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Abstract

This paper considers dynamic moral hazard settings, in which
the agent’s actions have consequences over a long horizon. The
agent’s limited liability constraints makes it difficult to tie the
agent’s compensation to long-run outcomes. To maintain incen-
tives, the optimal contract delays the agent’s compensation and
ties it to future performance. Some of the agent’s compensation
is deferred past termination, which is triggered when the value of
deferred compensation drops to a specific, strictly positive thresh-
old. The agent’s pay-performance sensitivity, and therefore risk
exposure, build up towards a target level during employment, and
decrease after termination.

1 Introduction.

This paper studies dynamic agency problems, where the impact of the agent’s
actions is observed with delay. These situations are common in practice.
CEO’s actions do not have immediate impact on firm profitability, but rather
they affect what happens to the firm over a long horizon. The success of pri-
vate equity funds is not fully revealed until they sell their illiquid investments.

∗I am especially grateful to Andy Skrzypacz, whose insights and ideas have greatly
helped this paper. I would also like to thank seminar participants at UCLA, Harvard and
IAS for helpful comments and the Alfred P. Sloan Foundation for financial support.
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The quality of mortgages given by a broker is not known until several years
down the road. There has been a lot of informal discussion of issues that
arise in these settings. Deferred compensation and clawback provisions come
up frequently. However, it has been difficult to design a formal tractable
framework to analyze these issues. This paper puts forth one such frame-
work.

The main casual intuition about these situations is that the agent has to
be exposed to the risk of the project’s long-term performance. However, the
agent’s limited liability is one major challenge to designing incentives. Due to
limited liability, natural incentive mechanisms look like options, which reward
the agent for the upside but bound the agent’s responsibility for downside.
It’s a tails I win, heads you lose situation. The stronger incentives on the
margin, the sooner is the limited liability constraint hit. This raises many
questions. What is the best way to design incentives near the constraint?
When is it optimal to fire the agent? Should some of the agent’s pay remain
deferred after the agent is fired? Is there any danger that, due to limited
liability, the agent tries to extract as many private benefits from the project
as possible, before he is fired?

This paper develops a model to tackle these issues. We build a dynamic
agency model, in which the agent continuously puts unobservable effort until
he may be fired, and continuously consumes a compensation flow. Current
effort affects observable output over the entire future, with gradually dimin-
ishing impact. We derive the optimal contract among all history-dependent
contracts. That is, the agent’s compensation and termination of employ-
ment can depend on the history of output in an arbitrary way, and some
compensation may be paid out after termination.

The optimal contract has interesting features. First, the agent’s pay-
performance sensitivity generally increases with tenure. That is, as the
horizon over which the agent could affect the project increases, the opti-
mal contract exposes the agent to more project risk. Second, the agent’s
pay-performance sensitivity decreases after bad performance, due to limited
liability. Eventually, the agent may be fired. Third, the agent has unvested
compensation even when he is fired. This compensation is tied to perfor-
mance after termination, and is paid out gradually.

The following example, for the application of CEO compensation, illus-
trates the qualitative features of the optimal contract. Consider a contract
that
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• during employment, per quarter, grants the CEO $1 million of incentive
compensation, consisting of a $3 million stock and a $2 million loan,
into a special account until vesting

• terminates the CEO if the value of the stock in the account ever drops
below 80% of the value of the loan

• both before and after termination, allows 10% of the shares in the
incentive account to be sold per quarter; uses the proceeds to pay down
up to 10% of the outstanding loan, with any remaining money paid out
to the CEO

This contract uses deferred compensation, which consists of a levered
stake in the company. The CEO achieves a required exposure to firm perfor-
mance by investing his own compensation, as well as money borrowed from
the company, in company stock. During employment, more unvested com-
pensation is added to the incentive account, increasing the CEO’s exposure
to company performance. The agent is allowed to go underwater a bit, but
large enough drops in the stock price lead to termination. Compensation
vests gradually, even after termination. The vesting rate of 10% is set to re-
flect how quickly company performance becomes less informative about the
CEO’s effort impact in the past.1 Even near the termination threshold, a
significant probability that company stock recovers prevents the agents in-
centives from deteriorating completely. A call option 20% out of the money
with expiration in 3 years still has ∆ of about 0.5 when the stock price
volatility is 30%.

Our formal analysis assumes that the impact of the agent’s effort on fu-
ture output is exponentially decaying, at rate κ, and allows for arbitrary
history-dependent contracts. It is convenient to compare an arbitrary con-
tract to an exotic option, with the underlying being the relevant performance
measure, such as the stock price. In our analysis, we measure the payouts
of the derivative in the units of the agent’s utility rather than money, to
account for the agents risk preferences and the cost of effort. The option
pays at multiple dates in the future. The value of the of the option Wt is
the agent’s future expected utility from the contract, taking into account

1The 10% vesting rate in the example is roughly consistent with the rate at which firms
abnormal earnings are thought to revert to the mean on average, see Fama and French
(2000), and leads to an average sale time of about 3 years for the shares remaining in the
account at the time of termination.

3



how payouts and termination time depend on the underlying. Option ∆,
the sensitivity of value to the underlying, is related to the agent’s incentives
on the margin. However, unlike in standard models where the agent’s effort
affects only concurrent performance measures, in our model not only current
but also future ∆’s affect the agent’s incentives on the margin. In the CEO
compensation example above, $3 million worth of stock granted to the agent
in two years (conditional on survival), vesting on average after three more
years, add to the agent’s incentives at time 0. The agent takes into account
the probability that he is still employed and receives those shares in two
years, as well as his ability to affect firm performance after two years with
current effort. Formally, we show that on the margin the agent’s incentives
at time t are defined by

Φt = Et

[∫ ∞
0

e−(r+κ)(t+s)∆t+s ds

]
, (1)

where r is the agent’s discount rate and ∆t+s is the sensitivity “option value”
to the underlying at time t+s. Quantity Φt plays an important role in optimal
contract design. Pay-performance sensitivity ∆t is set taking into account
its impact on the agent’s incentives over the time interval [0, t], as well as
the costs due to the agent’s risk aversion and the possibility of inefficient
termination.

While Φt affects the agent’s incentives on the margin, we are also con-
cerned about the agent’s incentives to take fundamentally different effort
strategies. For example, if the agent puts low effort for several periods, he
would expect the firm to perform poorly in the future. If ∆ of the agent’s
contract decreases with the price of the underlying, like ∆ of a call option,
the agent’s incentives to put effort in the future deteriorate. Thus, low effort
in the past reinforces the agent’s incentives to lower effort, making it well
possible that the agent’s optimal effort strategy involves putting low or no
effort throughout. After all, the agent’s liability for losses is bounded, and
he may be able to collect significant benefits before he is fired.

If the agent has right incentives on the margin, is there a way to guarantee
that the agent cannot benefit by deviating significantly? We show that one
does not have to worry about large deviations under the condition that Φt

does not change too fast with changes in the underlying. That is, the agent’s
incentives to undertake significant deviations depend on the expected Γs of
his contract, i.e. the rate at which ∆t changes with the underlying. Intu-
itively, on one hand, even if the agent faces strong incentives on the margin,
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i.e. ∆t are large, he will not have incentives to put effort if his exposure to
losses is severely limited. In this situation, ∆ would have to quickly drop to
0 after losses, i.e. Γ is high. On the other hand, large deviations are less
troubling in the CEO compensation example above if shares granted to the
CEO have a long vesting horizon. Similarly, compensation contracts based
on longer-dated options have lower Γ.

This paper is organized as follows. In Section 2 we lay out a basic model,
in which the impact of the agent’s effort on future output has an exponential
decay rate κ. As κ → ∞, the model is reduced to a more standard model
analyzed in Sannikov (2008). In Section 3 we analyze the agent’s incentives
on the margin, and provide a condition when first-order incentive constraints
guarantee the optimality of the agent’s effort. With these results, we are also
able to transform the principal’s relaxed problem, maximizing profit subject
to just the first-order incentive constraints - to an optimal stochastic control
problem. In Section 4, we characterize the solution of the relaxed problem
using the Lagrangian approach to stochastic control, which is related to the
work of Yong and Zhou (1999). The optimal contract is characterized by the
multipliers νt on the agent’s utility and λt on the agent’s incentives. While
λt explicitly determines the evolution of νt and the agent’s compensation, as
well as the sensitivity of compensation to output, the evolution of λt depends
on the agent’s implicit effort.

In Sections 5 and 6, we introduce an additional assumption, which sig-
nificantly simplifies the form of the optimal contract and guarantees that
the validity of our first-order approach. Specifically, we assume that the
signal about the agent’s effort contains significant noise. Even when the sig-
nal about the agent’s effort is noisy, pay for performance is beneficial if the
agent’s effort can have a significant effect on value. We argue that these
assumptions fit particularly well the application of CEO compensation, as
it is difficult to filter out the impact of CEO effort on firm value due to
volatility. In this environment, in Section 5 we provide explicit formulas that
determine how the agent’s pay depend on output, given a termination rule.
The problem of determining optimal termination time itself boils down to an
optimal exercise time of a real option. Specifically, in the optimal contract
the agent’s pay ct maximizes

νtu(c)− c,

where νt is a martingale with sensitivity to performance given by const · λ̂t,
λ̂t = 1 − e−(r+κ)t until the termination time τ, and λ̂t = e−(r+κ)(τ−t)λ̂τ after
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time τ. We see that the contract is extremely simple. In Section 6, we
adapt our characterization of the optimal contract to the application of CEO
compensation, in which firm scale follows a geometric Brownian motion.

Literature Review. This paper is related to the strands on literature on
agency models and executive compensation. Papers such as Radner (1985),
Spear and Srivastava (1987), Abreu, Pearce and Stacchetti (1990) and Phe-
lan and Townsend (1991) provide foundations for the analysis if repeated
principal-agent interactions. In these settings, in each period the agent’s
effort affects the probability distribution of a signal observed by the princi-
pal, and the optimal contract can be presented in a recursive form. That is,
in these settings the agent’s continuation value completely summarizes the
agent’s incentives. Using the recursive structure, Sannikov (2008) provides a
continuous-time model of repeated agency, in which it is possible to explicitly
characterize the optimal contract using an ordinary differential equation.

The problem addressed in this paper is non-standard, as the agent’s ac-
tion can have future consequences. That is, the agent’s current effort affects
firm’s unobservable fundamentals, which have impact on cash flows over the
long run. Therefore, to summarize incentives in our setting, one also has to
keep track of the derivative of the agent’s payoff with respect to fundamen-
tals. This leads to the so-called first-order approach, which has been used
recently to analyze a number of environments. Kapicka (2011) and Williams
(2011) use the first-order approach in environments where the agent has pri-
vate information. DeMarzo and Sannikov (2011) and He, Wei and Yu (2012)
study environments with learning, where the agent’s actions can affect the
principal’s belief about fundamentals. While we also use the first-order ap-
proach, we also provide a sufficient conditions for its validity. That is, we
characterize a class of contracts, for which first-order conditions guarantee
full optimality.

There are not many papers where the impact of the agent’s effort is
observed with delay. Hopenhayn and Jarque (2010) consider a setting where
the agent’s one-time effort input affects output over a long horizon. See
also Jarque (2011). Edmans, Gabaix, Sadzik and Sannikov (2012) consider
a scale-invariant setting where the agent can manipulate performance over
a limited time horizon and do not allow for termination. In contrast, this
paper considers a fairly general framework.

One especially attractive feature of this paper is the closed-form charac-
terization of the optimal contract in environments with large noise. Such a
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clean characterization is rare in contracting environments. Holmstrom and
Milgrom (1987) derive a linear contract for a very particular model with
exponential utility. Edmans, Gabaix, Sadzik and Sannikov (2012) obtain a
tractable contract in a scale-invariant setting. In contrast, we consider a
setting that allows for general utility function and for termination.

This paper is also related to literature on managerial compensation. The
model predicts that the agent’s pay-performance sensitivity under the opti-
mal contract increases gradually during employment. This is consistent with
empirical evidence documented by Gibbons and Murphy (1992). At the same
time, the model also suggests that some of CEO’s compensation should be
deferred after termination, a feature observed rarely in practice. DeMarzo
and Sannikov (2006) and Biais, Mariotti, Plantin and Rochet (2007) study
managerial compensation in the optimal contracting framework with a risk-
neutral agent, but allow the agent’s actions to have only contemporaneous
effect on cash flows. In these settings, it is also optimal to defer some of
the agent’s compensation, but only until the time of termination. Deferred
compensation creates more room to punish the agent in the future in case of
bad performance. Backloaded compensation also helps employee retention,
a point first made by Lazear (1979). Edmans, Gabaix, Sadzik and Sannikov
(2012) study executive compensation with risk aversion, and derive an opti-
mal contract that features rebalancing. If the firm’s stock price goes down,
the optimal contract replaces some cash in the agent’s deferred compensation
package with stock. This feature solves a common problem of call options,
which lose their incentive power when they fall out of money as the stock
price drops. This feature is also present in our setting, if CEO effort is easier
to observe in smaller firms. However, because of limited liability, the agent’s
absolute pay-performance sensitivity falls after bad performance, leading to
termination.

The assumption that the agent’s effort is difficult to detect leads to sig-
nificant tractability in this paper. How much value does CEO effort create,
relative to the volatility of firm value? Regarding not effort but skill, Gabaix
and Landier (2008) estimate that the best CEO is able to add 0.16% more
to firm value than the 250th best CEO. This is certainly not a small number
in money terms, $16 million for a $10 billion firm, but it is virtually unde-
tectable in the face of stock price volatility. This observation suggests that
performance evaluation is extremely noisy in the context of CEO compensa-
tion.

Relative to existing literature on CEO compensation, this paper has two
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main advantages: tractability, as compensation in the optimal contract is
determined explicitly and generality, as we can allow for an arbitrary utility
function, and for termination.

2 The Model.

Consider a continuous-time environment, in which the agent is employed from
time 0 until a contractually determined termination time τ ≤ ∞. Until time
τ, the agent affects the firm’s fundamentals with his effort at ∈ [0,∞). The
principal observes neither the agent’s effort nor fundamentals. Fundamentals
evolve according to

dδt = (at − κδt) dt, or equivalently δt = e−κtδ0 +

∫ t

0

e−κ(t−s)as ds, (2)

where δ0 is common knowledge. Fundamentals affect the output according
to

dXt = (r + κ)δt dt+ σ dZt, (3)

where Zt is a Brownian motion. From (2) and (3), the effect of effort on
future output is exponentially decaying, and effort at creates value at time
s ≥ t rate

e−κ(s−t)(r + κ)at (4)

for the risk-neutral principal, who discounts cash flows at rate r. Thus, effort
at creates value at rate∫ ∞

t

e−r(s−t)e−κ(s−t)(r + κ)at ds = at.

Note that in this parameterization the value (4) that the agent creates from
effort is independent of κ.

The agent’s utility cost of effort is given by an increasing convex func-
tion h : [0,∞) → [0,∞) with h(0) = 0. The agent also gets utility from
payments he receives from the principal. His utility of consumption function
u : [0,∞)→ [0,∞) is increasing and concave, and satisfies u(0) = 0.

We consider fully history-dependent contracts, which specify a possible
termination time τ as well as the agent’s compensation ct as functions of the
entire past history of output {Xs, s ∈ [0, t]}. Importantly, the agent receives
compensation even after time τ, since his effort before time τ affects output
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after time τ. The decision to fire the agent is irreversible. The principal can
commit to any fully contingent contract. In the event that the agent is fired,
the principal’s outside option at time τ is given by

δτ + L.

This value could be determined endogenously as the payoff from hiring a new
agent. Importantly, L > 0, so that the principal prefers to fire the agent if
he cannot motivate him to put sufficient effort.

In response to a contract (c, τ), the agent will choose a strategy a =
{at, 0 ≤ t ≤ τ} to maximize his payoff. The principal’s payoff depends on
the strategy that the agent chooses.

The optimal contract in this setting solves the following constrained op-
timization problem. The objective is to maximize the principal’s expected
profit

Ea

[∫ ∞
0

e−rt (dXt − ct dt)
]

= (5)

δ0 + Ea

[∫ τ

0

e−rtat dt+ e−rτL−
∫ ∞

0

e−rtct dt

]
,

where Ea denotes the expectation given the agent’s strategy a. The con-
straints are

W0 = Ea

[∫ ∞
0

e−rt(u(ct)− 1t≤τ h(at)) dt

]
, (6)

where W0 is the agent’s required utility at time 0, and the incentive con-
straints

W0 ≥ E â

[∫ ∞
0

e−rt(u(ct)− 1t≤τ h(ât)) dt

]
(7)

for all alternative strategies â.
Solving this problem involves finding not only the optimal contract (c, τ)

but also the agent’s optimal strategy a under this contract, since the strategy
enters both the objective function and the constraints.

If we let κ → ∞, then this model converges to a standard principal-
agent model, in which the agent’s effort adds only to concurrent output.
Specifically, in this case the output is given by

dXt = at dt+ σ dZt, (8)

instead of (3).
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3 Incentive Constraints.

In this section, for an arbitrary contract we analyze the agent’s incentives.
Proposition 1 investigates the agent’s incentives on the margin and obtains
first-order conditions for when the agent’s strategy is optimal. Proposition
3 identifies conditions when a strategy that satisfies the first-order incentive
constraints ends up being optimal among all strategies.

The results of this section allow us to conjecture the optimal contract
via the first-order approach. The first-order approach replaces the full set
of incentive constraints (7) with weaker first-order conditions for the agent’s
effort choice. This leads to a relaxation of the constrained optimization prob-
lem (5), which can be solved as an optimal stochastic control problem using
Proposition 2. Then Proposition 3 allows us to verify when the conjectured
contract satisfies all the incentive constraints.

Before presenting formal results, let us summarize the key findings of this
section and draw parallels to the standard principal-agent problem, in which
the agent’s effort affects only concurrent output according to (8). For an ar-
bitrary contract, a particularly important variable is the agent’s continuation
value defined according to

Wt = Ea
t

[∫ ∞
t

e−r(s−t)(u(cs)− 1s≤τ h(as)) ds

]
. (9)

The constraint (6), which is related to individual rationality, requires that
the value of the contract to the agent at time 0 takes a specific value W0.
Furthermore, in the standard principal-agent setting, the marginal benefit
to the agent of putting extra effort is determined by the sensitivity of Wt to
output

dWt/dXt = ∆t.

The notation ∆ is intentional to emphasize the analogy to option Delta: the
sensitivity of option value to changes in the underlying X.

When effort at has an exponentially decaying impact on all future output,
characterized by (2) and (3), then the marginal benefit of effort at time t
depends on

Φt = dWt/dδt = Ea
t

[
(r + κ)

∫ ∞
t

e−(r+κ)(s−t)∆s ds

]
. (10)

Note that as κ → ∞, Φt → ∆t if ∆t is continuous. Since the marginal cost
of effort is given by h′(at), the first-order condition for optimal effort choice
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is
h′(at) = Φt.

There is an alternative expression for Φt, which is very useful for our anal-
ysis. Note that the value of fundamentals δt at time t affects the probability
distribution over future paths of output. Girsanov Theorem implies that the
rate at which fundamentals δt affect the probability distribution over future
paths is given by

ζt+st =

∫ t+s

t

e−κ(s′−t) r + κ

σ

dXs′ − (r + κ)δs′ ds
′

σ
. (11)

Note that as δt goes up, the paths {Xs′ , s
′ ∈ [t, s]}, for which dXs′ exceeds

expectation (r + κ)δs′ ds
′, become more likely.

It follows that

Φt = dWt/dδt = Ea
t

[∫ ∞
t

e−r(s−t)ζst (u(cs)− 1s≤τ h(as)) ds

]
. (12)

The First-order Incentive Constraints. The following proposition
identifies the first-order conditions for a strategy a to be optimal under a
contract (c, τ).

Proposition 1 Fix a strategy a. A necessary condition for a to be optimal
under the contract (c, τ) is that for all t,

at maximizes Φta− h(a), (13)

where Φt is defined by (12).

From now on, denote by a(Φt) the effort that solves the problem (13).
Under our assumptions, a(h′(a)) = a for a ≥ 0, and a(Φ) = 0 for Φ ≤ h′(0).

Proof. To identify the first-order incentive-compatibility constraint, con-
sider a deviation away from the strategy a towards an alternative strategy â.
Formally, for φ ∈ [0, 1], let the strategy (1−φ)a+φâ assign effort (1−φ)at+φât
to each history of output {Xs, s ∈ [0, t]}. Then, if the strategies a and â gen-
erate the paths of fundamentals δ and δ̂, the strategy (1− φ)a+ φâ leads to
the path of fundamentals (1− φ)δ + φδ̂.
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If the agent follows the strategy (1 − φ)a + φâ rather than a, then by
Girsanov’s Theorem, he changes the underlying probability measure by the
relative density process ξt(φ) given by

exp

(
−1

2

∫ t

0

φ2(r + κ)2(δ̂s − δs)2

σ2
ds+

∫ t

0

φ(r + κ)(δ̂s − δs)
σ

dXs − (r + κ)δs ds

σ

)
,

where dXs−(r+κ)δs ds
σ

represents increments of a Brownian motion under the

original measure, under the strategy a, and φ(r+κ)(δ̂s−δs)
σ

is the rate at which
the agent’s deviation changes the drift of this Brownian motion.

The agent’s utility from deviating to the strategy (1− φ)a+ φâ is

Ea

[∫ ∞
0

e−rtξt(φ)(u(ct)− 1t≤τ h((1− φ)at + φât)) dt

]
. (14)

We would like to differentiate this expression with respect to φ at φ = 0.
Note that

dξt(φ)

dφ

∣∣∣∣
φ=0

=

∫ t

0

(r + κ)(δ̂s − δs)
σ

dXs − (r + κ)δs ds

σ
.

Since δ̂s−δs =
∫ s

0
e−κ(s−s′)(âs′−as′)ds′, after changing the order of integration

and using the definition (11) of ζts, we obtain

dξt(φ)

dφ

∣∣∣∣
φ=0

=

∫ t

0

(âs − as)ζts ds. (15)

From (14) it follows that the derivative of the agent’s expected utility with
respect to φ is

Ea

[∫ ∞
0

e−rt

(
dξt(φ)

dφ

∣∣∣∣
φ=0

)
(u(ct)− 1t≤τ h(at)) dt−

∫ τ

0

e−rt(ât − at)h′(at) dt

]
.

Plugging in (15), and changing the order of integration, this becomes

Ea

[∫ τ

0

e−rt(ât − at)
(∫ ∞

t

e−r(s−t)ζst (u(cs)− 1s≤τ h(as)) ds− h′(at)
)
dt

]
=

Ea

[∫ τ

0

e−rt(ât − at)(Φt − h′(at)) dt
]
,
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where Φt is defined by (12).
If the strategy a does not satisfy (13) on a set of positive measure, then let

us choose ât > at when Φt > h′(at) and ât < at when Φt < h′(at), whenever
possible to do this with ât ≥ 0. Then

Ea

[∫ τ

0

e−rt(ât − at)(Φt − h′(at)) dt
]
> 0,

and so a deviation to the strategy (1 − φ)a + φâ for sufficiently small φ is
profitable.

Recursive Representation of the Variables (Wt,Φt). Next, we derive
the stochastic laws of motion that variables Wt and Φt have to follow given
the contract and the agent’s effort strategy. Proposition 2 below provides an
if-and-only-if statement: if processes Wt and Φt follow (16) and (17), then
they satisfy definitions (9) and (12) (or, equivalently, (10)).

Proposition 2 is useful, as it allows us to reduce the principal’s problem
(5) to an optimal stochastic control problem.2

Proposition 2 Fix a contract (c, τ) and a strategy a. Then the processes
(Wt,Φt) defined by (9) and (12) follow

dWt = (rWt − u(ct) + 1t≤τ h(at)) dt+ ∆t (dXt − (r + κ)δt dt)︸ ︷︷ ︸
σ dZt

and (16)

dΦt = (r + κ) (Φt −∆t) dt+ Γt(dXt − (r + κ)δt dt) (17)

for some processes ∆ and Γ in L2.
Conversely, any process Wt that follows (16) and satisfies the transver-

sality condition Ea
t [e−rsWs]→ 0 as s→∞ is the agent’s continuation value

defined by (9). Likewise, if also the process Φt follows (17) and the transver-
sality condition Ea

t [e−(r+κ)sΦs]→ 0 as s→∞, then Φt satisfies (12).

Proposition 2 has two corollaries. First, the intuitive formula (10) follows
from the representation (17).

2The representation of Proposition 2 holds for a given contract (c, τ) and effort strategy
a regardless of whether the incentive constraints hold.
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Corollary 1

Ea
t

[∫ ∞
t

e−r(s−t)ζst (u(cs)− 1s≤τ h(as)) ds

]
︸ ︷︷ ︸

Φt

= Ea
t

[
(r + κ)

∫ ∞
t

e−(r+κ)(s−t)∆s ds

]
.

Reducing the Relaxed Problem to Optimal Stochastic Control.
The second corollary of Proposition 2 is Theorem 1 below, which allows
us to solve the following relaxed problem using optimal stochastic control.
Formally, the relaxed problem is to choose a contract (c, τ) together with the
agent’s strategy a that maximizes

Ea

[∫ τ

0

e−rtat dt+ e−rτL−
∫ ∞

0

e−rtct dt

]
, (18)

subject to

W0 = Ea

[∫ ∞
0

e−rt(u(ct) dt− 1t≤τ h(at)) dt

]
and at = a(Φt) for all t ≤ τ (19)

Theorem 1 There is a one-to-one correspondence between contracts (c, τ),
with effort strategies a, and pairs of controlled processes (W,Φ) that fol-
low (16) and (17) and satisfy the transversality conditions under controls
(c, a,∆,Γ, τ). The controls satisfy the first-order incentive constraints if at =
a(Φt) for all t ≤ τ, and the principal’s objective is given by (18).

Proof. Consider a contract (c, τ) and an effort strategy a that satisfy (19),
under which both e−rt(u(ct) − 1t≤τh(at)) and e−rtζt0(u(ct) − 1t≤τh(at)) are
integrable (so the transversality conditions hold). Then, by Proposition 2,
processes (W,Φ) defined by (9) and (12) follow the laws of motion (16) and
(17) for some processes (∆,Γ) in L2.

Conversely, if (W,Φ) follow (16) and (17) under controls (c, a,∆,Γ, τ),
and the transversality conditions hold, then by Proposition 2, (9) and (12)
must hold.

First-Order Constraints and Full Incentive Compatibility. Of
course, the first-order approach is valid only if the solution to the relaxed
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problem actually ends up satisfying all the incentive constraints (7). The
following proposition provides conditions under which a contract, which sat-
isfies the relaxed constraints (13), is fully incentive-compatible, i.e. satisfies
(7).

Proposition 3 Suppose that the agent’s cost of effort is quadratic of the
form h(a) = θa2/2. Then an effort strategy a under the contract (c, τ) satisfies
(7) if it satisfies (13) and also

Γt ≤
θ(2κ+ r)2

8(r + κ)
. (20)

Condition (20) is a bound on the rate Γt at which the marginal benefit of
effort Φt changes with output Xt. If Γt is large, then following a reduction in
effort, the agent can benefit by lowering effort further as he faces a lower Φt.

Note the analogy with options. If the agent’s contract is a package of call
options on Xt, with downside protection, then the agent’s incentives to lower
effort depend on how much he can lose. The less downside the agent faces,
the quicker the Deltas of the agent’s options have to fall as losses occur, i.e.
the Gammas of the agent’s options are higher.

Several facts are worth noting. First, as κ → ∞, the right hand side
of (20) becomes infinite. That is, in the standard setting where the agent’s
effort affects only current output, multi-period deviations are not a concern,
as we know from Sannikov (2008). Second, the right hand side of (20) de-
pends on the convexity of the agent’s cost of effort θ. If the cost of effort
is linear, then the first-order approach fails, as pointed out by Kocherlakota
(2004). Third, if the contract derived through a first-order approach (con-
tract A) ends up violating condition (20), it is possible to derive a contract
that satisfies the first-order approach (contract B) by imposing (20) as an
additional constraint. Then contract A gives an upper bound on the profit
from an optimal contract, and contract B gives a lower bound. If the two
bounds are close, then contract B is approximately optimal.3

3One may wonder how tight is the bound (20). I conjecture that it is reasonably tight,
that is if Γt > C permanently, for some constant C that may be slightly larger than the
right hand side of (20), then the contract is not fully incentive compatible.
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4 A Lagrangian Approach to the General Prob-

lem.

In this section we develop a Lagrangian approach to the relaxed problem (18)
and derive a partial characterization of the optimal contract. The contract
can be written in terms of multipliers νt and λt on the agent’s continuation
value Wt and his cost of effort Φt respectively. The multiplier on Wt maps
one-to-one into the agent’s compensation, according to the equation4

ct = arg max
c

νtu(c)− c. (21)

The starting point ν0 is determined by W0, and the law of motion of νt is
given by

dνt = λt
r + κ

σ

dXt − (κ+ r)δt dt

σ
with (22)

dλt = 1t≤τ a
′(Φt)(1− h′(a(Φt))νt) dt− κλt dt, λ0 = 0.

This characterization is completely explicit about how the agent’s compen-
sation depends on the history of shocks, as long as the agent’s effort a(Φt) is
known for any pair (νt, λt). Of course, the effort itself depends on the con-
tract, so in this sense this is only a partial characterization. It is possible to
find effort as a function of (νt, λt) by solving a partial differential equation,
but that procedure is fairly complicated.

Nevertheless, this partial characterization is immensely informative about
the form of the optimal contract. First, since (21) implies that 1/u′(ct) = νt,
the agent’s inverse marginal utility is a martingale. This is the well-known
inverse Euler equation (e.g. see Spear and Srivastava (1987)), which charac-
terizes the optimal way to smooth the agent’s consumption in environments
of dynamic moral hazard. Second, the multiplier λt, which determines the
sensitivity of νt to output, is rising from zero towards a target level, which
depends on νt. The target level, determined by

λ̄(νt) =
a′(Φt)

κ
(1− h′(a(Φt))νt).

Keeping a(Φt) fixed, this expression is decreasing in νt: as the agent’s com-
pensation increases, it gets costlier to compensate him for the cost of effort.
After time τ, the multiplier λt decays exponentially.

4The solution to (21) is ct = 0 if νt ≤ 1/u′(0), and is determined by the first-order
condition νtu

′(c) = 1 otherwise.
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It is instructive that as κ→∞, the characterization (21)-(22) generates
an optimal contract in the standard setting, in which the agent’s effort affects
only current output. Interestingly, this leads to a different method to find
an optimal contract in the setting of Sannikov (2008).

Equation (22) does not explain how the termination time τ is determined.
The problem of finding τ is similar to that of an optimal exercise time of an
American option. We describe how both τ and effort a(Φt) are determined
later in this section, when we present the formal results.

We derive characterization (21)-(22) by backward induction in two steps.
First, we address the problem of optimal contract design after time τ. Second,
we characterize the optimal contract in the region of employment, together
with the optimal choice of termination.

The optimal contract after termination. We allow some of agent’s
compensation to be paid out after termination. The form of this deferred
compensation influences the agent’s incentives during employment. A con-
tract that solves the relaxed problem (18) has to give the agent the desired
continuation value Wτ and marginal benefit of effort Φτ at time τ in the
cheapest possible way. Indeed, if we replace the continuation contract after
time τ with another contract that has the same values of Φτ and Wτ , the
agent’s marginal incentives during employment remain unchanged.

Formally, the optimal contract after termination solves the following prob-
lem (where we set τ to 0 to simplify notation):5

max
c

E

[∫ ∞
0

e−rt(−ct) dt
]

(23)

s.t. E

[∫ ∞
0

e−rtu(ct) dt

]
= W0 and E

[∫ ∞
0

e−rtζt0 u(ct) dt

]
= Φ0.

5Interestingly, problem (23) also solves a different interesting model, in which the agent
puts effort only once at time 0, and his effort determines the unobservable level of funda-
mentals δ0. Specifically, suppose the agent’s utility is given by

E

[∫ ∞
0

e−rtu(ct) dt

]
−H(δ0),

where H is a convex increasing cost of effort, and fundamentals affect output according
to dXt = (r + κ)δt dt+ σdZt, where δt = e−κtδ0. Then the agent’s incentive constraint is
H ′(δ0) = Φ0. A version of this problem has been solved on Hopenhayn and Jarque (2010).
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Problem (23) is easy to solve. Letting ν0 and λ0 be the multipliers on the
two constraints, the Lagrangian is

E

[∫ ∞
0

e−rt
(
(ν0 + ζt0λ0)u′(ct)− ct

)
dt

]
− ν0W0 − λ0Φ0.

The first-order condition is

ct = arg max
c

(ν0 + ζt0λ0)︸ ︷︷ ︸
νt

u(c)− c, (24)

where νt is the multiplier on the agent’s utility at time t. From (11), the laws
of motion of the Lagrange multipliers can be expressed as

dνt = λ0 dζ
t
0 = e−rtλ0︸ ︷︷ ︸

λt

r + κ

σ

dXt − (r + κ)δt dt

σ
, and dλt = −κλt dt. (25)

This corresponds to the solution (22) after time τ.
Proposition 4 characterizes the principal’s profit, as well as the corre-

spondence between the multipliers (ν0, λ0) and variables (W0,Φ0), in problem
(23). These relationships are conveniently represented through a single func-
tion G(ν0, λ0), which solves a tractable parabolic partial differential equation
(27).

Proposition 4 Define

G(ν0, λ0) = E

[∫ ∞
0

e−rt (νtu(ct)− ct) dt
]
, (26)

when ct is determined by (24) and (νt, λt) follow (25). Then G solves equation

rG(ν, λ) = max
c

νu(c)− c− κλ Gλ(ν, λ) + (r + κ)2λ
2

σ2

Gνν(ν, λ)

2
. (27)

Then W0 = Gν(ν0, λ0), Φ0 = Gλ(ν0, λ0) and

E

[∫ ∞
0

e−rt(−ct) dt
]

= G(ν0, λ0)− ν0W0 − λ0Φ0. (28)
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Proof. Equation (26) is a standard stochastic representation of the solution
of the parabolic partial differential equation (27) (see Karatzas and Shreve
(1991)). Since νt = ν0 + ζt0λ0, differentiating (26) with respect to ν0 and
using the Envelope theorem, we get

Gν(ν0, λ0) = E

[∫ ∞
0

e−rtu(ct) dt

]
= W0. (29)

Differentiating with respect to λ0 we get

Gλ(ν0, λ0) = E

[∫ ∞
0

e−rtζt0 u(ct) dt

]
= Φ0. (30)

Finally, from the stochastic representation (26) itself, we have

G(ν0, λ0) = ν0W0 + λ0Φ0 + E

[∫ ∞
0

e−rt(−ct) dt
]
. (31)

Equation (31), together with (30) and (29), implies (28).

Function G describes the principal’s options regarding how to structure
deferred compensation after termination. We will use it to characterize the
optimal termination time in the original principal’s problem.

Note that it is more convenient to describe the contract after termination
via the state variables νt and λt rather than Wt and Φt. The evolution of
νt and λt is described by the simple system (25). In contrast, the laws of
motion of Wt and Φt are more complex and these variables do not map into
payments to the agent in a simple way.

The optimal contract before termination. Before termination, the
optimal contract is characterized by the partial differential equation

rG = max
c

a(Gλ)− c+ ν (u(c)− h(a(Gλ)))− κλGλ + (r + κ)2λ
2

σ2

Gνν

2
. (32)

The following proposition shows that as long as equation (32) has an ap-
propriate solution on a subset R ⊆ [0,∞) × R of the state space, with
smooth-pasting conditions

G(ν, λ) = G(ν, λ) and ∇G(ν, λ) = ∇G(ν, λ). (33)

on the boundary of R, then the optimal contract is characterized by the laws
of motion of the state variables (22), with Φt = Gλ(νt, λt), and τ is the time
when (λt, νt) reach the boundary of the region R.
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Proposition 5 Suppose that function G solves equation (32) onR ⊆ [0,∞)×
R and satisfies the smooth-pasting conditions (33) on the boundary. Then,
as long as transversality conditions hold,

Wt = Gν(νt, λt), Φt = Gλ(νt, λt)

and the principal’s continuation payoff is G(νt, λt) − νtWt − λtΦt, in the
contract defined by (22).

In addition, if on R, G(λ, ν) ≥ G(λ, ν) and the Hessian of G is positive
definite, and outside R,

rG ≥ max
c

a(Gλ)− c+ ν (u(c)− h(a(Gλ)))− κλGλ + (r + κ)2λ
2

σ2

Gνν

2
(34)

and the Hessian of G is positive definite, then the contract is optimal.

5 Environments with Significant Noise.

This section focuses on environments, in which it is possible to expose the
agent to only a small fraction of project risk due to noise, yet the benefits
of giving the agent even small exposure to project risk can be significant.
One situation in practice that matches these assumptions well is executive
compensation. As firm value is typically a much larger quantity than CEO
wealth, CEOs can have significant exposure to firm risk, but small pay-
performance sensitivity. Jensen and Murphy (1990) and Murphy (1999) esti-
mate that average CEO wealth increases by only $3.25 to $5 for each $1000
increase in shareholder value. Yet, presumably, a well-designed contract with
even small pay-performance sensitivity can add significantly to shareholder
value.

In environments with a lot of noise, it is difficult to identify the agent’s
effort. Consider the example of CEO compensation. If a CEO of a $10-
billion dollar firm can add $500 million a year (i.e. 5%) to shareholder value
by increasing effort, this value is economically significant. However, if the
volatility of firm value is 30%, then effort is extremely difficult to identify.
Over t years, we are trying to identify a difference in firm return of 5% when
the standard error is 30%/

√
t. Effort identification leads to a large probability

of type I and II errors, and to motivate effort, the contract has to expose
the agent to a significant amount of risk. These are environments where the
moral hazard problem is large.
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It turns out that the optimal contract in environments with significant
noise is extremely tractable. In fact, we get a closed-form map from the
performance signal to optimal compensation. Also, the problem of optimal
termination time reduces to the optimal exercise time of an American option.
Below, after we formalize the assumption of large noise and characterize
the optimal contract. The characterization is a special case of the general
case in Section 5. However, to justify the optimal contract in this special
environment, we construct a different simpler proof.

Let the agent’s cost effort h(a) be a C2 increasing and convex function
that satisfies h(0) = h′(0) = 0, and denote θ = h′′(0). Effort adds to firm
fundamentals according to

dδt = (Kat − κδt) dt,

where K > 0 is a constant, and fundamentals affect the firm’s output ac-
cording to

dXt = (r + κ)δt + σdZt.

The principal’s profit takes the form

δ0 + Ea

[∫ τ

0

e−rtKat dt+ e−rτL−
∫ ∞

0

e−rtct dt

]
.

To capture environments where signal is noisy, but reasonable pay-performance
sensitivity adds value, we take σ →∞ and K →∞ at appropriate rates. If σ
is large, then it is only feasible to motivate effort levels at close to the agent’s
preferred level of 0. However, if K is also large, then even these effort levels
have significant economic benefit. We focus on the limit in which K2/σ = ψ
stays constant.

The following proposition provides a very simple expression for the prin-
cipal’s profit, given a contract (c, τ). The expression is very convenient, as it
provides a way to compute the principal’s profit directly from compensation,
without solving for the agent’s effort first.

Proposition 6 In the limit as σ → ∞ and K → ∞ while K2/σ = ψ, the
principal’s profit under the contract (c, τ) is given by

E

[∫ ∞
0

e−rt
(
ψ

θ

r + κ

κ

(∫ t

0

λ̂s dZs

)
u(ct)− ct

)
dt+ e−rτL

]
, (35)
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where
λ̂0 = 0, dλ̂t = κ(1t≤τ − λ̂t) dt.

Proof. With parameter K, the agent’s incentive constraints are given by

h′(at) =
dWt

dδt

dδt
dat

= ΦtK,

where

Φt = Ea
t

[∫ ∞
t

e−r(s−t)ζst (u(cs)− 1s≤τ h(as)) ds

]
, ζst =

∫ s

t

e−κ(s′−t) r + κ

σ
dZs′ .

When a is close to zero, the cost of effort has a quadratic approximation
h(a) = θa2/2, and the incentive constraints can be written as

Kat =
K2

θσ︸︷︷︸
ψ/θ

Ea
t

[∫ ∞
t

e−r(s−t)σζst u(cs) ds

]
. (36)

Note that the term h(as) drops put, as h(as)→ 0 as as → 0.
Then the principal’s profit is

E

[∫ τ

0

e−rtKat dt+ e−rτL−
∫ ∞

0

e−rtct dt

]
=

E

[
ψ

θ

∫ τ

0

e−rt
∫ ∞
t

e−r(s−t)σζst u(cs) ds dt+ e−rτL−
∫ ∞

0

e−rtct dt

]
=

E

[∫ ∞
0

e−rt

((
ψ

θ

∫ min(t,τ)

0

σζts ds

)
u(ct)− ct

)
dt+ e−rτL

]
=

E

[∫ ∞
0

e−rt
(
ψ(r + κ)

θκ

(∫ t

0

λ̂s dZs

)
u(ct)− ct

)
dt+ e−rτL

]
. (37)

To obtain the last expression, we used integration by parts and the rela-
tionship∫ min(t,τ)

0

σζts ds

r + κ
=

∫ min(t,τ)

0

∫ t

s

e−κ(s′−s)dZs′ds =

∫ t

0

∫ min(s′,τ)

0

e−κ(s′−s) ds︸ ︷︷ ︸
λ̂s′/κ

dZs′ .
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The ratio ψ/θ in equation (35) has an intuitive interpretation. Consider
hypothetically that du(ct) = r∆̂ dZt permanently, so that dWt = ∆̂ dZt.
Then ∆t = dWt/dXt = (dWt/dZt)/(dXt/dZt) = ∆̂/σ, Φt = ∆̂/σ and (36)
implies that Kat = ψ/θ∆̂. That is, ψ/θ is the value that the agent creates
per unit of time when the sensitivity of his payoff to the Brownian motion
Zt is permanently set to ∆̂. In other words, it is the marginal value created
from the agent’s exposure to the normalized signal dZt = (dXt−(r+κ)δt)/σ.

Expression (35) leads to a closed-form expression for the agent’s compen-
sation, as a function of past performance history, in the optimal contract. If
ν0 is the multiplier on the agent’s required utility constraint (6), then the
principal wants to solve

max
c,τ

E

[∫ ∞
0

e−rt
((

ν0 +
ψ

θ

r + κ

κ

∫ t

0

λ̂s dZs

)
u(ct)− ct

)
dt+ e−rτL

]
. (38)

Therefore, optimal payments ct solve

max
c
νtu(c)− c, where νt = ν0 +

ψ

θ

r + κ

κ

∫ t

0

λ̂s dZs.

The problem of finding the optimal termination times reduces to the
optimal exercise time of an American option. Denote

f(ν) = max
c
νu(c)− c,

and consider a security that pays a payoff flow of f(νt), where

dνt =
ψ

θ

r + κ

κ
λ̂t dZt,

and dλ̂t = κ(1− λ̂t)dt before time τ and dλ̂t = −κλ̂tdt after time τ. Then the
optimal termination time τ is the stopping time that maximizes the value of
this security.

The standard theory of real options implies that after time τ, the value
function for the optimization problem (38) is defined by

rG(ν, λ̂) = f(ν)− κλ̂ Gλ̂(ν, λ̂) +

(
ψ

θ

r + κ

κ

)2

λ̂2 Gνν(ν, λ̂)

2
. (39)
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Before termination, on the region of employment R ⊂ R × [0, 1], the value
function must solve

rG(ν, λ̂) = f(ν) + κ(1− λ̂)Gλ̂(ν, λ̂) +

(
ψ

θ

r + κ

κ

)2

λ̂2 Gνν(ν, λ̂)

2
, (40)

and satisfy the smooth-pasting conditions

G(ν, λ̂) = G(ν, λ̂) + L and ∇G(ν, λ̂) = ∇G(ν, λ̂)

on the boundary of R. In addition, to ensure that the stopping time τ is
optimal, function G(ν, λ̂) must satisfy

rG(ν, λ̂) ≥ f(ν) + κ(1− λ̂)Gλ̂(ν, λ̂) +

(
ψ

θ

r + κ

κ

)2

λ̂2 Gνν(ν, λ̂)

2

outside R.6
Since νt is the multiplier on the agent’s utility, it follows immediately that

the agent’s continuation payoff is given by

Wt =

{
Gν(νt, λ̂t) for t ≤ τ

Gν(νt, λ̂t) for t > τ
(41)

Equations (39) and (40) are standard parabolic equations, which can
be solved by a finite difference scheme. Equation (39) can be solved in
the direction of increasing λ̂, starting from the boundary G(0, ν) = f(ν).
Because λ̂ decreases deterministically with time after termination, values
of G(λ̂, ν) with higher λ̂ depend on those with lower λ̂. Similarly, equation
(40) together with the optimal termination boundary can be solved in the
direction of decreasing λ̂, because λ̂t increases deterministically over time
until termination.

6These value function are defined as the following expectations, under the appropriate
laws of motion of νt and λ̂t :

G(νt, λ̂t) = Et

[∫ ∞
t

e−r(s−t)f(νs) ds

]
and

G(νt, λ̂t) = max
τ

Et

[∫ τ

t

e−r(s−t)f(νs) ds+ e−r(τ−t)(L+G(ντ , λ̂τ ))

]
.
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6 Application: CEO Compensation.

The tractability of settings with large noise easily extends to more general
environments. In particular, in this section we apply the insights of Section
5 to the application of optimal executive compensation. Suppose that the
scale of the firm is not constant, but instead follows the geometric Brownian
motion

dVt = gVt dt+ σVt dZt.

The agent’s actions as ∈ [0,∞), s ∈ [0,∞), affect the variable δt, unobserv-
able by the market, according to equation

dδt =

∫ t

0

e−κ(t−s)as ds, (42)

and has the impact on firm value at time t given by

C1δtV
1−α
t , (43)

where C1 is a constant. Because α ∈ (0, 1), for large firms effort has a small
percentage effect but a large absolute effect on firm value. Moreover, due to
volatility, it gets harder to detect effort for large firms.

In order to solve the principal’s problem, we have to identify the marginal
impact of the agent’s effort on firm value and on the agent’s utility.

From (42) and (43), effort at adds to firm value at rate

atEt

[∫ ∞
t

e−(r+κ)(s−t)V 1−α
s ds

]
=

atV
1−α
t

r + κ− (1− α)g + α(1− α)σ2/2
, (44)

since the law of motion of V 1−α
s is

dV 1−α
t =

(
(1− α)g − (1− α)ασ2

2

)
V 1−α
t dt+ (1− α)σ V 1−α

t dZt.

At the same time, the marginal impact of effort on the agent’s utility is

Et

[∫ ∞
t

C1e
−(r+κ)(s−t)V 1−α

s ∆s ds

]
, (45)

where ∆t = dWt/dVt is the sensitivity of the agent’s payoff to firm value.
Another way to express the quantity (45) is by focusing on the impact of the
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agent’s effort on the probability of future paths of Vt, which is summarized
by

ζst =

∫ s

t

C1e
−κ(s′−t)V 1−α

s′

σVs′
dZs′ , where dZs′ =

dVs′ − gVs′ ds′

σVs′
.

Then the marginal impact of effort on the agent’s utility can also be expressed
as

Et

[∫ ∞
t

e−r(s−t)ζst u(cs) ds

]
.

The agent’s incentive constraint takes the form

at = C2Et

[∫ ∞
t

e−r(s−t)ζst u(cs) ds

]
,

where C2 is another constant that depends on the agent’s cost of effort.
From (44) and (45), the total impact of the agent’s effort on firm value is

E

[∫ τ

0

e−rt
atV

1−α
t

r + κ− (1− α)g + α(1− α)σ2/2
dt

]
=

E

[∫ τ

0

e−rt
V 1−α
t

r + κ− (1− α)g + α(1− α)σ2/2
C2

∫ ∞
t

e−r(s−t)ζst u(cs) ds dt

]
=

E

[∫ ∞
0

e−rt

(
C2

r + κ− (1− α)g + α(1− α)σ2/2

∫ min(t,τ)

0

V 1−α
s ζts ds

)
u(ct) dt

]
.

Furthermore,∫ min(t,τ)

0

V 1−α
s ζts ds = C1

∫ min(t,τ)

0

∫ t

s

V 1−α
s V −αs′ e

−κ(s′−s)dZs′

σ
ds =

C1

σ2

∫ t

0

V −αs′

∫ min(s′,τ)

0

e−κ(s′−s)V 1−α
s ds︸ ︷︷ ︸

λ̂s′

dVs′ − gVs′ ds′

Vs′
,

where

dλ̂t = (V 1−α
t − κλ̂t) dt for t ≤ τ and dλ̂t = −κλ̂t dt for t ≥ τ.
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If ν0 is the initial multiplier on the agent’s utility, then ct must maximize

νtu(ct)− ct, where νt = ν0 + C3

∫ t

0

λ̂s
V 1+α
s

(dVs − gVs ds). (46)

We can make several observations. First, the term dVs − gVs ds has a direct
meaning in practice: it is the change in the firm’s enterprise value, adjusted
for the expected return. Second, since λ̂s = O(V 1−α

s ), it follows that the
absolute volatility of νt is on the order of V 1−2α

s . If α < 1/2, then the agent’s
pay-performance sensitivity has to increase as the firm gets larger. While
it gets harder to estimate the agent’s effort as the firm gets larger, the im-
portance of effort gets larger. If α < 1/2, then the latter force dominates
the former. Third, the sensitivity of the agent’s pay to performance tends
to increase with the agent’s tenure as λ̂s rises. Fourth, the volatility of νt
increases with the past values of the firm, and decreases with the firm’s cur-
rent value. That is, the volatility of νt falls when firm value suddenly goes
up, as in this case the stock price is less informative about CEO effort in
this model. In contrast, if firm value falls, then stock price becomes a more
informative signal of firm value, and so the volatility of νt rises. Of course, in
this case the agent’s pay-performance sensitivity can only rise so far before
the agent’s limited liability constraint protects the agent.

I have not discussed optimal termination policy in the application, but
plan to do so in a future version of the paper.

7 Conclusions.

This paper wants to enhance our understanding of environments where the
agent’s actions can have delayed consequences. If a contract is thought of
as a derivative on project value, which pays in the units of utility to the
agent, and Delta is the sensitivity of derivative value to the performance
signal, then the agent’s incentives on the margin are captured by a discounted
expectation of future contract Deltas. These first-order incentive constraints
sufficient if contract the discounted expectation of future contract Gammas
is not too large. The first-order incentive constraints alone allow us to frame
the problem of finding an optimal contract as an optimal stochastic control
problem. We partially characterize a solution to this problem using the
method of Lagrange multipliers.
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The optimal contract becomes particularly tractable under the assump-
tion that the signal about the agent’s performance is very noisy. In this case,
also, and the first-order approach holds automatically. In these settings, the
map from the signal about the agent’s performance to the agent’s compensa-
tion is determined in closed form. The problem of determining the optimal
termination time is a real options problem. Moreover, the tractability of
settings with large noise easily extends to other environments. This paper
develops the application of optimal executive compensation, in which the
value of the firm follows a geometric Brownian motion.

The intuitive optimal contract is based on two variables: νt that fully
determines the agent’s pay flow and λt that determines the sensitivity of νt
to the performance signal. Generally, λt rises towards a target level during
the agent’s tenure and falls exponentially to 0 after the agent is fired. The
agent is paid only when νt > 0. When νt ≤ 0, the contract is “out of the
money:” variable νt still adjusts to performance, but the agent is no longer
paid. When the contract is sufficiently far out of money, the agent is fired,
but he may still get paid after termination if signals after termination are
positive.

A few natural follow-up research questions come to mind. There are sev-
eral technical issues connected with the general problem. First, it is not
clear how often the solution of the relaxed problem satisfies the sufficient
incentive-compatibility condition (20). It would be useful to find conditions
on the primitive of the setting, which guarantee that first-order approach
works. Alternatively, one can try to solving the principal’s problem by im-
posing (20) as an additional constraint, and then compare how restrictive this
condition is. Then, the solution would give a lower bound on the principal’s
profit in the original problem (5), while the solution to the relaxed problem
would give an upper bound. Second, technical issues remain regarding the
solution of the partial differential equation that characterizes the optimal
contract in a general setting. Generally speaking, these technical issues are
a question of mathematics that applies to a broad class of optimal stochas-
tic control problems. The relevant question here is one of existence of an
appropriate solution G with a positive definite Hessian, which satisfies the
relevant smooth-pasting conditions. The verification argument presented in
this paper assumes that a function G satisfying these condition exists.

Third, the contract implied by settings with large noise is very intuitive,
and it is natural to conjecture that this contract does well more generally.
Of course, this contract ignores the agent’s cost of effort function. However,
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it may still be beneficial to estimate how well this contract does, compared
to the optimal contract, in specific examples. Fourth, for the executive com-
pensation application, it is interesting to calibrate the model and develop
a natural implementation using options and/or deferred stock grants. For
calibration, the empirical estimates of pay-performance sensitivities and the
impact of firm size on the level of compensation will be useful. The agent’s
coefficient of risk aversion is another parameter that is likely to affect the
optimal contract. Fifth, the assumption of large noise leads to tractability
not just in settings where the impact of the agent’s effort on future output
is exponentially delaying. In particular, in many settings, the impact of the
agent’s effort is not felt until some time in the future. It would be interesting
to investigate how this alternative assumption would affect the optimal con-
tract. It seems natural that the coefficient λt will still converge to a target
level, but will stay near 0 during the initial period when the agent cannot
have a strong effect on output.

Appendix.

Proof of Proposition 2. The statement that the process Wt satisfies
(9) if and only if it follows (16) and satisfies the appropriate transversality
condition is standard. See example Proposition 1 in Sannikov (2008).

Concerning Φt, first, let us show that if Φ is defined by (12), then there
exists a process Γ in L2 such that (17) holds. Note that the process

Φ̄t =

∫ t

0
e−rsζs0(u(cs)−1s≤τh(as))ds+e

−rtEat

[∫ ∞
t

e−r(s−t)ζs0 (u(cs)− 1s≤τ h(as)) ds

]
︸ ︷︷ ︸

ζt0Wt+e−κtΦt since ζs0=ζt0+e−κtζst

is a martingale. By the Martingale Representation Theorem, there exists a
process Y in L2 such that

dΦ̄t = e−(r+κ)t Ytσ dZt. (47)

Differentiating Φ̄t with respect to t, using (11), we get

dΦ̄t = e−rtζt0 (u(ct)− 1t≤τ h(at)) dt− re−rtζt0Wt dt+ e−rtζt0dWt︸ ︷︷ ︸
e−rtζt0∆tσdZt

+e−rtWt dζ
t
0
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+e−(r+κ)t(r + κ)∆t dt− (r + κ)e−(r+κ)tΦt dt+ e−(r+κ)tdΦt. (48)

Combining (47) and (48), we get

dΦt = (r + κ) (Φt −∆t) dt+ eκtζt0∆tσ dZt + eκtWt dζ
t
0 + Ytσ dZt.

Letting Γt = eκtζt0∆t +Wt
r+κ
σ2 + Yt, we get the desired representation (17).

The representation (17) also implies that

Φ̂s
t = (r + κ)

∫ s

t

e−(r+κ)s′∆s′ ds
′ + e−(r+κ)(s−t)Φs (49)

is a martingale. Therefore, using the transversality condition,

Φt = Φ̂t
t = lim

s→∞
E[Φ̂s

t ] = E

[
(r + κ)

∫ ∞
0

e−(r+κ)s′∆s′ ds
′
]
,

and so Corollary 1 holds (i.e. Φt also satisfies (10)).
Second, conversely, if a process Φt follows (17) for some Γ in L2, then Φ̂s

t

defined by (49) is a martingale. If in addition the transversality condition
holds, then Φt satisfies (10), and by Corollary 1, also satisfies (12).

Proof of Proposition 3. Denote by δ the level of fundamentals under the
original strategy, and by δ̂, under a possible deviation strategy â. We claim
that after the agent deviated from time 0 until time t, his future expected
payoff is bounded from above by

Ŵt(δ̂t) = Wt + Φt(δ̂t − δt) + L(δ̂t − δt)2, (50)

where the constant L will be specified below. Then it follows immediately
that when δ̂t = δt, the agent’s continuation payoff is bounded from above by
Wt, which is also the payoff he receives by following strategy a. Thus, if the
bound (50) is valid, then the the full set of incentive-compatiblity constraints
(7) holds.

Consider the process

V̂t =

∫ t

0

e−rs(u(cs)− 1s≤τh(âs)) ds+ e−rtŴt(δ̂t)

under the deviation strategy â, so that dδ̂t = (ât − κδ̂t) dt, δ̂0 = δ0. To prove
that the bound (50) is valid, it is enough to show that V̂ is a supermartingale.
Indeed, then

V̂t ≥ Et[V̂∞] ⇒ Ŵt(δ̂t) ≥ Et

[∫ ∞
t

e−r(s−t)(u(cs)− 1s≤τh(âs)) ds

]
.

30



Differentiating V̂t with respect to t, we find that

ert
dV̂t
dt

= (u(ct)− 1t≤τh(ât)) dt− r

Ŵt(δ̂t)︷ ︸︸ ︷
(Wt + Φt(δ̂t − δt) + L(δ̂t − δt)2) dt

+(rWt − u(ct) + 1t≤τh(at)) dt+ ∆t (dXt − (r + κ)δt dt)+

(r+κ)(Φt−∆t)(δ̂t−δt)dt+Γt(dXt−(r+κ)δtdt)(δ̂t−δt)+Φt(ât−at−κ(δ̂t−δt))dt

+2L(δ̂t − δt)(ât − at − κ(δ̂t − δt)) dt.

Using the fact that dXt = (r + κ)δ̂t dt+ σ dZt the drift of V̂t is e−rt times

−θ
2

(ât − at)2 + ((r + κ)Γt − (2κ+ r)L)(δ̂ − δt)2 + 2L(δ̂t − δt)(ât − at)

where we used h(at) − h(ât) = h′(at)(at − ât) − θ
2
(at − ât)2 and Φt = h′(at)

(and we have to set at = ât if t > τ.) Now, set L = θ
4
(2κ + r). Then as long

as Γt ≤ (2κ+r)2θ
8(r+κ)

,

(r + κ)Γt − (2κ+ r)L ≤ (2κ+ r)2θ

8
− (2κ+ r)L = −2L2/θ.

Then the drift of V̂t is less than or equal to e−rt times

−θ
2

(
ât − at − (κ+ r/2)(δ̂ − δt)

)2

≤ 0.

Proof of Proposition 5. First, let us show that if G solves (32) on R ⊆
[0,∞)×R and satisfies the smooth-pasting conditions (33) on the boundary,
then Wt = Gν(νt, λt), Φt = Gλ(νt, λt) and the principal’s continuation payoff
is G(νt, λt)− νtWt − λtΦt in the contract defined by (22).

Differentiating (32) with respect to ν and using the Envelope Theorem,
we get

rGν−u(c)+h(a(Gλ)) = (a′(Gλ) (1− νh′(a(Gλ)))− κλ)Gνλ+(r+κ)2λ
2

σ2

Gννν

2
.

(51)
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Note that the right hand side of (51) represents the drift of the process
Gν(νt, λt) when (νt, λt) follow (22), and Gν(ντ , λτ ) = Gν(ντ , λτ ) is the agent’s
continuation value at time τ by Proposition 4. Therefore, as long as the
transversality condition holds, Proposition 2 implies that Gν(νt, λt) is the
agent’s continuation value Wt under the effort strategy {a(Gλ(νt, λt))}.

Similarly, differentiating (32) with respect to λ and using the Envelope
Theorem, we get

(r+κ)

(
Gλ − (r + κ)

λ

σ2
Gνν

)
= (a′(Gλ) (1− νh′(a(Gλ)))− κλ)Gλλ+(r+κ)2λ

2

σ2

Gλνν

2
.

(52)
Using Ito’s lemma, (r + κ) λ

σ2Gνν(νt, λt) = ∆t, so the drift of Gλ(νt, λt) is
(r + κ)(Gλ(νt, λt)−∆t). Also, Gλ(ντ , λτ ) = Gλ(ντ , λτ ) = Φτ by Proposition
4. Therefore, as long as the transversality condition holds, Proposition 2
implies that Φt = Gλ(νt, λt) under the effort strategy {a(Gλ(νt, λt))}.

Finally, subtracting ν times (51) and λ times (52) from (32), we get

r(G−νGν−λGλ) = a(Gλ)−c+(a′(Gλ) (1− νh′(a(Gλ)))− κλ) (−νGνλ − λGλλ)︸ ︷︷ ︸
∂(G−νGν−λGλ)

∂λ

+
1

2
(r + κ)2λ

2

σ2
(−Gνν − νGννν − λGλνν)︸ ︷︷ ︸

∂2(G−νGν−λGλ)
∂ν2

. (53)

Hence, the process

F̄t =

∫ t

0

e−rs (as − cs) ds+ e−rt(G(νt, λt)− νtWt − λtΦt).

is a martingale. Since

F̄t = Et[F̄τ ] =

∫ t

0

e−rs (as − cs) ds+

e−rtEt

[∫ τ

t

e−r(s−t) (as − cs) ds+ e−r(τ−t)(G(ντ , λτ )− ντWτ − λτΦτ )

]
,

where G(ντ , λτ )− ντWτ −λτΦτ is the principal’s continuation payoff at time
τ by Proposition 4, it follows that G(νt, λt) − νtWt − λtΦt is the principal’s
continuation payoff in the contract defined by (22).
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Next, we will show that under any alternative contract, for which W0 =
Gν(ν0, λ0) and Φ0 = Gλ(ν0, λ0), the principal’s profit is bounded from above
by G(ν0, λ0) − ν0W0 − λ0Φ0. The key step in the argument is showing that
the process F̄t is a supermartingale for appropriate processes (νt, λt) chosen
to match the law of motion of (Wt,Φt) under the alternative contract.

Lemma 1 Consider an alternative contract, characterized by controls (c,∆,Γ)
and termination time τ, and denote by W and Φ the state variables under
those controls (see Theorem 1). Define G(ν, λ) = G(ν, λ) outside R. If the
Hessian of G is positive definite, then there exist processes

dνt = µνt dt+ σνt dZt and dλt = µλt dt+ σλt dZt (54)

such that Wt = Gν(νt, λt) and Φt = Gλ(νt, λt) for t ≤ τ.

Proof. We would like to make sure that there are processes σνt , σ
λ
t , µ

ν
t and

µλt such that the laws of motion of Gν(νt, λt) and Gλ(νt, λt) are identical to
those of Wt and Φt. To match volatilities, let σνt and σλt be determined from
equations [

Gνν Gνλ

Gλν Gλλ

]
︸ ︷︷ ︸

H(G)

[
σνt
σλt

]
=

[
∆tσ
Γtσ

]
, (55)

which follow from Ito’s lemma. The solutions exist and are unique because
H(G), the Hessian of G, is invertible.

Similarly, to match drifts, let µνt and µλt be determined from equations

H(G)

[
µνt
µλt

]
+ . . . =

[
rWt − u(ct) + h(a(Φt))

(r + κ)(Φt −∆t)

]
,

where “. . .” stand for terms that depend on the volatilities of νt and λt
and not the drifts. Again, the solution exists because the Hessian of G is
invertible.

In order to prove that the alternative contract cannot be superior to the
contract defined in Proposition 5, we will first show that the drift of the
process F̄t defined above is non-positive when νt and λt follow (54).

Using Ito’s lemma and the laws of motion of Wt and Φt, the drift of
G(λt, νt)− νtWt − λtΦt is

Gνµ
ν
t +Gλµ

λ
t +

1

2
[σνt σ

λ
t ]H(G)

[
σνt
σλt

]
− µνtWt − µλt Φt − [σνt σ

λ
t ]

[
∆tσ
Γtσ

]
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−νt(rWt − u(ct) + h(at))− λt(r + κ)(Φt −∆t) =

−1

2
[σνt σ

λ
t ]H(G)

[
σνt
σλt

]
− νt(rWt − u(ct) + h(at))− λt(r + κ)(Φt −∆t),

where we used (55). Without loss of generality, we can assume that ct =
χ(νt), which maximizes the drift of F̄t.

For comparison, when λt and νt follow (22) then the drift of G(νt, λt) −
νtWt − λtΦt is

−(r+κ)2λ
2
t

σ2

Gνν

2
− νt(rWt−u(ct) +h(at))−λt(r+κ)

(
Φt − (r + κ)

λt
σ2
Gνν

)
,

which, according to (53), leads to a drift of F̄t of zero in R and negative
outside R, by (34).

Now, the difference between the drift of F̄t under the alternative contract
contract and under the contract, in which λt and νt follow (54), is e−rt times

−1

2
[σνt σ

λ
t ]H(G)

[
σνt
σλt

]
+ λt(r + κ)

σνtGνν + σλt Gνλ

σ︸ ︷︷ ︸
∆t

−1

2
(r + κ)2λ

2
t

σ2
Gνν =

−1

2
[σνt − (r + κ)λt/σ, σλt ]H(G)

[
σνt − (r + κ)λt/σ

σλt

]
≤ 0,

since the matrix H(G) is positive definite. Hence, the drift of F̄t under
the alternative contract cannot be greater than that under the contract, in
which λt and νt follow (22), so it must be negative. In other words, F̄t is a
supermartingale.

Hence,
F̄0 = G(ν0, λ0)− ν0W0 − λ0Φ0 ≥ E[F̄τ ] =

E

[∫ τ

0

e−rs (as − cs) ds+ e−rτ (G(ντ , λτ )− ντWτ − λτΦτ )

]
≥ E

[∫ τ

0

e−rsas ds−
∫ ∞

0

e−rscs ds

]
,

where we used Proposition 4 for the last inequality.7 Therefore, the contract,
in which λt and νt follow (22), is optimal.

7The transversality condition lim inf E[1t<τe
−rt(G(λt, νt) − λtWt − νtΦt)] ≥ 0 needs

to hold in order to extend the supermartingale F̄ to time τ.
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