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1 Introduction

Many markets for goods and services do not restrict in any way the ability of each trader

to sign secret, bilateral contracts with different partners. This prevents outside parties from

monitoring the whole of a trader’s activities. As a consequence, the formation of prices on

such nonexclusive markets is by nature a decentralized process, unlike on idealized markets

ruled by a Walrasian auctioneer. Bilateral contracts are necessarily incomplete as they

only bear on a fraction of each trader’s activity. Moreover, bilateral negotiations allow

to tailor contracts at will, at odds with contracts that are normalized for quotation. In

particular, contracts may be discriminatory, and the balance between supply and demand

may be ensured not by a single price, but by nonlinear tariffs. These tariff offers in turn are

formulated in a strategic environment in which sellers take into account both the reaction

of buyers and the other sellers’ offers. The aim of this paper is to understand the formation

of prices on nonexclusive markets. In the case of financial markets, our results shed light on

the robustness of organized exchanges such as limit-order books to trades that take place

“in the dark,” outside visible order books. As we will see, the nonexclusive nature of such

transactions is a major obstacle to the efficient functioning of these markets.

We study these issues in the context of the following model of trade under uncertainty.

There are two commodities, money and a physical good. Trade takes place between a buyer

and a finite number of sellers offering this good. The sellers first post possibly nonlinear

tariffs expressing how much they ask for any quantity of the good. The buyer then learns her

preferences and she decides which quantity to purchase from each seller. There is an arbitrary

finite number of states of nature. In each state, the buyer has strictly convex preferences.

These preferences are ordered across states according to how much she is willing to trade at

the margin, reflecting a strict single-crossing property. As for the sellers, they weakly prefer

to sell lower quantities when the buyer is more eager to trade, reflecting a reverse weak

single-crossing property. Our model thus encompasses private-value and adverse-selection

environments as special cases. In addition, sellers may have constant or increasing marginal

costs of serving the buyer in each state of nature.

In this context, we provide a complete characterization of pure-strategy equilibria in

which sellers post convex tariffs. Such tariffs can be interpreted as sequences of limit orders,

and are natural candidates to consider in nonexclusive models of trade with adverse selection

(Biais, Martimort, and Rochet (2000, 2013), Back and Baruch (2013)) or increasing marginal

costs (Biais, Foucault, and Salanié (1998)). Importantly, we allow sellers to deviate by

posting arbitrary nonconvex tariffs, so as to fit our definition of a nonexclusive market. Our

1



main result is that all equilibria must involve linear pricing. Hence competition in our model

is powerful enough to make a single equilibrium price emerge. Sellers then cannot benefit

from using nonlinear tariffs. When sellers have constant and state-independent marginal

costs, one ends up with a unique equilibrium outcome which is efficient in the strongest

sense, as it coincides with the equilibrium outcome of a perfectly competitive market.1 When

there is adverse selection or sellers have increasing marginal costs, linear-price equilibria are

such that the buyer trades in at most one state of nature, and does not trade at all in

any other state. Hence the market breaks down in a very strong sense. Moreover, in such

cases necessary conditions for the existence of an equilibrium are severe. An implication of

our analysis is that organized exchanges such as limit-order books can be destabilized by

decentralized exchanges such as over-the-counter markets.

Standard analyses of nonexclusive markets take linear pricing as a defining feature of

such markets. The opportunity to trade small quantities from several sellers, the argument

goes, allows buyers to arbitrage away any nonlinearities in the sellers’ tariffs. In line with

this intuition, Pauly (1974) analyzed a nonexclusive insurance market in which insurance

companies are restricted to post linear tariffs, and showed that equilibria then involve cross-

subsidies between sellers’ profits across states.2 Our analysis suggests that these outcomes

do not survive when strategic interactions between sellers are explicitly taken into account.

The intuition is that due to adverse selection or increasing marginal costs, the sellers face

a high demand from the buyer precisely in those states in which the cost of serving her is

high. To hedge against this risk, each seller has an incentive to deviate by proposing a limit

order specifying the maximal quantity of the good he is ready to trade at the standing price.

In these circumstances, linear pricing can be reconciled with nonexclusive competition only

if the buyer trades a positive quantity in at most one state. In contrast with this result,

Attar, Mariotti, and Salanié (2011) showed that the restriction to linear prices is without

loss of generality in a lemons market where an informed seller can trade up to a capacity

and all market participants have linear preferences. Cross-subsidies between states can then

resist limit-order deviations because, at any given unit price, and depending on the state, the

seller is either ready to trade up to the maximum quantity demanded at this price (as long

as it does not exceed her capacity) or prefers not to trade at all. By contrast, the informed

1The existence of an efficient equilibrium in this Bertrand-like environment with private values is quite
straightforward. Still we could not find any previous work showing that no other equilibria with convex
tariffs can exist. A similar efficiency result appears in Pouyet, Salanié, and Salanié (2008), albeit in the case
of an exclusive market in which the buyer can trade with at most one seller.

2The same restriction to linear pricing is postulated in recent analyses of the annuity market, which is
nonexclusive in many countries (Rothschild (2007), Sheshinski (2008), and Hosseini (2010)).
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buyer in our model has strictly convex preferences and faces no capacity constraint. This

implies that, at any given unit price, the buyer typically has different aggregate demands in

different states. This in turn gives limit-order deviations their bite and destabilizes linear-

price candidate equilibria in which trade takes place in more than one state.

One may then turn to equilibria with nonlinear tariffs, in the hope that they yield more

trading under adverse selection or increasing marginal costs. Glosten (1994) proposed a

natural candidate in a framework in which the buyer faces an exogenously given tariff and

sellers have linear production costs. Specifically, he showed that there is a unique convex tariff

that resists entry. This tariff can be interpreted as a generalization of Akerlof (1970) pricing,

for marginal quantities. It specifies that each additional quantity above any quantity q is

sold at a price equal to the expected cost of serving it, conditional on the fact that the buyer

buys at least q. Under single crossing, this amounts to compute an upper-tail expectation,

namely, the expectation of the cost given that the buyer is ready to purchase at least q. In

each state, the buyer then trades exactly her demand at the tail price. An additional nice

property is that by construction such a tariff yields zero profit to the sellers.

In our setting, the question becomes whether we can find convex tariffs for the sellers

that once aggregated yield the Glosten (1994) tariff, and such that no seller can profitably

deviate by posting another tariff.3 Suppose that in equilibrium two different types of the

buyer, corresponding to two different states of nature, end up trading at two different tail

prices. Then there must exist a seller that sells more to the type trading at the highest

price than to the other type. Note that when facing this seller, the former type does not

want to deviate and choose the quantity traded by the latter type because, when tariffs

are convex, optimality conditions imply that all quantities traded by a given type with the

sellers are traded at the same price. On the other hand, the seller designs his tariff so as

to maximize his expected profit, under incentive-compatibility constraints. Given convex

tariffs and single crossing, we show that downward local incentive-compatibility constraints

must be binding at the solution of such a problem. But this contradicts the fact that the

highest type does not want to mimic the lowest type. Hence in a Glosten-like equilibrium

all trades must take place at the same price. Moreover, we show that the above logic also

applies to any convex tariff. Therefore, the only equilibria are linear-price equilibria. We are

then back to the conclusion that at most one type may trade in equilibrium under adverse

selection or increasing marginal costs.

Our results confirm those obtained by Attar, Mariotti, and Salanié (2013). That paper

3This study was not performed in Glosten (1994), see the discussion in Glosten (1998).
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examines the case with two states of nature, adverse selection, and constant marginal costs

in each state. A complete characterization of aggregate equilibrium allocations is provided,

with no restriction on equilibrium tariffs. It turns out that all equilibrium allocations can

be supported by linear tariffs, with at most one type trading. Focusing on equilibria with

convex tariffs, this paper shows that, strikingly, the result that the buyer may trade in at

most one state extends to an arbitrary finite number of states. We thus exhibit a new form

of market failure, characterized by a dramatic market breakdown that exceeds by far the

one first characterized by Akerlof (1970).

On the other hand, our results stand in stark contrast with those obtained in Biais,

Martimort, and Rochet (2000), who consider a parametric version of our model with a

quasilinear, quadratic utility function for the buyer, and constant marginal costs with adverse

selection for the sellers. The main difference is that the set of states is assumed to be

continuous, instead of finite as in this paper. This allows Biais, Martimort, and Rochet

(2000) to focus on equilibria with strictly convex tariffs.4 They show that such an equilibrium

exists, is unique in this class, and is symmetric across sellers. Moreover the buyer trades in

a nontrivial set of states in equilibrium, at a tariff between the perfectly competitive tariff

that would obtain under complete information and the monopoly tariff under incomplete

information. We thus exhibit in this paper a remarkable discontinuity between the finite-

state case and the continuous-state case: the equilibrium characterized in the latter case is

not a limit of equilibria in the former case as the number of types grows large.

The paper is organized as follows. Section 2 describes the model. Section 3 states and

discusses our central result, the proof of which is outlined in Section 4. Section 5 discusses

various extensions of our analysis. Section 6 concludes.

2 The Model

Our model features a buyer who can purchase nonnegative amounts of a divisible good from

several sellers. The good is homogeneous, so the buyer only cares about aggregate trade.

The possibility of adverse selection plays an important role, as in well-known models of

insurance provision, labor supply, or more generally competitive screening.

2.1 The Buyer

4Equilibria with strictly convex tariffs do not exist when there are finitely many states. The reason is
that otherwise, each type of the buyer would have a unique best response, and no incentive-compatibility
constraint would bind, in contradiction with one of our key findings.
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The buyer is privately informed of her preferences. Her type may take a finite number of

values in the set {1, . . . , I}, with positive probabilities mi such that
∑

i mi = 1. Each type of

the buyer only cares about the aggregate quantity Q ≥ 0 she purchases from the sellers and

the aggregate transfer T she makes in return. Type i’s preferences over aggregate quantity-

transfer bundles (Q, T ) are represented by a utility function ui defined over R+×R. For each

i, ui is assumed to be continuous and strictly quasiconcave in (Q, T ), and strictly decreasing

in T . The following strict single-crossing assumption is the main determinant of the buyer’s

behavior in our model, and is also used throughout the related literature.

Assumption 1 For all i < i′, Q < Q′, T, and T ′,

ui(Q, T ) ≤ ui(Q
′, T ′) implies ui′(Q, T ) < ui′(Q

′, T ′).

In words, higher types are more eager to increase their purchases than lower types are.

At the end of our analysis, we shall also use an additional property that we now introduce.

For each p ∈ R, let Di(p) be type i’s demand at price p, that is, the unique solution to

max
Q∈R+∪{∞}

{ui(Q, pQ)}.

The continuity and strict quasiconcavity of ui imply that Di(p) is uniquely defined and

continuous in p. Assumption 1 implies that for each p, Di(p) is nondecreasing in the buyer’s

type i. We strengthen this monotonicity property as follows.

Assumption 2 For all i < i′ and p ∈ R,

0 < Di(p) < ∞ implies Di(p) < Di′(p).

A sufficient condition for both Assumptions 1 and 2 to hold is that the marginal rate of

substitution MRSi(Q, T ) of the good for money be well defined and strictly increasing in i

for all (Q, T ).

2.2 The Sellers

There are K ≥ 2 identical sellers. There are no direct externalities between them: each seller

only cares about the quantity q ≥ 0 he provides the buyer with and the transfer t he receives

in return. Such pair (q, t) we call a trade. The seller’s profits from a trade may depend on

the buyer’s type. Our key assumption here is a reverse single-crossing property: we impose

that each seller weakly prefers to sell lower quantities to higher types. This assumption
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introduces adverse selection in our model: a higher type is willing to buy more, but faces

sellers that are more reluctant to sell.

To allow comparisons with the literature, we represent each seller’s preferences over trades

(q, t) by a linear profit function: if a seller provides type i with a quantity q and receives

a transfer t in return, he earns a profit t − ciq, where ci is the cost of serving type i. Our

reverse single-crossing property can thus be written as follows.

Assumption 3 For all i < i′, ci ≤ ci′.

Assumption 3 is consistent with private-value environments, in which the sellers’ cost is

independent of the buyer’s type, and common-value environments, in which the sellers’ cost

strictly increases with the buyer’s type. Section 5 provides a general definition of the reverse

single-crossing property and highlights its role in our analysis.

2.3 Strategies and Equilibrium

The game unfolds as follows:

1. Sellers simultaneously post tariffs, which are mappings tk : R+ → R ∪ {∞} such that

tk(0) = 0. We let tk(q) ≡ ∞ if seller k does not offer the quantity q.

2. After privately learning her type, the buyer purchases a nonnegative quantity qk from

each seller k, for which she pays in total
∑

k tk(qk).

A pure strategy for type i is a function si that maps any tariff profile (t1, . . . , tK) into a

quantity profile (q1, . . . , qK). We let s = (s1, . . . , sI) be the buyer’s strategy. To ensure that

type i’s problem

max
(q1,...,qK)∈RK

+

{
ui

(∑

k

qk,
∑

k

tk(qk)

)}
(1)

always has a solution, we require the tariffs tk to be lower semicontinuous, and the sets

{q ∈ R+ : tk(q) < ∞} to be compact. This definition is general enough to allow sellers to

offer menus containing a finite number of trades, including the (0, 0) trade. It also allows us

to use perfect Bayesian equilibrium as our equilibrium concept.

In line with Biais, Martimort, and Rochet (2000, 2013) and Back and Baruch (2013),

we focus on pure-strategy equilibria (t1, . . . , tK , s) in which sellers post convex tariffs tk

that one can interpret as sequences of limit orders.5 Two elementary implications of this

5By convention, all functions in Gothic letters refer to equilibrium objects.
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restriction are worth mentioning at this stage. First, because the utility functions ui are

strictly quasiconcave, any type i has uniquely determined aggregate equilibrium demand Qi

and transfer Ti, which additionally are nondecreasing in i under Assumption 1. Second,

convexity of equilibrium tariffs is preserved under aggregation. In particular, suppose that

the buyer wishes to trade an aggregate quantity Q−k with the sellers other than k. Then

the minimum transfer she has to make in return is

T−k(Q−k) ≡ min

{∑

k′ 6=k

tk
′
(qk′) : qk′ ∈ R+ for all k′ 6= k and

∑

k′ 6=k

qk′ = Q−k

}
. (2)

The aggregate tariff T−k is the infimal convolution of the individual tariffs tk
′
posted by the

sellers other than k, and is convex if each of them is convex (Rockafellar (1970)).

3 The Main Result

Our central result is the following theorem.

Theorem 1 Suppose that Assumptions 1–3 are satisfied, and let (t1, . . . , tK , s) be an

equilibrium with convex tariffs. If some trade takes place in equilibrium, then

(i) All trades take place at unit price cI and each type i purchases Di(cI) in the aggregate.

(ii) If Di(cI) > 0, then ci = cI . Thus each seller earns zero profit on each trade.

The first insight of Theorem 1 is that nonexclusive competition leads to linear pricing, at

least when attention is restricted to equilibria with convex tariffs. This shows the disciplining

role of competition in our model: although sellers are allowed to propose arbitrary tariffs,

they end up trading at the same price.

From the standard Bertrand undercutting argument, this price cannot be strictly above

the highest possible cost cI . In an equilibrium it cannot lie below neither. If it did, then

sellers would want to limit the quantities they sell to the highest types, which they can

do by posting a limit order at the equilibrium price with a well-chosen maximum quantity.

We then have a tension between zero profits in the aggregate, and the high equilibrium

price cI . In the pure private-value case in which the cost ci is independent of the buyer’s

type i, this tension is easily relaxed, and we obtain the usual Bertrand result, leading to

an efficient outcome. By contrast, in the pure common-value case in which the cost ci is

strictly increasing with the buyer’s type i, our result implies that only the highest type I

may actively trade in equilibrium, whereas all types i < I must be excluded from trade.
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This market failure is much more dramatic than in Akerlof (1970) or Rothschild and Stiglitz

(1976), as only a single type may actively trade in equilibrium.

Additionally conditions for the existence of an equilibrium are very restrictive: from

Theorem 1(ii) one must have Di(cI) = 0 for all i < I if an equilibrium is to exist at all.

Hence the highest type must have preferences different enough from those of other types.

4 Proof Outline

Throughout this section, we suppose the existence of an equilibrium (t1, . . . , tK , s) with

convex tariffs, and we investigate its properties. Recall that from the viewpoint of seller k

the aggregate tariff T−k of the sellers other than k can be computed from the tariffs tk
′
as in

(2). In turn T−k determines how type i evaluates any bundle (q, t) she may trade with seller

k through the following indirect utility function

z−k
i (q, t) ≡ max

Q−k∈R+

{ui(q + Q−k, t + T−k(Q−k))}. (3)

Observe that the maximum in (3) is always attained and that the indirect utility functions

z−k
i , when their value is finite, are strictly decreasing in t and continuous in (q, t).6

Two types of arguments are used in the proof. Some rely only on the convexity of

tariffs and preferences. Because we only assume weak convexity, given a convex function

f : R+ → R we use the notation ∂f(x), ∂−f(x), and ∂+f(x) to denote respectively the

subdifferential of f at x, the minimum element of ∂f(x), and the maximum element of

∂f(x). Hence ∂f(x) = [∂−f(x), ∂+f(x)]. Other arguments rely on single-crossing properties,

in particular when it comes to examining the buyer’s best response to a deviation. Most

often the deviations we consider correspond to finite menus, including as many options as

there are types. We denote such a menu by {(0, 0), . . . , (qi, ti), . . .}.
Finally, we say that individual quantities are nondecreasing if, given a family of tariffs,

the quantities qk
i traded by each type i with each seller k are such that for any k and i < I

one has qk
i ≤ qk

i+1.

4.1 The Buyer’s Behavior

Consider first the buyer’s choice problem when she faces an arbitrary family of convex tariffs.

When these tariffs are strictly convex, the buyer clearly has a unique best response, with

individual quantities that are nondecreasing in her type. On the other hand, when some

6The last statement follows from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem
17.31)).
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tariffs are affine with the same slope on some intervals of quantities, then the buyer may

have multiple best responses. Still we can show the following result.

Lemma 1 Let (t1, . . . , tk) be a family of convex tariffs. Then the buyer has a best response

to (t1, . . . , tk) with nondecreasing individual quantities.

The proof of Lemma 1 introduces some notations and additional results that will be

used later on. It only relies on convexity, by showing the existence of a best response with

individual quantities that are comonotonic with aggregate quantities.

Consider next the choice problem faced by the buyer in her relationship with any seller

k, fixing the equilibrium tariffs tk
′

of the sellers other than k. From these tariffs one can

build T−k as in (2), and z−k
i as in (3). The convexity of the aggregate tariff T−k crucially

implies that the indirect utility functions z−k
i inherit a weak single-crossing property from

the primitive utility functions ui.

Lemma 2 For all k, i < i′, q ≤ q′, t, and t′,

z−k
i (q, t) ≤ z−k

i (q′, t′) implies z−k
i′ (q, t) ≤ z−k

i′ (q′, t′), (4)

z−k
i (q, t) < z−k

i (q′, t′) implies z−k
i′ (q, t) < z−k

i′ (q′, t′). (5)

In words, higher types are more eager to buy higher quantities from a given seller. As

an application, suppose that seller k deviates and posts an arbitrary tariff tk. From the

viewpoint of seller k, type i’s maximization problem amounts to

max
qk∈R+

{z−k
i (qk, tk(qk))}. (6)

Given Lemma 2, it follows from standard monotone-comparative-statics considerations that

there exists for each i a solution to (6) that is nondecreasing in i. Lemma 2 therefore

complements Lemma 1: if all tariffs but the kth one are convex, then there exists a best

response of the buyer such that the quantities traded with seller k are nondecreasing in her

type. This property, which plays a central role in our analysis, suggests that the restriction

to convex equilibria allows one to make use of standard screening techniques.

4.2 How the Sellers Can Break Ties

We now consider the behavior of a single seller k, in a situation in which all other sellers post

their equilibrium tariffs tk
′
. Suppose that seller k deviates to a menu {(0, 0), . . . , (qi, ti), . . .}.
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For each type i of the buyer to select the trade (qi, ti) in this menu, it must be that the

following incentive-compatibility and individual-rationality constraints hold for all i and i′:

z−k
i (qi, ti) ≥ z−k

i (qi′ , ti′), (7)

z−k
i (qi, ti) ≥ z−k

i (0, 0). (8)

These constraints are not sufficient to ensure that each type i will choose to trade (qi, ti) after

the deviation. Indeed, a given type may be indifferent between two trades, thus creating

some ties. The following result shows that, as long as he sticks to nondecreasing quantities,

seller k can secure the profit he would obtain if he could break ties in his favor. Define

Vk(t−k) ≡ sup

{
I∑

i=1

mi(ti − ciqi)

}
(9)

over all menus {(0, 0), . . . , (qi, ti), . . .} that satisfy (7)–(8) for all i and i′, and that have

nondecreasing quantities qi+1 ≥ qi for all i < I.

Lemma 3 In an equilibrium (t1, . . . , tK , s) with convex tariffs, seller k’s profit is no less

than Vk(t−k).

Any seller k can thus control the quantities he trades with the buyer if, given the other

sellers’ tariffs, he deviates to an incentive-compatible menu that displays nondecreasing

quantities. This last requirement is not a direct consequence of (7)–(8), given that the

buyer’s preferences only satisfy the weak single-crossing property characterized in Lemma 2.

Indeed, this requirement is likely to be costly because, given Assumption 3, any seller would

prefer to sell less to higher types. However, it cannot be dispensed with as the buyer always

has a best response with nondecreasing quantities. Therefore, Vk(t−k) is the highest payoff

that seller k may expect by deviating, if he faces a buyer who systematically selects a best

response with nondecreasing quantities.

The proof for Lemma 3 goes as follows. Consider a menu of trades that verifies the

constraints in the Lemma, and suppose that two consecutive types i and i + 1 are both

indifferent between their trade and the other type’s trade. Then seller k can modify his

menu by pooling both types on the same trade. Under Assumption 3, because qi ≤ qi+1 this

can be done without reducing the profits on the right-hand side of (9). This first step is key

to the proof, as it shows that between two neighboring types only one incentive-compatible

constraint can be binding. The proof then shows that seller k can slightly perturb the

transfers in the menus so as to make all the relevant incentive-compatibility constraints

slack. Hence the buyer has a unique best response, which guarantees that seller k gets the

profit on the right-hand side of (9).
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4.3 Equilibria with Nondecreasing Quantities

The above results suggest that we first focus on equilibria with nondecreasing individual

quantities, that is qk
i ≤ qk

i+1 for all k and i < I. In this section, we characterize these

equilibria. We then show in Section 4.4 that the latter restriction on the buyer’s behavior

actually is inconsequential.

So suppose that such an equilibrium (t1, . . . , tK , s) exists. The equilibrium trades of seller

k then verify all the constraints in program (9). An immediate consequence of Lemma 3 is

thus that these trades must be solution to this program, and that the equilibrium profit of

seller k is equal to Vk(t−k). Considering program (9), it is clear that for each type i at least

one constraint must bind, for, otherwise, one could slightly increase ti. Our next result relies

on Lemma 2 to determine which constraints are binding.

Lemma 4 Let (t1, . . . , tK , s) be an equilibrium with convex tariffs and nondecreasing

individual quantities. Then, for any seller k, if for some i the equilibrium trades of type

i are such that the individual-rationality constraint (8) is slack, one has i ≥ 2 and the

incentive-compatibility constraint (7) for i′ = i− 1 binds.

Therefore, from the perspective of each seller, the individual-rationality constraint binds

at the bottom, or more generally for all types below a threshold, and the downward local

incentive-compatibility constraints bind for all other types. This result is reminiscent of

those obtained under monopolistic screening, with the difference that they are formulated

in terms of the indirect utility functions z−k
i instead of the primitive utility functions ui.

Under monopolistic screening, the aim is to characterize Pareto-optimal allocations, which

implies that ties are broken in the most favorable way to the monopolist.7 In our competitive

setting, Lemma 3 offers a condition under which the seller can break ties as desired, namely,

that quantities are nondecreasing. This allows us to proceed without introducing further

restrictions on the buyer’s behavior.

Our next result builds on Lemma 4 to show that equilibria with convex tariffs and

nondecreasing quantities actually feature linear pricing if trade takes place at all.

Lemma 5 Let (t1, . . . , tK , s) be an equilibrium with convex tariffs and nondecreasing

individual quantities such that some trade takes place in equilibrium. Then there exists

p ∈ R such that all trades take place at unit price p, and each type i purchases Di(p) in the

aggregate.

7See Hellwig (2010) for a complete treatment of the monopolistic case under weak single-crossing and
private values, and Chade and Schlee (2012) for a simpler approach to the common values case.
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The proof of Lemma 5 goes as follows. When sellers offer convex tariffs, every best

response of each type i is such that she buys the last unit of the good at some price pi,

independently of the sellers she trades with. Because the corresponding aggregate quantity

is nondecreasing in the type, it is easily shown that one must have pi ≥ pi−1. Consider now

an equilibrium, and suppose that type i trades at a price pi > pi−1. Clearly, it is not optimal

for type i to mimic type i− 1 and trade the quantity qk
i−1 with seller k, as this would imply

trading at a marginal price different from pi. Hence the downward local incentive constraint

from type i to type i− 1 cannot bind. A fortiori, it is not optimal for type i to trade a zero

quantity with seller k. Hence the individual rationality constraint of type i cannot bind.

But these results contradict Lemma 4.

We now show that each equilibrium trade must yield zero profit to the seller who makes

it. The intuition is simple. Under linear pricing, sellers collectively have to share a risky

demand Di(p). Under Assumption 2, we know that DI(p) > DI−1(p) if some trade takes

place at all, so the price p must be high enough to convince some of the sellers to provide

additional quantities to the highest type. In fact, one must have p ≥ cI , otherwise a seller

could deviate by posting a limit order with unit price p and maximum quantity qk
I−1. On the

other hand, aggregate profits cannot be positive, by a standard Bertrand argument. Because

cI is the highest possible cost, we get the following result.

Lemma 6 Let (t1, . . . , tK , s) be an equilibrium with convex tariffs and nondecreasing

individual quantities such that some trade takes place in equilibrium. Then, for p defined

as in Lemma 5, we have p = ci = cI for any type i who actively trades.

The proof of this result, unlike that of Lemmas 1 to 5, relies on Assumption 2. If we

relax it, we can still prove that in equilibrium the types who trade are exactly those above

a threshold i0, and that the equilibrium price is E[ci | i ≥ i0]. Moreover, these types must

demand exactly the same aggregate quantity at that price, implying in most setups that

there is only one such type i0 = I, leaving Theorem 1 unaffected.

4.4 Other Equilibrium Outcomes

It follows from Lemmas 5 and 6 that the conclusions of Theorem 1 hold in the case of

equilibria with nondecreasing individual quantities. To complete the proof of Theorem 1,

we now show how to turn any equilibrium with convex tariffs into an equilibrium with the

same tariffs, but now with nondecreasing quantities.

So let (t1, . . . , tK , s) be an equilibrium with convex tariffs. Let vk be the equilibrium

profits of seller k. Lemma 3 offered a lower bound Vk(t−k) for this profit. We can build

12



another lower bound by imposing in program (9) the additional constraint that the transfers

ti must be computed using the equilibrium schedule tk. So define

Vk(t1, . . . , tK) ≡ sup

{
I∑

i=1

mi[t
k(qi)− ciqi]

}
(10)

over all (q1, . . . , qI) ∈ RI
+ that satisfy

z−k
i (qi, t

k(qi)) ≥ z−k
i (qi′ , t

k(qi′)), (11)

z−k
i (qi, t

k(qi)) ≥ z−k
i (0, 0), (12)

and such that qi+1 ≥ qi for all i < I. By Lemma 3, we therefore have

vk ≥ Vk(t−k) ≥ Vk(t1, . . . , tK) (13)

for all k. Now, recall from Lemma 1 that the buyer has at least one best response with

nondecreasing individual quantities. Choose one such best response, and let v′k be the

resulting profit for seller k. Because the corresponding trades for seller k verify the constraints

in the above program, one must have

Vk(t1, . . . , tK) ≥ v′k (14)

for all k. Finally, given the convexity of the tariffs (t1, . . . , tK), the aggregate quantities Qi

and the aggregate transfers Ti are the same for any best response of the buyer. Due to

the linearity of the sellers’ profits, we get
∑

k vk =
∑

i mi[Ti − ciQi] =
∑

k v′k. Using the

inequalities (13)–(14), we finally obtain vk = Vk(t−k) = Vk(t1, . . . , tK) = v′k for all k.

This proves in particular that, in any equilibrium, each seller k earns Vk(t−k). Therefore,

no seller can get more than the profit he could secure by sticking to nondecreasing quantities.

If we now specify that the buyer’s strategy must select nondecreasing quantities whenever

possible, it is easily understood that with this new strategy we have built an equilibrium

with nondecreasing individual quantities. This last result is proven more formally in the

Appendix.

Lemma 7 If (t1, . . . , tK , s) is an equilibrium with convex tariffs, then there exists a

strategy ŝ for the buyer such that (t1, . . . , tK , ŝ) is an equilibrium with nondecreasing

individual quantities that yields the same profit to each seller.

Note that the aggregate equilibrium quantities Qi and the indirect utility functions z−k
i

are the same in the initial and the final equilibrium. Combining Lemmas 5, 6, and 7 then

shows that Theorem 1 applies to all equilibria with convex tariffs.
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5 Extensions

So far, we have assumed that sellers have constant and possibly type-dependent marginal

costs. An examination of the proof of Lemmas 1–5 reveals that we can handle much more

general cases. We now endow each seller k with a profit function vk
i (q, t), which we take to

be continuous and strictly increasing in t, and such that the following generalized reverse

single-crossing assumption holds.

Assumption 4 For all k, i < i′, q < q′, t, and t′,

vk
i (q, t) ≥ vk

i (q′, t′) implies vk
i′(q, t) ≥ vk

i′(q
′, t′).

Each seller k therefore weakly prefers to sell lower quantities to higher types. Then the

following result holds.

Corollary 1 Under Assumptions 1–2 and 4, any equilibrium with convex tariffs and

nondecreasing individual quantities such that some trade takes place in equilibrium displays

linear pricing: there exists p ∈ R such that all trades take place at unit price p, and each type

i purchases Di(p) in the aggregate.

Extending this result to equilibria with quantities that may be decreasing requires some

additional structure. Assume that each seller’s cost of providing type i with a quantity q is

ci(q), where ci : R+ → R+ is now a strictly convex cost function, with ci(0) = 0. In this

setting, the analogue of Assumption 4 can be stated in terms of the one-sided derivatives of

these cost functions.

Assumption 5 For all i < i′ and q < q′,

∂−ci′(q
′) ≥ ∂+ci(q).

Assumption 5 is consistent with private-value and common-value environments. Theorem

1 generalizes as follows.

Theorem 2 Suppose that Assumptions 1–2 and 5 are satisfied, and let (t1, . . . , tK , s) be an

equilibrium with convex tariffs. If some trade takes place in equilibrium, then there exists

p ∈ R solution to

p ∈ ∂cI

(
DI(p)

K

)
(15)

and such that:

14



(i) All trades take place at unit price p and each type i purchases Di(p) in the aggregate,

and Di(p)/K from each seller.

(ii) Only type I actively trades in equilibrium:

D1(p) = . . . = DI−1(p) = 0 < DI(p). (16)

When there is a single type I, this result states that any equilibrium is competitive in

the sense that the equilibrium price equalizes type I’s demand and the sum of the sellers’

supplies. Equilibrium outcomes are hence first-best efficient, as in the case of linear costs.

The introduction of multiple types does not affect this property, the only change being that

all types below I must demand a zero quantity at the equilibrium price.

The structure of the proof of Theorem 2 is similar to that of Theorem 1. First, given

Corollary 1, one has to show that the result holds for all equilibria with convex tariffs and

nondecreasing individual quantities.

Lemma 8 Let (t1, . . . , tK , s) be an equilibrium with convex tariffs and nondecreasing

individual quantities such that some trade takes place at price p in equilibrium. Then p

satisfies (15)–(16).

The result that no trade may take place except perhaps at the top of the buyer’s type

distribution now holds whether or not the environment features common values. As in the

linear cost case, sellers collectively have to share a risky demand Di(p), but under convex

costs the precise sharing now matters. Under Assumption 2, we know that DI(p) > DI−1(p),

so the price p must be high enough to convince some of the sellers to provide additional

quantities to the highest type. In fact, one must have p ≥ ∂−cI(q
k
I ) for all k, otherwise seller

k could deviate by posting a limit order with a unit price p and a maximum quantity slightly

below qk
I . But, at such a high price, sellers are willing to sell high quantities to lower types,

which is consistent with equilibrium only if all these types demand a zero quantity.

To complete the proof of Theorem 2, there thus only remains to show that the restriction

to equilibria with nondecreasing individual quantities is innocuous. To this end, consider

an equilibrium (t1, . . . , tK , s) with convex tariffs. Denote by vk the equilibrium profits of

seller k. Replacing the linear cost functions in the definitions (9) and (10) of Vk(t−k) and

Vk(t1, . . . , tK) by the now convex cost functions, we formally get the lower bound (13) for

the profits vk. On the other hand, the sum of these profits cannot exceed the value they

would reach if the buyer were to break ties in favor of the coalition of sellers. Formally,
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define

V0(t1, . . . , tK) ≡ sup

{∑

k

∑
i

mi[t
k(qi)− ci(qi)]

}
(17)

over all (q1, . . . , qI) ∈ RI
+ that satisfy (11)–(12). Note that we do not impose the constraint

that quantities be nondecreasing. We thus have

V0(t1, . . . , tK) ≥
∑

k

vk. (18)

But the program (17) defining V0(t1, . . . , tK) can be simplified into

inf

{∑

k

∑
i

mici(qi)

}

under the same constraints, as the aggregate transfer chosen by the buyer is uniquely defined

given the tariffs. The proof of Lemma 1 shows that such a risk-sharing problem admits a

solution with nondecreasing individual quantities: this is the efficient manner to share risk.

Let v′k be the associated profit for seller k; note that
∑

k v′k = V0(t1, . . . , tK). Moreover, in

such a solution, each seller k trades a family of quantities that are nondecreasing, and thus

his associated profit v′k must be no more than Vk(t1, . . . , tK). Summarizing, we get from

(13) and (18) that

∑

k

Vk(t1, . . . , tK) ≥
∑

k

v′k = V0(t1, . . . , tK) ≥
∑

k

vk ≥
∑

k

Vk(t−k) ≥
∑

k

Vk(t1, . . . , tK),

and thus these inequalities are in fact equalities. In particular, this implies for every k that

vk = Vk(t−k). We can then apply Lemma 7 without changes.
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Appendix

Proof of Lemma 1. Recall that given a family (t1, . . . , tK) of convex tariffs, the aggregate

equilibrium demand Qi of type i is uniquely defined and nondecreasing in i. Given Qi, type

i’s utility-maximization problem (1) reduces to minimizing total payment for Qi:

min

{∑

k

tk(qk) : qk ∈ R+ for all k and
∑

k

qk = Qi

}
.

This is a convex program, so that by the Kuhn–Tucker theorem one can associate to any

solution (q1, . . . , qK) a Lagrange multiplier pi such that pi ∈ ∂tk(qk) for all k. If there are

two different solutions (q1, . . . , qK) and (q′1, . . . , q′K) with different multipliers pi < p′i, then

because each tariff is convex one obtains qk ≤ q′k for all k, and because both solutions

sum to the same Qi they must be identical, a contradiction. This shows that two different

solutions must share the same pi. Consequently one can associate to each type i a price pi

such that whatever the solution (q1, . . . , qK) to type i’s problem, one has pi ∈ ∂tk(qk) for all

k. Moreover, by the same argument as above, pi is nondecreasing in i.

For each i and each k, one can thus build the nonempty set {q : pi ∈ ∂tk(q)}. Let sk
i

be its minimum element, and let sk
i be its maximum. Both sk

i and sk
i are nondecreasing

in i. The interval [sk
i , s

k
i ] is in fact the set of quantities that are provided by seller k at a

marginal price equal to pi. If this interval is nontrivial, then tk is affine over it, with slope

pi. Consequently solutions (q1
i , . . . , q

K
i ) to type i payment minimization problem must verify

∑

k

qk
i = Qi and sk

i ≤ qk
i ≤ sk

i for all k, (19)

and these conditions are in fact sufficient, as all tariffs have the same slope pi for quantities

in these intervals. Our problem thus reduces to find a family of nondecreasing quantities

verifying (19). We in fact prove a stronger result, which will be useful for future reference.

Choose a family of strictly convex functions (f1, . . . , fI), and consider the following family

of problems, indexed by i:

min

{∑

k

fi(q
k
i )

}

subject to (19). By strict convexity of the functions fi, each such problem admits a unique

solution. We show below that the family of these solutions must display nondecreasing

individual quantities. This naturally implies the existence of a family with nondecreasing

individual quantities verifying (19), and shows the lemma.
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To do so, proceed by contradiction and suppose that a family of solutions has qk
i > qk

i+1,

for some k and i < I. Under (19), this implies

sk
i ≤ sk

i+1 ≤ qk
i+1 < qk

i ≤ sk
i ≤ sk

i+1. (20)

Because the intervals for i and i+1 have a nontrivial intersection, it must be that pi = pi+1.

Therefore, for any seller k′ we have sk′
i = sk′

i+1 and sk′
i = sk′

i+1. Moreover, because qk
i > qk

i+1

and Qi ≤ Qi+1, we know that there exists k′ 6= k such that qk′
i < qk′

i+1. Using the equalities

we have just shown, this implies

sk′
i = sk′

i+1 ≤ qk′
i < qk′

i+1 ≤ sk′
i = sk′

i+1. (21)

Given (20)–(21), one can slightly reduce qk
i and increase qk′

i by the same amount, so that

(19) is still verified. Because (q1
i , . . . , q

K
i ) is assumed to minimize

∑
k fi(q

k
i ), it must be that

at the margin −∂−fi(q
k
i ) + ∂+fi(q

k′
i ) ≥ 0. Because fi is strictly convex, this implies that

qk
i ≤ qk′

i . Alternatively, one could slightly increase qk
i+1, and reduce qk′

i+1 by the same amount.

Once more, it must be that at the margin ∂+fi+1(q
k
i+1)− ∂−fi+1(q

k′
i+1) ≥ 0. Because fi+1 is

strictly convex, this implies that qk′
i+1 ≤ qk

i+1.

Overall we thus have shown that qk
i ≤ qk′

i < qk′
i+1 ≤ qk

i+1, in contradiction with our

assumption that qk
i > qk

i+1. This concludes the proof. ¥

Proof of Lemma 2. Fix some k, i < I, q < q′, t, and t′. Let T(Q) ≡ t+T−k(Q−q), defined

for Q ≥ q. Similarly, let T′(Q) ≡ t′ + T−k(Q − q′), defined for Q ≥ q′. According to (3),

computing z−k
i (q, t) amounts to maximize ui(Q, T(Q)) with respect to Q ≥ q. Let Qi ≥ q be

the solution to this problem; it is unique as ui is strictly quasiconcave and strictly decreasing

in aggregate transfers, and T(Q) is convex in Q. Similarly, computing z−k
i (q′, t′) amounts to

maximize ui(Q, T′(Q)) with respect to Q ≥ q′. Let Q′
i ≥ q′ be the unique solution to this

problem. Suppose that

z−k
i (q, t) < z−k

i (q′, t′) (22)

and let i′ > i. Because Qi′ ≥ q is an admissible candidate in the problem that defines

z−k
i (q, t), we must have

ui(Qi′ , T(Qi′)) ≤ z−k
i (q, t) < z−k

i (q′, t′) = ui(Q
′
i, T

′(Q′
i)).

Suppose first that Qi′ < Q′
i. Using Assumption 1, we get

z−k
i′ (q, t) = ui′(Qi′ , T(Qi′)) < ui′(Q

′
i, T

′(Q′
i)) ≤ z−k

i′ (q′, t′),
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where the last inequality stems from the fact that Q′
i ≥ q′ is an admissible candidate in the

problem that defines z−k
i′ (q′, t′). This shows (5) in this case.

Otherwise we have Qi′ ≥ Q′
i ≥ q′. Then Qi′ is an admissible candidate in the problem

that defines z−k
i′ (q′, t′), and we get

ui′(Qi′ ,T
′(Qi′)) ≤ z−k

i′ (q′, t′).

If T′(Qi′) < T(Qi′), we obtain

z−k
i′ (q, t) = ui′(Qi′ ,T(Qi′)) < ui′(Qi′ , T

′(Qi′)) ≤ z−k
i′ (q′, t′),

which shows (5) in this case.

The only remaining case is when Qi′ ≥ Q′
i ≥ q′ and T′(Qi′) ≥ T(Qi′). Note that

because q < q′ and T−k is convex, T′(Q)− T(Q) is nonincreasing in Q for Q ≥ q′. Because

Qi′ ≥ Q′
i ≥ q′, we get T′(Q′

i) ≥ T(Q′
i) and thus, as Q′

i ≥ q′ > q is an admissible candidate in

the problem that defines z−k
i (q, t),

z−k
i (q, t) ≥ ui(Q

′
i,T(Q′

i)) ≥ ui(Q
′
i,T

′(Q′
i)) = z−k

i (q′, t′),

in contradiction with (22). Hence we have shown (5). The proof of (4) follows by continuity.

Indeed, assume that z−k
i (q, t) = z−k

i (q′, t′). Then, for each ε > 0, z−k
i (q, t + ε) < z−k

i (q, t) and

thus z−k
i′ (q, t + ε) < z−k

i′ (q, t) from (5). Because z−k
i′ is continuous, one can take limits as ε

goes to zero to obtain (4). The result follows. ¥

Proof of Lemma 3. The proof consists of two steps.

Step 1 Pick a menu µ = {(0, 0), . . . , (qi, ti), . . .} that satisfies the incentive-compatibility

and individual-rationality constraints (7)–(8) for all i and i′, and that has nondecreasing

quantities qi+1 ≥ qi for all i < I. We build a new menu µ′ = {(0, 0), . . . , (q′i, t
′
i), . . .}

by applying the following algorithm. At each step n ≥ 0 of the algorithm, let µ(n) =
{
(0, 0), . . . ,

(
q
(n)
i , t

(n)
i

)
, . . .

}
be the current menu, with µ(0) ≡ µ by convention. If there

exists i < I such that q
(n)
i < q

(n)
i+1 and the following local incentive-compatibility constraints

both bind:

z−k
i

(
q
(n)
i , t

(n)
i

)
= z−k

i

(
q
(n)
i+1, t

(n)
i+1

)
,

z−k
i+1

(
q
(n)
i+1, t

(n)
i+1

)
= z−k

i+1

(
q
(n)
i , t

(n)
i

)
,

then take the smallest such i, i(n), and pool types i(n) and i(n) + 1 on the same trade
(
q
(n+1)

i(n) , t
(n+1)

i(n)

)
=

(
q
(n+1)

i(n)+1
, t

(n+1)

i(n)+1

)
equal to either

(
q
(n)

i(n) , t
(n)

i(n)

)
or

(
q
(n)

i(n)+1
, t

(n)

i(n)+1

)
according to
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the maximum value it gives to the profit on the (i(n), i(n) + 1) pair

mi(n)

[
t
(n+1)

i(n) − ci(n)q
(n+1)

i(n)

]
+ mi(n)+1

[
t
(n+1)

i(n) − ci(n)+1q
(n+1)

i(n)

]
.

Otherwise, the algorithm stops, and µ′ ≡ µ(n). Note that the algorithm stops in a finite

number of steps as there are finitely many types. Moreover, applying the algorithm only

affects the way ties are broken. Therefore, the menu µ′ remains incentive compatible and

individually rational. Moreover, by construction, it has nondecreasing quantities q′i+1 ≥ q′i
for all i < I. Finally, at each step of the algorithm, seller k’s profit cannot be decreased.

Indeed, the algorithm is active at step n ≥ 0 only if q
(n)

i(n) < q
(n)

i(n)+1
. In that case, either

t
(n)

i(n) − c
(n)

i(n)q
(n)

i(n) < t
(n)

i(n)+1
− c

(n)

i(n)q
(n)

i(n)+1

and then seller k’s profit is increased by pooling i(n) and i(n) + 1 on
(
q
(n)

i(n)+1
, t

(n)

i(n)+1

)
, or

t
(n)

i(n) − c
(n)

i(n)q
(n)

i(n) ≥ t
(n)

i(n)+1
− c

(n)

i(n)q
(n)

i(n)+1
,

so that, as ci(n) ≤ ci(n)+1 by Assumption 3 and q
(n)

i(n) < q
(n)

i(n)+1
by construction, seller k’s profit

cannot be decreased by pooling i(n) and i(n) + 1 on
(
q
(n)

i(n) , t
(n)

i(n)

)
. As a result,

I∑
i=1

mi(t
′
i − ciq

′
i) ≥

I∑
i=1

mi(ti − ciqi), (23)

that is, seller k’s profit under µ′ is as least as large as under µ.

Step 2 We may now proceed to the second step of the proof. Let ε > 0 be given.

We are going to modify transfers (t′1, . . . , t
′
I) into transfers (t′′1, . . . , t

′′
I ) such that the menu

µ′′ = {(0, 0), . . . , (q′i, t
′′
i ), . . .} satisfies the following incentive-compatibility and individual-

rationality constraints for all i and i′:

z−k
i (q′i, t

′′
i ) ≥ z−k

i (q′i′ , t
′′
i′), (24)

z−k
i (q′i, t

′′
i ) ≥ z−k

i (0, 0), (25)

where now these inequalities are strict as soon as, respectively, q′i 6= q′i′ and q′i 6= 0. Moreover,

we will perform this modification in such a way that transfers remain almost the same:

t′′i ≥ t′i − ε. (26)

Suppose this modification performed. Then for each ε > 0 seller k could deviate to the menu

µ′′. Because of the above properties, each type i must then choose to trade (q′i, t
′′
i ) with seller

k. Hence by playing so seller k can secure a profit

I∑
i=1

mi(t
′′
i − ciq

′
i) ≥

I∑
i=1

mi(t
′
i − ciq

′
i)− ε ≥

I∑
i=1

mi(ti − ciqi)− ε,
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where the first and second inequalities follow from (26) and (23). As ε can be made arbitrarily

small, this shows that seller k’s equilibrium profit is at least (9), and the result follows.

To conclude the proof, there only remains to modify the transfers as announced above.

We now turn to this task. Because the quantities (q′1, . . . , q
′
I) are given, and because the

functions z−k
i are continuous and strictly decreasing in transfers, we can define two families

of (extended) real-valued functions γk
i and δk

i for i < I such that, for each t,

z−k
i (q′i, t) = z−k

i (q′i+1, γ
k
i (t)) and z−k

i+1(q
′
i, t) = z−k

i+1(q
′
i+1, δ

k
i (t)). (27)

Here γk
i (t) = −∞ or δk

i (t) = −∞ by convention if there exists no solution to the relevant

equation, which may occur for t below some threshold. Both γk
i and δk

i are continuous

and strictly increasing where they are finite. If q′i = q′i+1, then clearly γk
i (t) = δk

i (t) = t.

If q′i < q′i+1, then, according to (4) along with the fact that the functions z−k
i are strictly

decreasing in transfers, γk
i (t) ≤ δk

i (t) for all t ≥ 0. Finally, by construction of the menu µ′,

if q′i < q′i+1, then γk
i (t′i) ≤ t′i+1 ≤ δk

i (t′i) with at least one strict inequality. (One may have

γk
i (t′i) = −∞, but δk

i (t′i) is necessarily finite.)

Given ε > 0, we can recursively construct a family of strictly positive real numbers

(ε1, . . . , εI) as follows. Let εI ≡ ε. Then, for each i < I, consider εi+1 > 0 as given. If

q′i = q′i+1, choose εi such that 0 < εi < εi+1, which is clearly feasible. If q′i < q′i+1, choose εi

such that 0 < εi < εi+1/2 and such that

γk
i (t) < δk

i (t) and γk
i (t)− εi+1

2
< t′i+1 < δk

i (t) +
εi+1

2
(28)

for all t that satisfy |t − t′i| < εi. This is feasible because if εi+1 > 0, all these properties

hold for t = t′i, and because the functions γk
i and δk

i are continuous at t′i. Observe that the

family (ε1, . . . , εI) is strictly increasing.

We now recursively construct a family of transfers (t′′1, . . . , t
′′
I ) such that |t′′i − t′i| < εi for

all i. Set t′′1 ≡ t′1 if q′1 = 0, and set t′′1 ≡ t′1−ε1/2 otherwise. Note that |t′′1− t′1| < ε1. Suppose

next that |t′′i − t′i| < εi for some i < I, and define t′′i+1 as follows:

(i) If q′i+1 = q′i, set t′′i+1 ≡ t′′i . Note that because t′i+1 = t′i in this case, we then have

|t′′i+1 − t′i+1| = |t′′i − t′i| < εi < εi+1, as required.

(ii) If q′i < q′i+1, then, as |t′′i − t′i| < εi by assumption, we know from the first part of (28)

that γk
i (t′′i ) < δk

i (t′′i ). Choose any ε̂ such that 0 < ε̂ < min{εi+1/2, δ
k
i (t′′i ) − γk

i (t′′i )},
and consider the following three subcases. If t′i+1 ≥ δk

i (t′′i ), set t′′i+1 ≡ δk
i (t′′i ) − ε̂. If

t′i+1 ≤ γk
i (t′′i ), set t′′i+1 ≡ γk

i (t′′i ) + ε̂. Otherwise, set t′′i+1 ≡ t′i+1. The second part of
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(28) ensures that in each of these three subcases |t′′i+1 − t′i+1| < ε̂ + εi+1/2 < εi+1, as

required.

By construction, we have γk
i (t′′i ) < t′′i+1 < δk

i (t′′i ) if q′i < q′i+1. This shows that the local

incentive-compatibility constraints

z−k
i (q′i, t

′′
i ) ≥ z−k

i (q′i+1, t
′′
i+1),

z−k
i+1(q

′
i+1, t

′′
i+1) ≥ z−k

i+1(q
′
i, t

′′
i )

are satisfied, with strict inequalities if q′i < q′i+1. Similarly, our choice of t′′1 ensures that the

individual rationality constraint for i = 1,

z−k
1 (q′1, t

′′
1) ≥ z−k

1 (0, 0),

is also a strict inequality if q′1 6= 0. Given the single-crossing property (4)–(5), a standard

argument can be used to establish that this set of local constraints implies that the menu µ′′

satisfies the incentive-compatibility and individual-rationality constraints (24)–(25) for all i

and i′, with strict inequalities as soon as, respectively, q′i 6= q′i′ and q′i 6= 0. Finally, for each

i we have |t′′i − t′i| < εi < εI = ε, which yields (26). The result follows. ¥

Proof of Lemma 4. Fix a seller k, and suppose by way of contradiction that

z−k
j (qk

j , t
k(qk

j )) > z−k
j (qk

j−1, t
k(qk

j−1)) and z−k
j (qk

j , t
k(qk

j )) > z−k
j (0, 0) (29)

for some j ≥ 2. Because the quantities (qk
1 , . . . , q

k
I ) are given, we can define a family of

(extended) real-valued functions δk
i for i < I as in (27). Using this notation, the first

inequality in (29) equivalently says that tk(qk
j ) < δk

j−1(t
k(qk

j−1)). Now, choose ε such that

0 < ε < δk
j−1(t

k(qk
j−1)) − tk(qk

j ) and define a family of transfers (t′1, . . . , t
′
I) as follows: for

i < j, set t′i ≡ tk(qk
i ); for i = j, set t′j ≡ tk(qk

j ) + ε; for i > j, define recursively t′i ≡
max{tk(qk

i ), δk
i−1(t

′
i−1)}.

The menu {(0, 0), . . . , (qk
i , t

′
i), . . .} has three noticeable features:

(i) It has the same nondecreasing quantities and higher—sometimes strictly higher—

transfers as the equilibrium allocation.

(ii) It satisfies the incentive-compatibility constraints (7). This is obvious for types i <

j, because their transfers are unchanged, whereas the transfers of types i′ ≥ j are

(weakly) increased. As for type j, observe that she cannot be better off mimicking

type j − 1 because t′j = tk(qk
j ) + ε, t′j−1 = tk(qk

j−1), and ε has been chosen so that
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z−k
j (qk

j , t
k(qk

j ) + ε) > z−k
j (qk

j−1, t
k(qk

j−1)). Using the fact that the quantities (qk
1 , . . . , q

k
j )

are nondecreasing along with the single-crossing property (4), it follows that type j

cannot be better off mimicking any type i < j − 1 either. Finally, type j cannot

be better off mimicking any type i > j. Indeed, suppose by way of contradiction

that i > j is the first type such that z−k
j (qk

j , t
′
j) < z−k

j (qk
i , t

′
i). Then z−k

j (qk
i−1, t

′
i−1) =

z−k
j (qk

j , t
′
j) < z−k

j (qk
i , t

′
i) so that, from qk

i−1 ≤ qk
i along with the single-crossing property

(5), we have z−k
i (qk

i−1, t
′
i−1) < z−k

i (qk
i , t

′
i). But z−k

i (qk
i , t

′
i) ≤ z−k

i (qk
i , δ

k
i−1(t

′
i−1)), so that

z−k
i (qk

i−1, t
′
i−1) < z−k

i (qk
i , δ

k
i−1(t

′
i−1)), in contradiction with the definition (27) of δk

i−1.

The claim follows. The proof that no type i > j can be better off mimicking any type

i′ 6= i is similar, and is therefore omitted.

(iii) It satisfies the individual-rationality constraints (8). This is obvious for types i <

j, because their trade is unchanged. Thus in particular z−k
j−1(q

k
j−1, t

′
j−1) ≥ z−k

i (0, 0).

The single-crossing property (4) then implies that z−k
i′ (qk

j−1, t
′
j−1) ≥ z−k

i′ (0, 0) for all

i′ ≥ j, from which the claim follows as the menu {(0, 0), . . . , (qk
i , t

′
i), . . .} is incentive

compatible.

Given (i)–(iii), we can apply Lemma 3 to conclude that this menu must give seller k at most

his equilibrium profit. This however contradicts (i) above. The contradiction establishes

that for each j ≥ 2, at least one inequality in (29) must bind. The proof that the individual

rationality constraint (8) binds at i = 1 is similar, and is therefore omitted. ¥

Proof of Lemma 5. As shown in Lemma 1, there exists a nondecreasing sequence of prices

(p1, . . . , pI) such that pi ∈ ∂tk(qk) for all k and all best responses (q1, . . . , qK) of type i.

In fact, those best responses are exactly the quantities verifying (19) given the equilibrium

tariffs (t1, . . . , tK).

As a preliminary result, let us show that there is no type i such that Qi > 0 and qk
i = sk

i

for all k. Indeed, these conditions imply that type i has a unique best response that exhausts

all available supply at the marginal price pi. Moreover, because Qi > 0 there exists at least

one seller k such that qk
i > 0. For any such k, the individual-rationality constraint (8)

of type i is slack in equilibrium, because type i has a unique best response. This implies

from Lemma 4 that i ≥ 2, and that the incentive-compatibility constraint constraint (7) for

i′ = i − 1 binds in equilibrium. As type i has a unique best response, it must thus be that

qk
i = qk

i−1. This equality also holds for those k such that qk
i = 0, as individual quantities are

nondecreasing by assumption. Overall we have shown that i ≥ 2, and that type i − 1 also

exhausts supply at price pi, so that pi−1 = pi, qk
i−1 = sk

i−1 = sk
i for all k, and Qi−1 = Qi > 0.
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We can then iterate the reasoning until reaching type 1, in contradiction with i ≥ 2.

We can now complete the proof of Lemma 5. Suppose that for some i > 1 we have

pi > pi−1. Then sk
i ≥ sk

i−1 ≥ qk
i−1 for all k. If for k the individual-rationality constraint (8) of

type i binds in equilibrium, then it must be that sk
i = 0, and therefore that qk

i−1 = 0 = sk
i−1.

If for k the individual-rationality constraint (8) of type i is slack in equilibrium, then from

Lemma 4 the incentive-compatibility constraint constraint (7) for i′ = i − 1 must bind in

equilibrium, which implies sk
i = qk

i−1 = sk
i−1. Hence for all k we have qk

i−1 = sk
i−1. Applying

our preliminary result, we have shown that pi > pi−1 implies that Qi−1 = 0. Because the

aggregate quantity is nondecreasing, it must thus be that all trades take place at the same

price p. Moreover, once more applying our preliminary result, a type i who actively trades

cannot exhaust the aggregate supply at price p, and thus can freely choose her most preferred

quantity at price p, which is Di(p). The result follows. ¥

Proof of Lemma 6. Any seller k could deviate to a menu that would allow types i < I to

buy the equilibrium quantity qk
i at price p, whereas type I would be asked to buy only qk

I−1 at

price p. Such an offer is incentive compatible and individually rational, with nondecreasing

quantities. From Lemma 3, the variation in the deviator’s profit must be at most zero,

(p− cI)(q
k
I−1 − qk

I ) ≤ 0.

Summing on k yields (p − cI)[DI−1(p) − DI(p)] ≤ 0, and under Assumption 3 this implies

that p ≥ cI . On the other hand, if aggregate profits are strictly positive then, because

the functions Di are continuous, any buyer k could claim almost all profits for himself by

charging a uniform unit price slightly below p. So aggregate profits are zero, and under

p ≥ cI we get that p = ci = cI for any type i who actively trades. The result follows. ¥

Proof of Lemma 7. From Lemma 1 we know that the buyer has a best response q ∈ RIK
+

with nondecreasing individual quantities. Construct a strategy ŝ for the buyer as follows:

(i) When the buyer faces the tariff profile (t1, . . . , tK), she trades the quantities in q.

(ii) When the buyer faces a unilateral deviation (tk, t−k) from the tariff profile (t1, . . . , tK)

by seller k, we know as a consequence of Lemma 2 that there exists a solution to (6)

that is nondecreasing in i. Given the tariffs (tk, t−k), this corresponds to a solution to

the buyer’s utility-maximization problem that has nondecreasing quantities for seller

k. Let ŝ select this solution.

(iii) In all other cases, the strategy ŝ simply selects a best response.
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It remains to show that (t1, . . . , tK , ŝ) is an equilibrium. First, note that for ŝ is indeed a best

response for the buyer. Second, we have shown in the text that each seller k earns exactly

Vk(t−k). Third, if seller k were to deviate, then according to ŝ the buyer would react by

trading with k a family of nondecreasing quantities. Then the resulting profit cannot exceed

Vk(t−k), by definition of this threshold. The result follows. ¥

Proof of Corollary 1. Lemmas 1–2 remain valid, as they are only concerned with the

buyer’s behavior, and not with the sellers’ profits. Our tie-breaking result, Lemma 3, needs

obvious modifications in the definition of Vk(t−k), which becomes the supremum of

I∑
i=1

miv
k
i (qi, ti)

over the relevant set. Step 1 in the proof of Lemma 3 can easily be extended thanks to

Assumption 4, as this condition is enough to ensure that when qi < qi+1 a seller cannot loose

by pooling both types on either (qi, ti) or (qi+1, ti+1). Indeed, one will choose to pool both

types on (qi+1, ti+1) when

vk
i (qi, ti) ≤ vk

i (qi+1, ti+1).

Otherwise, the reverse inequality holds, and by applying Assumption 4 we get

vk
i+1(qi, ti) ≥ vk

i+1(qi+1, ti+1),

which allows to pool both types on (qi, ti) without reducing profits. Step 2 of the proof

requires no modification, as it only relies on modifications of transfers, leaving quantities

and hence costs unaffected. Lemma 4 then follows immediately: the proof is the same as in

the constant-marginal-cost case. Finally Lemma 5 also goes through. The result follows. ¥

Proof of Lemma 8. Fix an equilibrium with convex tariffs and nondecreasing individual

quantities in which all trades take place at price p and accordingly each type i purchases

Di(p) in the aggregate. We first prove that (16) holds if at least one type actively trades in

equilibrium, that is, if DI(p) > 0. Fix some k and let

C1 =
{
(q1, . . . , qI) ∈ RI

+ : there exists (t1, . . . , tI) such that (7)–(8) hold for all (i, i′)
}
,

C2 =
{
(q1, . . . , qI) ∈ RI

+ : qi+1 ≥ qi for all i < I
}
,

C3 = [0, D1(p)]× . . .× [0, DI(p)].

Seller k’s equilibrium profit vk satisfies

vk = max

{
I∑

i=1

mi[pqi − ci(qi)] : (q1, . . . , qI) ∈ C1 ∩ C2 ∩ C3

}
(30)
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for all k, where the equality in (30) follows from Lemma 3 given that the equilibrium has

nondecreasing individual quantities. In particular, vk is no larger than

vk ≡ max

{
I∑

i=1

mi[pqi − ci(qi)] : (q1, . . . , qI) ∈ C2 ∩ C3

}
. (31)

The relaxed problem (31) is compact and strictly convex, and therefore admits a unique

solution (qk
1 , . . . , q

k
I ). Using the strict convexity of the cost functions ci and Assumption

5, we get that for each i < I, qk
i < qk

i+1 implies that qk
i = Di(p). As a result, we have

qk
i = min{qk

I , Di(p)} for all i. Consider now the menu {(0, 0), . . . , (qk
i , pq

k
i ), . . .}. By the

single-crossing property (4), this menu satisfies the incentive-compatibility and individual-

rationality constraints (7)–(8); moreover, it has nondecreasing quantities at most equal to

DI(p). Thus (qk
1 , . . . , q

k
I ) ∈ C1 ∩ C2 ∩ C3. Because the above menu yields a profit vk to

seller k, we get from (30)–(31) that vk = vk and, by the strict concavity of the common

objective function in (30)–(31), that (qk
1 , . . . , q

k
I ) is the unique solution to (30). Because

the equilibrium quantities traded by seller k must solve (30), we thus get that they are

exactly given by (qk
1 , . . . , q

k
I ). Moreover, because (qk

1 , . . . , q
k
I ) solves (31), which is independent

of k, so must be (qk
1 , . . . , q

k
I ), which we can thus write as (q1, . . . , qI). All sellers hence

trade the same quantities with each type in equilibrium, so that Kqi = Di(p) for all i. As

qi = min{qI , Di(p)} for all i, two cases may now arise. If qi = Di(p), then necessarily

Di(p) = 0. Alternatively, if qi < Di(p), then qi = qI and thus Qi = DI(p). By Assumption

2, (16) must thus hold as soon as DI(p) > 0, as claimed. To prove that (15) must then hold,

simply observe by (31) that qI = DI(p)/K > 0 maximizes pq − cI(q). The result follows. ¥
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