Ωpub × Ωpub × S → R
I , and is such that xi(ω̄pub, ωpub, t) does not depend on

ti (and will sometimes be written xi(ω̄pub, ωpub, t
−i)).

Given ρ and x, we set

v := Eµ[ρ] [r(s, a) + x(m̄, ȳ,m, y, t)] ∈ R
I .

Note that v is the long-run payoff vector, assuming (i) types are always truthfully reported,

(ii) actions are chosen using ρ and (iii) stage payoffs are augmented by x. While this long-

run payoff is independent of the initial types, discounted payoffs are not. This is best

formalized when introducing private rents, see Lemma 1 below. These private rents θ provide

a normalized measure of the difference between the long-run payoff and the actual payoff,

given the initial types.

Lemma 1 There exists θ : Ωpub × S → R
I such that

v + θ(ω̄pub, s) = r(s, ρ(ω̄pub, s)) + Ep(·|s,ρ(ω̄pub,s)) [x(ω̄pub, ωpub, t) + θ(ωpub, t)] ,

where ωpub = (s̄, s, y), θ being independent of s̄, and the expectation is taken over (y, t) ∼

p(· | s, ρ(ω̄pub, s)).

The map θ is unique, up to an additive (and player-dependent) constant. We denote by

θ[ρ, x] any such map.

The map θ plays an important role in dynamic programming, and is the counterpart in

our set-up (given the modified state space and the transfer-augmented reward) of the relative

(cost or) value function that is pinned down by the average cost optimality equation (see,

for instance, Puterman 1994). It admits an intuitive interpretation in terms of discounted

payoffs. Having fixed the plan of action ρ, the transfer rule x and some arbitrary state

(ω̄∗
pub, s

∗), one can compute, for a fixed discount factor, the difference in the discounted

payoff from starting in some state (ω̄0
pub, s

0) relative to (ω̄∗
pub, s

∗). Because the plan of action

is “Markov” relative to such a state space, and the Markov chain (sn) is irreducible, this

payoff difference V δ(ω̄0
pub, s

0)− V δ(ω̄∗
pub, s

∗) tends to zero as δ → 1. On the other hand, the

normalized difference (V δ(ω̄0
pub, s

0)− V δ(ω̄∗
pub, s

∗))/(1− δ) converges to a well-defined limit,

θ(ω̄0
pub, s

0) –the additive constant reflecting the arbitrariness in picking (ω̄∗
pub, s

∗).
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As discussed in introduction, the map θ provides a “one-shot” measure of the relative

value of being in a given state; with persistent and possibly action-dependent transitions,

this measure is essential in converting the dynamic game into a one-shot game, just as the

invariant measure µ[ρ] that appears in the definition of v. Both µ and θ are defined by a finite

system of equations, as it is the most natural way of introducing them. But in the ergodic

case that we are concerned with explicit formulas exist for both of them (see, for instance,

Iosifescu, 1980, p.123, for the invariant distribution; and Puterman, 1994, Appendix A for

the relative value function).

Fix now a player i ∈ I. We introduce a parametrized family of (two-step) decision

problems. These problems correspond to the best-reply problem faced by player i in a

typical stage of the game, assuming players −i report truthfully, play according to ρ−i, and

stage payoffs are augmented with x.

Let an outcome ω̄ = (s̄, m̄, ā, ȳ) be given, such that s̄−i = m̄−i
c . We denote by Di(ω̄) the

following two-step decision problem:

Step 1 s ∈ S is drawn according to the conditional distribution
p(·, ȳ | s̄, ā)

p(ȳ | s̄, ā)
, player i is

informed of si, and then makes a report mi ∈ M i.

Step 2 player i learns s−i and then chooses an action ai ∈ Ai. Finally, (y, t) is drawn

according to p(· | s, ai, ρ−i(ω̄pub, m)), where ω̄pub = (m̄, ȳ) and m = (mi, (s̄−i, s−i)).

The payoff to player i is given by

ri(s, ai, ρ−i(ω̄pub, m)) + xi(ω̄pub, (m, y), t−i) + θi((m, y), t). (1)

Let R−i(m) = {a−i ∈ A−i : ∃ωpub ∈ Ωpub : ρ−i(ωpub, m) = a−i}. We denote by Di the

collection of decision problems Di(ω̄), where ā−i ∈ R−i(m̄). A strategy of player i in the

collection Di consists of (i) an announcement policy, which specifies a report in each decision

problem, contingent on si and (ii) an action policy, which specifies an action in each decision

problem, and in each contingency that may arise.

Definition 1 The pair (ρ, x) is admissible if all optimal strategies of player i in Di report

truthfully mi = (s̄i, si) in Step 1, and then (after reporting truthfully) choose the action

ρi(ω̄pub, m) prescribed by ρ in Step 2.

In loose terms, truth-telling followed by ρi is the unique best-reply of player i to truth-

telling and ρ−i. Note that we require truth-telling to be optimal (mi = (s̄i, si)) even if
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player i has lied in the previous stage (m̄i
c 6= s̄i on his current state). On the other hand,

Definition 1 puts no restriction on player i’s behavior if he lies in step 1 (mi 6= (s̄i, si)). The

second part of Definition 1 is equivalent to saying that ρi(ω̄pub, m) is the unique best-reply

to ρ−i(ω̄pub, m) in the complete information game with payoff function given by (1) when

m = (s̄, s).

We denote by C0 the set of admissible pairs (ρ, x).

4.2.2 The characterization

Let S1 denote the unit sphere of RI . For a given system of weights λ ∈ S1, we denote by

P0(λ) the optimization program supλ · v, where the supremum is taken over (v, ρ, x) such

that

- (ρ, x) ∈ C0;

- λ · x(·) ≤ 0;

- v = Eµ[ρ] [r(s, a) + x(ω̄pub, ωpub, t)] is the long-run payoff induced by (ρ, x).

We denote by k0(λ) the value of P0(λ) and set H0 := {v ∈ R
I , λ·v ≤ k0(λ) for all λ ∈ S1}.

Theorem 1 Assume that H0 has non-empty interior. Then it is included in the limit set of

truthful equilibrium payoffs.

To be clear, there is no reason to expect Theorem 1 to provide a characterization of

the entire limit set of truthful equilibrium payoffs. One might hope to achieve a bigger set

of payoffs by employing finer statistical tests (using the serial correlation in states), just

as one can achieve a bigger set of equilibrium payoffs in repeated games than the set of

PPE payoffs, by considering statistical tests (and private strategies). There is an obvious

cost in terms of the simplicity of the characterization. As it turns out, ours is sufficient to

obtain all the equilibrium payoffs known in special cases, and more generally, all individually

rational, Pareto-optimal equilibrium payoffs under independent private values, as well as a

folk theorem under correlated values.

This result is simple enough. Yet, the strict incentive properties required for admissible

contracts make it useless in some cases. As an illustration, assume that successive states are

independent across stages, so that p(t, y | s, a) = p1(t)p2(y | s, a), and let the current state of

i be si. Plainly, if player i prefers reporting (s̄i, si) rather than (s̃i, si) when his previous state

was s̄i, then he still prefers reporting (s̄i, si) when his previous state was s̃i. So there are no
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admissible contracts! The same issue arises when successive states are independent across

players, or in the spurious case where two states of i are identical in all relevant dimensions.

In other words, the previous theorem is well-adapted (as we show later) to setups with

correlated and persistent states, but we now need a variant to cover all cases.

This variant is parametrized by report maps φi : Si × Si → M i(= Si × Si), with the

interpretation that φi(s̄i, si) is the equilibrium report of player i when his previous and

current states are (s̄i, si). To capture our insistence on truthful equilibria, we focus on

report maps φi, such that transitions p(· | s, a) only depend on reports. Formally, we require

that p(· | (si, s−i), a) = p(· | (ti, s−i), a) for all i, s−i, a, whenever φi(s̄i, si) = φi(t̄i, ti).

Given transfers xi : Ωpub × Ωpub × M−i → R, the decision problems Di(ω̄) are defined

as previously. The set C0(φ) of φ-admissible contracts is the set of pairs (ρ, x), with ρ :

Ωpub ×M → A, such that all optimal strategies of player i in Di(ω̄) report mi = φi(s̄i, si) in

Step 1, and then choose the action ρi(ω̄pub, m) in Step 2.

We denote by Pφ
0 (λ) the optimization problem deduced from P0(λ) when substituting the

constraint (ρ, x) ∈ C0(φ) to the constraint (ρ, x) ∈ C0. Set H0(φ) := {v ∈ R
I , λ · v ≤ kφ

0 (λ)}

where kφ
0 (λ) is the value of Pφ

0 (λ).

Theorem 2 generalizes Theorem 1.

Theorem 2 Assume that H0(φ) has a non-empty interior. Then it is included in the limit

set of perfect Bayesian equilibrium payoffs.

5 Independent private values

5.1 A “folk” theorem

We assume independent private values. Recall that this means that:

- The reward of i only depends on his own state: ri(s, a) = ri(si, a).

- Transitions of player i’s state only depend on his own state, his own action, conditional

on the public signal: p(t, y | s, a) = (×jp(t
j | y, sj, aj))p(y | s, a).

First, we define the feasible (long-run) payoff set as

V =
{

v ∈ R
I | v = Eµ[ρ][r(s, a)], some ρ

}

.

(The restriction to plans of actions rather than arbitrary strategies is clearly without loss.)
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We define the state-independent pure-strategy minmax payoff of player i as

vi = min
a−i∈A−i

max
ρi:S→Ai

Eµ[ρi,a−i][r(s, a)]

where µ[ρi, a−i] is the invariant distribution under the plan of action in which players −i

play a−i always and i uses ρi. We denote the set of feasible, individually rational payoffs as

V ∗ =
{

v ∈ V | vi ≥ vi, all i
}

.

The “folk” theorem requires two assumptions. First, we need to make some minimal assump-

tion to ensure that truth-telling is uniquely optimal for some objective. Given some vector

of weights λ ∈ S1, we let

rλ(s, a) :=
∑

i

λi · ri(si, a).

This defines a Markov decision process (M.D.P.) with state space S, action space A, tran-

sitions p(t | s, a) and reward rλ(s, a). Such a M.D.P. admits average optimal policies {ρλ}

that are deterministic and Markov stationary. (In what follows, a policy is a plan of action

that only depends on the last report mc, i.e. a map ρ : S → A). We assume:

Assumption 1 There exists λ > 0 such that the M.D.P. admits a unique average optimal

(stationary) policy ρλ : S → A. In addition, this policy is such that, for all i, si, ŝi ∈ Si,

si 6= ŝi, there exists s−i ∈ S−i such that ρλ(si, s−i) 6= ρλ(ŝi, s−i).

This implies that ρλ is the unique solution to the average cost optimality equation, and that

a player who misreports his types takes the chance (given that s−i has positive probability

of occurring) of changing what is believed to be the optimal action.

Second, we must make some assumptions on the monitoring structure. In what follows

p(· | a, s) refers to the marginal distribution over signals y ∈ Y only. (Because types are

conditionally independent, players’ −i signals in round n + 1 are uninformative about ai,

conditional on y.) Let Qi(a, s) = {p(· | âi, a−i, ŝi, s−i) : âi 6= ai, ŝi ∈ Si} be the distribution

over signals y induced by a unilateral deviation by i at the action stage, whether or not the

reported state si corresponds to the true state ŝi or not.

The following assumptions generalize those in Kandori and Matsushima (1998), to which

they reduce when states do not affect the signal distribution.

Assumption 2 For all a ∈ A, s ∈ S,

1. For all i 6= j, p(· | a, s) /∈ co{Qi(a, s) ∪Qj(a, s)};

18



2. For all i 6= j,

co
(

p(· | a, s) ∪Qi(a, s)
)

∩ co
(

p(· | a, s) ∪Qj(a, s)
)

= {p(· | a, s)}.

For each λ ∈ S1, let Iλ = {i ∈ I : λi > 0}, and

k(λ) = maxEµ[ρ][λ · r(s, a)],

where ρ : SIλ → A. The value k(λ) can be interpreted as the efficient payoff when private

states of players whose weight is negative are unobserved. Note that, for λ > 0, this reduces

to Pareto-efficient payoffs. Let

V ∗∗ = V ∗ ∩ (∩λ∈S1{v : λ · v ≤ k(λ)}) .

We may now state:

Theorem 3 Under Assumptions 1 and 2, the limit set of truthful equilibrium payoffs in-

cludes V ∗∗.

First, note that Assumption 2 ensures that for each state s, pure action profile a and

d > 0,

1. For each i, there exists x̂i : S × Y → R such that, for all âi 6= ai, all ŝi,

E[x̂i(s, y) | a, s]− E[x̂i(s, y) | a−i, âi, s−i, ŝi] > d;

(The expectation is with respect to the signal y.)

2. For every pair i, j, i 6= j, λi 6= 0, λj 6= 0, there exists x̂h : S × Y → R, h = i, j,

λix̂i(s, y) + λj x̂j(s, y) = 0, (2)

and for all âh 6= ah, all ŝh,

E[x̂h(s, y) | a, s]− E[x̂h(s, y) | a−h, âh, ŝh, s−h] > d.

See Lemma 1 of Kandori and Matsushima (1998). By subtracting the constant E[x̂i(s, y) |

a, s] from all values x̂i(s, y) (which does not affect (2), since (2) must also hold in expecta-

tions), we may assume that, for our fixed choice of a, it holds that, for all s, x̂i is such that

E[x̂i(s, y) | a, s] = 0, all i.
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Intuitively, the transfer x̂i ensures that, when chosen for high enough d, it never pays

to deviate in action, even in combination with a lie, rather than reporting the true state

and playing the action profile a that is agreed upon, holding the action profile to be played

constant across reports ŝi, given s−i. Deviations in reports might also change the action

profile played, but the difference in the payoff from such a change is bounded, while d is

arbitrary.

More formally, fix some pure policy ρ : S → A with long-run payoff v. There exists

θ : S → R
I such that, for all s,

v + θ(s) = r(s, ρ(s)) + Ep(·|s,ρ(s))[θ(t)].

Consider the M.D.P. in which player i chooses messages mi ∈ M i = Si and action ρ̂i :

M i × S−i → Ai, and his realized reward is ri(s, ai, ρ−i(mi, s−i)) + x̂i(mi, s−i, y). Then we

may pick d > 0 such that, given x̂i, every optimal policy specifies ρ̂i(mi, s−i) = ρi(mi, s−i).

Note also that because of our normalization of x̂i, the private rents in this M.D.P. are equal

to θi if player i sets mi = si.

This transfer addresses deviations at the action stage. There exists another kind of

deviations, namely, those that consist in setting mi 6= si for some si (but play ρi(mi, s−i)).

Consider λ > 0 from Assumption 1 and the corresponding policy ρλ. Let (vλ, θλ) ∈

R
I ×R

S×I denote the value (per player) and private rents that arises from the play of ρλ.

We construct a (modified) AGV mechanism to implement ρλ. We fix the mapping from

reported messages to implemented action profiles to ρλ. Define, for all i,

x̌i,λ(ω̄pub, m) := Ep(·|ω̄pub)

[

∑

j 6=i

λj

λi

(

rj(sj, ρλ(s−i, mi
c)) + Ep(·|s,ρλ(s−i,mi

c))
[θj,λ(t)]

)

]

,

where the outer expectation is with respect to m−i
c = s−i. By construction, given ρ−i,λ

and the transfers x̌i,λ, ρi,λ satisfies the ACOE for player i, with value and private rents
1
λi (

∑

j v
j,λ,

∑

j θ
j,λ). Next, we normalize x̌i,λ to get budget-balance, and define x̆i,λ as

x̆i,λ(ω̄pub, m) = x̌i,λ(ω̄pub, m)−
1

I − 1

∑

j 6=i

λj

λi
x̌j,λ(ω̄pub, m).

Finally, we set

x̄i,λ(ω̄pub, m) = x̆i,λ(ω̄pub, m)− Ep(·|ω̄pub)[x̆
i,λ(ω̄pub, m)],

so that the (unconditional) expected transfer of player i is independent of his announce-

ment. This last normalization ensures that the transfer does not affect the private rent θi,λ.
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(This is analogous to the construction of Athey and Segal (2007)’s team mechanism.) By

construction, this transfer ensures that player i has no incentive to report mi
c 6= si.

Finally, combining the two (action-complying and truth-telling inducing) transfers, we

set

xi,λ(ω̄pub, (m, y), t−i) = x̄i,λ(ω̄pub, m) + x̂i(mc, y).

(Note that this transfer does not take advantage of t−i, which is only useful with correlated

types.) By construction, the transfer is balanced: for all ω̄pub, (m, y), ti, λ·xλ(ω̄pub, (m, y), t) =

0. By Assumption 1 (along with the AGV component of the transfer), incentives to tell the

truth are strict. By the choice of x̂i, the incentives to take the action ρλ(s) is strict as well.

The same construction applies to all non-negative directions λ ∈ S1. To make the truth-

telling incentives strict, it suffices to use the public randomization to randomize between the

desired plan of action ρλ and the policy from Assumption 1, with arbitrarily high probability

on the former plan of action. Similarly, we can (with arbitrarily high probability) enforce

any constant plan of action ρ : Ωpub ×M → A in any non-coordinate direction.

In the directions λ = −ei, an analogous argument gives that the score is (at least)

k0(−ei) = − min
a−i∈A−i

max
ρi:S→Ai

Eµ[ρi,a−i][r(s, a)] = −vi.

6 Correlated Types

We drop the assumption of independent types and extend here the static insights from

Crémer and McLean (1988). We maintain Assumption 2. We ignore the i.i.d. case, handled

by Theorem 2. This ensures that, following the same steps as above, arbitrarily strong

incentives can be provided to players to follow any plan of action ρ : Ωpub × M → A,

whether or not they deviate in their reports.

Given m̄, ȳ, ā, and a map ρ : M → A, given i and any pair ζ i = (s̄i, si), we use Bayes’

rule to compute the distribution over (t−i, s−i, y), conditional on the past messages being m̄,

the past action and signal ȳ, ā, player i’s true past and current state being s̄i and si, and the

action mapping current announcement into action profiles ρ. This distribution is denoted

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ i).

The tuple m̄, ȳ, ā also defines a joint distribution over profiles s, y and t, denoted

qm̄,ȳ,ā,ρ(t, s, y),

which can be extended to a prior over ζ = (s̄, s), y and t that assigns probability 0 to types

s̄i such that s̄i 6= m̄i
c. The Crémer and McLean condition states the following.
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Assumption 3 For each (m̄, ȳ, ā, ρ), for any i, ζ̂ i ∈ (Si)2, it holds that

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ̂ i) 6= co

{

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ i) : ζ i 6= ζ̂ i

}

.

If types are independent over time, and signals y do not depend on states (as is the case

with perfect monitoring, for instance), this reduces to the requirement that the matrix with

entries p(s−i | si) have full row rank, the standard Crémer and McLean condition (see also

d’Aspremont and Gérard-Varet (1982)’s condition B). Here, beliefs can also depend on player

i’s previous state, s̄i, but fortunately, we can also use player −i’s future state profile, t−i, to

statistically distinguish player i’s types.

As is well known, Assumption 3 ensures that for any fixed plan of action ρ, truth-telling

is Bayesian incentive compatible: there exists transfers xi(ω̄pub, (m, y), t−i) for which truth-

telling is strictly optimal.

Ex post budget balance requires further standard assumptions. Following Kosenok and

Severinov (2008), let ci : (Si)2 → M i denote a reporting strategy, summarized by numbers

ci
ζiζ̂i

≥ 0, with
∑

ζ̂i c
i
ζiζ̂i

= 1 for all ζ i, with the interpretation that ci
ζiζ̂i

is the probability with

which ζ̂ i is reported when the type is ζ i. Let ĉi denote the truth-telling reporting strategy

where ciζiζi = 1 for all ζ i. A reporting strategy profile c, along with the prior qm̄,ȳ,ā,ρ defines

a distribution πm̄,ȳ,ā,ρ over (ζ, y, t), according to

πm̄,ȳ,ā,ρ(ζ̂ , y, t | c) =
∑

ζ

qm̄,ȳ,ā,ρ(ζ, y, t)
∏

j

cj
ζj ζ̂j

.

We let

Ri(m̄, ȳ, ā, ρ) =
{

πm̄,ȳ,ā,ρ(· | ci, ĉ−i) : ci 6= ĉi
}

.

Again, the following is the adaptation of the assumption of Kandori and Matsushima (1998)

to the current context.

Assumption 4 For all (m̄, ȳ, ā, ρ),

1. For all i 6= j, πm̄,ȳ,ā,ρ(· | ĉ) /∈ co{Ri(m̄, ȳ, ā, ρ) ∪ Rj(m̄, ȳ, ā, ρ)};

2. For all i 6= j,

co
(

πm̄,ȳ,ā,ρ(· | ĉ) ∪Ri(m̄, ȳ, ā, ρ)
)

∩co
(

πm̄,ȳ,ā,ρ(· | ĉ) ∪ Rj(m̄, ȳ, ā, ρ)
)

= {πm̄,ȳ,ā,ρ(· | ĉ)}.

Assumption 4.1 is equivalent to the assumption of weak identifiability in Kosenok and Sev-

erinov (2008) for two players (whose Lemma 2 can be directly applied). The reason it is
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required for any pair of players (unlike in Kosenok and Severinov) is that we must obtain

budget-balance also for vectors λ ∈ S1 with only two non-zero coordinates (of the same

sign). Assumption 4.2 is required (as in Kandori and Matsushima in their context) because

we must also consider directions λ ∈ S1 with only two non-zero coordinates whose signs are

opposite.13

It is then routine to show:

Theorem 4 Assume that V ∗ has non-empty interior. Under Assumptions 2–4, the limit set

of truthful equilibrium payoffs includes V ∗.

Assumptions 3–4 are generically satisfied if |S−i| ≥ |Si| for all i.
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A Proof of Theorem 1

A.1 Preliminaries

The proof is inspired by FLM but there are a number of complications arising from incomplete

information. We let Z be a compact set included in the interior of H0, and pick η > 0 small

enough so that the η-neighborhood Zη := {z ∈ R
I , d(z, Z) ≤ η} is also contained in the

interior of H0.

We quote without proof the following classical result, which relies on the smoothness of

Zη.
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Lemma 2 Given ε > 0, there exists ζ̄ > 0 such that the following holds. For every z ∈ Zη

and every ζ < ζ̄, there exists a direction λ ∈ S1 such that if w ∈ R
I is such that ‖w− z‖ ≤ ζ

and λ · w ≤ λ · z − εζ, then w ∈ Zη.

Given a direction λ ∈ S1, and since Zη is contained in the interior of H0, one has

maxz∈Zη λ·z < k(λ). Thus, one can find v ∈ R
I , and (ρ, x) ∈ C0 such that maxz∈Zη λ·z < λ·v

and λ · x(·) < 0. Using the compactness of S1, this proves Lemma 3 below.

Lemma 3 There exists ε0 > 0 and a finite set S0 of triples (v, ρ, x) with v ∈ R
I and

(ρ, x) ∈ C0 such that the following holds. For every target payoff z ∈ R
I , and every direction

λ ∈ S1, there is (v, ρ, x) ∈ S0 such that (v, ρ, x) is feasible in P0(λ) and λ · z + ε0 < λ · v.

We choose κ0 ∈ R such that ‖x‖∞ ≤ κ0/2 and ‖z − v‖ ≤ κ0/2 for each (v, x, ρ) ∈ S0

and every z ∈ Zη. We apply Lemma 2 with ε := ε0/κ0 to get ζ̄, and we let δ̄ < 1 be large

enough so that
(1− δ)1/4

δ
≤

ζ̄

κ0
for each δ ≥ δ̄.

For (v, x, ρ) ∈ S0, we denote by θρ,x : Ωpub × S → R
I the payoff bias under (ρ, x). The

condition (ρ, x) ∈ C0 is equivalent to a finite number of strict inequalities, which we now

proceed to list.

Fix a player i ∈ I, a private outcome ω̄i ∈ Ωi with public part ω̄, and a (private) state

si ∈ Si. Assume that player i reports mi ∈ M i. If players −i’s states are s−i, and player i

then plays ai ∈ Ai, player i’s expected payoff in the decision problem Di(ω̄i) is then

πi(ai | ω̄i, s,mi) := ri(s, (ai, ρ−i(ω̄pub, m))) + E
y,t[xi(ω̄pub, ωpub, t

−i) + θi(ωpub, t)],

m is (mi, m−i), with m−i := (m̄−i
c , s−i), and the public outcome is ωpub := (m, y). Thus,

when states are s and when reporting mi, the highest payoff in Di(ω̄i) is equal to

πi
ρ,x(ω̄

i, s,mi) := max
ai∈Ai

πi(ai | ω̄i, s,mi).

Since (ρ, x) ∈ C0, any optimal policy in Di(ω̄i) first reports truthfully mi
∗ := (s̄i, si) then

plays the action ρi(ω̄pub, (m
i
∗, m

−i) dictated by the action plan ρi.

The truth-telling condition writes

E
s−i

[πi
ρ,x(ω̄

i, (si, s−i, mi
∗) | ω̄

i, si] > E
s−i

[πi
ρ,x(ω̄

i, (si, s−i), mi) | ω̄i, si] for all ω̄i, si and mi 6= (s̄i, si),

(3)

where the expectation is taken over s−i, and is computed under the conditional distribution

of s−i, given the previous outcome ω̄i, and si.
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The condition that expresses that ρi is optimal after a truthful report writes

πi
ρ,x(ω̄

i, s,mi
∗) > πi(ai | ω̄i, s,mi

∗) for each ai 6= ρi(ω̄pub, (m
i
∗, m

−i)). (4)

We pick ηρ,x > 0 small enough to be less than the least difference between the left and

the right-hand side in each of these inequalities.

As (v, ρ, x) varies through the finite set S0, one thus obtains finitely many strict in-

equalities. We pick η1 > 0 to be less than the minimal difference between the left and the

right-hand side in each of the inequalities (3) and (4).

A.2 Strategies

We let z∗ ∈ Zη, and δ ∈ (0, 1) be given. We here define a pure strategy profile σ. We check

in the next section that for δ large enough, σ is a PBE and induces a payoff arbitrarily close

to z.

Under σi, all reports of player i are truthful, and his actions in a given stage n (when

reporting truthfully) depend on a target payoff zn ∈ Zη, on the previous public outcome

ω̄pub,n−1 ∈ Ωpub and on current reports mn ∈ M . The target payoff zn is updated in stage n

after reports have been submitted and the outcome of the public device has been observed.

We first explain this updating process. Given zn, pick a unit vector λn ∈ S1 using

Lemma 2, and use Lemma 3 to pick (vn, ρn, xn) ∈ S0 which is feasible in P0(λn) and such

that λn · zn+ ε0 < λn · vn. Given the public outcome ωpub,n = (mn, yn) and the reports mn+1,

zn is updated to zn+1 as follows. We first set

wn+1 :=
1

δ
zn −

1− δ

δ
vn +

1− δ

δ
xn(ωpub,n−1, ωpub,n, mc,n+1), (5)

and we define w̃n+1 be the equation

wn+1 = ξw̃n+1 + (1− ξ)zn, (6)

where ξ := (1− δ)3/4.14

The randomizing device sets zn+1 equal to zn or to w̃n+1 with respective probabilities 1−ξ

and ξ. Observe that wn+1 is then equal to the expectation of zn+1 (where the expectation is

over the outcome of the public device in stage n + 1).

That zn+1 then belongs to Zη follows from the choice of δ and of ξ.

14The choice of the exponent 3/4 is to a large extent arbitrary. It is important that ξ vanishes as δ → 1,

more slowly than 1− δ, but that ξ2 vanishes faster than (1 − δ).
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Lemma 4 One has w̃n+1 ∈ Zη.

Proof. Omitting arguments (ωpub,n−1, ωpub,n), one has

ξ(w̃n+1 − zn) = wn+1 − zn =
1− δ

δ
(zn − vn + xn) .

Thus, ‖w̃n+1 − zn‖ ≤ (1−δ)1/4

δ
κ0 and λn · w̃n+1 ≤ λn · zn − (1−δ)1/4

δ
ε0, and the result follows

since δ ≥ δ̄.

We now explain how actions are chosen under σ. Fix a player i, and a private history

hi
n = ((ωpub,k, s

i
k, a

i
k)k=1,...,n−1, mn) which includes reports in stage n.

If the current report of player i is truthful –that is, mi
n = (sin−1, s

i
n)–, then σi plays the

action prescribed by ρin:

σi(hi
n) = ρin(ωpub,n−1, mn).

If hi
n is consistent with σ−i, then Bayes rule leads player i to assign probability one to

(s−i
n−1, s

−i
n ) = m−i

n ). If hi
n is inconsistent15 with σ−i, we let the beliefs of player i be still

computed under the assumption that the current reports of −i are truthful.

Thus, at any history hi
n at which mi

n is truthful, the expected continuation payoff of

player i under σ is well-defined, and it only depends on (ωpub,n−1, mn) and on the current

payoff target zn. We denote it by γi
σ(ωpub,n−1, mn; zn).

We now complete the description of σ. Let hi
n be a (private) history at which mi

n is not

truthful: mi
n 6= (sin−1, s

i
n). At such an history, we let σi play an action which maximizes the

discounted sum of current payoff and expected continuation payoffs, that is,

(1− δ)ri(sn, (a
i, ρ−i(ωpub,n−1, mn))) + δE[γi

σ(mn, yn), mn+1; zn+1)],

where the expectation is taken over yn and mn+1 and zn+1.
16

Theorem 1 follows from Proposition 1, which is proven in the next section.

Proposition 1 The following holds.

1. For δ large enough, σ is a perfect Bayesian equilibrium.

2. One has limδ→1 γσ(ωpub, m; z) = z for every (ωpub, m) ∈ Ωpub ×M and z ∈ Zη.

15Which occurs if successive reports are inconsistent, and observed public signals are inconsistent with

reported states.
16Recall that the belief of player i assigns probability one to s−i

n = mi
c,n.
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In FLM, the target payoff z is updated every stage. In HSTV, it is only updated period-

ically, to account for changing states. Here instead, the target payoff is updated at random

times. The durations of the successive blocks (during which z is kept constant) are indepen-

dent, and follow geometric distributions with parameter ξ. As we already noted, the fact

that ξ is much larger than 1 − δ ensures that successive target payoffs lie in Zη. The fact

that ξ vanishes as δ → 1 ensures that the expected duration of a block increases to +∞ as

δ → 1.

A.3 Proof of Proposition 1

We will check that player i has no profitable one-step deviation, provided δ is large enough.

By construction, this holds at any history hi
n such that the current report mi

n is not truthful.

At other histories, this sequential rationality claim will follow from the incentive conditions

(3) and (4). The crucial observation is that at any given stage n, expected continuation

payoffs under σ are close to zn, and (continuation) payoff biases are close to θρn,xn. This in

turn hinges on the irreducibility properties of the state process.

These properties are established in Proposition 2 below. Given an arbitrary target z ∈ Zη,

we will denote by (v, ρ, x) ∈ S0 the triple associated to z. We set

γσ(z) := Eµ[ρ][γσ(ωpub, s; z)],

which we interpret as the expected continuation payoff under σ, when the target is z; and

θσ(ωpub, s; z) :=
1

1− δ
(γσ(ωpub, s; z)− γσ(z)) ,

which we interpret as the continuation bias under σ, when the target is z.

Proposition 2 There exist positive numbers c1 and c2 such that for every target z ∈ Zη,

and every discount factor δ > δ̄, the following holds:

P1 : ‖γσ(z)− z‖ ≤ c1(1− δ)1/2

P2 : ‖θσ(·; z)− θρ,x‖ ≤ c1(1− δ)3/4.

Proof of Proposition 2. : We first compare γσ(ωpub, m; z) and γσ(ω̃pub, m̃; z) for

arbitrary (ωpub, m) and (ω̃pub, m̃) in Ωpub×M . We rely on a coupling argument. Accordingly,

we let (U ,P) be a rich enough probability space to accommodate the existence of:
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1. two independent Markov chains (ωn) and (ω̃n) with values in Ω and transition function

qρ, which start from (ωpub, m) and (ω̃pub, m̃) respectively;17

2. a random time τ , independent of the two sequences (ωn) and (ω̃n), which has a geo-

metric distribution with parameter ξ(= (1− δ)3/4).

The random time τ simulates the stage when the public randomizing device instructs play-

ers to switch to the next block. Processes will be stopped prior to τ . Hence, (ωn) and

(ω̃n) simulate (coupled) random plays induced by σ starting from (ωpub, s) and (ω̃pub, s̃)

respectively.

For n ≥ 1, we abbreviate to rn := r(sn, ρ(ωpub,n−1, mn)) and r̃n := r(s̃n, ρ(ω̃pub,n−1, m̃n))

the payoffs in stage n along the two plays. We also denote by hn := (ω1, . . . , ωn−1) and

h̃n := (ω̃1, . . . , ω̃n−1) the histories associated with the two plays. In the same spirit, we write

xn := x(ωpub,n−1, ωpub,n, sn+1) and x̃n := x(ω̃pub,n−1, ω̃pub,n, s̃n+1). Finally, zn and z̃n stand

for the current target payoff in stage n, while wn and w̃n stand for the expected targets, as

defined in (5). Observe that zn = z̃n = z for each n < τ , while zτ and z̃τ are obtained from

z by equation (6).

We define τc := inf{n : (ωpub,n−1, mn) = (ω̃pub,n−1, m̃n)} to be the first "coincidence"

time of the two processes (ωn) and (ω̃n). Given our assumptions on transitions p, the two

chains (ωn) and (ω̃n) have a unique ergodic set (which is the same for both chains), and are

aperiodic. This implies that τc has a finite expectation. We let C0 be an upper bound for

E[τc], valid for all (ωpub, m) and (ω̃pub, m̃). Since the two stopping times are independent,

this implies the existence of C1, such that P(τ ≤ τc) ≤ C1ξ.
18

We denote by τ∗ := min(τ, τc) the minimum of the switching time and of the first coin-

cidence time. Since σ coincides with ρ prior to τ and since the expected payoff is equal to

the discounted sum of current payoffs and of continuation payoffs, one has

γσ(ωpub, m; z) = E[(1− δ)

τ∗−1
∑

n=1

δn−1rn + δτ∗−1γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)], (7)

and an analogous formula holds for γσ(ω̃pub, m̃; z). Hence

γσ(ωpub, m; z)− γσ(ω̃pub, m̃; z) (8)

= E[(1− δ)

τ∗−1
∑

n=1

δn−1 (rn − r̃n) + δτ∗−1 (γσ(ωpub,τ∗−1, mτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, m̃τ∗ ; z̃τ∗))].

17To be precise, we mean that ω1 is randomly set to (s,m, ρ(ωpub,m), y), where y ∼ q(· | s, ρ∗(ωpub,m))

and similarly for ω̃1.
18Actually, the inequality holds with C1 = E[τc].
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Our first claim provides a preliminary estimate, which will be refined later.

Claim 5 There is C2 > 0 such that for every z ∈ Zη, every (ωpub, m), (ω̃pub, m̃) ∈ Ωpub ×M ,

and every δ > δ̄, one has

‖γσ(ωpub, m; z)− γσ(ω̃pub, m̃; z)‖ ≤ C2ξ.

Proof. Note that (ωpub,n−1, mn, zn) = (ω̃pub,n−1, m̃n, z̃n) on the event n = τc < τ , so that

γσ(ωpub,n−1, mn; zn) = γσ(ω̃pub,n−1, m̃n; z̃n). Since payoffs lie in [0, 1], equality (8) yields

‖γσ(ωpub, m; z)− γσ(ω̃pub, m̃; z)‖ = ‖(1− δ)E

[

τ∗−1
∑

n=1

(rn − r̃n)δ
n−1 + δτ∗−11τ≤τc

]

‖

≤ (1− δ)E[τc] +P(τ ≤ τc). (9)

The result follows, with C2 := C0 + C1.

Since γi
σ(z) lies between minωpub,m γi

σ(ωpub, m; z) and maxωpub,m γi
σ(ωpub, m; z), Claim 5

yields Claim 6 below.

Claim 6 For each z, (ωpub, m) and δ > δ̄, one has

‖γσ(ωpub, m; z)− γσ(z)‖ ≤ C2ξ.

We now prove P1 of Proposition 2.

Fix z ∈ Zη. We reformulate (6) which relates the current target z and the expected

target w′ in the next stage:

z = δw′ + (1− δ)v − (1− δ)x(ω̄pub, ωpub, m
′
c).

When taking expectations under the invariant measure µ[ρ] ∈ ∆(Ω × Ω × S), and since w′

is the expectation of the next target z′ under the randomizing device, the latter equation

yields

z = (1− δ)v + Eµ[ρ] [δz
′ − (1− δ)x(ω̄pub, ωpub, m

′
c)] .

Recall next that v := Eµ[ρ] [r(s, a) + x(ω̄pub, ωpub, t)] to get

z = Eµ[ρ][(1− δ)r(s, a) + δz′]. (10)

On the other hand, since discounted payoffs are equal to the discounted sum of current and

continuation payoffs, one has

γσ(ωpub, m; z) = (1− δ)r(s, ρ(ωpub, m)) + δE
[

γσ(ω
′
pub, m

′; z′)
]

,
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for each (ωpub, m). Taking expectations under the invariant measure, one gets

γσ(z) = Eµ[ρ]

[

(1− δ)r(s, a) + δγσ(ω
′
pub, m

′; z′)
]

. (11)

Denote by A the event where the public randomization device tells players to continue

with the current block, so that z′ = z on A, and one has

Eµ[ρ]

[

γσ(ω
′
pub, m

′; z′)1A
]

= Eµ[ρ]

[

γσ(ω
′
pub, m

′; z)1A
]

(12)

= P(A)Eµ[ρ]

[

γσ(ω
′
pub, s

′; z)
]

= P(A)γσ(z) (13)

= Eµ[ρ] [γσ(z
′)1A] . (14)

where the second equality holds since the event A and the pair (ω′
pub, m

′) are independent.

Denote now by B the event where the public randomizing device tells players to switch

to a new target – an event of probability ξ. Denoting by (v′, ρ′, x′) ∈ S0 the triple associated

to z′, one has using Claim 5,

‖γσ(ω
′
pub, m

′, z′)− γσ(z
′)‖ ≤ c1ξ

for every realization of (ω′, m′, z′). Since γσ(z
′) := Eµ[ρ′]

[

γσ(ω
′
pub, m

′, z′)
]

, one obtains

‖Eµ[ρ]

[

γσ(ω
′
pub, m

′; z′)1B
]

−Eµ[ρ] [γσ(z
′)1B] ‖ ≤ c1ξP(B) = c1ξ

2. (15)

Plugging (14) and (15) into (11), one gets

‖γσ(z)−
(

Eµ[ρ] [(1− δ)r(s, a) + δγσ(z
′)]
)

‖ ≤ C2ξ
2.

Combining this inequality with (10), one gets

‖γσ(z)− z‖ ≤ δEµ[ρ] [‖γσ(z
′)− z′‖] + C2ξ

2.

Setting S := supz∈Zη
[‖γσ(z)− z‖, this implies in turn

S ≤ δS + C2ξ
2,

so that S ≤ C2
ξ2

1− δ
= C2(1− δ)1/2. This yields P1 (with c1 := C2).

We turn to the proof of P2. We let (ωpub, m) and (ω̃pub, m̃) in Ωpub ×M be given, and

use the coupling introduced earlier. We proceed in two steps, Claims 7 and 8 below.

Set ∆n := (rn + xn)− (r̃n + x̃n).
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Claim 7 There is C3 > 0 such that for every δ > δ̄, one has

‖
γσ(ωpub, m; z)− γσ(ω̃pub, m̃; z)

1− δ
− E

[

τ∗−1
∑

n=1

δn−1∆n

]

‖ ≤ C3(1− δ)1/4.

Claim 8 There is C4 > 0 such that for every δ > δ̄, one has

‖E

[

τ∗−1
∑

n=1

δn−1∆n

]

−E

[

τc−1
∑

n=1

∆n

]

‖ ≤ C4ξ.

(Observe that the range of the two sums is not the same.) Since E

[

τc−1
∑

n=1

∆n

]

is equal to

θρ,x(ωpub, m)− θρ,x(ω̃pub, m̃), Statement P2 follows from Claims 7 and 8, with c2 := C3+C4.

Proof of Claim 7.

If τc < τ , then (ωpub,τ∗−1, mτ∗) = (ω̃pub,τ∗−1, m̃τ∗), and zτ∗ = z̃τ∗ = z, hence

γσ(ωpub,τ∗−1, mτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗) = 0 = zτ∗ − z̃τ∗ .

If instead τ ≤ τc, then by Claim6, γσ(ωpub,τ∗−1, mτ∗ ; zτ∗) is within C2ξ = C2(1 − δ)
3

4 of

γσ(zτ∗) and, by P1, γσ(zτ∗) is within C2(1−δ)
1

2 of zτ∗ . Hence, γσ(ωpub,τ∗−1, mτ∗ ; zτ∗) is within

2C2(1−δ)1/2 of zτ∗ , and a similar result holds for γσ(ω̃pub,τ∗−1, m̃τ∗ ; z̃τ∗). Hence the difference

(γσ(ωpub,τ∗−1, mτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, m̃τ∗ ; z̃τ∗)) is equal to the difference (zτ∗ − z̃τ∗), up to

4C2(1− δ)1/2. Since P(τ ≤ τc) ≤ C1ξ, it follows that

‖E [γσ(ωpub,τ∗−1, mτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, m̃τ∗ ; z̃τ∗)]− E[zτ∗ − z̃τ∗ ]‖

≤ 4C2(1− δ)1/2 × C1ξ = 4C1C2(1− δ)5/4‖. (16)

Observe next that zn+1 = z̃n+1(= z) for each n < τ∗− 1. So that plugging (16) into (??),

the difference γσ(ωpub, m; z)− γσ(ω̃pub, m̃; z) is equal to

E

[

τ ′−1
∑

n=1

δn−1 ((1− δ)(rn − r̃n) + δ(zn+1 − z̃n+1))

]

, (17)

up to 4C1C2(1− δ)5/4.

Next, we rewrite

τ ′−1
∑

n=1

δn(zn+1 − z̃n+1) =
∞
∑

n=1

δn(zn+1 − z̃n+1)1τ ′≥n+1.
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Since the random time τ is independent of the plays (ωn) and (ω̃n), one has for each stage

n ≥ 2,

E [(zn − z̃n)1τ ′≥n] = E [(wn − w̃n)1τ ′≥n] = E

[

1− δ

δ
(xn−1)− x̃n−1))

]

.

Therefore,

E

[

τ ′−1
∑

n=1

δn(zn+1 − z̃n+1)

]

= E

[

τ ′−1
∑

n=1

δn−1(1− δ) (xn − x̃n)

]

.

The result follows when plugging the latter equation into (17), with C3 := 4C1C2.

Proof of Claim 8.

Observe first that, since ‖∆n‖ ≤ (1+κ0), the difference between (??) and E

[

τc−1
∑

n=1

δn−1∆n

]

is at most (1 + κ0)E[τc −min(τ, τc)]. Using the independence of τ and τc, one has

E[τc −min(τ, τc)] = E[τc − τ | τ < τc]×P(τ < τc) ≤ C0 × C1ξ. (18)

Next, note that, since (1− δn−1) ≤ n(1− δ), one has

‖E

[

τc−1
∑

n=1

δn−1∆n

]

−E

[

τc−1
∑

n=1

∆n

]

‖ ≤ (1+ κ0)(1− δ)E[

τc−1
∑

n=1

n] ≤ (1− δ)× (1+κ0)E[τ
2
c ]. (19)

Collecting (18) and (19), there exists c4 > 0 such that

‖E

[

τ∗−1
∑

n=1

δn−1∆n

]

−E

[

τc−1
∑

n=1

∆n

]

‖ ≤ c4ξ. (20)

This concludes the proof of Proposition 2.

A.4 Conclusion

We now check that player i has no profitable one-step deviation. For clarity, we consider a

report node – apart from notational issues, the proof is similar for an action node. Consider a

stage n and a report node, at which the private history of i is (hpub,n, (s
i
k)1≤k≤n, (a

i
k)1≤k≤n−1).

We compare the continuation payoffs obtained with σi or when lying in stage n (and

assuming that player i reverts to σi in stage n + 1).

When reporting truthfully, the continuation payoff of i is

E
[

(1− δ)ri(sn, ρ(ωpub,n−1, sn)) + δγσ((sn, yn), sn+1; zn+1)
]

,
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where the expectation is taken over s−i
n , sn+1, yn When instead reporting mi

n 6= sin and next

playing some action ai(mi
n, s

−i
n ), the continuation payoff of i is given by

E
[

(1− δ)ri(sn, (a
i(mi

n, s
−i
n ), ρ−i(ωpub,n−1, m

i
n, s

−i
n )) + δγσ((m

i
n, s

−i
n , ỹn), sn+1; z̃n+1)

]

.

We compare the latter two expectations relying as above on a coupling argument. More

specifically, we will view the pairs (yn, sn+1) and (ỹn, s̃n+1) as (conditionally) independent.

Yet, the announcements of the randomizing device are perfectly coupled in the two expec-

tations.

With this interpretation in mind, with probability 1 − ξ, one has zn+1 = z̃n+1 = z and

γσ((sn, yn), sn+1; zn+1)− γσ((m
i
n, s

−i
n , ỹn), sn+1; z̃n+1) is then, using Lemma ??, equal to

(zn+1 + (1− δ)θρ,x((sn, yn), sn+1; zn+1))

−
(

z̃n+1 + (1− δ)θρ,x((m
i
n, s

−i
n ), ỹn), s̃n+1; z̃n+1)

)

+ o(1− δ). (21)

On the other hand, with probability ξ, the public device instructs to switch to a new block,

and the difference γσ((sn, yn), sn+1; zn+1)−γσ((m
i
n, s

−i
n , ỹn), sn+1; z̃n+1) is then equal, by Lem-

mas ?? and ??, to

(zn+1 + (1− δ)θρ,x((sn, yn), sn+1; zn+1)) (22)

−
(

z̃n+1 + (1− δ)θρ,x((m
i
n, s

−i
n ), ỹn), s̃n+1; z̃n+1)

)

+ o((1− δ)
3

4 ). (23)

At a technical level, the difference between (21) and (22) is that the error term is much smaller

in the former (that is, if zn+1 = z̃n+1 = z). The higher error term in (22) is compensated

by the fact that it gets multiplied by the probability of switching to a new block, which is

small.

Using obvious notations, the difference in expected continuation payoffs is therefore, up

to o(1− δ), equal to

E[(1−δ)rn+δ(1−δ)θρ,x(ωpub,n, sn+1)+δzn+1]−E[(1−δ)r̃n+δ(1−δ)θρ,x(ω̃pub,n, s̃n+1)+δz̃n+1],

which is also equal to

(1− δ) (E[rn + xn + δθρ,x(ωpub,n, sn+1)]− E[r̃n + x̃n + δθρ,x(ω̃pub,n, s̃n+1)]) ,

which is strictly positive for δ close to one, thanks to (??).
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