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Abstract. We show that, in environments with independent private values and
transferable utility, a privately informed principal can solve her mechanism selection
problem by implementing an allocation that is ex-ante optimal for her. No type of
the principal can gain from proposing an alternative mechanism that is incentive-
feasible with any belief that puts probability 0 on types that would strictly lose
from proposing the alternative.

We show that the solution exists in essentially any environment with finite type
spaces, and in any linear-utility environment with continuous type spaces, allowing
for arbitrary disagreement outcomes.

As an application, we consider a bilateral exchange environment (Myerson and
Satterthwaite, 1983) in which the principal is one of the traders. If the property
rights over the good are dispersed among the traders, then the principal will im-
plement an allocation in which she is almost surely better off than if her type is
commonly known. The optimal mechanism is a combination of a participation fee,
a buyout option for the principal, and a resale stage with posted prices and, hence,
is a generalization of the posted price that would optimal if the principal’s valuation
were commonly known.

1. Introduction

The optimal design of contracts and institutions in the presence of privately in-
formed market participants is central to economics, with applications including auc-
tions, procurement, public good provision, organizational contract design, legislative
bargaining, etc.. In many of these models, transferability of utility serves as a con-
venient assumption that makes problems tractable and allows for a clean welfare
analysis. A restriction in much of this theory is that a contract or a mechanism is
either designed by a third party, e.g., a benevolent planner, or is proposed by a party
who has no private information. As such, the theory is not applicable to a large set
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of environments in which contracts or institutions arise endogenously as a choice of
privately informed agents such as in, e.g., collusion, resale, contract renegotiation,
bargaining over arbitration procedures, design of international agreements, etc..

Furthermore, the assumption that the designer does not have private information,
even when it is a benevolent planner, is a tractability-driven simplification. As such, it
is useful to understand under what conditions this assumption is with loss of generality,
whether uncertainty about the designer’s information advances or hinders the design
objectives, and how the qualitative structure of optimal institutions can be affected
by this uncertainty.

In this paper, we consider mechanism design by a privately informed principal in
the most important class of environments in theory and for applications: we assume
that parties have independent private values and payoff functions are quasilinear. The
agents’ uncertainty about the principal’s information transfers the mechanism design
problem into a signaling game in which the value of any mechanism is determined
endogenously given the beliefs and the continuation play assigned in equilibrium. We
show that a privately informed principal can solve her mechanism-selection problem
by implementing an allocation that is ex-ante optimal for her. That is, the allocation
maximizes the principal’s ex-ante expected payoff among all interim incentive-feasible
allocations.

Thus, the issue of the principal’s potential information leakage through the choice
of the mechanism imposes no cost on the principal in terms of the total surplus
she realizes: Even though the principal’s information is realized and the principal’s
preferences over how to distribute the available surplus among her types has changed,
the principal nevertheless implements an allocation that would be optimal for her ex
ante before she learns her type and no surplus is lost as long as the agents are still
uncertain about the principal’s type.

A further implication of the ex-ante optimality result is that in environments in
which the principal learns her type over time she is indifferent between writing an ex-
ante (long-term) contract and offering a (short-term) contract after her information
is realized; this might explain why sometimes we do not observe complete long-term
contracts. Finally, a direct consequence of the result is that the principal cannot
improve her expected payoff by delaying information acquisition until after selection
of a mechanism or by delegating selection of a mechanism to another party.

The ex-ante optimality result is most convenient in environments with continuous
type spaces where, due to incentive compatibility, the ex-ante optimal allocation is
typically unique. The principal then solves her mechanism-selection problem simply
by proposing the ex-ante optimal allocation as a direct mechanism. From a technical
perspective, this connects the informed-principal problem to the standard mechanism
design approach that can be used to characterize ex-ante optimal allocations.

Most prominent in the literature on mechanism design are linear-utility environ-
ments, that is, environments with continuous one-dimensional types in which each
player’s payoff is a linear (precisely: affine) function of her type. We characterize the
ex-ante optimal allocations in linear-utility environments in terms of virtual-surplus
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maximization. Importantly, in contrast to Ledyard and Palfrey (2007), we cover envi-
ronments with arbitrary disagreement outcomes.1 This extension is crucial for many
of the applications mentioned above.

As an example, we consider an application to a bilateral exchange environment in
which each trader is privately informed about her valuation (Myerson and Satterth-
waite (1983)). One of the traders is designated as the principal. We assume that
both traders’ valuation distributions have the same support and satisfy standard reg-
ularity assumptions. We show that if the property rights over the good are dispersed
among the traders, then the principal will implement an allocation in which she is
almost surely better off than if her type is commonly known.2 This contrasts with
the well-known result for the environments with transferable utility considered in
Maskin and Tirole (1990) showing that the principal cannot benefit from the agent’s
uncertainty about her preferences. The ex-ante optimal allocation is unique and can
be implemented via a mechanism that is a combination of a participation fee for the
agent, a buyout option for the principal, and a resale stage with posted prices. It
implements the optimal allocation in three stages: In the first stage, the agent pays
the participation fee and the good is tentatively allocated to the agent. In the second
stage, the principal decides whether to exercise a buyout option, in which case the
good becomes tentatively allocated to the principal. In the third stage, given the
tentative allocation of property rights, the principal makes a take-it-or-leave-it offer
to the agent to sell or buy the good. Observe that the first two stages consolidate
the originally dispersed property rights over the good and allocate them either to the
principal or the agent, determining whether the principal becomes the seller or the
buyer in the third stage.

The optimal mechanism is a generalization of a posted price mechanism that would
be optimal in the environments with the extreme property rights allocation in which
either the principal or the agent own the good (Riley and Zeckhauser 1983, Williams
1987, Yilankaya 1999).

Our characterization results can be easily applied to other environments such as,
e.g., public good provision, multiunit or multigood auctions, collusion, legislative
bargaining and voting, speculative trade, assignment problems, matching with trans-
ferable utility, etc.

An important lesson from the bilateral-trade application is that the ex-ante optimal
mechanism differs from the mechanism the principal would offer if her valuation were
commonly known. She would then find it optimal to simply set a bid price (at which

1Formally, this is equivalent to allowing linear type-dependent disagreement payoffs. Jullien
(2000) analyzes mechanism design with linear and non-linear type-dependent disagreement payoffs,
but in his model there is only one agent and the principal has no private information.

2This environment is equivalent to a partnership dissolution problem (Cramton, Gibbons, and
Klemperer 1987) in which one of the parties selects a dissolution mechanism subject to the approval
of the mechanism by the other party. Cramton, Gibbons, and Klemperer (1987) have focused on
conditions for ex-post efficient implementation. The informed principal, however, will maximize the
expected revenue and will distort the allocation from the efficient one to minimize the information
rents she has to leave to the agent.
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she is willing to buy) and an ask price (at which she is willing to sell). The intuition
for why the principal strictly gains from the privacy of her information is as follows. A
low-valuation principal will set low prices. Hence, when dealing with a low-valuation
principal, many agent-types will get the good. Normalizing disagreement payoffs
to 0, this implies that the agent’s payoff will be increasing over a relatively large
range of her type space, implying that the agent’s participation constraint will be
binding for relatively low agent types. Vice versa, when dealing with a high-valuation
principal, the agent’s participation constraint will be binding for relatively high types.
In summary, the agent’s participation constraint will be binding for different types,
depending on which principal type the agent is dealing with.

In an ex-ante optimal allocation, the agent’s participation (and incentive) con-
straints are only required to hold in expectation over the principal’s types. As a
result, in the ex-ante optimal allocation the principal can extract more rents than if
her valuation is commonly known. In the multi-stage mechanism implementing the
ex-ante optimal allocation, at the moment of accepting the mechanism and paying
the participation fee, the agent is kept in the dark about the principal’s type and is
uncertain whether the principal will exercise her buy-out option. The agent’s partic-
ipation constraint can be violated conditional on a particular type of the principal,
but is satisfied in expectation over the principal’s types.

We justify our focus on ex-ante optimal allocations in three steps. First, follow-
ing Mylovanov and Tröger (forthcoming) we argue that the principal can solve her
mechanism-selection problem by implementing a strongly neologism-proof allocation
if such an allocation exists. Second, we characterize the strongly neologism-proof
allocations in terms of ex-ante optimality under various beliefs about the principal’s
type. Third, we use the characterization to show that a strongly neologism-proof
allocation exists in essentially any environment with finite type spaces, and we show
existence in any linear-utility environment by constructing a sequence of finite-type
approximations.

An allocation is strongly neologism-proof if it is incentive-feasible given the prior
belief about the principal’s type, and if no type of the principal can gain from propos-
ing an alternative allocation that is incentive-feasible given any belief about the prin-
cipal that puts probability 0 on types that would strictly lose from proposing the
alternative (Mylovanov and Tröger (forthcoming)). The following simple argument
from Mylovanov and Tröger (forthcoming) shows that such allocations are consis-
tent with equilibrium play in a non-cooperative mechanism-selection game.3 Con-
sider the principal’s choice between either obtaining the payoff from a given strongly
neologism-proof allocation or proposing any alternative mechanism. Suppose that
some types of the principal propose the alternative mechanism. By Bayesian ra-
tionality, this mechanism implements an allocation that is incentive-feasible given a

3The mechanism-selection game can be formally defined if type spaces are finite, in which case any
finite game form constitutes a feasible mechanism, and this set then includes all direct mechanisms
(cf. Myerson (1983), Maskin and Tirole (1990)); with non-finite type spaces, the game interpretation
is informal. Cf. footnote 14.
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belief that puts probability 0 on the set of types that would strictly lose from propos-
ing the alternative. By definition of strong neologism-proofness, then, no type of the
principal has a strict incentive to propose the alternative.4 Hence, by proposing the
strongly neologism-proof allocation as a direct mechanism the principal can solve her
mechanism-selection problem.5

The second step in our justification of the focus on ex-ante optimal allocations is a
characterization of strongly neologism-proof allocations. All our results are based on
this characterization. Not only does it connect strong neologism-proofness to ex-ante
optimality, it also simplifies the expression of strong neologism-proofness sufficiently
to facilitate the proofs of our existence results. The characterization is as follows. Let
T0 denote the principal’s type space and let Uρ

0 (t0) denote the expected payoff of any
principal type t0 in any allocation ρ. Let p0 be the prior belief about the principal’s
type. An incentive-feasible allocation ρ is strongly neologism-proof if and only if

η(q0) ≤
∫
T0

Uρ
0 (t0)dq0(t0) for all q0 absolutely continuous rel. to p0,(1)

where η(q0) is the principal’s ex-ante optimal payoff given the belief q0 about the
principal, i.e., the maximal expected payoff on the set of allocations that are incentive-
feasible with respect to q0 and prior beliefs about the agents’ types.

This is a rather restrictive condition that requires the principal’s expected payoff
in the allocation corresponding to ρ, when weighed according to q0, to be not less
than the total expected surplus available to the principal if q0 reflects the agents’
belief about the principal, and this condition must hold for all q0 that are absolutely
continuous relative to the prior belief about the principal p0.

Condition (1), with q0 = p0, implies that any strongly neologism-proof allocation
is ex-ante optimal for the principal; i.e., the principal’s expected payoff is equal to
η(p0). In environments with finite type spaces there exists typically a continuum of
ex-ante optimal allocations (because the principal’s incentive constraints do not fully
determine transfers); here, condition (1) pins down exactly which of these allocations
is strongly neologism-proof (cf. Example 2 in Mylovanov and Tröger (forthcoming)).

Condition (1) simplifies the expression of strong neologism-proofness considerably:
instead of having to compare the principal’s payoff in different allocations separately
for each of her types, it is sufficient to consider her ex-ante expected payoff in different
allocations.

4Myerson (1983, Theorem 2) uses a related argument to show that his concept of a strong solution
is consistent with equilibrium play.

5We conjecture that in single-agent finite-type environments every perfect Bayesian equilibrium
of the mechanism-selection game implements a strongly neologism-proof allocation. Consider a
candidate equilibrium allocation that is not strongly neologism-proof. The crucial step is to construct
a mechanism that virtually implements (Abreu and Matsushima 1992) a strongly neologism-proof
allocation for every belief about the principal. Then at least one type of the principal has an
incentive to deviate to this mechanism (cf. Maskin and Tirole (1990), proof of Proposition 7). This
idea extends to multiple-agent environments if one excludes coordinated rejection of off-equilibrium
mechanisms. Coordinated rejection would make every disagreement-outcome-dominating allocation
an equilibrium allocation.
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A useful corollary of the characterization (1) concerns the benchmark standard
mechanism-design environment in which the principal’s type is commonly known.
The principal can solve her mechanism-selection problem by implementing the same
allocation as when her type is commonly known, if and only if this allocation is ex-
ante optimal for all beliefs about the principal’s type that are absolutely continuous
relative to the prior belief.6

The sufficiency of (1) for strong neologism-proofness is immediate from the defini-
tion of strong neologism-proofness. The substantive part of the characterization is the
necessity. The proof of necessity is subtle: the main difficulty is to demonstrate that
if (1) is violated then there exists a dominating allocation that satisfies the incentive
constraints of the principal.

The final step is to show the existence of a strongly neologism-proof allocation. We
begin by showing existence in environments with finite type spaces. We approximate
any such environment by constructing a sequence of outcome spaces with larger and
larger bounds on payments. Because these outcome spaces are compact, a strongly
neologism-proof allocation exists by Mylovanov and Tröger (forthcoming); using the
characterization (1) we extend the existence result to quasi-linear environments with
no bounds no payments. Then we show existence in any linear-utility environment
by constructing a sequence of finite-type approximations and showing that (1) holds
for a suitable weak limit—technically, this is the most involved part of the paper;
it appears to be the first existence result for continuous-type environments in the
informed-principal literature.

In Section 2, we review the related literature. Section 3 provides an example
that illustrates the problem and in particular the role of transferable utility. In
Section 4 we introduce the basic concepts of our model. Section 5 presents the central
characterization of strong neologism-proofness and a number of useful implications.
Section 6 deals with the existence of strongly neologism-proof allocations. In Section 7
we characterize ex-ante optimal in linear-utility environments. This characterization
is applied in Section 8 to a class of bilateral-trade environments. Proof details are
relegated to the Appendix.

2. Literature

Myerson (1983) introduced the problem of mechanism-selection by an informed
principal. He uses an axiomatic approach to define a solution and proves its existence
in any environment with finite type spaces and finite outcome spaces. This excludes
in particular quasilinear environments in which transfers are an essential dimension
of the outcome space. Myerson’s solution, neutral optimum, is always consistent with
sequential equilibrium play in a mechanism-selection game.

6It is well-known that in some environments with transferable utility the principal implements
the same allocation regardless of whether her type is private or commonly known (Maskin and
Tirole 1990). Fleckinger (2007) was the first to observe that there exist independent private value
environments with transferable utility in which the principal can benefit from uncertainty about her
preferences.
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Maskin and Tirole (1990) consider mechanism-selection by an informed principal
in a class of environments with independent private values. They consider single-
agent environments with two possible types of the agent under structural assumptions
about the outcome space and the players’ payoff functions. They define “strongly
unconstrained Pareto optimal” (SUPO) allocations and show that these are consistent
with perfect Bayesian equilibrium play in a mechanism-selection game.7 The focus
of Maskin and Tirole (1990) is on risk-averse players. In their model, if players are
risk-neutral so that utility is fully transferable, the best-separable allocations are
ex-ante optimal so that the principal uses the same mechanism as when her type
is commonly known. The main result is that, with a general choice of risk-averse
payoffs, in the SUPO allocation all types of the principal are strictly better off than
in the best-separable allocation.8

In Mylovanov and Tröger (forthcoming) we define strongly-neologism-proof allo-
cations which generalizes the concept of an SUPO allocation to arbitrary single- or
multi-agent environments with independent private values and finite type spaces (we
allow some interdependence of values). The main result in that paper is that in envi-
ronments with compact outcome spaces a strongly neologism-proof allocation exists
under weak technical assumptions. The existence result, however, does not apply to
the quasilinear environments considered here because the space of transfers is un-
bounded.

The informed-principal problem in environments with independent private values
and transferable utility was considered by a number of authors. Environments in
which a privately informed principal uses the same mechanism as when her infor-
mation is public are analyzed in (Tan 1996, Yilankaya 1999, Balestrieri 2008, Skreta
2009). Our results show that the “irrelevance” results obtained in this literature
are due to the fact that, in these models, the best-separable allocations are ex-ante
optimal. A general class of environments in which this applies are linear-utility envi-
ronments in which the parties’ payoffs, net of disagreement payoffs, are monotonic in
their type for each outcome; in Mylovanov and Tröger (2012), we extend the irrele-
vance result to all linear-utility environments with monotonic payoffs.

The literature on countervailing incentives (see Lewis and Sappington (1989) and
Jullien (2000) and the references therein) considers mechanism-design in environments
in which the participation constraint can be binding for any type of the agent de-
pending on the parameters. If one allows the principal in these models to be privately
informed, then the agent’s participation constraint can be binding for different types
depending on the type of the principal. This suggests that the irrelevance result may
not hold, even when we consider independent private values and transferable utility.
Fleckinger (2007) first provided an example along these lines, in which the ex-post
efficient allocation is incentive-feasible and leaves the principal strictly better off than

7Under additional technical assumptions, using the structure of their environment, Maskin and
Tirole (1990) show that any perfect Bayesian equilibrium yields an SUPO allocation.

8Quesada (2010) provides conditions for equilibrium allocations in Maskin and Tirole (1990) to be
deterministic and shows that their characterization continues to hold in a less restrictive environment.
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the best-separable allocation. Our bilateral-trade application is based on a similar
logic.9

The assumption of independent private values focuses attention on the issue of
signaling the principal’s strategic position and abstracts from other signaling concerns.
Mechanism-selection by an informed principal in environments with common values
was first considered by Maskin and Tirole (1992). Their results imply that a strongly
neologism-proof allocation often does not exist in environments with common values.

A number of recent papers study the informed principal problem in other environ-
ments. In environments with correlated types and a single agent, Cella (2008) shows
that the principal benefits from the privacy of her information and Skreta (2009)
discuses the optimal disclosure policy for the principal. With correlated types and
multiple agents, Severinov (2008) provides a construction that allows the informed
principal to extract the entire surplus. Balkenborg and Makris (2010) look at common
value environments and provide a novel characterization of a solution to the informed
principal problem. Izmalkov and Balestrieri (2012) study the problem of the informed
principal in an environment with horizontally differentiated goods, where the princi-
pal is privately informed about the characteristic of the good. Halac (2012) considers
optimal relational contracts in a repeated setting where the principal has persistent
private information about her outside option. Nishimura (2012) analyzes properties of
scoring procurement auctions in an independent private value environment with mul-
tidimensional quality and a privately informed buyer. An informed principal problem
arises in Francetich and Troyan (2012) who study endogenous collusion agreements
in auctions with interdependent values.

Finally, there exists a separate literature that studies the informed-principal prob-
lem in moral-hazard environments, rather than in adverse-selection environments con-
sidered here (see, for example, Beaudry (1994), Jost (1996), Bond and Gresik (1997),
Mezzetti and Tsoulouhas (2000), Chade and Silvers (2002), and Kaya (2010)).

Application: bilateral exchange. The informed principal problem is well understood in
the environments with extreme allocation of property rights. There, the principal is
either a buyer or a seller and the informed principal implements a collection of posted
prices, conditional on her valuation (Yilankaya 1999). Posted prices also maximize
the ex-ante expected payoff of the principal and are optimal if the principal’s value is
commonly known (Riley and Zeckhauser 1983, Williams 1987). As we show in Section
8, the optimal mechanism for the informed principal is not a posted price and the
principal strictly benefits from keeping her valuation private if the property rights are
not extreme.

Cramton, Gibbons, and Klemperer (1987) have characterized conditions under
which there exists an ex-post efficient allocation in the bilateral-trade environment.10

9In Mylovanov and Tröger (2008) we provide an example of a different kind which is based non-
linearity of payoffs instead of countervailing incentives.

10For the partnership dissolution problem in the environments with interdependent values, see
Fieseler, Kittsteiner, and Moldovanu (2003) and Jehiel and Pauzner (2006).
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The informed principal, however, will not implement the ex-post efficient allocation
because she can extract additional surplus from the agent by distorting the ex-post
efficient allocation.

3. Example

In this section, we provide an example that illustrates the importance of trans-
ferable utility, the conflict of preference between different principal types, and why
concealing the principal’s type might increase the total surplus available to principal
types.

There are a principal (player 0) and an agent (player 1). The parties can choose
one of four actions aH , aD, a′, α, where α arises if they cannot agree on a mechanism.
Each player has one of two possible payoff types, t0 ∈ {H,D} and t1 ∈ {h, d}; the
players’ payoffs are depicted in Table 1. The players get positive utility from actions
aH and aD if the action matches the type and negative utility otherwise. Disagreement
payoffs are normalized to 0. In addition, action a′ gives principal type t0 = H a higher
utility than any other action. The other principal type gets negative utility from this
action, while the agent slightly prefers this action to disagreement.

H D
aH 1 -1
aD -1 1
a′ 1 + ε -1
α 0 0

h d
aH 1 -y
aD -y 1
a′ ε ε
α 0 0

Table 1. Players’ payoffs; y, ε > 0.

All type profiles (t0, t1) are equally likely. After the types are realized and privately
observed, the principal proposes a mechanism, a finite game form with perfect recall,
and the agent decides whether to accept it. If the agent rejects the proposal, the dis-
agreement outcome is realized. The solution concept is Perfect Bayesian equilibrium.

If utility is not transferable, the mechanism-selection game has a separating equi-
librium in which each principal type offers her most preferred action, and this offer
is accepted by the agent unless t1 = h and t0 = D:

• t0 = H → a′, accepted;
• t0 = D → aD, accepted iff t1 = d.

Note that this allocation would also be an equilibrium allocation if the principal’s type
were common knowledge. Furthermore, this is the unique equilibrium allocation. This
is implied by the fact that principal type H can always offer action a′ and this offer
will be accepted by the agent.

Per Inscrutability Principle of Myerson (1983), this allocation can be implemented
in a pooling equilibrium in which both types of the principal offer the following direct
mechanism:

• (H, h), (H, d)→ a′;
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• (D, d)→ aD, (D, h)→ α.

Clearly, this mechanism satisfies the incentive constraints for all players and will
be accepted by the agent. The equilibrium can be supported by multiple off-path
beliefs; perhaps, the easiest construction is to assign the agent’s belief t0 = D to each
alternative mechanism.

Nevertheless, if y < 1 and ε < 1/2, the equilibrium allocation does not maximize
the ex-ante expected payoff of the principal and would not be implemented by the
principal if she were to make her choice of a mechanism before learning her type. The
allocation is dominated by the following incentive-feasible allocation:

• H → aH ;
• D → aD.

(The principal’s equilibrium expected payoff is 1
2
(1 + ε) + 1

4
, whereas the principal’s

payoff given this allocation is 1.) Thus, in the environment without transferable
utility, realization of private information of the principal changes the choice of the
mechanism and destroys some of the expected surplus available to the principal.
In equilibrium, optimal behavior of type H requires implementing action a′, which,
however, imposes a negative externality on the ability of the other type to implement
action aD by limiting the amount of surplus left to the agent.

Let us now consider the environment in which the mechanism can execute utility
transfers between the players. As a benchmark, assume that the principal’s type is
commonly known. In the optimal mechanism in this environment,

• principal type H gets 3
2

+ ε by choosing actions aH if t1 = h and a′ otherwise
and charging the agent, correspondingly, 1 and ε;
• whereas principal type D gets 1 by choosing actions aD and charging the agent

1 if t1 = d and implementing α otherwise.

In this mechanism, H implements the allocation that maximizes the total surplus
conditional on her type, and extracts the entire surplus from the agent. By contrast,
type D of the principal leaves some surplus on the table whenever t1 = H by choosing
the disagreement action α rather than action aD that would generate the total surplus
of 1− y > 0. This is optimal for type D because of the agent’s incentive constraints;
implementing action aD would decrease the price that can be charged to the agent to
y, giving the principal the payoff of 1− y < 1.

This amount of surplus left on the table in this environment can be picked up by
the principal if her type is not known to the agent. The following direct mechanism is
incentive-feasible, maximizes the total surplus of the parties, and allows the principal
to extract the entire surplus from the agent (we assume that y + ε < 1

2
):

• (H, h) → aH , (H, d) → a′, and the agent is charged his surplus from the
action, 1 and ε respectively,
• (D, d), (D, h) → aD and the agent is charged his surplus from the action, 1

and −y respectively.

In this allocation, the agent’s incentive constraints are strictly satisfied conditional
on principal type H; this allows the other type of the principal to extract additional



MECHANISM DESIGN BY AN INFORMED PRINCIPAL 11

H D
aH 1

2
2

aD 2− y
a′ 1

2
(1 + 2ε)

α 0 0

h d
aH 0
aD 0 0
a′ 0
α 0 0

Table 2. Players’ payoffs in equilibrium with transferable utility

surplus by violating the agent’s incentive constraints conditional on her type. The
mechanism is an optimal choice for the principal if she selects a mechanism before
learning her type. It is also an equilibrium of the mechanism-selection game.11 As
in the case without transfers, the easiest way to support this equilibrium is to assign
belief t0 = D to each deviation.

Let ex-ante, interim, and ex-post denote correspondingly the mechanism selected
by the principal before learning her type, after privately learning her type, and after
her type becomes common knowledge. In the example in this section, we have shown
that without transferable utility

• ex-post = interim 6= ex-ante,

while with transferable utility

• ex-post 6= interim ⊆ ex-ante.

The main result in this paper is that in environments with independent private
values and transferable utility there exists an ex-ante optimal allocation that allocates
the surplus across different types of the principal in such a manner that it prevents
all possible deviations of all types of the principal.

4. Model

4.1. Environment. Consider players i = 0, . . . , n who have to collectively choose
from a space of basic outcomes

Z = A× IRn,

where the measurable space A represents a set of verifiable collective actions, and IRn

is the set of vectors of agents’ payments. For example, in an environment where the
collective action is the allocation of a single unit of a private good among the players,
A = {0, . . . , n}, indicating who obtains the good.

Every player i has a type ti ∈ Ti that captures her private information. A player’s
type space Ti may be any compact metric space. The product of players’ type spaces
is denoted T = T0 × · · · × Tn. The types t0, . . . , tn are realizations of stochastically
independent Borel probability measures p0, . . . , pn with supp(pi) = Ti for all i. The
probability of any Borel set B ⊆ Ti of player-i types is denoted pi(B).

11 There exists incentive-feasible allocations that generate the same ex-ante expected payoff for
the principal, but differ with respect to the individual principal-types’ payoffs. The principal-types’
payoffs are bounded by the principal’s incentive constraints.
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Player i’s payoff function is denoted

ui : Z × Ti → IR.

We consider private-value environments with quasi-linear payoff functions,

u0(a,x, t0) = v0(a, t0) + x1 + · · ·+ xn,

ui(a,x, ti) = vi(a, ti)− xi,
where x = (x1, . . . , xn), and v0, . . . , vn are called valuation functions. We assume
that the family of functions (vi(a, ·))a∈A is equi-continuous for all i (observe that this
assumption is void if type spaces are finite).

The players’ interaction results in an outcome that is a probability measure on the
set of basic outcomes; the set of outcomes is denoted

Z = A× IRn,

where A denotes the set of probability measures on A, and IRn is the vector of the
agents’ expected payments.

If the players cannot agree on an outcome, some exogenously given disagreement
outcome z obtains. The disagreement outcome z = (α, 0, . . . , 0) for some (possibly
random) collective action α ∈ A. We normalize the valuation functions such that
each player’s expected valuation from the disagreement outcome equals 0, that is,∫
A
vi(a, ti)dα(a) = 0 for all i and ti.
A player’s (expected) payoff from any outcome (α,x) ∈ Z is denoted

ui(α,x, ti) =

∫
A

vi(a, ti)dα(a)− xi,

where x0 = −x1 − · · · − xn.
An allocation is a complete type-dependent description of the result of the players’

interaction; it is described by a map

ρ(·) = (α(·),x(·)) : T→ Z
such that payments are uniformly bounded (that is, supt∈T ||x(t)|| <∞, to guarantee
integrability) and such that the appropriate measurability restrictions are satisfied
(that is, for any measurable set B ⊆ A, the map T → IR, t 7→ α(t)(B) is Borel
measurable, and x(·) is Borel measurable).

4.2. Linear-utility environments. A common assumption in the literature is that
each player’s valuation function depends linearly on her type. We say that the en-
vironment has linear utilities if (i) the set of basic collective actions is finite (A =
{1, . . . , |A|}), (ii) each player’s type space is an interval (Ti = [ti, ti]), (iii) each player’s
valuation function vi(a, ti) is an affine function of ti, for all a ∈ A (that is, there exist
numbers sai and cai such that vi(a, ti) = sai ti + cai ), (iv) there exists of a strictly posi-
tive and continuous density fi for each player’s type distribution pi (and we use Fi to
denote the c.d.f.), (v) the disagreement outcome (α, 0, . . . , 0) is such that such that,
for all i,

∫
A
sai dα(a) = 0 and

∫
A
cai dα(a) = 0, and (vi)

(2) ∀i ≥ 1 ∃ai, bi ∈ A : saii 6= sbii .
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Observe that (v) is not a substantial restriction, but simply expresses that disagree-
ment payoffs are normalized to 0, and (vi) restricts attention to players i ≥ 1 whose
preferences over outcomes actually depend on their private information.

Linear-utility environments provide useful models for many applications, including
bilateral exchange, single and multi-unit auctions, procurement, public good provi-
sion, non-linear pricing, franchise, legislative bargaining, and assignment problems
with transferable utility.12

It is important to note that, in contrast to (Ledyard and Palfrey 2007) and many
other models, our definition does not restrict the sign of sai . That is, a player’s payoff
may be increasing or decreasing in her type, depending on the prevailing action.
This allows us to model arbitrary disagreement outcomes, which greatly extends the
applicability of the model.

4.3. Strongly neologism-proof allocation. We are interested in the problem of
optimally selecting an allocation in the absence of a disinterested outsider. Rather,
one of the players is designated as the proposer of the allocation. We will assume
from now on that the proposer is player 0. We call her the principal; the other players
are called agents.

Given the presence of private information, incentive and participation constraints
will play a major role in our analysis. Expected payoffs are computed with respect to
the prior beliefs p1, . . . , pn about the agents’ types. However, during the interaction
the agents may update their belief about the principal’s type, away from the prior
p0. Let q0 denote a Borel probability measure on T0 that represents the agents’ belief
about the principal’s type. For our purposes it is enough work with a belief q0 that
is either absolutely continuous relative to p0 or is a point belief.

Given an allocation ρ and a belief q0, the expected payoff of type ti of player i if
she announces type t̂i is denoted

Uρ,q0
i (t̂i, ti) =

∫
T−i

ui(ρ(t̂i, t−i), ti)dq−i(t−i),

where q−i denotes the product measure obtained from deleting dimension i of q0, p1, . . . , pn.
The expected payoff of type ti of player i from allocation ρ is

Uρ,q0
i (ti) = Uρ,q0

i (ti, ti).

We will use the shortcut Uρ
0 (t0) = Uρ,q0

0 (t0), which is justified by the fact that the
principal’s expected payoff is independent of q0.

12For some recent papers using linear environments see, e.g., Che and Kim (2006), Eliaz and
Spiegler (2007), Ledyard and Palfrey (2007), Hafalir and Krishna (2008), Pavlov (2008), Figueroa
and Skreta (2009), Garratt, Tröger, and Zheng (2009), Celik (2009), Kirkegaard (2009), Lebrun
(2009), Manelli and Vincent (2010), Krähmer (2012), and Gershkov, Goeree, Kushnir, Moldovanu,
and Shi (forthcoming).
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An allocation ρ is called q0-feasible if, for all players i, the q0-incentive constraints
(3) and the q0-participation constraints (4) are satisfied,

∀ti, t̂i ∈ Ti : Uρ,q0
i (ti) ≥ Uρ,q0

i (t̂i, ti),(3)

∀ti ∈ Ti : Uρ,q0
i (ti) ≥ 0.(4)

Given allocations ρ and ρ′ and a belief q0, we say that ρ is q0-dominated by ρ′ if ρ′ is
q0-feasible and

∀t0 ∈ supp(q0) : Uρ′

0 (t0) ≥ Uρ
0 (t0),

∃B ⊆ supp(q0), q0(B) > 0 ∀t0 ∈ B : Uρ′

0 (t0) > Uρ
0 (t0).

The domination is strict if “>” holds for all t0 ∈ supp(q0).
Our notion of domination refers to the principal’s payoff. If some types of the

principal have an incentive to deviate to a dominating allocation, and the dominating
allocation is feasible given a belief that excludes all the principal-types who would
suffer from the deviation, then we may not expect the original allocation to persist.
This idea is behind our concept of a strongly neologism-proof allocation (Mylovanov
and Tröger (forthcoming)).13

Definition 1. An allocation ρ is strongly neologism-proof if (i) ρ is p0-feasible and
(ii) ρ is not q0-dominated for any belief q0 that is absolutely continuous relative to p0.

In environments with finite type spaces, any strongly neologism-proof allocation
can arise in a perfect-Bayesian equilibrium in a mechanism-selection game in which
any finite game form with perfect recall may be proposed as a mechanism (Mylovanov
and Tröger (forthcoming)).14

4.4. Ex-ante optimal and best separable allocations. A core point of our paper
will be that strong neologism-proofness is closely related to the ex-ante optimality of
an allocation. For any belief q0, the problem of maximizing the principal’s q0-ex-ante
expected payoff across all allocations that are q0-feasible is

max
ρ q0-feasible

∫
T0

Uρ
0 (t0)dq0(t0).(5)

Let η(q0) denote the supremum value of the problem. In general, a maximum may fail
to exist. This may be because arbitrarily high payoffs can be achieved (η(q0) = ∞),
or because the supremum cannot be achieved exactly.

Definition 2. An allocation ρ is ex-ante optimal if it solves problem (5) with q0 = p0.

An important benchmark is the best separable15 allocation—the allocation that
the principal would optimally propose if her type were commonly known, that is, if

13The definition in Mylovanov and Tröger (forthcoming) includes provisions about “happy types”
who obtain the highest feasible payoff. In quasilinear environments, there are no happy types because
payments can be arbitrarily high.

14In environments with infinite type spaces, there is no “natural” set of feasible mechanisms, nor
is there an obvious choice for the definition of equilibrium.

15Maskin and Tirole (1990) use the term full-information optimal allocation instead.
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the agents did have a point belief about the principal’s type. Equivalently, a best
separable allocation will be selected if the principal is restricted to offer a mechanism
in which she is not a player herself.16

Definition 3. An allocation ρ is best separable if, for all point beliefs q0, ρ is q0-
feasible and ρ is not q0-dominated.

Observe that the concept of a best separable allocation is entirely independent of
the agent’s prior belief p0.

At some point in our analysis it is useful to consider a simpler variant of the prin-
cipal’s ex-ante problem. An allocation ρ is called q0-agent-feasible if, for all agents
i ≥ 1, the q0-incentive constraints (3) and the q0-participation constraints (4) are
satisfied. That is, in an agent-feasible allocation the principal’s incentive and par-
ticipation constraints may be violated. Let η′(q0) denote the supremum value of the
principal’s relaxed q0-ex-ante problem

max
ρ q0-agent feasible

∫
T0

Uρ
0 (t0)dq0(t0).(6)

Technically, the relaxed ex-ante problem is often easier to solve than the standard
ex-ante problem. Obviously, η′(q0) ≥ η(q0).

5. Characterization of strong neologism-proofness

The main result in this section is a characterization of strong neologism-proofness
in quasi-linear environments. We show that strong neologism-proofness requires, for
all beliefs q0 that are absolutely continuous with respect to the prior p0, that the
principal’s highest possible q0-ex-ante expected payoff cannot exceed the q0-ex-ante
expectation of the vector of her strongly neologism-proof payoffs. This characteriza-
tion greatly simplifies the expression of strong neologism-proofness; it plays a central
role in our analysis.

Proposition 1. A p0-feasible allocation ρ is strongly neologism-proof if and only if

η(q0) ≤
∫
T0

Uρ
0 (t0)dq0(t0) for all q0 absolutely continuous rel. to p0.(7)

We prove the “if” part by showing the counterfactual, which is simple: an allocation
that q0-dominates ρ also yields a strictly higher q0-ex-ante-expected payoff, and η(q0)
is, by definition, not smaller than this payoff.

To prove “only if”, we again show the counterfactual. That is, we suppose that,
given a strongly neologism-proof allocation ρ, there exists a belief q0 such that (7) fails.
By definition of η(q0), there exists a q0-feasible allocation ρ′ with a strictly higher q0-
ex-ante-expected payoff than ρ. Starting with ρ′, by redistributing payments between
principal-types we can construct an allocation ρ′′ such that each principal-type is
strictly better off than in ρ. This may lead, however, to a violation of a principal-
type’s incentive constraint in ρ′′. The remaining, more difficult, part of the proof
consists in resurrecting the principal’s incentive constraints.

16Zheng (2002) calls such mechanisms “transparent”.
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Figure 1. Illustration of condition (7) for T0 = {t′0, t′′0}. Let ρ and
ρ′ be two strongly-neologism proof allocations and p0 and p′0 be the
corresponding prior beliefs. The brown and the blue areas are the
regions of incentive feasible principal-type payoff vectors for prior beliefs
p0 and p′0 respectively. By (7),∫

T0

Uρ′

0 (t0)dp0(t0) ≥
∫
T0

Uρ
0 (t0)dp0(t0) = η(p0),∫

T0

Uρ
0 (t0)dp

′
0(t0) ≥

∫
T0

Uρ′

0 (t0)dp
′
0(t0) = η(p′0).

We find a belief r0 and an allocation σ that r0-dominates ρ, thereby showing that ρ
is not strongly neologism-proof. Starting with the belief q0 and the allocation ρ′′, this
can be imagined as being achieved by altering the allocation and the belief multiple
times in a procedure that ends with r0 and σ after finitely many steps.

In environments with finite type spaces, the procedure can be imagined as follows.
Suppose ρ′′ violates the incentive constraint of some principal-type. We may restrict
attention here to types in the support of q0 (all other types may be assumed to an-
nounce whatever type is optimal among the type announcements in the support of
q0). Alter ρ′′ by giving the type with the violated constraint a different allocation:
the average over what she had and what she is attracted to. Alter q0 by adding to
her previous probability the probability of the type that she was attracted to, and
assign this type probability 0. From the viewpoint of the agents (i.e., in expectation
over the principal’s types), the new allocation together with the new belief is indistin-
guishable from the old one together with the old belief. Moreover, the new belief has
a smaller support. Repeating this procedure leads to smaller and smaller supports,
until incentive compatibility is satisfied.

The procedure is more complicated in environments with non-finite type spaces.
First, we partition the principal’s type space into a finite number of small cells such
that when we replace in each cell the allocation by its average across the cell, then
the new allocation ρ′′′ is q0-almost surely better than ρ. The crucial property of
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the new allocation is that, in the direct-mechanism interpretation, there exist only
finitely many essentially different announcements of principal-types. In summary,
ρ′′′ belongs to the set E of all allocations that (i) have this finiteness property, and
(ii) are r0-almost surely better for the principal than ρ, where (iii) r0 is any belief
such that the agents’ r0-incentive and participation constraints are satisfied (while
the principal’s constraints are not necessarily satisfied). We consider an allocation σ∗

in E that is minimal with respect to the finiteness property (that is, it is not possible
to further reduce the number of essentially different principal-type announcements
with violating (ii) or (iii)). Using the averaging idea from the finite-type world, we
show that σ∗ satisfies the principal’s incentive constraints r0-almost surely. Hence,
we can construct an r0-feasible allocation σ by altering σ∗ on an r0-probability-0 set.
Using continuity and the fact that property (ii) holds for σ∗, we conclude that ρ is
r0-dominated by σ.

The complete proof is in the appendix.

Proposition 1 has several direct implications. The following implication is obtained
by setting q0 = p0.

Corollary 1. Any strongly neologism-proof allocation is ex-ante optimal.

This result is most convenient in environments where the ex-ante optimal payoffs
are unique (such as many environments with continuous type spaces): in such en-
vironments there is an essentially unique candidate for a strongly neologism-proof
allocation.

Corollary 1 also implies that the issue of the principal’s information leakage through
the choice of the mechanism imposes no cost on the principal in terms of the total
surplus she realizes in equilibrium: Different principal types, despite their conflict of
preference about how to allocate the available surplus, coordinate on a mechanism
that maximizes their ex-ante expected total surplus.

A further implication of this result is that in the environments in which the principal
learns her type over time, the principal is indifferent about whether to write an ex-
ante (long-term) contract or offer a (short-term) contract after her information is
realized; this might explain why sometimes we do not observe complete long-term
contracts. Finally, from a technical perspective the result connects the informed
principal problem to the standard mechanism design approach that can be used to
characterize ex-ante optimal mechanisms.

From the proof of Proposition 1 it is clear that the characterization continues to
hold when all ex-ante optimizations are replaced by relaxed ex-ante optimizations.

Corollary 2. A p0-feasible allocation ρ is strongly neologism-proof if and only if

η′(q0) ≤
∫
T0

Uρ
0 (t0)dq0(t0) for all q0 absolutely continuous rel. to p0.(8)

Thus, η(p0) = η′(p0) in any environment in which a strongly neologism-proof alloca-
tion exists.
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Observe that the relaxed p0-ex-ante problem typically has multiple solutions that
differ with respect to the payoff distribution across the various types of the principal.
Corollary 2 implies that at least one of these solutions satisfies the principal’s incentive
and participation constraints if a strongly neologism-proof allocation exists.

Proposition 1 also implies that the question of whether or not the principal benefits
from the uncertainty about her information or, equivalently, offers an allocation that
differs from what she would if her information were commonly known (“best separable
allocation”) boils down to the question of whether or not a best separable allocation is
ex-ante optimal for various beliefs about the principal’s type, as stated in the corollary
below.

Corollary 3. A best separable allocation is strongly neologism-proof if and only if it
solves problem (5) for all q0 that are absolutely continuous relative to p0.

Proof. “if” is immediate from Proposition 1. To see “only if”, consider a best sepa-
rable allocation ρ that is strongly neologism-proof. As a best separable allocation, ρ
is q0-feasible for all beliefs q0. Hence, it solves problem (5) by Proposition 1. QED

In Mylovanov and Tröger (2012), we show that in linear-utility environments with
monotonic payoffs (i.e., sai ≥ 0 for all i, a) any best separable allocation is ex-ante op-
timal. Thus, by Corollary 3, the privacy of the principal’s information does not affect
the implemented allocation in linear-utility environments with monotonic payoffs.

Corollary 3 can also be used to understand when restrictions on the class of mech-
anisms available to the principal, often made in applied models, is with loss of gen-
erality. For instance, a best separable allocation will be selected if the principal is
restricted to offer a mechanism in which she is not a player herself; if a best sepa-
rable allocation is dominated given prior or some other beliefs, it is not a strongly
neologism-proof. Similarly, if an equilibrium allocation in a semi-separating or a
pooling equilibrium of a game in which the principal is restricted in her choice of
mechanisms is dominated given some beliefs, e.g., the beliefs that put the entire mass
on the set of separating types, it is not strongly neologism-proof.

Another corollary provides a sufficient condition for an allocation to be strongly
neologism-proof; it follows from the arguments in the proof of Proposition 1.

Corollary 4. If a p0-feasible allocation is not strongly neologism-proof, then it is
strictly q0-dominated for some belief q0 that is absolutely continuous with respect to
p0.

This corollary implies that the set of strongly neologism-proof principal-payoff vec-
tors is always closed and is helpful in proving the existence of strongly neologism-proof
allocations in environments with finite type spaces (Proposition 2).

Finally, Proposition 1 can be applied to the design of a disagreement outcome (e.g.,
the default allocation of property rights or legal regimes regulating the outcome in
the absence of a contract) that induces the principal to implement a socially efficient
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allocation, or to the design of collusion-proof mechanisms in environments where one
of the players of the mechanism can offer a collusion contract.17

6. Existence of strongly neologism-proof allocations

In this section we use the characterization (Proposition 1) to show that a strongly
neologism-proof allocation exists in any environment with finite type spaces that
satisfies weak technical assumptions, and in any linear-utility environment.

6.1. Existence in environments with finite type spaces. In Mylovanov and
Tröger (forthcoming) we prove the existence of a strongly neologism-proof allocation
in environments with finite type spaces under otherwise rather weak assumptions.
However, the proof relies on the compactness of the outcome space, which is violated
in quasi-linear environments because arbitrarily large payments are possible. We now
extend the existence result to quasi-linear environments in which the set of collective
actions, A, is compact. We make the assumption of separability that was introduced
in Mylovanov and Tröger (forthcoming); it requires that there exists an allocation
such that the incentive and participation constraints of all types of all agents are
satisfied as strict inequalities.

Proposition 2. Suppose that the type spaces T0, . . . , Tn are finite, that A is a compact
metric space, the valuation functions v0, . . . , vn are continuous, and separability holds.
Then a strongly neologism-proof allocation exists.

The proof (in the Appendix) has the following steps. First, we provide an upper
bound λ for the absolute value of the interim expected payment of any type of any
player in any incentive-feasible allocation. Then we show that there exists a number
κ such that any scheme of interim expected payments that can occur at all can also
be obtained from a payment scheme that involves payments at most κ times as large
(in absolute value) as the largest interim expected payment of any type of any player.
We approximate the outcome space of the quasilinear environment with a sequence of
outcome spaces with larger and larger finite bounds on payments. These environments
have compact outcome spaces, so that strongly neologism-proof allocations exist by
Mylovanov and Tröger (forthcoming). Moreover, we can assume that payments in
these allocations are bounded by κλ. Hence, the sequence of strongly neologism-
proof allocations has a convergent subsequence. Using Corollary 4, we show that the
subsequence limit is strongly neologism-proof in the quasilinear environment.

6.2. Existence in linear-utility environments. The following result extends ex-
istence to environments with continuous type spaces. The result implies that the
principal can solve her mechanism-selection problem by implementing an ex-ante op-
timal allocation.

Proposition 3. A strongly neologism-proof allocation exists in any linear-utility en-
vironment.

17See, e.g., Laffont and Martimort (1997), Quesada (2005), Che and Kim (2006), Segal and
Whinston (2011).
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To prove this, we use the version of our characterization result that refers to the re-
laxed ex-ante problems (Corollary 2). We use the finite-type existence result (Propo-
sition 2) and consider a continuous-type limit.

In a linear-utility environment, the payoff-relevant aspects of the collective-action
choice are captured by the set

V = {(ŝ0, . . . , ŝn, ĉ0, . . . , ĉn) ∈ IR2n+2 | ∃α ∈ A ∀i : ŝi =

∫
A

sai dα(a), ĉi =

∫
A

cai dα(a)}.

Therefore, we can think of an allocation as directly determining a vector (s0(t), . . . , cn(t)) ∈
V for any type profile t. Also, instead of determining payments we can think of an
allocation as directly determining the players’ utilities u0(t), . . . , un(t) (a player’s
payment is then given by si(t)ti + ci(t)− ui(t)).

Using standard envelope arguments (e.g., Mas-Colell, Whinston, and Green (1995),
Chapter 23), the principal’s relaxed F0-ex-ante problem can be written as

max
u0(t),...,un(t),(s0(t),...,cn(t))∈V

∫
T

u0(t)dF (t),

s.t. si(·) weakly increasing for all i ≥ 1,(9)

ui(ti) = ui(ti) +

∫ ti

ti

si(y)dy for all i ≥ 1, ti ∈ Ti,(10)

ui(ti) ≥ 0 for all i ≥ 1, ti ∈ Ti,(11) ∫
T

(
n∑
i=0

si(t)ti + ci(t)− ui(t)

)
dF (t) = 0,(12)

where we use the shortcuts

si(ti) =

∫
T−i

si(t)dF−i(t−i),

ci(ti) =

∫
T−i

ci(t)dF−i(t−i),

ui(ti) =

∫
T−i

ui(t)dF−i(t−i).

Notice that we require the budget to be balanced ex-ante (12). By Börgers and
Norman (2009), this is equivalent to an ex-post budget balance condition.

The proof of Proposition 3 begins with the observation an ex-ante optimizing princi-
pal who implements any vector (ŝ0, . . . , ŝn) will combine this with a vector (ĉ0, . . . , ĉn)
that has a minimal sum

∑
i ĉi, so that she can charge the largest payments. Hence,

we can work with a simplified V in which (ŝ0, . . . , ŝn) uniquely determines (ĉ0, . . . , ĉn),
and we can ignore the vector (ĉ0, . . . , ĉn) in the following.

We define a sequence m = 1, 2, . . . of finer and finer finite-type approximations
of the linear-utility environment. Each of these environments m can be shown to
be separable, so that a strongly neologism-proof allocation ρm exists by Proposi-
tion 2. We use the notation smi (·) and umi (·) to refer to the components of ρm.
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We extend each allocation ρm to the original continuous type spaces by letting the
intermediate types make optimal type announcements in the direct-mechanism inter-
pretation. For each player i, the sequence of interim-averages (smi (·))m=1,2,... has an
almost-everywhere convergent subsequence by Helly’s selection theorem (let ŝi(·) de-
note the limit), and the interim-averages (umi (·))m=1,2,... have a uniformly convergent
subsequence by Arzela-Ascoli’s theorem (let ûi(·) denote the limit). The sequence
(smi (·))m=1,2,... has a weakly convergent subsequence by Alaoglu’s theorem. For the
weak limits s∗i (·) (i = 0, . . . , n) one can compute the interim averages s∗i (·). The
crucial step is to show that s∗i (·) = ŝi(·). Once we have that, we know that s∗i (·) is
weakly increasing and we can use the envelope theorem to define the interim averages
u∗i (·) and a corresponding limit allocation ρ∗. Then one shows that u∗i (·) = ûi(·).
This implies that the monotonicity conditions (9), the participation constraints (11),
and the budget balance condition (12) hold in the limit ρ∗.

To verify the condition of Corollary 2, we suppose that (8) fails. Thus, there exists
a belief G0 absolutely continuous relative to F0, and a G0-feasible allocation ρ′ with a
higher G0-ex-ante expected payoff for the principal than ρ∗. We consider the sequence
of finite-type-spaces environments m = 1, 2, . . . with beliefs Gm

0 that approximate G0.
For each m, we partition the space of continuous type profiles into cells that corre-

spond to the discrete type profiles in the environment m. We construct an allocation
ρ′m by taking the average of ρ′ in each cell, and by adding correction terms to the
payments so that ρ′m satisfies the agents’ (not necessarily the principal’s) incentive
and participation constraints, as well as the budget balance condition, with respect
to the belief Gm

0 . We show that the correction terms vanish as m → ∞. Thus, if
m is large, then the Gm

0 -ex-ante expectation of ρ′m is larger than the Gm
0 -ex-ante

expectation of ρm. This contradicts the fact that ρm is strongly neologism-proof for
all m and the proof is complete.

7. Ex-ante optimality in linear-utility environments

In this section, we provide a characterization of ex-ante optimality in linear-utility
environments that is useful towards solving the principal’s mechanism-selection prob-
lem in concrete applications.

Auxiliary notation is needed. For all i ≥ 1 and c.d.f.s z∗i (·) on Ti, define the virtual
valuation function

ψ
z∗i
i (ti) = ti −

z∗i (ti)− F (ti)

fi(ti)
(ti ∈ Ti).

The ironed virtual valuation ψ
z∗i
i is defined as follows.18 Let

Hi(q) =

∫ q

0

ψ
z∗i
i (F−1

i (r))dr (q ∈ [0, 1]).

Let H i denote the convex hull of Hi. Because H i is convex, its derivative exists

Lebesgue-a.e. and is weakly increasing; let H
′
i be a weakly increasing extension to

18The construction follows Myerson (1981), who considered the case z∗i (ti) = 1.
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[0, 1] and define

ψ
z∗i
i (ti) = H

′
i(Fi(ti)).

One can think of ψ
z∗i
i (·) as constructed by ironing the non-monotonicities of ψ

z∗i
i (·).

We characterize ex-ante optimality in terms of virtual-surplus maximization. For
all v = (ŝ0, . . . , ĉn) ∈ V and t ∈ T, define the virtual surplus function

V z∗1 ,...,z
∗
n(v, t) = ŝ0t0 + ĉ0 +

n∑
i=1

ŝiψ
z∗i
i (ti) + ĉi.

Here is the existence and characterization result.

Proposition 4. In any linear-utility environment, an ex-ante optimal allocation ex-
ists. An allocation u0(t), . . . , un(t), s0(t), . . . , cn(t) is ex-ante optimal if and only if
there exist c.d.f.s z∗i on Ti (i = 1, . . . , n) such that the following conditions hold:

∀i ≥ 1, ti ∈ supp(z∗i ) : ui(ti) = 0,(13)

(s0(t), . . . , cn(t)) ∈ arg max
v∈V

V z∗1 ,...,z
∗
n(v, t), a.e. t,(14)

si(·) is weakly increasing for all i ≥ 0,(15)

ui(ti) = ui(ti) +

∫ ti

ti

si(y)dy for all i ≥ 0, ti ∈ Ti.(16)

ui(ti) ≥ 0 for all i ≥ 0, ti ∈ Ti.(17)

The core part of the conditions is the virtual-surplus maximization (14). If this
maximization problem has a unique solution, then si(t) is automatically weakly in-
creasing in ti, for any t−i; in general, however, (15) is an independent condition. The
Lagrange multiplier functions z∗i indicate which agent types’ participation conditions
have bite; condition (13) requires that z∗i puts all its mass on types for which the par-
ticipation constraint is binding. The envelope condition (16) requires that payments
are chosen such that all players’ incentive constraints are satisfied. The participation
constraints are (17).

The proof of Proposition 4 begins with the observation that the solutions to the
principal’s F0-ex-ante problem are precisely the solutions to the principal’s relaxed
F0-ex-ante problem in which the principal’s incentive and participation constraints are
satisfied (cf. Proposition 3 and Corollary 2). In order to characterize the solutions
to the relaxed problem, we take a Lagrangian approach. The crucial insight is to
take a Lagrangian approach only with respect to the agents’ participation constraints
(11), and not with respect to the monotonicity constraints (9). The monotonicity
constraints are treated with a generalization of the ironing techniques of Myerson
(1981). The details are in the Appendix.

The best-separable allocations can be characterized analogously to the ex-ante op-
timal allocations. The best-separable allocations are obtained by assuming that each
type of the principal maximizes her expected utility across all allocations that are
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incentive-feasible given the belief that puts probability 1 on this type. The prin-
cipal’s incentive constraints are then automatically satisfied, and her participation
constraints are satisfied because she is always free to offer the disagreement outcome.
For any allocation and all t0 ∈ T0, let ut0i (ti) denote the interim-expected utility of
type ti of agent i if she believes that the principal’s type is t0; define st0i (ti) analogously.

Proposition 5. Consider a linear-utility environment.
An allocation u0(t), . . . , un(t), s0(t), . . . , cn(t) is best separable if and only if, for all
t0 ∈ T0, there exist c.d.f.s z∗,t0i on Ti (i = 1, . . . , n) such that the following conditions
hold:

i ≥ 1, ti ∈ supp(z∗,t0i ) : ut0i (ti) = 0,

(s0(t), . . . , cn(t)) ∈ arg max
v∈V

V z
∗,t0
1 ,...,z

∗,t0
n (v, t), a.e. t−i,

st0i (·) is weakly increasing for all i ≥ 1,

ut0i (ti) = ut0i (ti) +

∫ ti

ti

st0i (y)dy for all i ≥ 1, ti ∈ Ti.

ut0i (ti) ≥ 0 for all i ≥ 1, ti ∈ Ti.

The proof is similar to the proof of Proposition 4 and is omitted.
Proposition 5 shows that the crucial difference between the characterizations of best

separable allocations and ex-ante optimal allocations is that in the former characteri-
zation the Lagrange multiplier functions are allowed to depend on the principal’s type
t0. If the environment is such that the conditions in Proposition 5 can be satisfied
with Lagrange multiplier functions z∗,t0i that are in fact independent of t0, then the
conditions in Proposition 4 are satisfied as well, implying that the best-separable allo-
cations are ex-ante optimal. The Lagrange multiplier functions can be interpreted in
terms of the sensitivity of the principal’s expected payoff with respect to the participa-
tion payoff bound 0 (e.g., Luenberger (1969), Chapter 8). If the agents’ participation
constraints bite in the same manner independently of the type of the principal, then
the best-separable allocations are ex-ante optimal. A class of environments in which
this is the case is studied in Mylovanov and Tröger (2012).

In general, however, the Lagrange multiplier functions z∗,t0i are not independent of
t0 and the best separable allocations are not ex-ante optimal. In particular, then, in
an ex-ante optimum the agents’ participation and incentive constraints are satisfied
in expectation over the principal’s types, but may be violated if an agent believes in
a particular type of principal. In the next section, we demonstrate this in a class of
bilateral-trade environments.

8. Application: Bilateral trade

In this section, we provide an example to show how Proposition 4 and Proposition 5
are useful towards solving informed-principal problems in linear-utility environments,
and how the strongly neologism-proof allocation can differ from the best-separable
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allocation. We consider the standard two-party one-good exchange environment of
Myerson and Satterthwaite (1983) under the assumption that one party is designated
as the principal and, as in Cramton, Gibbons, and Klemperer (1987), the disagreement
outcome is such that each party obtains the good with a positive probability (the
disagreement outcome may also include a side payment which we normalize to 0).19

That is, we consider non-extreme property rights.20

We consider a linear-utility environment with one agent (n = 1). The type spaces
are T0 = T1 = [0, 1]. We assume that the agent’s type distribution F1 has strictly
increasing virtual valuation functions ψb(t1) = t1 − (1 − F1(t1))/f1(t1) and ψs(t1) =
t1 + F1(t1)/f1(t1).

The set of collective actions is A = {0, 1}, indicating who gets assigned one unit
of an indivisible good. Any probability distribution on A can be described by the
probability α ∈ A that the agents obtains the good. Let 0 < α < 1 denote the
probability that the agent obtains the good upon disagreement. Player i’s (i = 0, 1)
valuation function is given by vi(a, ti) = sai ti, where

sa0 = 1a=0 − (1− α), sa1 = 1a=1 − α.

That is, a player’s type represents her valuation of the good, and payoffs are written
such that each player’s payoff from the disagreement outcome is normalized to 0.

The following result describes the unique ex-ante optimal allocation. By Corollary
2, this is also the unique strongly neologism-proof allocation.

Proposition 6. Consider the bilateral-trade environment with non-extreme property
rights. There exists an a.e. unique ex-ante optimal allocation ρ(·) = (α(·),x(·)),

α(t0, t1) =


0 if t0 < t∗0, ψ

s(t1) < t0,
1 if t0 < t∗0, ψ

s(t1) > t0,
0 if t0 > t∗0, ψ

b(t1) < t0,
1 if t0 > t∗0, ψ

b(t1) > t0,

where t∗0 = F−1
0 (α) and x(·) is chosen such that ρ is F0-feasible, and such that the

participation constraints of the agent-types in the interval [(ψs)−1(t∗0), (ψ
b)−1(t∗0)] are

satisfied with equality.

The proof of this result consists of a computation that uses the conditions provided
in Proposition 4; the details are in the Appendix.

Observe that in the ex-ante optimal allocation there is trade with probability 1
and the allocation is deterministic. The outcome is sometimes less efficient than the

19Cramton, Gibbons, and Klemperer (1987) shows that dispersed property rights might allow
implementing an ex-post efficient allocation. The informed principal, however, will find it optimal
to distort the allocation away from the efficient one in order to extract higher rents from the agent.

20In this environment, the dispersed property rights create countervailing incentives (Lewis and
Sappington 1989, Jehiel, Moldovanu, and Stacchetti 1999, Jullien 2000). Fleckinger (2007) was the
first to observe that the principal can exploit uncertainty about her preferences in environments
with countervailing incentives.
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disagreement outcome and the entire good is sometimes allocated to the party with
a lower valuation.21

6

- t0

t1
1

1t∗0

ψs(t1) = t0

ψb(t1) = t0

α = 0

α = 1

Figure 2. The strongly neologism-proof allocation in a bilateral-trade environment.

We compare the strongly neologism-proof allocation to the best-separable alloca-
tion. Using methods very similar to those used in the proof of Proposition 6, we
obtain the following result.

Proposition 7. Consider the bilateral-trade environment with non-extreme property
rights. There exists an a.e. unique best-separable allocation ρ(·) = (α(·),x(·)),

α(t0, t1) =

 0 if ψs(t1) < t0,
1 if ψb(t1) > t0,
α otherwise,

and x(·) is chosen such that, for all t0 ∈ T0, if the agent believes in type t0, then ρ is
incentive-feasible and the participation constraints of the agent-types in the interval
[(ψs)−1(t0), (ψ

b)−1(t0)] are satisfied with equality.

Hence, in the best-separable allocation, in contrast to the ex-ante optimal alloca-
tion, each type of the principal fails to trade with the agent with a positive prob-
ability (= F1((ψ

b)−1(t0)) − F1((ψ
s)−1(t0))) and when the trade occurs it increases

efficiency relative to the disagreement outcome. Because the ex-ante optimal alloca-
tion is strongly neologism-proof, each type of the principal is at least as well off as
in the best-separable allocation. In fact, due to the additional volume of trade in
the ex-ante optimal allocation relative to the best-separable allocation, the envelope
formula (16) implies that the difference u0(t0)− u0(t

∗
0) between the expected utilities

of type t∗0 and any other type t0 is larger for the ex-ante optimal allocation than for
the best-separable allocation. Therefore:

21Figueroa and Skreta (2009) present an environment with type-dependent outside options in
which the optimal mechanism includes overselling. This type of inefficiency is caused by the structure
of the outside option designed by the principal; there is no uncertainty about the principal’s valuation
in their model.
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Figure 3. The best-separable allocation in a bilateral-trade environment.

Corollary 5. In the bilateral-trade environment with non-extreme property rights, all
types t0 6= t∗0 of the principal are strictly better off in the ex-ante optimal allocation
than in the best-separable allocation.

Thus, the principal can use the privacy of her information in order to increase her
payoff.

Yilankaya (1999) shows that, if the default allocation of the property rights is ex-
treme (α = 0 or α = 1), then the uncertainty of the principal’s valuation plays no role
and she will implement a best-separable allocation by making, e.g., a posted price
offer. This result can be understood most easily by viewing the bilateral-trade envi-
ronment with extreme property rights as a special case of a linear-utility environment
with monotonic payoffs (cf. Mylovanov and Tröger (2012)).

The best-separable allocation described in Proposition 7 can be implemented by
using, for each type t0, a bid price of (ψs)−1(t0) and an ask price of (ψb)−1(t0).

In contrast, the ex-ante optimal allocation described in Proposition 6 is imple-
mented by a multi-stage mechanism involving a combination of a participation fee for
the agent, a buyout option for the principal, and a resale stage with posted prices:
In the first stage, the agent pays the participation fee and the good is tentatively al-
located to the agent. In the second stage, the principal decides whether to exercise a
buyout option, in which case the good becomes tentatively allocated to the principal;
this option will be exercised by the types t0 > t∗0 of the principal. In the third stage,
given the tentative allocation of the good, the principal makes a take-it-or-leave-it
fixed-price offer to the agent to sell or buy the good. Hence, the first two stages
consolidate the originally dispersed property rights to the good and allocate the good
either to the principal or the agent, determining whether the principal becomes the
seller or the buyer in the third stage. This mechanism is a generalization of the bid
and ask price mechanism that implements the best separable allocation as well as
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Figure 4. The outcome of the second stage in the three stage
mechanism implementing the strongly neologism-proof allocation in a
bilateral-trade environment.

a generalization of a posted price mechanism that would be optimal in the environ-
ments with the extreme property rights allocation in which either the principal or the
agent own the good (Williams 1987, Yilankaya 1999).

9. Appendix

The proof or Proposition 2 relies on two lemmas. Given any allocation ρ(·) =
(α(·),x(·)) and any belief q0 about the principal’s type, the interim expected payment
function of any player i is denoted

xρ,q0i (ti) =

∫
T−i

xi(ti, t−i)dq−i(t−i).

Lemma 1. Suppose that A is a compact metric space, and the valuation functions
v0, . . . , vn are continuous.

Then, for all beliefs q0, in any q0-feasible allocation, the absolute value of the interim
expected payment of any type of any player is smaller than

λ = (n+ 4) max
i,a,ti
|vi(a, ti)|.

Proof. Let v = maxi,a,ti |vi(a, ti)| denote an upper bound for the absolute value of the
valuation of any action for any type of any player.

By (4), each player’s q0-ex-ante expected payoff is bounded below by 0. On the
other hand, the sum of the players’ q0-ex-ante expected payoffs is bounded above by
(n+ 1)v because payments cancel. Hence,

0 ≤
∫
Ti

Uρ,q0
i (ti)dqi(ti) ≤ (n+ 1)v for all i,

where we define qi = pi for all i = 1, . . . , n.
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Turning to interim expected payoffs,

(18) |Uρ,q0
i (ti, t

′
i)− U

ρ,q0
i (ti, ti)| ≤ max

a∈A
|vi(a, t′i)− vi(a, ti)| ≤ 2v.

Hence,

Uρ,q0
i (ti) ≤ Uρ,q0

i (ti, t
′
i) + 2v

(3)

≤ Uρ,q0
i (t′i) + 2v.

Thus,

Uρ,q0
i (ti) ≤

∫
Ti

Uρ,q0
i (t′i)dqi(t

′
i) + 2v ≤ (n+ 3)v.

Because any player’s interim payment can differ from her interim payoff by at most
v, we obtain the desired bound. This completes the proof.

With finite type spaces, both the space of payment schemes L = IR|T|n and the
space of interim expected payment schemes L = IR|T0|+···+|Tn| are finite-dimensional
vector spaces. Endow both spaces with the max-norm. We define the linear map

φq0 : L → L, x(·) 7→ (xρ,q00 (·), . . . , xρ,qnn (·)).

The following lemma says that there exists a number κ such that any scheme of
interim expected payments that can occur at all can also be obtained from a payment
scheme that involves payments at most κ times as large (in absolute value) as the
largest interim expected payment of any type of any player.

Lemma 2. Suppose that T0, . . . , Tn are finite. Consider any belief q0. There exists a
number κ such that, for every x(·) ∈ L, there exists x(·) ∈ L such that φq0(x(·)) = x(·)
and ||x(·)|| ≤ κ||x(·)||.

Proof. The set φq0(L) is a finite-dimensional vector space, hence a Banach space (with
the norm induced by the max-norm in L), and φq0 maps onto that space. Hence, the
claim is immediate from the open mapping theorem in functional analysis.

Proof of Proposition 2. Consider any sequence of payment bounds (λl) such that λl →
∞. From Mylovanov and Tröger (forthcoming), for each l, there exists an allocation
ρl that is strongly neologism-proof in the environment with payment bound λl. By
Lemma 2 and Lemma 1 (with q0 = p0), w.l.o.g., all these allocations use payments
that are bounded by the same number κλ. Hence, the sequence of payment schemes
in the sequence ρl is bounded in the max-norm. Hence, there exists a convergent
subsequence with limit ρ∗ (in the dimension of the probability measures on collective
actions, the convergence is meant as a weak convergence).

As a limit of p0-feasible allocations, ρ∗ is p0-feasible. Suppose that ρ∗ is not strongly
neologism-proof. By Corollary 4, ρ∗ is strictly q0-dominated by some allocation ρ′,
for some belief q0.

If l is sufficiently large, then ρ′ is a feasible allocation in the environment with
payment bound λl (w.l.o.g. by Lemma 2 and Lemma 1).
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Moreover, if l is sufficiently large, then ρl is strictly q0-dominated by ρ′ because ρl
approximates ρ∗. This contradicts the fact that ρl is strongly neologism-proof in the
environment with payment bound λl. QED

Proof of Proposition 1. “if” Suppose that ρ is not strongly neologism-proof. Then
there exists a belief q0 and an allocation ρ′ that q0-dominates ρ. We obtain a contra-
diction because

η(q0) ≥
∫
T0

Uρ′

0 (t0)dq0(t0) >

∫
T0

Uρ
0 (t0)dq0(t0).

“only if”. Consider a strongly neologism-proof allocation ρ = (α(·), x1(·), . . . , xn(·)).
Suppose there exists a belief q0 such that (7) fails, that is

η(q0) >

∫
T0

Uρ
0 (t0)dq0(t0).

By definition of η(q0), there exists a q0-feasible allocation ρ′ = (α′(·), x′1(·), . . . , x′n(·))
such that

(19)

∫
T0

Uρ′

0 (t0)dq0(t0)−
∫
T0

Uρ
0 (t0)dq0(t0)

def
= ε > 0.

Let ρ′′ = (α′(·), x′′1(· · · ), . . . , x′′n(·)), where

x′′1(t) = x′1(t)− (Uρ
0 (t0)− Uρ′

0 (t0) + ε).(20)

x′′i (t) = x′i(t), i = 2, . . . , n.

Then ρ′′ satisfies the q0-incentive and participation constraints for all i 6∈ {0, 1}. Also,
ρ′′ satisfies the q0-incentive and participation constraints for i = 1 because

Uρ′′,q0
1 (t̂1, t1) =

∫
T−1

∫
A

v1(a, t1)dα
′(t̂1, t−1)(a)dq−1(t−1)−

∫
T−1

x′′1(t̂1, t−1)dq−1(t−1)

(20)
= Uρ′,q0

1 (t̂1, t1) +

∫
T0

(Uρ
0 (t0)− Uρ′

0 (t0))dq0(t0) + ε

(19)
= Uρ′,q0

1 (t̂1, t1).

For all t0 ∈ T0,

(21) Uρ′′

0 (t0)− Uρ
0 (t0)

(20)
= Uρ′

0 (t0) + (Uρ
0 (t0)− Uρ′

0 (t0) + ε)− Uρ
0 (t0) = ε.

In other words, in ρ′′ every type of the principal is—by the amount ε—better off than
in ρ. In particular, ρ′′ satisfies the participation constraints for i = 0. However, ρ′′

may violate a incentive constraint for i = 0.
To complete the proof, we show that there exists a belief r0 and an r0-feasible

allocation σ such that, for all t0 ∈ supp(r0),

Uσ
0 (t0) ≥ Uρ

0 (t0) +
1

2
ε.(22)

It follows that ρ is r0-dominated by σ; this contradicts the strong neologism-proofness
of ρ.
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Because v0 is equi-continuous and T0 is compact, there exists δ > 0 such that

(23) ∀ t0, t′0 ∈ T0, z ∈ Z : if |t0 − t′0| < δ then |u0(z, t0)− u0(z, t
′
0)| <

ε

8
.

Similarly, because ρ is p0-feasible, Uρ
0 is uniformly continuous. Hence, there exists

δ′ > 0 such that

(24) ∀ t0, t′0 ∈ T0 : if |t0 − t′0| < δ′ then |Uρ
0 (t0)− Uρ

0 (t′0)| <
ε

8
.

By compactness of T0, there exists a finite partition D̂1, . . . , D̂k̂ of T0 such that

diam(D̂k) < min{δ, δ′} for all k = 1, . . . , k̂. By dropping any cell D̂k with q0(D̂k) = 0,

we obtain a partitionD1, . . . , Dk of some set T̂0 ⊆ T0, where q0(T̂0) = 1 and q0(Dk) > 0
for all k = 1, . . . , k.

We construct an allocation ρ′′′ = (α′′′(·),x′′′(·)) from ρ′′ as follows. Given any
t ∈ T with t0 ∈ Dk for some k, we define α′′′(t), and x′′′i (·) (i = 1, . . . , n) by taking
the average over all types in Dk. That is,

α′′′(t)(B) =
1

q0(Dk)

∫
Dk

α′(t′0, t−0)(B)dq0(t
′
0) for all measurable sets B ⊆ A,

x′′′i (t) =
1

q0(Dk)

∫
Dk

x′′i (t
′
0, t−0)dq0(t

′
0).

Given any t0 ∈ T0 \ T̂0, let t̂0 ∈ T̂0 be an announcement that is optimal for t0
among all announcements in T̂0 in the direct-mechanism interpretation of ρ′′′; define
ρ′′′(t0, t−0) = ρ′′′(t̂0, t−0) for all t−0 ∈ T−0. (By construction of ρ′′′, there are at most
k essentially different announcements, so that an optimal one exists.)

By Fubini’s Theorem for transition probabilities, for all k and t0 ∈ Dk,
22

u0(ρ
′′′(t), t0) =

1

q0(Dk)

∫
Dk

u0(ρ
′′(t′0, t−0), t0)dq0(t

′
0).(25)

22See, e.g., Bauer, Probability Theory, Ch. 36.
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Hence, letting p denote the product measure of p1, . . . , pn,

Uρ′′′

0 (t0) =

∫
T−0

u0(ρ
′′′(t), t0)dp(t−0)

(25)
=

1

q0(Dk)

∫
Dk

∫
T−0

u0(ρ
′′(t′0, t−0), t0)dp(t−0)dq0(t

′
0)

(23)
>

1

q0(Dk)

∫
Dk

∫
T−0

(u0(ρ
′′(t′0, t−0), t

′
0)−

ε

8
)dp(t−0)dq0(t

′
0)

=
1

q0(Dk)

∫
Dk

(Uρ′′

0 (t′0)−
ε

8
)dq0(t

′
0)

(21)
=

1

q0(Dk)

∫
Dk

(Uρ
0 (t′0) +

7

8
ε)dq0(t

′
0)

(24)
>

1

q0(Dk)

∫
Dk

(Uρ
0 (t0) +

3

4
ε)dq0(t

′
0)

= Uρ
0 (t0) +

3

4
ε for all t0 ∈ T̂0.

Let I(q0) denote the set of allocations that satisfy the agents’ (but not necessarily
the principal’s) q0-incentive and participation constraints.

We show that ρ′′′ ∈ I(q0). To see this, consider any i = 1, . . . , n and t̂i, ti ∈ Ti.
Then

Uρ′′′,q0
i (t̂i, ti) =

∫
T−0−i

∫
T0

ui(ρ
′′′(t̂i, t−i), ti)dq0(t0)dp−0−i(t−0−i)

=

∫
T−0−i

∑
k

∫
Dk

ui(ρ
′′′(t̂i, t−i), ti)dq0(t0)dp−0−i(t−0−i)

=

∫
T−0−i

∑
k

q0(Dk)ui(ρ
′′′(t̂i, t−i−0, t0k), ti)dp−0−i(t−0−i),

where we have selected any t0k ∈ Dk for all k. Applying Fubini’s Theorem for
transition probabilities, we conclude that

Uρ′′′,q0
i (t̂i, ti) =

∫
T−0−i

∑
k

∫
Dk

ui(ρ
′′(t̂i, t−i−0, t

′
0), ti)dq0(t

′
0)dp−0−i(t−0−i)

=

∫
T−0−i

∫
T0

ui(ρ
′′(t̂i, t−i−0, t

′
0), ti)dq0(t

′
0)dp−0−i(t−0−i)

= Uρ′′,q0
i (t̂i, ti).

Hence, ρ′′′ ∈ I(q0) because ρ′′ ∈ I(q0).
Given ρ′′′ and any t0 ∈ T0, let

Dρ′′′(t0) = {t′0 ∈ T0 | ∀t−0 : ρ′′′(t′0, t−0) = ρ′′′(t0, t−0)}.



32 TYMOFIY MYLOVANOV AND THOMAS TRÖGER

By construction, the set

Dρ′′′ = {Dρ′′′(t0) | t0 ∈ T0}

is a finite partition of T0 (with at most k cells).
In summary, ρ′′′ ∈ E , where we define

E = {σ | |Dσ| <∞,
∃r0 : σ ∈ I(r0), ∃T̂0 : r0(T̂0) = 1,

∀t0 ∈ T̂0 : Uσ
0 (t0)− Uρ

0 (t0) >
ε

2
,

∀t0 ∈ T0 \ T̂0, t
′
0 ∈ T0 : Uσ

0 (t0) ≥ Uσ
0 (t′0, t0),

∀t0 ∈ T̂0 : T̂0 ∩ arg max
t′0∈T0

Uσ
0 (t′0, t0) 6= ∅}.

Because E 6= ∅, there exists σ∗ ∈ E with minimal |Dσ∗ |. Let r0 denote a corresponding

belief and let T̂0 a corresponding probability-1 set.
Let B∗ denote the set of principal-types for which an incentive constraint is violated

in σ∗. Then B∗ ⊆ T̂0 because σ∗ ∈ E . We will show that r0(B
∗) = 0.

Suppose that r0(B
∗) > 0. We will show that this contradicts the minimality of

|Dσ∗ |.
Because |Dσ∗| <∞, there exists D′ ∈ Dσ∗ such that r0(B

∗ ∩D′) > 0.
By violation of the incentive constraint, there exists D′′ ∈ Dσ∗ \ {D′} such that

r0(B
′′) > 0, where B′′ = {t0 ∈ B∗ ∩D′ | Uσ∗

0 (t̂0, t0) > Uσ∗

0 (t0) if t̂0 ∈ D′′}.
We construct a new belief r′0 by

r′0(B) = r0(B ∩B′′)
r0(D

′ ∪D′′)
r0(B′′)

+ r0(B \ {D′ ∪D′′}) for any Borel set B ⊆ T0.

Clearly, r′0 is absolutely continuous relative to r0 (hence, relative to p0). Also,

(26) r′0(T̂
′
0) = 1, where T̂ ′0 = B′′ ∪ (T̂0 \ (D′ ∪D′′)).

We construct an allocation σ′ = (β(·),y(·)) from σ∗ = (β∗(·),y∗(·)) as follows.
Given any t ∈ T with t0 ∈ B′′, we define β(t), and yi(·) (i = 1, . . . , n) by taking

the average over all types in D′ ∪D′′. That is, for all measurable sets B ⊆ A,

β(t)(B) =
r0(D

′)

r0(D′ ∪D′′)
β∗(t′0, t−0)(B) +

r0(D
′′)

r0(D′ ∪D′′)
β∗(t′′0, t−0)(B),

yi(t) =
r0(D

′)

r0(D′ ∪D′′)
y∗i (t

′
0, t−0) +

r0(D
′′)

r0(D′ ∪D′′)
y∗i (t

′′
0, t−0),

where we have picked any t′0 ∈ D′ and t′′0 ∈ D′′.
Given any t ∈ T with t0 ∈ T̂0 \ (D′ ∪ D′′), we define σ′(t) = σ∗(t). For all

t ∈ T with t0 6∈ T̂ ′0, define σ′(t) by letting type t0 announce, in the direct-mechanism

interpretation of σ′, whatever type she finds optimal in T̂ ′0. Then

|Dσ′ | ≤ |Dσ∗ \ {D′, D′′}|+ 1 < |Dσ∗ |.
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We will show now that σ′ ∈ E , yielding a contradiction to the minimality of |Dσ∗ |.
First we show that

(27) σ′ ∈ I(r′0).

Consider any i = 1, . . . , n and t̂i, ti ∈ Ti. Then

U
σ′,r′0
i (t̂i, ti) =

∫
T−0−i

∫
T̂0

ui(σ
′(t̂i, t−i), ti)dr

′
0(t0)dp−0−i(t−0−i)

=

∫
T−0−i

∫
T̂0\(D′∪D′′)

ui(σ
∗(t̂i, t−i), ti)dr0(t0)dp−0−i(t−0−i)

+

∫
T−0−i

∫
B′′
ui(σ

′(t̂i, t−i), ti)dr
′
0(t0)dp−0−i(t−0−i).(28)

Picking any ť0 ∈ B′′, and applying Fubini’s theorem for transition probabilities,∫
B′′
ui(σ

′(t̂i, t−i), ti)dr
′
0(t0) = ui(σ

′(t̂i, ť0, t−0−i), ti)r
′
0(B

′′)

=

(
r0(D

′)

r0(D′ ∪D′′)
ui(σ

∗(t̂i, t
′
0, t−0−i), ti) +

r0(D
′′)

r0(D′ ∪D′′)
ui(σ

∗(t̂i, t
′′
0, t−0−i), ti)

)
r′0(B

′′)

= r0(D
′)ui(σ

∗(t̂i, t
′
0, t−0−i), ti) + r0(D

′′)ui(σ
∗(t̂i, t

′′
0, t−0−i), ti)

=

∫
D′∪D′′

ui(σ
′(t̂i, t−i), ti)dr0(t0).

Plugging this into (28) yields

U
σ′,r′0
i (t̂i, ti) = Uσ∗,r0

i (t̂i, ti).

This implies (27) because σ∗ ∈ I(r0).

Next we show that, for all t0 ∈ T̂ ′0,

(29) Uσ′

0 (t0)− Uρ
0 (t0) >

ε

2
.

First consider t0 ∈ T̂0 \ (D′ ∪D′′). Then Uσ′
0 (t0) = Uσ∗

0 (t0), so (29) is immediate from

σ∗ ∈ E and from T̂ ′0 ⊆ T̂0.
For all t0 ∈ B′′, (29) holds because

Uσ′

0 (t0) =
r0(D

′)

r0(D′ ∪D′′)
Uσ∗

0 (t0) +
r0(D

′′)

r0(D′ ∪D′′)
Uσ∗

0 (t′′0, t0) > Uσ∗

0 (t0).

This completes the proof that σ′ ∈ E , thereby contradicting the minimality of |Dσ∗|.
We conclude that r0(B

∗) = 0.
Given any t ∈ T with t0 6∈ B∗, we define σ(t) = σ∗(t). For all t ∈ T with t0 ∈ B∗,

we define σ(t) by letting type t0 announce, in the direct-mechanism interpretation of
σ∗, whatever type she finds optimal in T0 \ B∗, or assign the disagreement outcome
if t0 prefers that.

By construction, the principal’s incentive constraints are satisfied for σ. Also, the
agents’ r0-incentive and participation constraints are satisfied because σ(t) equals
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σ∗(t) for a r0-probability-1 set of principal-types, and because these constraints are
satisfied for σ∗.

By construction, (22) holds for all t0 ∈ T0\B∗. By continuity of Uσ
0 (·), (22) extends

to all t0 ∈ supp(r0). In particular, the principal’s participation constraint is satisfied
for all types in supp(r0). By construction, the same holds for all types not in supp(r0).
Hence, σ is r0-feasible. This completes the proof. QED

Proof of Proposition 3. For a probability-1 set of type profiles t, a solution to the
unconstrained F0-ex-ante problem will implement an outcome that puts probability
0 on any action a ∈ A such that

(30) ∃b ∈ A, (sa0, . . . , s
a
n) = (sb0, . . . , s

b
n),

n∑
i=0

cai <

n∑
i=0

cbi .

(Otherwise, the principal could always implement b instead of a and extract larger
payments from the agents.)

Moreover, if instead
∑n

i=0 c
a
i =

∑n
i=0 c

b
i in (30), then either a or b may be used

without changing the interim expected utility ui(ti) of any type ti of any player i.
Hence, without loss of generality, we may assume A is such that, for all a ∈ A,

the vector sa = (sa0, . . . , s
a
n) uniquely determines the vector ca = (ca0, . . . , c

a
n) = Φ(sa).

Extending Φ linearly to the convex hull S of {sa|a ∈ A}, we have

V = {(ŝ, ĉ) ∈ IR2n+2 | ŝ ∈ S, ĉ = Φ(ŝ)}.

For all players i = 0, . . . , n, naturals m = 1, 2, . . . , and k = 1, . . . ,m, let Cm
i (k) =

[F−1
i ((k − 1)/m), F−1

i (k/m)) and tm,ki = EFi [ti | ti ∈ Cm
i (k)]. Define the finite type

space

Tmi = {tm,1i , . . . , tm,mi }
and let Fm

i be the c.d.f. for the uniform distribution on Tmi .
In the following, we will use the quantile functions F−1

i (qi) = min{ti ∈ Ti | Fi(ti) ≥
qi} (qi ∈ [0, 1]); define (Fm

i )−1 analogously. Let F−1(q) = (F−1
0 (q0), . . . , F

−1
n (qn)) for

all q = (q0, . . . , qn) ∈ [0, 1]n+1; define (Fm)−1 analogously. Then

| F−1
i (qi)− (Fm

i )−1(qi) | ≤
1

m ·minti∈Ti fi(ti)
def
= δmi .(31)

Next we show that each of the discrete environments just defined is separable in the
sense of Mylovanov and Tröger (forthcoming). For all i ≥ 1, ti ∈ Tmi , and a, b ∈ A,
define

pa,bi (ti) =

{
ti−ti
ti−ti

if sai ≥ sbi ,
ti−ti
ti−ti

otherwise.

Define a function α(t) for all t ∈ Tm by the following randomization: select any
number i ∈ {1, . . . , n} with equal probability (= 1/n), then choose action ai with

probability (1/n)
∑n

j=1 p
ai,bi
j (tj) and choose bi with the remaining probability, where

we use the notation ai, bi from (2).
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By construction, pai,bij (tj) is strictly increasing in tj if agent j weakly prefers ai to
bi, and is strictly decreasing if agent j weakly prefers bi to ai. Hence, for any agent i,
type ti ∈ Tmi , and t−i, as ti increases, the randomized action α(t) shifts probability
from less preferred actions to more preferred actions. Thus, using (2), the function

ŝi(t) =

∫
A

sai dα(t)(a)

is strictly increasing in ti, for all t−i. Hence, we can define payments such that all
agents’ incentive constraints are satisfied with strict inequality. By adding constant
payments we can guarantee that, in addition, all agents’ participation constraints are
satisfied with strict inequality, showing separability.

Because A is finite, it is trivially compact and the valuation functions are con-
tinuous. Hence, by Proposition 2, for each of the discrete-type-space environments
constructed above (m = 1, 2, . . . ), there exists a strongly neologism-proof allocation

ρm(t) = (um0 (t), . . . , umn (t), sm0 (t), . . . , cmn (t))

that is defined for all t ∈ Tm = Tm0 × · · · × Tmn .
We extend ρm to all t ∈ T by assuming that, in the direct-mechanism interpretation

of ρm, any type ti ∈ (tm,ki , tm,k+1
i ) makes an optimal type announcement from the set

{tm,ki , tm,k+1
i }, any type ti > tm,mi announces the type tm,mi , and any type ti < tm,1i

announces the type tm,1i .
Then the functions

smi (ti) =

∫
T−i

smi (t)dFm
−i(t−i), (i ≥ 0, ti ∈ Ti)

are weakly increasing on Ti. Moreover, defining

umi (ti) =

∫
T−i

umi (t)dFm
−i(t−i),

the envelope formula holds on Ti, that is,

umi (ti) = umi (ti) +

∫ ti

ti

smi (y)dy for all i ≥ 0, ti ∈ Ti.(32)

Observe that this formula includes the principal i = 0.
From (32), for all m, i,

|umi (ti)− umi (t′i)| ≤ max
a
|sai | · |ti − t′i| (ti, t

′
i ∈ Ti).

Hence, the family of functions (umi )m=1,2,... is equicontinuous. Moreover, by Lemma
1, it is uniformly bounded. Hence, by Arzela and Ascoli’s Theorem, there exists a
subsequence m′ such that

(33) max
ti∈Ti
|um′i (ti)− û∗i (ti)| → 0

for some continuous function û∗i ; i.e., the subsequence converges uniformly.
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For all i ≥ 0, the composite function smi ◦ (Fm)−1 belongs to L2([0, 1]n+1). The
sequence (smi ◦(Fm)−1)m=1,2... is ||· ||2 -bounded (for instance, maxa∈A |sai | is a bound).
Hence, by Alaoglu’s Theorem, there exists a subsequence m′ such that

(34) sm
′

i ◦ (Fm′)−1 →weakly h
∗
i

for some h∗i ∈ L2([0, 1]n+1). Define

h
∗
i (qi) =

∫
[0,1]n

h∗i (q)dq−i.

Define

s∗i (t) = h∗i (F0(t0), . . . , Fn(tn)), (t ∈ T ).

Define

s∗i (ti) =

∫
T−i

s∗i (t)dF−i(t−i).

(At this point, is it not yet clear whether s∗i is a weakly increasing function.)
Note that

s∗i (F
−1
i (qi)) = h

∗
i (qi).(35)

Because the functions smi are weakly increasing, Helly’s selection theorem implies the
existence of a subsequence m′ such that

sm
′

i (ti)→ ŝ∗i (ti) Lebesgue-a.e. ti ∈ Ti.(36)

for some ŝ∗i ∈ L2(Ti). This convergence translates into the quantile space:23

sm
′

i (F−1
i (qi))→ ŝ∗i (F

−1
i (qi)) Lebesgue-a.e. qi ∈ [0, 1].(37)

Because the functions smi ◦Fm
i are weakly increasing, Helly’s selection theorem implies

the existence of a subsequence m′ such that

sm
′

i ((Fm′

i )−1(qi))→ ĥ∗i (qi) Lebesgue-a.e. qi ∈ [0, 1].(38)

for some ĥ∗i ∈ L2([0, 1]).
From now on we will work with a subsequence m′ such that (33), (34), (36), and

(38) hold.
First we show that

(39) sm
′

i ◦ (Fm′

i )−1 →weakly h
∗
i .

23In order to be able to move between quantile space and type space, it is important that an
“Lebesgue-a.e. property” in one space translates into an “Lebesgue-a.e. property” in the other space.
This follows from the assumption of positive densities. In particular, consider any set Lebesgue
measurable set X ⊆ Ti and Q = {qi|F−1

i (qi) ∈ X}. Then

Pr[Q] =
∫ 1

0

1F−1
i (qi)∈Xdqi =

∫
Ti

1ti∈XdFi(ti) =
∫

X

fi(ti)dti.

Hence, Q has Lebesgue-measure 0 if and only if X has Lebesgue-measure 0.
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To see this, notice that, for all g ∈ L2([0, 1]),∫ 1

0

sm
′

i ((Fm′

i )−1(qi))g(qi)dqi =

∫
[0,1]n+1

sm
′

i ◦ (Fm′)−1(q)g(qi)dq

(34)→
∫

[0,1]n+1

h∗i (q)g(qi)dq

=

∫ 1

0

h
∗
i (qi)g(qi)dqi.

Using (38) and (39),

ĥ∗i (qi) = h
∗
i (qi) Lebesgue-a.e. qi ∈ [0, 1].(40)

Let δ > 0. For all m′ large enough such that δm
′

i < δ,24∫ 1

0

∣∣∣sm′i (F−1
i (qi))− sm

′

i ((Fm′

i )−1(qi))
∣∣∣ dqi(41)

(31)

≤
∫ 1

0

max{sm′i (F−1
i (qi))− sm

′

i ((Fi)
−1(qi)− δ), sm

′

i ((Fi)
−1(qi) + δ)− sm′i (F−1

i (qi))}dqi

≤
∫ 1

0

(sm
′

i (F−1
i (qi))− sm

′

i ((Fi)
−1(qi)− δ))dqi +

∫ 1

0

(sm
′

i ((Fi)
−1(qi) + δ)− sm′i (F−1

i (qi)))dqi

(37)→
∫ 1

0

∣∣ŝ∗i (F−1
i (qi))− ŝ∗i ((Fi)−1(qi)− δ)

∣∣ dqi +
∣∣ŝ∗i (F−1

i (qi) + δ)− ŝ∗i ((Fi)−1(qi))
∣∣ dqi

=

∫
Ti

|ŝ∗i (ti)− ŝ∗i (ti − δ)| fi(ti)dti +

∫
Ti

|ŝ∗i (ti + δ)− ŝ∗i (ti)| fi(ti)dti → 0 as δ → 0.

(The limits in the last line have this reason: ŝ∗i is weakly increasing, thus is contin-
uous Lebesgue-a.e., implying that the family of functions kδ(ti) = ŝ∗i (ti) − ŝ∗i (ti − δ)
converges to 0 Lebesgue-a.e. ti as δ → 0.)

Taking the limit m′ →∞ in (41), we conclude that

ŝ∗i (F
−1
i (qi)) = ĥ∗i (qi) Lebesgue-a.e. qi ∈ [0, 1].

Combining this with (40), we conclude that

ŝ∗i (F
−1
i (qi)) = h

∗
i (qi) Lebesgue-a.e. qi ∈ [0, 1].

Transforming back into type space and using (35), we have

(42) ŝ∗i (ti) = s∗i (ti) Lebesgue-a.e. ti ∈ Ti.
For any t ∈ T, define

(c∗0(t), . . . , c∗n(t)) = Φ(s∗0(t), . . . , s∗n(t)).

Define u∗0(t), . . . , u∗n(t) via payments such that

u∗i (t) = û∗i (ti) +

∫ ti

ti

s∗i (y)dy for all i ≥ 0, t ∈ T.(43)

24Extend the functions sm′

i and ŝ∗i constantly to the left and to the right of Ti in this computation.
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This completes the definition of the allocation

ρ∗ = (u∗0(·), . . . , u∗n(·), s∗0(·), . . . , c∗n(·)).

It remains to show that ρ∗ is strongly neologism-proof.
First we show that ρ∗ is F0-feasible.
Because all functions s∗0, . . . , s

∗
n are weakly increasing by (42), the envelope condi-

tion (43) guarantees that all players’ incentive constraints are satisfied. Moreover,

lim
m′

max
ti∈Ti
|um′i (ti)− u∗i (ti)| = lim

m′
max
ti∈Ti

∫ ti

ti

| sm′i (y)− s∗i (y) | dy

≤ lim
m′

∫ ti

ti

| sm′i (y)− s∗i (y) | dy

(36),(42)
= 0.(44)

Hence, because, for all m and all players i, the allocation ρm satisfies the participation
constraints for all types in Tmi , the allocation ρ∗ satisfies player i’s participation
constraints for all types in Ti.

Because weak convergence is preserved under each component of the affine map
Φ = (Φ0, . . . ,Φn), (34) implies that

cm
′

i ◦ (Fm′)−1 = Φi ◦
(
sm
′

0 ◦ (Fm′)−1, . . . , sm
′

n ◦ (Fm′)−1
)

→weakly Φi ◦
(
s∗0 ◦ F−1, . . . , s∗n ◦ F−1

)
= c∗i ◦ F−1.

This allows us to verify the budget-balance condition (12) for ρ∗, as follows:

0 =

∫
T

(
n∑
i=0

sm
′

i (t)ti + cm
′

i (t)− um′i (t)

)
dFm′(t)

=
n∑
i=0

∫
[0,1]

sm
′

i ((Fm′

i )−1(qi))︸ ︷︷ ︸
→s∗i (F

−1
i (qi))

(Fm′

i )−1(qi)︸ ︷︷ ︸
→F−1

i (qi)

dqi +

∫
[0,1]n+1

cm
′

i ((Fm′)−1(q))dq


−

n∑
i=0

um
′

i (ti)dF
m′

i (ti)

(44)→
n∑
i=0

∫
Ti

(s∗i (ti)ti − u∗i (ti)ti)dFi(ti) +

∫
[0,1]n+1

c∗i (F
−1(q))dq

=

∫
T

(
n∑
i=0

s∗i (t)ti + c∗i (t)− u∗i (t)

)
dF (t).

It remains to verify the condition stated in Proposition 1. Suppose it fails. Then there
exists a belief G0 absolutely continuous relative to F0 and a G0-feasible allocation
ρ′ = (s′0(·), . . . , u′n(·)) with a higher G0-ex-ante payoff for the principal than ρ∗.
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Define Gm
0 such that PrGm0 [tm,ki ] = G0(F

−1
0 (k/m))−G0(F

−1
0 ((k − 1)/m)). We will

use the shortcuts G = (G0, F−0) and Gm = (Gm
0 , F

m
−0).

For allm, we define an allocation ρ′m = (s′0
m(·), . . . , u′n

m(·)): for all tm = (tm,k00 , . . . , tm,knn )
(ki ∈ {1, . . . ,m}),

s′i
m

(tm) = EG[s′i(t) | ∀i : ti ∈ Cm
i (ki)],

c′i
m

(tm) = EG[c′i(t) | ∀i : ti ∈ Cm
i (ki)],

u′i
m

(tm) = EG[u′i(t) | ∀i : ti ∈ Cm
i (ki)] + 1i=0ε

m
0 − 1i≥1ε

m
i (tm,ki ),

where εm0 and εmi (tm,ki ) are defined below.
For all i ≥ 1, m, and k, let

γmi (tm,ki ) = m

∫ (k−1)/m

0

(∫ F−1
i (qi+

1
m

)

F−1
i (qi)

s′i(y)dy

−
(
F−1
i

(
qi +

1

m

)
− F−1

i (qi)

)
m

∫ F−1
i (qi+

1
m

)

F−1
i (qi)

s′i(y)fi(y)dy

)
dqi

and

εmi (tm,ki ) = γmi (tm,ki )−max
k′
|γmi (tm,k

′

i )| ≤ 0.

Then

|γmi (tm,ki )| ≤ m

∫ 1

0

∣∣∣∣F−1
i

(
qi +

1

m

)
− F−1

i (qi)

∣∣∣∣
·

∣∣∣∣∣∣∣
∫ F−1

i (qi+ 1
m)

F−1
i (qi)

s′i(y)dy

F−1
i

(
qi + 1

m

)
− F−1

i (qi)
−

∫ F−1
i (qi+ 1

m)
F−1
i (qi)

s′i(y)fi(y)dy

1/m

∣∣∣∣∣∣∣ dqi
= m

∫ 1

0

∣∣∣∣F−1
i

(
qi +

1

m

)
− F−1

i (qi)

∣∣∣∣ · |σ1(qi)− σ2(qi)| dqi,

where σ1(qi), σ2(qi) ∈ [s′i(qi), s
′
i(qi + 1

m
)] because s′i is weakly increasing. Therefore,

|γmi (tm,ki )| ≤ m

∫ 1

0

∣∣∣∣F−1
i

(
qi +

1

m

)
− F−1

i (qi)

∣∣∣∣ · (s′i(qi +
1

m

)
− s′i(qi)

)
dqi

≤ 1

minti∈Ti fi(ti)

∫ 1

0

(
s′i

(
qi +

1

m

)
− s′i(qi)

)
dqi → 0 as m→∞.

For all i and m, define a function φmi : Ti → Tmi such that φmi (ti) = tm,ki for all
ti ∈ Cm

i (k). Observe that φmi (ti)→ ti as m→∞ for all ti and hence

εm0
def
=

∫
T

n∑
i=0

s′i(t)(ti − φmi (ti))dG(t) +
n∑
i=1

m∑
k=1

εmi (tm,ki )

m
→ 0.
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This completes the definition of ρ′m. By construction, for all i ≥ 1 and tm,ki ∈ Tmi ,

s′i
m

(tm,ki )
def
=

∫
T−i

s′i
m

(tm,ki , t−i)dG
m
−i(t−i)

=
1

PrFi(C
k,m
i )

∫
Cm,ki

∫
T−i

s′i(t)dG−i(t−i)dFi(ti)

= m

∫
Cm,ki

s′i(ti)dFi(ti)

= m

∫ F−1
i (k/m)

F−1
i ((k−1)/m)

s′i(ti)fi(ti)dti

= m

∫ k/m

(k−1)/m

s′i(F
−1
i (qi))dqi,

and similar for c′i
m

and u′i
m

. In particular, the agents’ participation constraints are
satisfied for ρ′m. To verify the agents’ incentive constraints, notice that, using the
shortcut

∆ = εmi (tm,k+1
i )− εmi (tm,ki ) = γmi (tm,k+1

i )− γmi (tm,ki ),

we have

u′i
m

(tm,k+1
i )− u′i

m
(tm,ki ) = m

∫
Cm,k+1
i

u′i(ti)dFi(ti)−m
∫
Cm,ki

u′i(ti)dFi(ti)−∆

= m

∫ (k+1)/m

k/m

u′i(F
−1
i (qi))dqi −m

∫ k/m

(k−1)/m

u′i(F
−1
i (qi))dqi −∆

= m

∫ k/m

(k−1)/m

(
u′i(F

−1
i (qi +

1

m
))− u′i(F−1

i (qi))

)
dqi −∆

= m

∫ k/m

(k−1)/m

∫ F−1
i (qi+

1
m

)

F−1
i (qi)

s′i(y)dydqi −∆

= m2

∫ k/m

(k−1)/m

(F−1
i (qi +

1

m
)− F−1

i (qi))

∫ F−1
i (qi+

1
m

)

F−1
i (qi)

s′i(y)fi(y)dydqi.
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Then, by the first mean value theorem for integration, there exists ξi ∈ [(k−1)/m, k/m]
such that

. . . = m2

∫ F−1
i (ξi+

1
m

)

F−1
i (ξi)

s′i(y)fi(y)dy

∫ k/m

(k−1)/m

(F−1
i (qi +

1

m
)− F−1

i (qi))dqi

=
1

1/m

∫ F−1
i (ξi+

1
m

)

F−1
i (ξi)

s′i(y)fi(y)dy · (tm,k+1
i − tm,ki )

=
1

1/m

∫ ξi+
1
m

ξi

s′i(F
−1
i (y))dy · (tm,k+1

i − tm,ki ){
≥ smi (tm,ki )(tm,k+1

i − tm,ki )

≤ smi (tm,k+1
i )(tm,k+1

i − tm,ki ),

showing incentive compatibility.
Moreover, due to the correcting term εm0 , the ex-ante budget balance condition for

ρ′ implies that the ex-ante budget balance condition holds for ρ′m. Finally,

max
t0∈Tm0

| u′0
m

(t0)− u′0(t0) | ≤ |εm0 |+ 2
m∑
i=1

max
k∈{1,...,m}

|γmi (tm,ki )| → 0 as m→∞.

Hence, the principal’s Gm
0 -ex-ante payoff according to (ρ′)m converges to the princi-

pal’s G0-ex-ante payoff according to ρ′ as m→∞. This contradicts the fact that ρm

is strongly neologism-proof for all m. QED

Proof of Proposition 4. From Proposition 3 and Corollary 2, the solutions to the
principal’s F0-ex-ante problem are precisely the solutions to the principal’s relaxed
F0-ex-ante problem in which the principal’s incentive and participation constraints
are satisfied.

Using (12) to rewrite the objective, the principal’s relaxed F0-ex-ante problem is
to

max
u1(t),...,un(t),(s0(t),...,cn(t))∈V

∫
T

(
n∑
i=0

si(t)ti + ci(t)−
n∑
i=1

ui(t)

)
dF (t),

s.t. si(·) weakly increasing for all i ≥ 1,

ui(ti) = ui(ti) +

∫ ti

ti

si(y)dy for all i ≥ 1, ti ∈ Ti,

ui(ti) ≥ 0 for all i ≥ 1, ti ∈ Ti.

Using the virtual valuation functions ψi(ti) = ti − (1 − Fi(ti))/fi(ti) and (10), the
objective of this problem can be rewritten as∫

T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψi(ti) + ci(t)

)
dF (t)−

n∑
i=1

ui(ti),
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Here, only the lowest-types’ utilities ui = ui(ti) occur. Thus we can define payments
to satisfy (10) in a separate (second) step, and can simplify the maximization problem
as follows:

max
(u1,...,un)∈IRn, (s0(t),...,cn(t))∈V

∫
T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψi(ti) + ci(t)

)
dF (t)

−
n∑
i=1

ui,

s.t. si(·) weakly increasing for all i ≥ 1,(45)

ui +

∫ ti

ti

si(y)dy ≥ 0 for all i ≥ 1, ti ∈ Ti.

Defining

M = {(s0(·), . . . , cn(·)) | (45)},

we have to

max
(u1,...,un)∈IRn, (s0(·),...,cn(·))∈M

∫
T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψi(ti) + ci(t)

)
dF (t)

−
n∑
i=1

ui,

s.t. ui +

∫ ti

ti

si(y)dy ≥ 0 for all i ≥ 1, ti ∈ Ti.

Using the Lagrange approach (e.g., Luenberger (1969), Chapter 8), we have to

max
(u1,...,un)∈IRn, (s0(·),...,cn(·))∈M

∫
T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψi(ti) + ci(t)

)
dF (t)

−
n∑
i=1

ui

+
n∑
i=1

∫
Ti

(
ui +

∫ ti

ti

si(y)dy

)
dz∗i (ti),

where z∗i (i ≥ 1) is a right-continuous and weakly increasing function on Ti such that

n∑
i=1

∫
Ti

(
u∗i +

∫ ti

t∗i

s∗i (y)dy

)
dz∗i (ti) = 0,(46)

where (u∗1, . . . , u
∗
n, s
∗
0(·), . . . , c∗n(·)) denotes a solution to the maximization problem.

Because the solution value is the same as to the F0-ex-ante optimization problem
(e.g., Luenberger (1969), Chapter 8), we cannot reach arbitrarily high values, implying
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that z∗i (ti) = 1 for all i (otherwise i could be chosen to achieve arbitrarily high values
for the objective).

Hence, u1, . . . , un cancel out and the objective becomes∫
T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψi(ti) + ci(t)

)
dF (t)

+
n∑
i=1

∫
Ti

∫ ti

ti

si(y)dydz∗i (ti),

Using integration by parts, we can rewrite the objective as∫
T

(
s0(t)t0 + c0(t) +

n∑
i=1

si(t)ψ
z∗i
i (ti) + ci(t)

)
dF (t),

By the arguments of Myerson (1981), maximization of this objective is equivalent to
(14), provided that there exists a solution to (14) that belongs to M. The existence
of a solution that belongs to M is argued as follows. Observe that

(s∗0(t), . . . , c∗n(t)) ∈ arg max
b∈V

b · d,

where

b = (ŝ0, . . . , ĉn),

d = (t0, ψ
∗
1(t1), . . . , ψ

∗
n(tn), 1, . . . , 1).

If ti becomes larger, one component of d becomes larger, or d remains constant.
Consider the problem to maxb∈V b · dj for two vectors d1, d2 ∈ IRm with d2 = d1 +
(δ, 0, . . . , 0) for some δ > 0. Let bj ∈ arg maxb b · dj for j = 1, 2. Then we claim that

b21 ≥ b11. To see this, consider b̂ ∈ V such that b̂1 < b11. By optimality of b1, we have

b̂ · d1 ≤ b1 · d1, implying b̂ · d2 < b1 · d2. Hence, b̂ 6∈ arg maxb b · d2, as was to be shown.
Finally, observe that (46) is equivalent to (13). Hence, a solution to the principal’s

relaxed F0-ex-ante problem is characterized by the conditions (13), (14), (15) for
i 6= 0, (16) for i 6= 0, and (17) for i 6= 0. The additional conditions (15), (16),
and (17) for i = 0 are the principal’s incentive and participation constraints. This
completes the characterization.

Proof of Proposition 6. We make use of the conditions provided in Proposition 4.
Observe that

V z∗1 ,...,z
∗
n(v, t) = ψ

z∗1
1 (t1)ŝ1 − t0ŝ0.

Condition (14) yields that s1(t) = 1−α if ψ
z∗1
1 (t1) > t0 and s1(t) = −α if ψ

z∗1
1 (t1) < t0.

Therefore,

s1(t1) = F0(ψ
z∗1
1 (t1))− α a.e. t1.(47)

Let [y
1
, y1] denote the interval of types t1 such that u1(t1) = 0. By the monotonicity

condition (15), if t1 > y1, then s(t1) ≥ 0. In fact, by definition of y1 and the envelope
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formula (16),

(48) s1(t1) > 0 if t1 > y1, and s1(t1) < 0 if t1 < y
1
.

First, we show that y
1
< y1. Suppose that y

1
= y1. Then z∗1(t1) = 1t1≥y1 by (13),

implying that ψ
z∗1
1 (t1) = ψs(t1) if t1 < y

1
and ψ

z∗1
1 (t1) = ψb(t1) if t1 ≥ y

1
.

Suppose, furthermore, that y
1

= y1 = t1. Then ψ
z∗1
1 = ψb is strictly increasing.

Hence, ψ
z∗1
1 = ψb. Hence, for t1 ≈ 0, ψ

z∗1
1 (t1) < 0, implying s1(t1) = −α < 0

by (47). That is, u1 is strictly decreasing at t1 ≈ 0 by (16), a contradiction to
u1(t1) = u1(y1

) = 0 and (17). For a similar reason, it cannot be that y
1

= y1 = t1.

Thus, suppose that y
1

= y1 ∈ (t1, t1). Because ψ
z∗1
1 jumps downwards at y

1
, ironing

implies that, for all t1 in an open neighborhood of y
1
, the function ψ

z∗1
1 (t1) is con-

stant. Hence, by (47) and (15), s1(t1) = const. for all t1 in the open neighborhood,
contradicting (48).

Hence, y
1
< y1. Then s1(t1) = 0 on (y

1
, y1) by the envelope formula (16). Hence,

using (47) and (48), for a.e. t1,

ψ
z∗1
1 (t1)


> F−1

0 (α1) if t1 > y1,
= F−1

0 (α1) if t1 ∈ [y
1
, y1],

< F−1
0 (α1) if t1 < y

1
.

(49)

This extends to all t1 because ψ
z∗1
1 is continuous. Notice that y

1
> t1 because otherwise

ψ
z∗1
1 (t1) ≥ ψ

z∗1
1 (t1), but this is impossible because

ψ
z∗1
1 (t1) ≤ ψs(t1) = t1 = 0 < F−1

0 (α1) = ψ
z∗1
1 (t1).

Similarly, y1 < t1.

From (13), ψ
z∗1
1 (t1) = ψs(t1) for all t1 < y

1
. Hence, because ψs is strictly increasing

and using (49),

ψ
z∗1
1 (t1) = ψs(t1) for all t1 < y

1
.

Similarly, because ψb is strictly increasing,

ψ
z∗1
1 (t1) = ψb(t1) for all t1 > y1.

Hence, using (49) and the continuity of ψ
z∗1
1 , ψs(y

1
) = F−1

0 (α), implying

y
1

= (ψs)−1(F−1
0 (α)).

Similarly,

y1 = (ψb)−1(F−1
0 (α)).

This completes the proof.
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