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Abstract 

Mixed and pure equilibria are characterized for a duopoly model of 
simultaneous quality improvement followed by price competition in a 
market with limited consumer heterogeneity.  In the second stage Bertrand 
equilibrium, the higher-quality firm captures the entire market, earning a 
profit proportional to the quality difference.  If initial product qualities are 
not very different, then there are many equilibria of the full game.  These 
equilibria have substantially different expected welfare, and predict a wide 
range of possible quality outcomes.  Furthermore, it is possible to “purify” 
the mixed equilibria, i.e. multiple pure equilibria with approximately the 
same outcome distributions exist in nearby extended games of incomplete 
information.  Finally, analogous pure and mixed equilibria exist for nearby 
dynamic games for which discounting is sufficiently great and quality 
depreciation sufficiently quick. 
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1.  Introduction 

Product improvement is so obviously is a crucial means by which firms compete. 

In consumer technology markets, for example, Apple stays ahead in the mobile handset 

market by periodically launching new versions of the iPhone, Intel remains dominant in 

the computer processor market with ever more powerful chips, and Microsoft holds a grip 

on PC operating system market with successive improvements to Windows.  In consumer 

markets in which novelty and fashion matter, for example, McDonalds tempts consumers 

with innovative sandwiches, Coach stays abreast of shifting handbag fashions, and HBO 

updates its program lineup.   In these and other retail markets, competitors gain and 

                                                
1 An earlier version was presented at the 27th Australasian Economic Theory Workshop at 
Massey University (Auckland NZ) in 2009 under the title “Quality Competition and 
Multiple Equilibria”, and a preliminary version under the title “Quality Competition in a 
Winner-Take-All-Market” was presented at a conference in honor of James Friedman at 
Duke University in 2006.  I thank conference participants, as well as Kyle Bagwell, 
Richard Gilbert, and seminar participants at Columbia University for helpful comments.  
The paper builds on the model and some results in Gilbert and Riordan (2003, 2007).  I 
am grateful also to the Toulouse School of Economics for hospitality and research 
support during 2012-13.  
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maintain quality advantages by periodically developing new and improved versions of 

existing products.     

Despite the real-world importance of product improvement competition, the 

economics literature has only a limited understanding of how it works.  The vertical 

differentiation literature provides a reasonably good but still incomplete understanding of 

vertically differentiated markets in which competitors divide the market by offering 

distinctly different quality products.  Following seminal work by Gabszewicz and Thisse 

(1979) and Shaked and Sutton (1982), the standard setting for analysis is a two-stage 

game in which duopoly firms first choose their qualities and then compete on price to 

attract consumers who have heterogeneous preferences for quality.  The literature has 

focused almost entirely on situations in which there is sufficient consumer heterogeneity 

to support an equilibrium in which the firms select different quality products and 

consumers choose among the alternative offers according to their willingness (or lack 

thereof) to pay for higher quality.  The logic of the market-sharing result is that vertical 

product differentiation with sufficient consumer heterogeneity relaxes price competition, 

enabling each firm to set positive margins and recover its endogenous fixed costs.   

I focus instead on the simpler scenario in which there is insufficient consumer 

heterogeneity to support contemporaneous market sharing by vertically differentiated 

firms.  For this case, Gabszewicz and Thisse (1979) showed equilibrium price 

competition has a winner-take-all outcome, in which the highest quality firm serves all 

consumers, at a price constrained by the availability of the next available quality.  What 

are equilibrium incentives for product improvement in this case?  My main result is to 
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demonstrate a plethora of equilibria, including potentially many in which firms 

asymmetrically mix over quality choices.   

A symmetric mixed equilibrium is intuitive when the rival firms are positioned 

symmetrically ex ante.  What if one firm starts with a small advantage?   I model an 

asymmetric positioning of firms as an initial quality advantage of a market leader, and 

quality competition as product improvement game in which the leader and the laggard 

have symmetric opportunities to improve their respective products.  In the asymmetric 

case, a symmetric mixed strategy equilibrium fails to exist, but there potentially are many 

asymmetric mixed equilibria depending on the magnitude of the initial quality advantage.  

If the initial advantage of the leader is small, there are a large but finite number of 

equilibria of the product improvement game.  The number of equilibria is “pruned” as the 

initial leadership advantage grows, and there is but a single equilibrium in pure strategies 

for a sufficiently large initial advantage.  In this case of a unique equilibrium, only the 

leader invests in quality improvement.  Thus a market leader with a sufficiently large 

initial advantage remains dominant, i.e. strategic uncertainty vanishes from a winner-

take-all market with a dominant firm already far enough ahead.  For only a small initial 

advantage, however, a mixed equilibrium in which each firm wins the market with some 

probability arguably is a more intuitive solution than a pure equilibrium with a 

preordained winner.   

For the special case of a quadratic cost of quality improvement, I compute 

analytically the entire set of equilibria for an arbitrary intitial cost advantage.  The 

number of equilibria is finite and odd in the asymmetric case.  If the firms are symmetric 

ex ante, then there is a twice-countable infinity of discrete mixed equilibria.  The mixed 
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equilibria typically are less efficient than pure equilibria in which either the leading or the 

lagging firms invest efficiently to win the market.  In particular, the mixed equilibria 

feature inefficiently low investments by the winning firm, and wasteful investments by 

the losing firm.  A great variety of equilibrium outcomes are possible. 

A possible objection is that mixed strategies are artificial.  The objection comes 

from a perspective that firms make definite strategic choices rather than “flip coins” to 

determine what products they bring to market.  This objection, however, can be laid to 

rest with a “purification” argument along lines suggested by Bagwell and Wolinsky 

(2002).2  I consider a nearby game of incomplete information in which each rival  is 

privately informed about its cost of product improvement, and demonstrate that the pure 

strategy equilibrium outcomes of the nearby incomplete information game closely 

approximate the equilibrium outcomes of the complete information game as the degree of 

private information shrinks.  Thus a mixed equilibrium can be interpreted as representing 

equilibrium uncertainty about the conduct of rivals (Aumann and Brandenburg, 1995).  In 

other words, potential strategic uncertainty, and the ensuing multiplicity of possible 

market outcomes, appears to be intrinsic to a winner-all-market rather than an artifact of 

the equilibrium concept.  

Another possible objection is that a one-shot product improvement game is inapt 

for studying market dynamics, and, in particular, changes in market leadership.   The 

static asymmetric product improvement game, however, lays a foundation for a dynamic 

model.  I consider a dynamic game in which two rivals have symmetric opportunities for 

quality improvement at each investment date, and in which the leader’s quality advantage 

                                                
2 The seminal work on purification is Harsanyi (1973). 
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defines the market state in Markov perfect equilibrium.  A key element of the dynamic 

model is that the value of product improvements depreciates over time due, for example, 

due to imitation by a competitive fringe or to obsolescence.  Also, firms discount future 

profits, and in the limit as firms become myopic the dynamic game repeats the static 

product improvement game period by period with a possibly shifting leadership.  A first 

result for the dynamic game is to demonstrate sufficient conditions for (Markov perfect) 

equilibrium in which market leadership persists, i.e. a firm with an initial quality 

advantage stays ahead by repeatedly investing in product improvement while its rival is 

stagnant.  A second result is to demonstrate sufficient conditions, including quickly 

depreciating quality advantages, for a pure equilibrium in which market leadership 

alternates between rival firms.  Finally, for sufficiently great discounting and sufficiently 

quick quality depreciation, there is a binary mixed equilibrium in which leadership 

changes stochastically.  Thus equilibrium multiplicity exists for nearby dynamic games 

similarly as for the one-shot product improvement game. The alternating and stochastic 

leadership equilibria of the dynamic are interesting because, while the market outcome is 

winner-take-all period-by-period, the rivals nevertheless manage to share the market over 

time. 

The sequel is organized as follows.  Section 2 characterizes the equilibria for a 

one-shot winner-take-all product improvement that condenses price competition to a 

reduced form profit function consistent with limited consumer heterogeneity.3  Section 3 

computes the equilibrium set in closed form for the special case of a quadratic cost of 

                                                
3 Appendix A demonstrates how limited consumer heterogeneity results in a winner-take-
all outcome of vertically differentiated price game.  See also Gabszewicz and Thisse 
(1979), Tirole (1988), and Wauthy (1996). 
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quality improvement.  Section 4 demonstrates how the mixed equilibrium outcomes 

approximate the pure strategy equilibrium outcomes of nearby games of incomplete 

information.  Section 5 builds a dynamic model of quality improvement on the 

foundation of the static model, and derives sufficient conditions for pure strategy 

equilibria featuring persistent, alternating, or stochastic market leadership.  Section 6 

concludes with some discussions and interpretations, and points out directions for further 

research.   

 

2.  One-shot Product Improvement  

2.1.  Model 

Consider the following simple game.  There are two players, indexed i!{1,2} .   

An action for Player i is a non-negative number, qi !R
+ .  The payoff of Player 1 is  

 !1(q1,q2 ) =max{0,q1 ! q2 + "}! r(q1)   (1) 

and the payoff of Player 2 is  

 ! 2 (q1,q2 ) = max{0,q2 ! q1 ! "}! r(q2 )   (2) 

where ! " 0 , and r(q)  is a differentiable, strictly increasing, convex function with 

r(0) = r '(0) = 0  and r '(1) =1 .  

 This iconic game has the following interpretation.  There are two firms competing 

in a market.  The firms invest to improve the quality of their products, and then choose 

prices.  Firm 1 is endowed with an initial quality advantage ! .  For each firm, the cost of 

improving quality by an amount q is r(q) .  Production costs are normalized to zero.  

After selecting and observing product qualities, the firms choose prices in Bertrand 

competition. Consumers are homogeneous, or, more generally, consumer heterogeneity is 
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limited.  Consequently, in equilibrium, all consumers purchase the higher quality product 

at a price that reflects the quality difference.4  The size of the population of consumers is 

normalized to unity.  Thus the reduced form profit function of Firm i is ! i (q1,q2 ) .  Note 

that these profit functions are not quasi-concave.  The function  has as local maximum 

at , and may have a second local maximum at .  The unit of measurement for 

quality is normalized so that r '(1) =1 , and q =1  is the “efficient quality” that maximizes 

joint surplus.  

A strategy for Firm i is a cumulative probability distribution over quality 

improvement.  Each firm’s quality investment is restricted without loss of generality to 

the compact interval Q![0,q ] , where q + ! = r(q ) .  The reason is that any quality 

greater then q  is dominated strictly by qi = 0 .  By construction q >1 .  Thus a strategy is 

a function Fi (q)  with domain Q and range [0,1].  It is monotone, continuous from the 

right, and satisfies Fi (q ) = 1.  The support of a strategy is  

 Si ={q!Q | Fi (q) > 0 and Fi (q ') < Fi (q) if q ' < q}  (3) 

Si  is closed because Fi (q)  is right continuous.  Let qi = max Si  and qi = min Si . 

The expected profit of Firm 1 for quality q1  is  

 !1(q1) = (" + q1 # q)dF2 (q)# r(q1)0

min{q2 ,q1+"}

$   (4) 

Similarly, the expected profit for Firm 2 is   

 !2 (q2 ) = (q2 " # " q)dF1(q)" r(q2 )0

min{q1,q2"#}

$ .  (5)  

                                                
4 Appendix A develops an example how limited consumer heterogeneity supports only a 
winner-take-all outcome at the second stage.  See also Gabszewicz and Thisse (1979).   

! i

qi =1 qi = 0
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2.2. Equilibrium 

Equilibrium is defined in the usual manner.  A pair of strategies (F1,F2 )  form a 

Nash equilibrium if  

 Si ! argmax
q!Q

!i (q)   (6) 

The definition incorporates two key properties.  First, all elements of the support of an 

equilibrium strategy yield the same expected profit, i.e. !i (qi ) =!i (qi )  for qi !Si  

(“Indifference”).  Second, each element of the support maximizes expected profit, the 

necessary first-order conditions for which are stated in the next lemma. 

 

Lemma 1 (“Local Optimality”):  In equilibrium, F2 (q1 + !) = r '(q1)  for q1 !S1 , and 

F1(q2 ! ") = r '(q2 )  for q2 !S2 .  

 

Proof:  See Appendix B.     

 

These properties are important in what comes later for two related reasons.  First, 

Local Optimality links Firm 1’s equilibrium mixed strategy to Firm 2’s equilibrium 

support, and vice versa.  Thus it is possible to construct equilibrium mixed strategies 

from a knowledge of equilibrium supports.  Second, Local Optimality and Indifference 

are instrumental for characterizing equilibrium supports.  Thus a method for describing 

the equilibria of the game is to first describe equilibrium supports, and second describe 

corresponding probability distributions.  
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2.3.  Usual Suspects 

It is useful to begin by describing the most prominent equilibria.  The obviousness 

of these equilibria perhaps is why the winner-take-all product improvement game has not 

received much attention in the literature.  

If the two firms are symmetric, then there exists a symmetric equilibrium in which 

each firm randomizes over quality improvements ranging from 0 to 1.  In symmetric 

equilibrium, both firms earn zero expected profits. 

 

Proposition 1 (“Symmetry”):  If 0Γ = , then there is a symmetric equilibrium in which 

both firms choose the strategy F(q) = r '(q)  with the support S = [0,1] .  

 

Proof:  The symmetric strategy satisfies the necessary equilibrium indifference condition, 

0
( ) ( ) ( ) 0
q
q z dF z r q− − =∫  for all q S∈ .  Moreover, a firm’s deviation profit is lower for 

any 1q >  by the convexity of ( )r q .¢ 

 

 A pure equilibrium has the property that both iS  are singleton sets.  There always 

exists a pure equilibrium in which Firm 1 chooses the efficient quality, and Firm 2 

declines to invest.  There exists a second pure equilibrium that reverses these roles if 

Firm 1’s initial quality advantage is not too great.  In a pure equilibrium, only the 

designated winning firm ever earns a positive profit. 
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Proposition 2 (“Purity”):  There exists a pure equilibrium in which Firm 1 chooses 1 1q =  

and Firm 2 chooses 2 0q = .  If (1)r ≥ Γ, then there exists a second pure equilibrium in 

which Firm 1 chooses 1 0q =  and Firm 2 chooses 2 1q = .  There are no other pure 

equilibria. 

 

Proof:  Straightforward. 

 

 These familiar-looking equilibria pose a quandry.  On the one hand, the 

symmetric mixed equilibrium is intuitive for symmetrically positioned firms, i.e. for 

! = 0 .  On the other hand, the pure equilibrium in which only the leader invests is 

intuitive if the lead is long, i.e. for ! >> 0 .  What about in between?  Any initial 

asymmetry destroys the symmetric equilibrium (as shown below), but a pure equilibrium 

in which one firm earns a substantial profit and the other earns none is counterintuitive if 

the firms are nearly symmetric, i.e. for ! > 0  arbitrarily small.  The asymmetric mixed 

equilibria discussed next bridge the intuitive gap.  

 

2.4.  Discreteness 

A continuous mixed equilibrium has the property that the Si  are compact 

intervals.  A symmetric equilibrium exists if the firms are symmetric (Proposition 1), but 

not if the firms are asymmetric.  If the firms are asymmetric then equilibrium supports 

necessarily are discrete sets with the same cardinality.  Moreover, there are two types of 

equilibria depending on which firm is “at the top of the totem pole”.   Note that the pure 
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equilibria are special cases (n = 1) in following articulation of necessary conditions for 

equilibrum. 

 

Proposition 3 (“Discreteness”):  If ! > 0 , then in equilibrium S1 ={q1
1,q1

2 ,...q1
n}  and 

S2 ={q2
1,q2

2 ,...q2
n}  for a positive integer n.  Moreover, either q1

j + ! > q2
j  for j =1,...n  with 

q1
n =1and q2

1 = 0 (“Type A equilibrium”), or q2
j > q1

j + !  for j =1,...n  with q1
0 = 0  and 

q2
n =1  (“Type B equilibrium”). 

 

Proof:  See Appendix B.        

 

Discreteneess requires that the equilibrium supports we ordered in one of two 

ways (“Zipper Principle”).  The elements of the support for each firm must fit together, 

one on top of the other, like zipper.  The two types of equilibria are distinguished by 

which firm is on top or bottom.  

Discreteness is a key result.  With knowledge of equilibrium supports in hand, it 

is straightforward to use Local Optimality to construct the corresponding equilibrium 

strategies for both types of equilibria.  The following result follows immediately from 

Discreteness and Local Optimality. 

 

Proposition 4:  If ! > 0 , then:  (a) F1(q1
k ) = r '(q2

k+1)  for k =1,...n !1 , F1(q1
n ) =1 , and 

F2 (q2
k ) = r '(q1

k ) for k =1,...n  in a Type A equilibrium; (b) F1(q1
k ) = r '(q2

k )  for k = 1,...n , 

F2 (q2
k ) = r '(q1

k+1)  for k =1,...n !1 , and F2 (q2
n ) =1  in a Type B equilibrium. 
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2.5.  Computation 

 All the needed elements are in place to compute equilibrium supports for the 

asymmetric case (! > 0 ).   Type A and Type B equilibria are treated in turn. 

 Consider a candidate Type A mixed equilibrium ( n ! 2 ).  Let ! i
j  denote the 

probability that Firm i selects qi
j !Si , i.e. ! i

1 = Fi (qi
1)  and ! i

j = Fi (qi
j ) ! Fi (qi

j!1)  for 

j = 2,..n .  Using this notation, the expected profit of Firm 1 is  

 !1(q1
k ) = !2

j (q1
k + ! " q2

j )
j=1

k

! " r(q1
k )   (7) 

and Local Optimality requires  

 r '(q1
k ) = !2

j

j=1

k

!   (8) 

for k = 1,...n .  Therefore,  

 !1(q1
k ) = [r '(q1

j ) ! r '(q1
j!1)](q1

k + ! " q2
j )

j=1

k

! " r(q1
k )   (9) 

for k = 1,...n  and q1
0 ! 0 .  In a Type A equilibrium, there is a number ! > 0  such that 

!1(q1
k ) =!  for q1

k !S1 .  The reason why Firm 1 earns a strictly positive profit is that 

!2
1 > 0  implies Firm 1 earns at least !2

1! > 0 .  Given S2 , it is possible to solve for S1  

using this indifference condition.  The precise value of !  is pinned down by the 

boundary condition q1
n =1 . 

 Alternatively, the Type A equilibrium conditions for Firm 1 imply q1
n =1  and  
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 !1(q1
k )!"1(q1

k!1) =!2
k[q1

k + ! " q2
k ]+ !2

j

j=1

k!1

" [q1
k ! q1

k!1]! r(q1
k )+ r(q1

k!1)   (10) 

for k = 2,...n .  Therefore, Indifference and Local Optimality further imply  

   [r '(q1
k )! r '(q1

k!1)][q1
k + " ! q2

k ]+ r '(q1
k!1)[q1

k ! q1
k!1]= r(q1

k )! r(q1
k!1)   (11) 

or, equivalently  

 r '(q1
k )[q1

k + ! " q2
k ]+ r '(q1

k"1)[q2
k " q1

k"1 " !] = r(q1
k ) " r(q1

k"1)   (12) 

for k = 2,...n .  Given S2 ={q2
1,...q2

n}, this is a first-order difference equation in q1
k .  

Starting with q1
n = 1  , the equation can be solved recursively for values of q1

k!1 .  For 

example, q1
n!1  solves [1+ ! " q2

n ]+ r '(q1
n"1)[q2

n " q1
n"1 " !] = r(1) " r(q1

n"1) .  Moreover, Firm 

1 has no incentive unilaterally to deviate from this computed strategy because, given the 

convexity of ( )r q , 1
1q  is by construction optimal on the interval 2

2[0, )q −Γ , 1
kq  is optimal 

on 1
2 2[ , )k kq q +−Γ −Γ  for 2,.. 1k n= − , and 1 1nq =  is optimal on 2[ , ]nq q−Γ .    

Similarly, still supposing a Type A equilibrium, it is possible to solve for 2S  

given 1S  by imposing the break-even condition !2 (q2
k ) =!2 (0) = 0  and the boundary 

condition q2
1 = 0 .  We have  

 !2 (q2
k ) = !1

j (q2
k ! " ! q1

j )
j=1

k!1

" ! r(q2
k )   (13) . 

Therefore, !2 (q2
k ) !"2 (q2

k!1) = 0  implies (for 2,...k n= )   

 !1
k!1(q2

k ! " ! q1
k!1) + !1

j (q2
k ! q2

k!1)
j=1

k!2

" = r(q2
k ) ! r(q2

k!1)   (14) 

Local Optimality then implies  

 r '(q2
k )(q2

k ! " ! q1
k!1)+ r '(q2

k!1)(q1
k!1 + " ! q2

k!1) = r(q2
k )! r(q2

k!1) .  (15) 
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Given S1  and q2
1 = 0 , this equation is solved recursively for q2

k .  Firm 2 has no incentive 

to deviate from this computed strategy by the convexity of r(q) .  

 Summarizing, the computation of a Type A mixed equilibrium amounts to using 

Indifference, Local Optimality, and Discreteness to find (S1,S2 ) .  These necessary 

conditions lead to a pair of difference equations and boundary conditions.  The 

equilibrium supports are the solution of this system, and Local Optimality determines the 

corresponding choice probabilities.  This solution is both necessary and sufficient for the 

existence of equilibrium.  Sufficiency follows easily by verifying that neither firm has an 

incentive to deviate at the solution.     

The computation of a Type B equilibrium is similar, except that there is an additional 

condition that must be satisfied for sufficiency.  The relevant difference equations are  

   (16) 

and   

 . (17) 

The additional No-Leapfrogging condition assures that the more efficient Firm 1 does not 

have an incentive to choose  and win with probability one.  This is the most 

profitable deviation that guarantees victory for Firm 1, so any higher quality deviation 

cannot be profitable either. 

 

Proposition 5 (“Computation”):  (a) There exists a Type A equilibrium with 

S1 = {q1
1,...q1

n}  and S2 = {q2
1,...q2

n}  if and only if , , and (12) and (15) hold 

for 2,...k n= .  (b) There exists a Type B equilibrium with S1 = {q1
1,...q1

n}  and 

r '(q2
k )[q2

k ! " ! q1
k ]+ r '(q2

k!1)[q1
k ! q2

k!1 + "] = r(q2
k ) ! r(q2

k!1)

r '(q1
k )(q1

k + ! " q2
k!1) + r '(q1

k!1)(q2
k!1 ! " ! q1

k!1) = r(q1
k ) ! r(q1

k!1)

1 1q =

1 1nq = 1
2 0q =
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S2 = {q2
1,...q2

n}  if and only , , (16) and (17) hold for 2,...k n= , and (“No 

Leapfrogging”)   

 ! + (q2
k " q2

k"1)r '(q1
n )

k=2

n# $ r(1) . (18) 

 

Implicit in Computation are the requirements of the Discreteness.   In particular, 

the elements of the equilibrium supports of the two firms must satisfy the Zipper 

Principle.  This is demonstrated more precisely below for the special case of a quadratic 

cost function. 

 

3.    Quadratic Special Case 

The quadratic case has r(q) = 1
2 q

2 .  Applying Proposition 5(a) to the quadratic 

case, a Type A mixed equilibrium with n points of support satisfies the difference 

equations 

 q1
k (q1

k + ! " q2
k ) + q1

k!1(q2
k ! q1

k!1 ! ") = 1
2 (q1

k )2 ! 1
2 (q1

k!1)2   (19) 

and 

 q2
k (q2

k ! " ! q1
k!1) + q2

k!1(q1
k!1 + " ! q2

k!1) = 1
2 (q2

k )2 ! 1
2 (q2

k!1)2   (20) 

for 2,...k n= , and the boundary conditions  and q2
1 = 0 .  The difference equations 

simplify to  

 q1
k!1 + ! = 1

2 q2
k + q2

k!1( )   (21) 

and  

 q2
k ! " = 1

2 q1
k + q1

k!1( )   (22) 

1
1 0q = 2 1nq =

q1
n =1
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for 2,...k n= .   

The above difference equations can be manipulated to imply a simple second-

order linear difference equation for Firm 2:  

 q2
k+1 ! 2q2

k + q2
k!1 = 0   (23)  

for 2,... 1k n= − .  The two boundary conditions are q2
1 = 0  and 

 q2
n = 2

3 1+ !( )+ 1
3 q2

n!1  . (24) 

Equilibrium strategies are constructed by solving this difference equation in closed form.  

A similar approach yields closed form solutions for Type B equilibria.  

 

Proposition 6 (“Quadratic Case”):  Assume r(q) = 1
2 q

2 .  (a) Type A equilibrium with 

n = #S1 = #S2  exists if and only if  

 n !1+ 1
2"

. (25) 

The elements of the equilibrium supports are:   

 q1
k = 2k !1

2n !1
1+ "( )! "   (26) 

 q2
k = 2(k !1)

2n !1
1+ "( )  (27) 

for k =1,...n .  The equilibrium strategies are:  

  ; (28) 

 . (29) 

 (b) Type B equilibrium with n = #S1 = #S2 exists if and only if    

F1(q1
k ) =

2k
2n!1 1+ "( )   for k =1,...n !1

1                for k = n

#
$
%

&%

F2 (q2
k ) = 2k!1

2n!1 (1+ ") ! "
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 n ! 1
2"

. (30) 

The elements of the equilibrium supports are: 

   (31) 

and  

   (32) 

for k =1,...n .  The equilibrium strategies are:  

 ; (33) 

 .  (34) 

 

The number of Type B equilibria is exactly one fewer than Type A equilibria.  

Consequently, the total number of equilibria when  is finite and odd.  The reason 

for fewer Type B equilibria is No Leapfrogging, i.e. Firm 1 must not have an incentive to 

invest efficiently and win the market with probability one.  

Equilibrium choice frequencies for the quadratic case are constructed by 

differencing the equilibrium strategies.  For Type A equilibria:  

 !1
k =

2
2n!1 (1+ ")         for k =1,...n !1

1! 2(n!1)
2n!1 1+ "( )   for k = n

#
$
%

&%
  (35) 

 !2
k =

1
2n!1 (1+ ") ! "      for k =1
2
2n!1 (1+ ")           for k = 2,...n

#
$
%

&%
  (36) 

q1
k = 2(k !1)

2n !1
"

#
$

%

&
' (1! ()

  
q2

k = 2k !1
2n!1

"

#
$

%

&
' 1! (( ) + (

F2 (q2
k ) =

2k
2n!1 1! "( )   for k =1,...n !1

1                 for k = n

#
$
%

&%

F1(q1
k ) = 2k!1

2n!1 (1! ") + "

0Γ >
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for 1,...k n= .  Notice that the frequencies are almost uniform.  The only exceptions 

uniformity for Type A equilibrium is that Firm 1 chooses q1
n =1  and Firm 2 chooses 

q2
1 = 0  with half the frequency of other choices.  Similarly, for Type B equilibria:  

   (37)  

 !1
k =

1
2n!1 (1! ") + "      for k =1
2
2n!1 (1! ")           for k = 2,...n

#
$
%

&%
  (38) 

for .  The departures from uniformity for Type B equilibria are q1
1 = 0  and 

q2
n =1 . 

As , there is a twice-countable infinity of mixed equilibria.  Furthermore, 

as n!" , the equilibrium supports for both firms fill in the unit interval, and the 

asymmetric equilibrium strategies of the two firms converge uniformly to the symmetric 

equilibrium strategy of Proposition 1.  Thus, for small ! > 0 , a discrete mixed strategy 

equilibrium, especially one with maximal n, approximates the continuous mixed strategy 

equilibrium for the symmetric case.  The approximation is closer and closer with higher 

values of n.  This conclusion resolves the quandary posed earlier, because, with selection 

of the maximal n mixed equilibrium, a small initial asymmetry results in only a small 

difference in conduct.  By virtue of this continuity property, a mixed equilibrium seems 

more intuitive than a pure equilibrium when ! > 0  is small. 

 

4.  Purification 

 It might be tempting to dismiss the mixed equilibria as artificial, but that would be 

a mistake.  The main properties of the winner-take-all quality competition model are 

!2
k =

2
2n!1 (1! ")         for k =1,...n !1

1! 2(n!1)
2n!1 1! "( )   for k = n

#
$
%

&%

1,...k n=

0Γ→
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robust to introducing a small amount of incomplete information, and its mixed equilibria 

are limits of outcome distributions of pure equilibria of an appropriate sequence of 

incomplete information models.  The general idea that a mixed equilibrium can be 

“purified” in this way stems from Harsanyi (1973).  The specific purification used here is 

patterned after Bagwell and Wolinsky (2002).5 

 Consider for simplicity the symmetric quadratic model, and extend it to a nearby 

incomplete information model as follows.  The cost of quality improvement for Firm i in 

the extended model is r(q,ti ) = !c(ti )q + 1
2 q

2 , where c(t)  is a continuously decreasing 

function on [0,1]  with c(0) =1  and c(1) = 0 , and δ  is a small positive constant.  Firm i’s 

type it  is an independent draw from a standard uniform distribution, and each firm 

privately learns its type before choosing quality.  In other respects, quality competition is 

the same as before. 

 Bayes-Nash equilibria of the extended model with δ  sufficiently small are 

constructed as follows.  For any positive integer n, let {s1
1,...s1

n} and {s2
1,...s2

n}  be two 

strictly increasing sequences with 2 1ns = , 1
1 0s = , and 2 1

k ks s> , and define quantity 

sequences 

  q̂1
k (t) = s2

k !!c(t)     for k !{1,...n}   (39)  

and 

 q̂2
k (t) = s1

k !!c(t)     for k !{2...n}   (40) 

                                                
5 The reader who needs no further convincing of the merits of mixed equilibria can skip 
to the next section with no loss of continuity. 
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Using these functions, and letting 0
2 0s ≡  and q̂2

1 ! 0 , further define the corresponding 

profit sequences  

 !̂1
k (t1) = 1

2 q̂1
k (t1)

2 ! q̂
2

j (t)dt
s2
j!1

s2
j

!
j=1

k

!      for k !{1,...n}   (41) 

and  

 !̂ 2
k (t2 ) =

0                                    for k =1

1
2 q̂2

k (t2 )
2 ! q̂

1

j!1(t)dt      for k "{2,...n}
s1
j!1

s1
j

#
j=2

k

$

%

&
'

(
'

  (42)  

Now require the si
k  to satisfy the following indifference conditions:    

 !̂1
k (s1

k ) = !̂1
k!1(s1

k )     for k "{2,...n}   (43)  

 !̂ 2
2 (s2

1 ) = 0 ; (44)  

 !̂ 2
k+1(s2

k ) = !̂ 2
k (s2

k )     for k !{2,...n !1}   (45) 

Consider the following are strategies:   

 q1(t) =
q̂1
k (t)

q̂1
n (t)

!
"
#

$#
  if

if
   
s1
k+1 > t % s1

k  and k & 1,...n '1{ }
t % s1

n
  (46) 

 q2 (t) =
0
q̂2
k (t)

  if
if

 
s2
1 ! t

s2
k ! t > s2

k"1 and k # 2,...n{ }
$
%
&

'&
  (47) 

The distribution of outcomes resulting from these strategies converges to the Type A 

equilibrium corresponding to n of the original game as 0δ → .  Furthermore, it follows 

from q̂1
k (t)! s2

k  and q̂2
k (t)! s1

k  that   

 !̂1
k (t1)! 1

2 s2
k( )2

! s2
j ! s2

j!1( )s1j
j=1

k

!      for k !{1,...n}   (48) 



 21 

and   

 !̂ 2
k (t)! 1

2 s1
k( )2 " s1

j " s1
j"1( )s2j"1       for k #{2,...n}

j=2

k

$   (49) 

Therefore, in the limit, the indifference conditions become  

 1
2 s2

k( )2 ! s2
j ! s2

j!1( )s1k
j=1

k

" = 1
2 s2

k!1( )2 ! s2
j ! s2

j!1( )s1k!1
j=1

k!1

"   (50) 

 and   

 1
2 s1

k( )2 ! s1
j ! s1

j!1( )s2j!1 = 0
j=2

k

"   (51) 

for {2,... }k n∈ .  The limiting system of difference equation is solved by  

and , whence  

 q̂1
k ! 2k !1

2n !1
  (52) 

and 

 q̂2
k ! 2(k "1)

2n "1
  (53) 

Furthermore, the probabilities of these outcomes are the same as for the corresponding 

mixed strategy equilibrium. 

It remains to argue that q1(t)  and q2 (t)  are equilibrium strategies of the extended 

game for !  sufficiently small.  First, there exist {s1
1,...s1

n}  and {s2
1,...s2

n}  satisfying the 

requisite conditions.6  Second, Firm 1’s profit function if Firm 2 follows q2 (t)  is   

                                                
6 More specifically, there exists a solution at 0δ = as shown above, and the solution is 
differentiable at 0δ = , implying a nearby solution for δ  sufficiently small. 

s1
k = 2(k !1)

2n !1

s2
k = 2k !1
2n !1
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 !1(q,t1) = s2
1q + max{q ! q̂2

k (t),0}
s2
k!1

s2
k

!
k=2

n

! dt ! r(q,t1)   (54)  

The q̂1
k (t1)  are the local maxima of this function, and !̂1

k (t1)  are the corresponding profit 

levels.  Third, by construction, !̂1
k (s1

k ) = !̂1
k!1(s1

k )  and d!̂1
k (t )
dt > d!̂1

k!1(t )
dt .  It follows that q1(t)  

is a best response.  q2 (t)  is a best response for Firm 2 by a similar argument. 

 In conclusion, the mixed equilibria of the original game approximate the outcome 

distribution of pure equilibria of nearby games of incomplete information.  Indeed the 

mixed strategies can be interpreted as capturing equilibrium beliefs about rivals’ 

investments in quality improvement (Aumann and Brandenburger, 1995).  Thus strategic 

uncertainty and multiplicity of equilibria can be viewed as intrinsic to winner-take-all 

quality competition games, and do not hinge on randomized actions. 

 

5.  Dynamics 

5.1.  Introduction 

 A reasonable criticism is that a static product improvement game is a poor vehicle 

for studying market leadership, and therefore is best for analyzing symmetrically 

positioned firms.  Furthermore, since the symmetric mixed equilibrium is intuitive and 

already well understood, an enumeration of additional less intuitive asymmetric mixed 

equilibria adds little to useful economic understanding.  The static asymmetric product 

improvement game, however, lays a foundation for a dynamic game in which two rivals 

have symmetric opportunities for quality improvement at each investment date, and in 

which leadership evolves over time.  I demonstrate below that various equilibria of the 

static game have close analogs in nearby dynamic models. 



 23 

 

5.2.  Model 

 Consider the following dynamic model that builds on the static product 

improvement model.  Product improvements are made by each of two firms at an infinite 

sequence of dates ! = 1,…∞.  For simplicity, the cost of quality improvement at any date 

is taken to be quadratic, i.e. ! ! = !
!!
!.   Future profits are discounted by a factor of !, 

and quality improvements depreciate each period by a factor of !.  At the start of each 

date, the state of the market is defined as the identity of the leader and the length of lead 

!, and Markov perfect equilibrium is the solution concept. 

The discount and depreciation factors are the key dynamic elements of the model. 

! might be interpreted as indicating the length of the innovation cycle, and ! as 

indicating the degree of intellectual property protection or the degree to which 

improvements become obsolete.  In order to emphasize comparisons with the one-shot 

product improvement model, I focus mostly on markets for which ! and ! are small, e.g. 

innovation cycles are long and intellectual property protection is weak.  

It is useful at the start to consider the benchmark of a “perpetual monopoly” 

starting with a quality ! ≥ 0 at some initial date.7   An investment of ! ! = !
!!
! at some 

initial date yields a sequence of returns {!, !", !!!,… . } with a present discounted value 

of !
!!!".  Therefore, the value of an optimal investment in any period is  

 M (!" ) !maxq"0 1
1#!" q # r(q){ } ! 1

2(1#!" )2
  (55) 

                                                
7 The maintained implicit assumption is that there is a competitively supplied alternative 
whose value is normalized to zero each period.  In particular, the depreciation of quality 
can be interpreted to mean that the competitive market imitates quality improvements at 
rate !.    
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Since a perpetual monopolist has the opportunity to make this profit-maximizing 

investment each and every period, the value of the perpetual monopoly with initial 

quality Γ is 

   !
1"!"

+ M (!" )
1"!

# !
1"!"

+ 1
2(1"! )(1"!" )2

  (56) 

Note that, as, ! ! 0  the value of a perpetual monopoly converges to ! + 1
2 , thus tracking 

Type A pure equilibrium of the one-shot model.  The above formula also shows how 

discounting and depreciation have distinct effects on the returns from quality 

improvement.  The two dynamic elements interact multiplicatively, however, to 

determine the evolution the market.  Profit-maximizing quality improves by !
!!!" each 

period, and total quality converges over time to !"
(!!!")!

.  If ! < !"
(!!!")!

 initially, then total 

quality grows over time, reaching !"
(!!!")!

 asymptotically.  Conversely, if ! > !"
(!!!")!

 then 

the asymptote is approached from above.     

I now return to the dynamic duopoly game.  I examine below three different kinds 

of equilibria, focusing on models appropriately close to the one-shot product 

improvement model.  My purpose is to show that the multiple equilibria of the one-shot 

model have close analogs in the dynamic model.  The possible equilibrium outcomes I 

consider are market dominance by one of the firms, alternating leadership in which the 

duopolists share the market dynamically, and stochastic leadership due to strategic 

uncertainty as firms over quality improvements. 
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5.3.  Market Dominance   

An economics literature on technology adoption in dynamic Bertrand models 

examines conditions such that Markov perfect equilibria feature market dominance or 

leapfrogging along the equilibrium path (Riordan and Salant, 1994; Giovannetti, 2001; 

Iskhahov, Rust, and Schjerning, 2013).  These models assume that state-of-the-art 

production technology evolves exogenously, and focus on the incentives of the market 

leader and laggard to incur the fixed costs of adopting the state-of-the-art technology.  

My analysis of dynamic product improvement similarly examines conditions for market 

dominance and leapfrogging, but my model is different because the state-of-the-art 

evolves endogenously depending on how firms invest over time. 

First, I consider the conditions for a duopoly equilibrium in which only the market 

leader invests in quality improvement.  Suppose that Firm 1 has an arbitrary initial 

advantage ! " 0 .  In the equilibrium characterized below, the initial leader is effectively 

a perpetual monopolist along the equilibrium path, investing a constant amount 

independent of the length of the lead, while the lagging firm invests 0. Since a perpetual 

monopoly is more profitable, the laggard must be sufficiently myopic to acquiesce, which 

means !  cannot be too large. 

 

Proposition 7 (“Market Dominance”):  If ! " 1
2  in the dynamic game, then there is an 

equilibrium such that the leader invests 1
1!!"

 and the laggard invests 0 for subgames 

with , and the firms play a symmetric mixed strategy for subgames with ! = 0 . 

 

Proof:  See Appendix B.  

! > 0



 26 

 

The result establishes that the pure equilibrium of the one-shot game in which the 

leader wins approximates conduct in the dynamic market dominance equilibrium if firms 

are sufficiently myopic or quality leadership is sufficiently transitory.  Indeed, as ! ! 0  

or ! ! 0 , equilibrium conduct is the same as the Type A pure equilibrium on the static 

model.  Note that the existence result is independent of the depreciation factor !.   

The market dominance equilibrium fails, however, if the initial quality advantage 

is small and the discount factor is sufficiently above !!.  The reason is that the laggard 

wants to displace the leader as a perpetual monopolist.  A lower discount factor controls 

this incentive to leapfrog by reducing the value of the perpetual monopoly.  The 

condition on !  can be interpreted to mean that market dominance equilibrium exists if 

the innovation cycle is sufficiently long, so the returns to an overtaking laggard are 

pushed forward into the future.  

 

5.4.  Alternating Leadership 

Next, I consider the possibility of an equilibrium in which the two firms alternate 

winning the market.  That is, in each period, the lagging firm captures the market, and 

thus over time the two firms share the market.  I refer to the firm that is about to overtake 

the lead as the “current laggard” and to its rival as the “current leader”. 

In the equilibrium described below, the depreciation factor (! ) must be 

sufficiently low value of keeps the market lead from becoming so long that the leader 

necessarily is dominant.   As long as the lead length stays within bounds, the current 

laggard retains an incentive to invest sufficiently more than the current leader to overtake 
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the lead.  Consequently, the two firms comfortably share the market over time, taking 

turns at winning the market.     

 Equilibrium encompasses a description of actions for all subgames, including 

those never reached on the equilibrium path.  The alternating leadership equilibrium 

proscribes that, should an excessively long lead occur out of equilibrium, say by some 

accident, the current laggard would adopt a simple “wait it out” strategy, allowing the 

leader’s quality advantage to depreciate until it is again profitable for the laggard to 

resume positive investments in product improvement.  Thus, while leadership alternates 

strictly on the equilibrium path, there might be short periods of market dominance at out-

of-equilibrium subgames, the brevity of which depends the length of the accidental lead 

and on the speed at which the leaders’ advantage depreciates. 

 

Proposition 8 (“Alternating Leadership”):  If !  is sufficiently small in the dynamic 

game, then there is an equilibrium such that, for some critical !̂ > 0 : (a) the current 

leader invests !"
!!!!!!

 and the current laggard invests !
!!!!!!

 for all subgames with 

0 < ! " !̂ ; (b) the current leader invests !
!!!!!!

 and the laggard invests 0 for all subgames 

with ! > !̂ ; (c) Firm 1 invests !
!!!!!!

 and Firm 2 invests invests !"
!!!!!!

 for the ! = 0  

subgame.  

 

Proof:  See Appendix B.  
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 Alternating leadership equilibrium has the interesting property that the firms 

invest in product even during the period when they do not make any sales.  This is 

because the investments have a future return.  This result addresses the concern expressed 

by Gabszewicz and Thisse (1979) for a one-shot Bertrand model that a lagging firm has 

no reason to participate in a winner-take-all market other than provide price discipline.   

In the alternating leadership equilibrium of the dynamic model, both leader and laggard 

each period invest with an eye toward future returns to leadership. 

 

5.5.  Stochastic Leadership 
 

There also exist mixed strategy equilibria in the dynamic model in which market 

leadership evolves stochastically as the rivals play mixed strategies.  This is clear for 

myopic dynamic model.  If  and,  then the rival firms are myopic but begin 

each period in asymmetric positions.  In this case, each subgame of the dynamic model 

inherits the multiple of equilibria of the static model, and the market evolves in various 

alternative ways depending on the period-by-period realization of  and equilibrium 

selection.8  If !  is sufficiently large, then eventually ! > 0 , at which point the market 

leader becomes a perpetual monopolist, but the there many possible equilibrium paths to 

the market dominance outcome.  While it is reasonable to expect that similar multiplicity 

of equilibria and variety of leadership dynamics also exist for sufficiently small ! > 0 , a 

full consideration of the equilibrium set for the non-myopic model is complex and 

                                                
8 Alternatively, if ! = 0 and , then both firms care about the future but cannot 
influence it, and begin each period in a symmetric position.  In this case, repetitions of 
the symmetric mixed strategy equilibrium of the one-shot game results in a stationary 
distribution of market outcomes, although many asymmetric industry evolutions are 
possible depending on equilibrium outcomes. 

! = 0 ! > 0

!

! > 0
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beyond the scope of this paper.  Instead, I consider binary mixed strategies for the 

dynamic model that are close analogs of the binary Type A equilibrium strategies of the 

one-shot model when both !  and !  are small.9  

For simplicity, I restrict attention to the case of ! sufficiently small that it is 

unprofitable for even a perpetual monopolist to maintain ! ≥ !
!
.   To be more precise, if 

the monopolist invests q, then the market evolves according to  

 
!! = !(! + !). 

 
Therefore to maintain ! = !

!
, investment must be at least equal to  

 

! =
1− !
2!  

in which case steady state profits are  
 

1
2! −

1
2
1− !
2!

!

=
1
2! 1−

(1− !)!

4!  

The value function for this strategy is negative if !  sufficiently small.  Under such 

conditions, obviously it also would be unprofitable for a duopolist to maintain a lead of 

! ≥ !
!
  that foreclosed its rival.  Consequently, if !  and ! are sufficiently small, ! 

remains remains within the bounds required for equilibrium binary mixed actions.     

The next proposition takes a straightforward comparative dynamics approach to 

examining equilibrium binary mixed actions in the neighborhood of the myopic case (

! = 0 ).  To interpret the proposition, it is helpful to keep in mind that the myopic case 

has the leader investing q1
1 > 0  with probability !1

1  and q1
2 =1> q1

1  otherwise, and the 

                                                
9 While I only consider binary mixed strategy equilibrium, it is an eminently reasonable 
conjecture that similar analyses would demonstrate discrete mixed equilibria with an 
arbitrary number points of support for !  and !  sufficiently small. 
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laggard investing q2
2 <1  with probability !2

2  and q2
1 = 0 < q2

2  otherwise.  The proposition 

shows the departures from this benchmark for infinitesimally positive ! .       

 

Proposition 9:  Assume !  and ! are sufficiently small that there exists an equilibrium in 

which firms play binary mixed strategies for all reached ! .10  In the neighborhood of 

! = 0 , the equilibrium strategies depart from the Type A equilibrium binary mixed 

strategies of the one-shot game according to  
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Proof:  See Appendix B.      

 

How do equilibrium strategies depart from the one-shot binary equilibrium 

strategies when  and ! are small?  Evaluating proposition’s result at ! = 0  gives  

                                                
10 This simplifying assumption avoids the need explicitly to consider equilibrium actions 
at unreached subgames.  See Proposition 8 for details on how a complete equilibrium 
strategy might be constructed for !  and !  sufficiently small by specifying a “wait it out” 
strategy for the current laggard at out-of-equilibrium subgames with excessively long 
leads,  

!



 31 

 

dq1
2

dq1
1

dq2
2

dq2
1

d!1
1

d! 2
2

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
( =0,) =0

=

0
1
9

1
9

0
1
9

* 1
9

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

d(   (58) 

Thus caring only slightly about the future leads Firm 1 to choose a higher value of q1
1  

with higher probability, and leads Firm 2 to choose a higher value of q2
2  with lower 

probability.  Thus there is not a clear interpretation about whether a small degree of 

foresightedness makes the rivals more or less aggressive. 

How does a slightly higher value of !  affect these conclusions?  Taking 

derivative the strategy components again with respect to ! , evaluated at ! = 0  and 

holding !  constant, gives  
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Thus slightly higher !  clearly causes Firm 1 to be more aggressive, while the 

interpretation of Firm 2’s response is muddy. 
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6.  Conclusion  

An iconic winner-take-all duopoly product improvement game has multiple 

equilibria.  These include pure equilibria in which one or the other firm and invests and 

wins the market, and, if firms are symmetric ex ante, both a symmetric mixed equilibrium 

and a twice-countable infinity of asymmetric discrete mixed equilibria.  If one of the 

firms has an ex ante advantage, then the symmetric equilibrium vanishes and the number 

of asymmetric equilibria is pruned, but, unless the initial asymmetry is large, asymmetric 

mixed equilibria still exist.  For a small asymmetry, a mixed equilbrium arguably is more 

intuitive then is a pure equilibrium.  Furthermore, the mixed equilbria are approximations 

of pure equilibria for nearby games of incomplete information, and therefore cannot be 

dismissed easily as artificial.  Finally, the multiple equilibria of the one-shot product 

improvement game have close analogs in nearby dynamic product improvement games in 

which firms have repeated opportunities for product improvement.   

Previous analyses of vertical product differentiation usually assume sufficient 

consumer heterogeneity to support a pure equilibrium in a two stage game with 

simultaneous quality choice followed by Bertrand-Nash price competition (e.g. Choi and 

Shin, 1992; Motta, 1993, Shaked and Sutton, 1982, Tirole, 1988; Wauthy, 1996).   When 

consumer heterogeneity is limited, however, price competition a winner-take-all 

character (Gabszewicz and Thisse, 1979; Wauthy, 1996), and, assuming a convex 

increasing fixed cost of quality improvement therefore have multiple mixed equilibria as 

in the the case of homogeneous consumers.  Furthermore, it seems a reasonable 

conjecture that multiple equilibria similarly exist when consumer heterogeneity is 
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sufficient to support contemporaneous market sharing.11  Exploring the range of 

equilibria under broader assumptions about consumer heterogeneity is a promising topic 

for future research.  

Simultaneous entry models in which firms make a simple in-or-out decision are 

known to have multiple equilibria with different welfare consequences (Cabral, 2004; 

Dixit and Shapiro, 1986; Vettas, 2000).  The model studied here might be reinterpreted as 

a richer entry model in which firms choose quality as part of the entry decision, i.e. 

quality is an endogenous sunk cost of entry (Sutton, 1991).  The interesting implication 

from my results is that equilibria of entry games proliferate with the richer action space if 

potential entrants are not too different initially.  Analysis of entry models in which 

product selection is part of the entry decision is a tantalizing topic for further research.12   

Finally, multiple equilibria create problems for economic policy, because of the 

accompanying difficulty in predicting policy outcomes. Economic regulation might play 

a role of eliminating unwanted equilibria.  For example, Gilbert and Riordan (2003, 

2007) show how access regulation can reduce the number of equilibria in a quality 

                                                
11 Wang and Yang (2001) studied mixed equilibria for a model with costless quality, and 
sufficient consumer heterogeneity that both firms remain active.  Due to the different 
modeling assumptions, the mixed equilibria studied by Wang and Yang (2001) have a 
different character from those studied here.  In particular, the assumption of an 
endogenous fixed cost of quality is critical for my results. 
 
12 Sound theory on this topic could provide a basis extending empirical entry models that 
typically postulate a simple in-or-out action set.  Attention usually is restricted to pure 
strategies, allowing inference about underlying profit functions from the number of firms 
entering the market (e.g. Bresnahan and Reiss, 1991; Berry, 1992).  Recent research 
allows for mixed strategies, trying to draw inferences about equilibrium selection 
probabilities from the empirical frequency of different entry outcomes (Berry and Tamer, 
2006).  The inference problem seems more difficult when endogenous quality 
substantially increases the number of mixed equilibria under consideration. 
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investment model, while Besanko, Doraszelski, and Kryukov (2012) examine how rules 

against predation can eliminate bad equilibria.  
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Appendix A:  Winner-take-all market 

 

The following demand model exemplifies how limited consumer heterogeneity 

results in a winner-take-all market.  A type ! consumer enjoys net utility 1+ ! ! − ! 

from consuming a good of quality q purchased at price p, and the population of 

consumers is distributed exponentially, i.e. !  ~  ! !   ≡   1− !!!"   . 

There are two firms, indexed !   ∈ {1,2}, with given qualities !! > !!, who set 

prices !! in Bertrand-Nash equilibrium.  At an interior solution, such that the firms share 

the market, the marginal consumer is  

 !̂ = p1 ! p2
q1 ! q2

!1 . (60) 

Firm 1 maximizes  !!!!!! and has a dominant strategy  

 p1 =
q1 ! q2
!

.  (61) 

Firm 2 maximizes  !![1−   !!!!] and sets a price satisfying the first-order condition  

 1! e!!"̂"# $% !
!p2
q1 ! q2

e!!"̂   (62) 

and the second-order condition  

 !2!
q1 ! q2

! ! 2p2
(q1 ! q2 )

2

"

#
$

%

&
'e

!!"̂ < 0 .  (63) 

At !! = 0 the left-hand-side of Firm 2’s first-order-condition is equal to 

1− !!(!!!), which is positive if  ! < 1. Therefore, !! > 0 is a best response if ! < 1, 

and the two firms share the market.  If ! ≥ 1, then an interior solution fails to exist.  The 

equilibrium is a corner solution, in which Firm 1 sets !! = !! − !!, Firm 2 sets !! = 0, 

and Firm 1 wins the entire market. 
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Appendix B:  Proofs 

 

Proof of Lemma 1 (Local Optimality):  This follows from necessary conditions for 

optimality.  Let Fi
+ (q) = lim

!q!q
F ( !q)  and Fi

! (q) = lim
!q!q
F ( !q) .  In equilibrium, a necessary 

condition for 1 1q S=  is 2 1 1 2 1( ) '( ) ( )F q r q F q+ −+Γ ≤ ≤ +Γ ; otherwise, Firm 1 could increase 

its expected profit by choosing a slightly lower or higher quality.  This local optimality 

condition implies 2 1 1( ) '( )F q r q+Γ =  for 1 1q S∈ , because ( )iF q  is increasing and 

( ) ( ) ( )i i iF q F q F q+ −≥ ≥ .  Similarly, 1 2 2 1 2( ) '( ) ( )F q r q F q+ −−Γ ≤ ≤ −Γ  for 2 2q S=  implies 

1 2 2( ) '( )F q r q−Γ =  for 2 2q S∈ .  ¢ 

 

Proof of Proposition 3 (Discreteness):  Assume 0Γ > .  Lemmas 2-4 below establish that 

equilibrium 1S  and 2S  are discrete sets, and Lemma 5 establishes that 1S  and 2S  have 

the same cardinality.  Therefore the supports of equilibrium strategies are S1 ={q1
1,...q1

n} 

and S2 ={q2
1,...q2

n}, for some positive integer n.  Moreover, without loss of generality, the 

elements of these sets are strictly monotone, i.e. qi
k < qi

k+1  for k =1,...n +1.  Lemmas 6 

establishes that in equilibrium consumers are never indifferent between the two products, 

and Lemmas 7-8 establish the Zipper Principle and boundary conditions.  ¢ 

 

Lemma 2: Either 1q  is a discrete element of 1S , or 2q  is a discrete element of 2S . 
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Proof of Lemma 2:  Suppose to the contrary that there exists q ' < q1  and q '' < q2  such that 

[q ',q1]! S1  and [q '',q2 ]! S2 .  Local Optimality for Firm 1 requires F2 (q2 ) = r '(q2 ! ")  

for q2 ![q '+ ",q1 + ")# S2 .  Moreover, q1 + ! "S2  because S2  is closed, and q1 + ! " q2  

by the definition of q2 .  Similarly, Local Optimality for Firm 2 requires 

F1(q1) = r '(q1 + !)  for q1 ![q ''" #,q2 " #)$ S1 , and q2 ! " # S1 .  Therefore q1 + ! " q2 .  

Summarizing, if [q ',q1]! S1  for q ' < q 1 , and [q '',q2 ]! S2  for  

q '' < q2 , then q1 + ! = q2 .  Furthermore, F2 (q2 ) = F2 (q1 + !) " r '(q1)  and  

F1(q1) = F1(q2 ! ") # r '(q2 ) .          

It must also be that q2 = q* .  Clearly q2 ! q* , or otherwise Firm 2 could 

profitably deviate to q2 = q* .  But then 1= F1(q1) ! r '(q2 ) ! r '(q*) = 1  implies q2 = q*  

and q1 = q*!" .  But then Firm 1 could increase its profit by deviating to q1 = q* , a 

contradiction.  ¢ 

 

Lemma 3:  If q1 is a discrete element of 1S , then 2q  is a discrete element of 2S .  The 

converse is also true. 

Proof of Lemma 3:  Suppose to the contrary that q1  is a discrete element of 1S , and  

[q '',q2 ]! S2  for q '' < q2 .  Local Optimality for Firm 2 implies F1(q1) = r '(q1 + !)  for 

q1 ![q ''" #,q2 " #) .  Furthermore, q2 ! " #S1  because S1  is closed, and 

F1(q1) > F1(q2 ! ")  because q1  is discrete.  Finally, local optimality requires q1 = q* .  

Firm 1 could increase its profit by deviating form q2 ! "  to q* , contradicting the 

definition of equilibrium.     
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The converse follows from a similar proof by contradiction.  Suppose that q2 is a 

discrete element of 2S , and [q ',q1]! S1  for q ' < q1 .  Firm 1’s indifference condition 

implies [q '+ !,q1 + !]" S2 , F2 (q2 ) > F2 (q1 + !)  by discreteness of q2 , and Firm 2’s local 

optimality condition requires q2 = q* > q1 + ! .  It follows that Firm 1 could increase its 

profit by deviating from q2 ! "  to q* , i.e.   

 ! 2 (q*)"! 2 (q1 + #) = [q*"r(q*)]" [q1 + # " r(q1 + #)]> 0 .  (64)     

¢ 

 

Lemma 4:  Neither S1  nor S2  contain an open interval. 

Proof of Lemma 4:  Suppose to the contrary that [q ',q '']! S1  and [q '',q1]! S1  is discrete 

for q ' < q '' .  Local Optimality for Firm 1 and a change of variables imply 

F2 (q2 ) = r '(q2 ! ")  for q2 ![q '+ ",q ''+ "]# S2 .  Furthermore, [q '+ !,q ''+ !]" S2  also is 

discrete.  Otherwise, [q '''+ !,q '''+ ! + ! ]" S2  for some q ''' > q ''  and ! > 0 , and Local 

Optimality for Firm 2 implies [q ''',q '''+ ! ]! S1 , which contradicts the supposition that 

[q '',q1]! S1  is discrete.  Therefore S1  does not contain an open interval.  If S1  does not 

contain an open interval, then neither does S2  by Indifference.  ¢ 

 

Lemma 5: #S1 = #S 2 . 

Proof of Lemma 5:  If #S1 > #S2 , then F2 (q1 + !) = F2 (q1 '+ !)  for some q1,q1 '!S1 , 

q1 ! q1 ' , in which case r '(q1) ! r '(q1 ')  violates Local Optimality.  ¢ 
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Lemma 6: If q1 !S1  and q2 !S2 , then q1 + ! " q2 . 

Proof of Lemma 6:  Suppose to the contrary that q1 + ! = q2  and F2 (q1 + !) = r '(q1) .  If  

q1 > 0 , then S2  discrete implies F2 (q1 + ! " ! ) < r '(q1 ! ! )  for ! > 0  sufficiently small, 

and Firm 1 could increase its profit by investing slightly less.  If q1 = 0 , then 

0 = F1(q2 ! ") < r(q2 )  violates Local Optimality.  ¢ 

 

Lemma 7 (“Zipper Principle”): Either q1
k + ! > q2

k  for k =1,...n , or q1
k + ! < q2

k  for 

k =1,...n . 

Proof of Lemma 7:  q1
k+1 + ! > q2

l+1 > q2
l > q1

k + !  or q2
l+1 ! " > q1

k+1 > q1
k > q2

l ! "  violates 

Local Optimality.  ¢ 

 

Lemma 8:  Either q1
n =1  and q2

1 = 0 , or q1
1 = 0  and q2

n =1 . 

Proof of Lemma 8:  There are two kinds of equilibria by the Zipper Principle.  If 

q1
k + ! > q2

k  for k =1,...n , then F2 (q1
n + !) =1 and Local Optimality require q1

n =1 .  

Similarly, F1(q2
1 ! ") = 0  requires q2

1 = 0 .  A converse argument applies if 

q2
l+1 ! " > q1

k+1 > q1
k > q2

l ! " .  ¢ 

 

Proof of Proposition 6:  (a) Solving recursively, and using , 

gives .  Therefore, the second boundary condition becomes  

   (65) 

q2
k+1 ! 2q2

k + q2
k!1 = 0 q2

1 = 0

q2
k = (k !1)q2

2

q2
2 = 2(1+ !)

2n !1
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and the solution for  is  

 .  (66) 

Obviously this is an increasing sequence.  Moreover,  

   (67) 

  
satisfies  for all .  Applying these results,  for 

 implies  

 .  (68)  

Therefore,  requires  

   (69) 

i.e. for , n must be sufficiently small.  This same condition also implies . 

Local Optimality determines the equilibrium strategies from the equilibrium supports. 

(b) Applying Proposition 5(b) to the quadratic case, a Type B mixed equilibrium 

with n points of support must satisfy the following conditions:  

   (70) 

and  

   (71) 

for , , and .  The difference equations simplify to  

   (72) 

and  

3,...k n=

q2
k = (k !1) 2(1+ ")

2n !1
#

$
%

&

'
(

q2
k = (k !1) 2(1+ ")

2n !1
#

$
%

&

'
(

q2
n <1+ ! n ! 2 ( )11

1 2 22
k k kq q q++Γ = +

1,... 1k n= −

q1
1 = 1+ !
2n "1

" !

q1
1 ! 0

n !1+ 1
2"

0Γ > q2
n !1

q2
k (q2

k ! " ! q1
k )+ q2

k!1(q1
k ! q2

k!1 + ") = 1
2 (q2

k )2 ! 1
2 (q2

k!1)2

  q1
k (q1

k + ! " q2
k"1)+ q1

k"1(q2
k"1 " ! " q1

k"1) = 1
2 (q1

k )2 " 1
2 (q1

k"1)2

2,...k n= 1
1 0q = q2

n =1

  
q1

k!1 + " = 1
2 q2

k + q2
k!1( )
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   (73) 

for .  Solving these difference equations gives:  

   (74) 

and  

   (75) 

for .  Notice that the solution automatically satisfies the necessary conditions 

.   

Additionally, the Type B equilibrium must satisfy No-Leapfrogging.  In the 

quadratic case, this condition is  

   (76) 

Substituting the solution, No Leapfrogging requires:  

   (77) 

or   

  . (78) 

¢ 

 

Proof of Proposition 7:  The market dominance equilibrium requires the current laggard 

to lack any incentive ever to leapfrog the leader.  Suppose the laggard optimistically 

  
q2

k ! " = 1
2 q1

k + q1
k!1( )

k = 2,...n

q1
k = 2(k !1)

2n !1
"

#
$

%

&
' (1! ()

  
q2

k = 2k !1
2n!1

"

#
$

%

&
' 1! (( ) + (

k =1,...n

q2
k ! " > q1

k

! + (q2
k ! q2

k!1)q1
k

k=2

n! " 1
2

! + (1" !)2 4
2n!1( )2

k
k=1

n!1"#
$%

&
'(
) 1
2

  
n ! 1

2"
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believes he can gain a perpetual monopoly by choosing q = ! + 1
1"!"

 in the first period 

to “match” the quality of the incumbent.  Then the entrant expects a value of  

 ! 1
2

" + 1
1!!"

#
$%

&
'(

2

+ !M (!" )
1!!

= ! 1
2

" + 1
1!!"

#
$%

&
'(

2

+ !
2(1!! )(1!!" )2

  (79) 

which is negative if   
 

 ! > !
(1"! )(1"!" )2

" 1
1"!"

# 1
1"!"

!
1"!"

"1
$

%
&

'

(
)   (80) 

Therefore, the laggard’s optimistic overtaking strategy is unprofitable for any Γ > 0 if 

δ ≤ !
!.   

 Next consider a subgame with! = 0 .  I construct a symmetric mixed strategy in in 

which each firm chooses a quality less than or equal to ! ∈ [0, !] with a smooth 

cumulative probability ! ! .  Assuming the lower bound of the support of ! !  is 0, the 

profit of the firm from choosing ! ∈ [0, !] is  

 ! (q) ! q"z
1""# + "

1"" M ("# )#$ %&dF(z)" r(q)0

q

'   (81) 

and the equilibrium indifference condition requires   

 π! q ≡ ! !
!!!" +

!
!!!M δγ F! q − q = 0 (82) 

The first-order linear difference equation is rewritten as  

 F! q + !!!
!(!!!")! !" F q = !!!

!! !" ! (83) 

with a solution  

 F q = 1− δγ q+ !
! !!! e!

!(!!!)(!!!")
! ! − 1    (84) 



 44 

for ! ∈ [0, !] with ! ! = 1.  Since ! > !
!!!" if ! > 0, neither firm has an incentive to 

choose a higher quality.  ¢ 

 

Proof of Proposition 8:  Suppose the current laggard invests !
!!!!!!

, and the current leader 

invests !"
!!!!!!

.  First, these actions are interior optima given alternating leadership.  The 

difference between the two actions is !
!!!"

, so the laggard overtakes a current lead of Γ if 

!
!!!" ≥ Γ.   Thus these alternating leadership strategies are candidates for equilibrium only 

for those subgames.  Second, the market state evolves according to ! ' = ! ["! + 1
1+"! ] , and  

 !* = !
(1+ ! )(1+"! )

  (85) 

 is the steady state lead although the identity of the leader changes each period.  If 

1
1+!" ! " > "* , then !  declines and asymptotically approaches !* .  If !* > 1

1+!" , then the 

asymptote is approached from below.  Therefore, in the long run, each period the laggard 

overcomes the initial advantage !* . 

 The value functions for these alternating leadership strategies are calculated as 

follows.  First,   

   (86) 

and   

   (87) 

respectively describe the value functions of the current laggard and the current leader 

evaluated at !∗.   Solving these two equations yields closed form expressions  

V ! ("*) = "*

!
! r 1

1!" 2! 2

#
$%

&
'(
+"V + ("*)

V + (!*) = "r #$
1"# 2$ 2

%
&'

(
)*
+#V " (!*)
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 V ! ("*) = 1
1!! 2

"*

"
! r 1

1!! 2" 2

#
$%

&
'(
!!r !"

1!! 2" 2

#
$%

&
'(

)

*
+

,

-
.   (88) 

and 

 V + (! *) = 1
1"! 2 ! !*

"
" r !"

1"! 2" 2

#
$%

&
'(
"!r !"

1"! 2" 2

#
$%

&
'(

)

*
+

,

-
.   (89) 

Both expressions are positive if ! is sufficiently small, and V ! ("*) >V + ("*)  if ! <1 .  

Second, since the quality investments are independent of lead length, and the depreciating 

profits from deviations from the steady state lead length are capitalized, the value 

functions for departures from the steady state are 

 V ! (") =V ! ("*)! 1
1!! 2" 2 (" ! "*)   (90) 

and  

 V + (!) =V + (!*)+ !"
1"! 2" 2 (! " !*)   (91) 

V ! (")  is decreasing in !  and V + (!)  is increasing in ! .   

 If !  were too high, then the current laggard would consider the option of not 

investing, allowing the current leader’s quality advantage to depreciate, and resuming its 

current laggard status next period (assuming ! is sufficiently small).   The value of this 

“wait-it-out” strategy would be V ! (" [# + "$
1!" 2$ 2 ]) .  Note that this function also decreases 

in ! , but at a slower rate than V ! (") .  Consequently, there is a unique intersection.    

Now define !̂  by V ! ("̂) =V ! (!["̂ + !"
1!! 2" 2 ]) .  Since V ! ( 1

1+!" ) < 0  for ! sufficiently 

small, it follows that 1
1+!"

> !̂ > !* .    Since V ! (") < 0  for ! > !̂ ,  an alternating 
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leadership equilibrium is possible only for subgames with ! " !̂ .  For subgames with

! > !̂ , the market dominance actions are specified as equilibrium actions.  These are 

optimal actions given an expected resumption of alternating leadership.  

Subgames with  are never reached in an alternating leadership equilibrium 

if !  initially is not too large and !  is sufficiently small.  For these strategies to form an 

equilibrium, the current leader must have no incentive to deviate to create or maintain a 

lead greater than !̂  and foreclose the rival in the current period and possibly future 

periods.  Such deviations are prohibitively costly if !  is sufficiently small.  The current 

laggard similarly would find it prohibitively costly to defect by enough to foreclose its 

rival in the next period.   

 Finally, it is straightforward that neither firm has anything to gain by defecting to 

! = 0 .  Firm 2 would be disadvantaged by its inferior position in this subgame.  Firm 1 

either would incur an additional cost for no immediate gain and the same position next 

period if it is the current leader, or incur a cost to delay the same profit stream if it’s the 

current laggard. 13 ¢ 

 

Proof of Proposition 9:  The multiple equilibria of the static model carry over 

immediately to the myopic (! = 0) dynamic model.  In a Type A mixed equilibrium with 

, Firm 1 chooses 

   (92) 

                                                
13 Alternatively, similarly to the previous proposition, the firms might play a symmetric 
mixed strategy when ! = 0 .  The ! = 0 subgame is never reached in equilibrium, except 
possibly as an initial condition at the start of the game, so the key element to the proof in 
any case is to show that neither firm is tempted to defect to the ! = 0 subgame. 

! > !̂

n = 2

q1
1 = 1
3
! 2
3
"
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with probability  

   (93)  

and !!! = 1 with the remaining probability, while Firm 2 chooses  

   (94) 

with probability  

   (95) 

and !!! = 0 with remaining probability.    

If firms play equilibrium binary mixed strategies in the myopic dynamic game, 

then the identity of the leader and length of the lead evolves stochastically, with the 

length of the lead staying less than  if  is sufficiently small, and the two firms playing 

the same strategies depending on who is the current leader over and over at all reached 

subgames.  Then the myopic value function for leading firm is  

 V1(!) =
1
18

+ 1
9
! + 4

9
!2   (96) 

while myopic the value function of the laggard is simply !! ! = 0.   For use below, the 

first derivative of !! !  is  

 v1(!) =
1
9
+ 8
9
!   (97) 

 Now for ! > 0, let !(!) denote a differentiable value function for a firm with lead 

! ∈ (− !
!
, !
!
).  Assuming !  and !  are low enough to support the play binary mixed 

actions, and designating Firm 1 the leader, Local Optimality at an interior solution 

requires the following (rearranged) Bellman conditions:   

!1
1 = 2

3
(1+ !)

q2
2 = 2

3
(1+ !)

!2
2 = 2

3
(1+ !)

1
2 !
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 q1
2 =1+!" {#2

1V '(" [! + q1
2 " q2

1 ])+#2
2V '(" [! + q1

2 " q2
2 ])}   (98) 

 q1
1 =!2

1 +"# {!2
1V '(# [! + q1

1 " q2
1 ])+!2

2V '(# [! + q1
1 " q2

2 ])}   (99) 

 q2
2 =!1

1 +"# {!1
1V '(# [!" + q2

2 ! q1
1])+!1

2V '(# [!" + q2
2 ! q1

2 ])}   (100) 

 q2
1 = !" {#1

1V '(" [!" + q2
1 ! q1

1])+#1
2V '(" [!" + q2

1 ! q1
2 ])}   (101) 

 

Indifference requires 

 
!2
1{! + q1

1 " q2
1 +"V (# [! + q1

1 " q2
1 ])}+!2

2{"V (# [! + q1
1 " q2

2 ])}" 1
2 (q1

1)2

=!2
1{! + q1

2 " q2
1 +"V (# [! + q1

2 " q2
1 ])}+!2

2{! + q1
2 " q2

2 +"V (# [! + q1
2 " q2

2 ])}
" 1
2 (q1

2 )2
 (102) 

and 

 
!1
1{"V (# [!" + q2

1 ! q1
1])}+!1

2{"V (# [!" + q2
1 ! q1

2 ])}! 1
2 (q2

1 )2

=!1
1{!" + q2

2 ! q1
1 +"V (# [!" + q2

2 ! q1
1])}+!1

2{"V (# [!" + q2
2 ! q2

1 ])}! 1
2 (q2

2 )2
  (103) 

Given the value function, since !!! ≡ 1− !!! and !!! ≡ 1− !!!, these are six equations in 

six unknowns (q1
2,q1

1,q2
2,q2

1,!1
1,!2

2 ) .   

In general, the value function !(!) is determined by a complicated Bellman 

equation, but is a simple quadratic equation for the ! = 0 limiting case; V (Z ) =V1(Z )  if 

Z ! 0  and V (Z ) = 0  if Z < 0 .   Taking total derivatives of the above six equations, 

treating ! and !  as constants, letting ! → 0, and rearranging gives the following system: 

  

 dq1
2 = ! {"2

1v1(! [! + q1
2 " q2

1 ])+"2
2v1(! [! + q1

2 " q2
2 ])}d#   (104) 

 dq1
1 + d!2

2 = " {!2
1v1(" [! + q1

1 " q2
1 ])}d#   (105) 

 dq2
2 ! d!1

1 = " {!1
1v1(" [!" + q2

2 ! q1
1])}d#   (106) 

 dq2
1 = 0   (107) 
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{!2

1 ! q1
1}dq1

1 + {!2
2}dq2

2 ! {" + q1
1 ! q2

2}d!2
2

= {!2
1V1(" [" + q1

2 ! q2
1 ])+!2

2V1(" [" + q1
2 ! q2

2 ])!!2
1V1(" [" + q1

1 ! q2
1 ])}d#

  (108) 

 
{!1

1}dq1
1 " {!1

1 " q2
2}dq2

2 " {q2
1}dq2

1 " {"# + q2
2 " q1

1}d!1
1

= {!1
1V1($ ["# + q2

2 " q1
1])}d%

  (109) 

Substituting the values of (q1
2,q1

1,q2
2,q2

1,!1
1,!2

2 )  at ! = 0 , substituting for V1  and v1 , and 

solving the system gives the result. ¢ 
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