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Abstract

We study a dynamic market with asymmetric information that creates the lemons

problem. We compare effi ciency of the market under different assumptions about the

timing of trade. We identify positive and negative aspects of dynamic trading, describe

the optimal market design under regularity conditions and show that continuous-time

trading can be always improved upon.

1 Introduction

Consider liquidity-constrained owners who would like to sell assets to raise capital for prof-

itable new opportunities. Adverse selection, as in Akerlof (1970), means that if owners have

private information about value trade will be ineffi cient, even in competitive markets. In

this paper we show how that ineffi ciency is affected by market design in terms of when the

sellers can trade.

In Akerlof (1970) the seller makes only one decision: to sell the asset or not. However, in

practice, if the seller does not sell immediately, there are often future opportunities to trade.

Delayed trade can be used by the market as a screen to separate low value assets (those that

sellers are more eager to sell) from high-value assets. As we show in this paper, dynamic

trading creates costs and benefits for overall market effi ciency. On the positive side, the

screening via costly delay increases in some instances overall liquidity of the market: more
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types eventually trade in a dynamic trading market than in the static/restricted trading

market. On the negative side, future opportunities to trade reduce the amount of early

trade, making the adverse selection problem worse. There are two related reasons. First,

keeping the time 0 price fixed, after a seller decides to reject it, buyers update positively

about the value of the asset and hence the future price is higher. That makes it desirable

for some seller types to wait. Second, the types who wait are a better-than-average selection

of the types were supposed to trade at time 0 in a static model and hence this additional

adverse selection reduces p0. In turn, even more types wait, reducing effi ciency further.

We study different ways of designing the market in terms of picking the times when the

market opens. For example, we compare effi ciency of a continuously opened market to a

design in which the seller can trade only once at t = 0 and otherwise has to wait until the

type is revealed at some T (we allow the asymmetric information to be short-lived, T <∞,
as well as fully persistent, T =∞).1

We motivate our analysis by an example with linear valuations (the value to buyers is a

linear function of the seller value) and uniform distribution of seller types. We show that

the market with restricted trading opportunities (allowing trades only at t = 0 and at T ) is

on average more effi cient than a market with continuous-time trading. In fact, for large T

the deadweight loss caused by adverse selection is three times as large if continuous trading

is allowed. It may appear that preventing costly screening/signaling could always welfare-

improving as in the education signaling models (Spence 1973). Via a different example we

show that this is not always true: since in a market for lemons immediate effi cient trade is

not possible, in some situations screening via costly delay can help welfare.

Our first main result (Proposition 4) is that under fairly standard regularity conditions,

restricting the seller to have only one, immediate trading opportunity until information

arrives, generates higher expected gains from trade than any other market design that allows

the seller to trade more than once. Moreover, sometimes it is even beneficial to delay when the

information arrives to reduce adverse selection further. The second main result (Proposition

5) is that even without the regularity conditions, we can always improve upon a continuous

trading market design. In particular, we show that introducing a "lock-up" period, that is

allowing the seller to trade at t = 0 and then closing the market for an appropriate time

window, followed by continuous trading, is welfare improving.

We then consider an alternative design: what if market is opened continuously until some

time interval before information arrives? We show that this design has qualitatively different

1In Section 6.1 we consider information arriving at random time.

2



consequences than the "lock-up" period in which market is closed after the initial trade

opportunity at t = 0. The reason is that closing the market before T creates an additional

endogenous market closure. If the last opportunity to trade before T is at t∗, in equilibrium

there is an additional time interval (t∗∗, t∗) such that nobody trades even though trades are

allowed. The intuition is that failing to trade at t∗ implies a strictly positive delay cost for

the seller and as a result an atom of types trades at t∗. That reduction in adverse selection

allows the buyers to offer a good price. In turn, waiting for this good price makes the adverse

selection right before t∗ so extreme that the market freezes. This additional delay cost can

completely undo the effi ciency gains that accrue at t∗ - we argue that such short closures

have a very small impact on total welfare and that the overall effect can be either positive

or negative.

Next we discuss how our findings can be applied to inform government policy. When infor-

mation frictions get really bad, the government may consider a direct intervention (beyond

trying to regulate the dynamic trading). We have seen several of these interventions during

the recent financial crisis. For example, the government could guarantee a certain value of

traded assets (this was done with the debt issues by several companies and as part of some

of the takeover deals of financially distressed banks). Alternatively, the government could

directly purchase some of the assets (for example, real estate loan portfolios from banks as

has been done in Ireland and is being discussed as a remedy for the Spanish banking crisis).

We point out an important equilibrium effect that seems to be absent of many public

discussions about such government bailouts. It is not just the banks that participate in the

asset buyback or debt guarantee programs that benefit from the government’s intervention.

The whole financial sector benefits because liquidity is restored to markets. As a result,

non-lemons manage to realize higher gains from trade thanks to the intervention. We relate

our findings to the recent work by Philippon and Skreta (2012) and Tirole (2012). We

argue that unlike in their static-market analysis, the government can improve welfare by a

comprehensive intervention which involves not only assets buy-backs but also restricts the

post-intervention private markets. Finally, we point out that expectation of an asset buy-

back (or any other intervention that leads to an atom of types trading) in the near term may

drastically reduce liquidity as in the "late closure" market design, partially undermining the

benefits of that intervention.
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1.1 Related Literature

Our paper is related to literature on dynamic markets with adverse selection. The closest

paper is Janssen and Roy (2002) who study competitive equilibria in a market that opens

at a fixed frequency (and long-lived private information, T = ∞). In equilibrium prices

increase over time and eventually every type trades. They point out that the outcome is still

ineffi cient even as per-period discounting disappears (which is equivalent to taking a limit

to continuous trading in our model) since trade suffers from delay costs even in the limit.

They do not ask market design questions as we do in this paper (for example, what is the

optimal frequency of opening the market). Yet, we share with their model the observation

that dynamic trading with T = ∞ leads to more and more types trading over time. For

other papers on dynamic signaling/screening with a competitive market see Noldeke and

van Damme (1990), Swinkels (1999), Kremer and Skrzypacz (2007) and Daley and Green

(2011). While we share with these papers an interest in dynamic markets with asymmetric

information, none of these papers focuses on market design questions.

From the mechanism-design perspective, a closely related paper is Samuelson (1984). It

characterizes a welfare-maximizing mechanism in the static model subject to no-subsidy

constraints. When T = ∞, this static mechanism design is mathematically equivalent to

a dynamic mechanism design since choosing probabilities of trade is analogous to choosing

delay. Therefore our proof of Proposition 4 uses the same methods as Samuelson (1984).

As we mentioned already, our paper is also related to Philippon and Skreta (2012) and

Tirole (2012) who study mechanism design (i.e. government interventions) in the presence

of a market ("competitive fringe"). Our focus is on a different element of market design, but

we also discuss how these two approaches can be combined.

Our analysis can be described as "design of timing" in the sense that we compare equilib-

rium outcomes for markets/games that differ in terms of the time when players move. That

is related in spirit to Damiano, Li and Suen (2012), who study optimal delay in committee

decisions where the underlying game resembles a war of attrition.

A different design question for dynamic markets with asymmetric information is asked in

Hörner and Vieille (2009), Kaya and Liu (2012), Kim (2012) and Fuchs, Öry and Skrzypacz

(2012). These papers take the timing of the market as given (a fixed frequency) and ask

how information about past rejected offers affects effi ciency of trade. It is different from our

observation in Remark 2 since this is about observability of accepted rather than rejected

offers.2

2Moreno and Wooders (2012) ask a yet another design question: they compare decentralized search
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Finally, there is also a recent literature on adverse selection with correlated values in

models with search frictions (among others, Guerrieri, Shimer and Wright (2010), Guerrieri

and Shimer (2011) and Chang (2012)). Rather than having just one market in which different

quality sellers sell at different times, the separation of types in these models is achieved

because market differ in market tightness with the property that in a market with low prices

a seller can find a buyer very quickly and in a market with high prices it takes a long time to

find a buyer. Low-quality sellers which are more eager to sell quickly self-select into the low

price market while high quality sellers are happy to wait longer in the high price market. One

can relate our design questions to a search setting by studying the effi ciency consequences of

closing certain markets (for example, using a price ceiling). This would roughly correspond

to closing the market after some time in our setting.

2 The Model

As in the classic market for lemons, a potential seller owns one unit of an indivisible asset.

When the seller holds the asset, it generates for him a revenue stream c ∈ [0, 1] that is private

information of the seller. c is drawn from a distribution F (c) , which is common knowledge,

atomless and has a continuous, strictly positive density f (c).

There is a competitive market of potential buyers. Each buyer values the asset at v (c)

which is strictly increasing, twice continuously differentiable, and satisfies v (c) > c for all

c < 1 (i.e. common knowledge of gains from trade) and v (1) = 1 (i.e. no gap on the top).

These assumptions imply that in the static Akerlof (1970) problem some but not all types

trade in equilibrium.3

Time is t ∈ [0, T ] and we consider different market designs in which the market is opened

in different moments in that interval. We start the analysis with two extreme market designs:

"infrequent trading" (or "restricted trading") in which the market is opened only twice at

t ∈ {0, T} and "continuous trading" in which the market is opened in all t ∈ [0, T ] . Let

Ω ⊆ [0, T ] denote the set of times that the market is open (we assume that at the very least

{0, T} ⊂ Ω).

Every time the market is opened, there is a market price at which buyers are willing to

trade and the seller either accepts it (which ends the game) or rejects. If the price is rejected

the game moves to the next time the market is opened. If no trade takes place by time T

markets with centralized competitive markets.
3Assuming v (1) = 1 allows us not to worry about out-of-equilibrium beliefs after a history where all seller

types are supposed to trade but trade did not take place. We discuss this assumption further in Section 6.3.
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the type of the seller is revealed and the price in the market is v (c), at which all seller types

trade.

All players discount payoffs at a rate r and we let δ = e−rT . The values c and v (c) are

normalized to be in total discounted terms. If trade happens at time t at a price pt, the

seller’s payoff is (
1− e−rt

)
c+ e−rtpt

and the buyer’s payoff is

e−rt (v (c)− pt)

A competitive equilibrium is a pair of functions {pt, kt} for t ∈ Ω where pt is the market

price at time t and kt is the highest type of the seller that trades at time t.4 These functions

satisfy:

(1) Zero profit condition: pt = E [v (c) |c ∈ [kt−, kt]] where kt− is the cutoff type at the

previous time the market is open before t (with kt− = 0 for the first time the market is

opened)5

(2) Seller optimality: given the process of prices, each seller type maximizes profits by

trading according to the rule kt.

(3) Market Clearing: in any period the market is open, the price is at least pt ≥ v (kt−) .

Conditions (1) and (2) are standard. Condition (3) deserves a bit of explanation. We

justify it by a market clearing reasoning: suppose the asset was offered at a price pt < v (kt−)

at time t. Then, since all buyers believe that the value of the good is at least v (kt−) , they

would all demand it. Demand could not be equal to supply, the market could not clear.

This condition removes some trivial multiplicity of equilibria, for example (pt, kt) = (0, 0)

for all periods (i.e. no trade and very low prices) satisfy the first two conditions. Condition

(3) is analogous to the condition (iv) in Janssen and Roy (2002) and is weaker than the No

Unrealized Deals condition in Daley and Green (2011) (see Definition 2.1 there; since they

study the gap case, they need a stronger condition to account for out-of-equilibrium beliefs).

We assume that all market participants publicly observe all the trades. Hence, once a

buyer obtains the asset, if he tries to put it back on the market, the market makes a correct

inference about c based on the history. Since we assume that all buyers value the asset

the same, there would not be any profitable re-trading of the asset (after the initial seller

4Since we know that the skimming property holds in this environment it is simpler to directly define the
competitive equilibrium in terms of cutoffs.

5In continuous time we use a convention kt− = lims↑t ks, and E [v (c) |c ∈ [kt−, kt]] =
lims↑tE [v (c) |c ∈ [ks, kt]] and v (kt−) = lims↑t v (ks) . If kt = kt− then the condition is pt = v (kt) .
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Figure 1: Gains from trade in the benchmark example.

transacts) and hence we ignore that possibility in our model (however, see Remark 2).

3 Motivating Example

Before we present the general analysis of the problem, consider the following example. As-

sume c is distributed uniformly over [0, 1] and v (c) = 1+c
2
, as illustrated in Figure 1.

We compare two possible market designs. First, infrequent trading, that is ΩI = {0, T} .
Second, continuous trading, ΩC = [0, T ] .

Remark 1 In this paper we analyze competitive equilibria. In this leading example it is
possible to write a game-theoretic version of the model allowing two buyers to make public

offers every time the market is open. If we write the model having Ω = {0,∆, 2∆, ..., T}
then we can show that there is a unique Perfect Bayesian Equilibrium for every T and

∆ > 0. When ∆ = T then the equilibrium coincides with the equilibrium in the infrequent

trading market we identify below. Moreover, taking the sequence of equilibria as ∆ → 0,

the equilibrium path converges to the competitive equilibrium we identify for the continuous

trading design. In other words, the equilibria we describe in this section have a game-theoretic

foundation.

Infrequent Trading The infrequent trading market design corresponds to the classic mar-

ket for lemons as in Akerlof (1970). The equilibrium in this case is described by a price p0

and a cutoff k0 that satisfy that the cutoff type is indifferent between trading at t = 0 and

waiting till T :

p0 = (1− δ) k0 + δ
1 + k0

2
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and that the buyers break even on average:

p0 = E [v (c) |c ≤ k0]

The solution is k0 = 2−2δ
3−2δ

and p0 = 4−3δ
6−4δ

. The expected gains from trade are

SI =

∫ k0

0

(v (c)− c) dc+ δ

∫ 1

k0

(v (c)− c) dc =
4δ2 − 11δ + 8

4 (2δ − 3)2

Continuous Trading The above outcome cannot be sustained in equilibrium if there are

multiple occasions to trade before T. If at t = 0 types below k0 trade, the next time the

market opens price would be at least v (k0) . If so, types close to k0 would be strictly better

off delaying trade. As a result, for any set Ω richer than ΩI , in equilibrium there is less trade

in period 0.

If we look at the case of continuous trading, ΩC = [0, T ] , then the equilibrium with

continuous trade is a pair of two processes {pt, kt} that satisfy:

pt = v (kt)

r (pt − kt) = ṗt

The intuition is as follows. Since the process kt is continuous, the zero profit condition is

that the price is equal to the value of the current cutoff type. The second condition is the

indifference of the current cutoff type between trading now and waiting for a dt and trading

at a higher price. These conditions yield a differential equation for the cutoff type

r (v (kt)− kt) = v′ (kt) k̇t

with the boundary condition k0 = 0. In our example it has a simple solution:

kt = 1− e−rt.

The total surplus from continuous trading is

SC =

∫ T

0

e−rt (v (kt)− kt) k̇tdt+ e−rT
∫ 1

kT

(v (c)− c) dc =
1

12

(
2 + δ3

)
.
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Comparing Infrequent and Continuous trading The graph below (left) compares the

dynamics of trade (prices and cutoffs) in these two settings for T = ∞. The dashed line at
2/3 is the equilibrium price and cutoff when there is only one opportunity to trade. With

continuous trading the cutoff starts at zero and gradually rises towards one.
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Figure 2: Trade Dynamics
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Figure 3: Effi ciency

How do gains from trade compare in these two cases? Figure 3 shows the ratio SFB−SC
SFB−SI

where SFB is the trade surplus if trade was effi cient, while SI and SC are the trade surpluses

computed above. The ratio represents the relative effi ciency loss from adverse selection in

these two markets:

• When δ → 0 (i.e. as rT →∞, the private information is long-lived) we getSFB−SC
SFB−SI → 3

so the effi ciency loss with continuous trading is three times higher than with infrequent

trading.

• When δ → 1 (i.e. T → 0 so the private information is very short-lived), the organi-

zation of the market does not matter since even by waiting till T players can achieve

close to full effi ciency in either case.

What affects relative effi ciency of the two market designs? The trade-off is as follows.

Committing to only one opportunity to trade generates a big loss of surplus if players do not

reach an agreement in the current period. This clearly leaves a lot of unrealized gains from

trade. But it is this ineffi ciency upon disagreement that helps overcome the adverse selection

problem and increases the amount of trade in the initial period. Continuous trading on the

other hand does not provide many incentives to trade in the current period since a seller

suffers a negligible loss of surplus from delay. This leads to an equilibrium with smooth

trading over time. While the screening of types via delay is costly, the advantage is that

9



eventually (if T is large enough) more types trade. In determining which trading environment

is more effi cient on average, one has to weight the cost of delaying trade with low types with

the advantage of eventually trading with more types.

3.1 Can Continuous Trading be Better?

Our example above demonstrates a case of v (c) and F (c) such that for every T the infrequent

trading market is more effi cient than the continuous trading market. Furthermore, the

greater T , the greater the effi ciency gains from using infrequent trading. Is it a general

phenomenon? The answer is no:

Proposition 1 There exist v (c) and F (c) such that for T large enough the continuous

trading market generates more gains from trade than the infrequent trading market

The example used in this proof (omitted proofs are in the Appendix) illustrates what

is needed for the continuous trading market to dominate the infrequent one: we need a

large mass at the bottom of the distribution, so that the infrequent trading market gets

"stuck" with these types, while under continuous trading these types trade quickly, so the

delay costs for these types are small. Additionally, we need some mass of higher types that

would be reached in the continuous trading market after some time, generating additional

surplus. Alternatively, if v (c)− c were not decreasing, even for uniform distribution of c the
continuously open market could be more effi cient since the delay costs to effi ciency of trade

with the low types could be small compared to the gains from eventual trading with the high

types if the market is opened more often. We formalize these intuitions below.

4 Optimality of Restricting Trading Opportunities

We now return to the general model. We first describe the equilibrium with continuous

trading opportunities:

Proposition 2 (Continuous trading) For ΩC = [0, T ] a competitive equilibrium (unique

up to measure zero of times) is the unique solution to:

pt = v (kt)

k0 = 0

r (v (kt)− kt) = v′ (kt) k̇t (1)
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Proof. First note that our requirement pt ≥ v (kt−) implies that there cannot be any atoms

of trade, i.e. that kt has to be continuous. Suppose not, that at time s types [ks−, ks] trade

with ks− < ks. Then at time s + ε the price would be at least v (ks) while at s the price

would be strictly smaller to satisfy the zero-profit condition. But then for small ε types

close to ks would be better off not trading at s, a contradiction. Therefore we are left with

processes such that kt is continuous and pt = v (kt) . For kt to be strictly increasing over time

we need that r (pt − kt) = ṗt for almost all t: if price was rising faster, current cutoffs would

like to wait, a contradiction. If prices were rising slower over any time interval starting at s,

there would be an atom of types trading at s, another contradiction. So the only remaining

possibility is that {pt, kt} are constant over some interval [s1, s2] . Since the price at s1 is

v
(
ks1−

)
and the price at s2 is v (ks2) , we would obtain a contradiction that there is no atom

of trade in equilibrium. In particular, if ps1 = ps2 (which holds if and only if ks1− = ks1 = ks2)

then there exist types k > ks1 such that

v (ks1) >
(
1− er(s2−s1)

)
k + er(s2−s1)v (ks1)

and these types would strictly prefer to trade at t = s1 than to wait till s2, a contradiction

again.

On the other extreme, with infrequent trading, ΩI , the equilibrium is:6

Proposition 3 (Infrequent/Restricted Trading) For ΩI = {0, T} there exists a com-
petitive equilibrium {p0, k0} . Equilibria are a solution to:

p0 = E [v (c) |c ∈ [0, k0]] (2)

p0 =
(
1− e−rT

)
k0 + e−rTv (k0) (3)

If f(c)
F (c)

(v (c)− c)− δ
1−δv

′ (c) is strictly decreasing, the equilibrium is unique.

4.1 General Market Designs

So far we have compared only the continuous trading market with the infrequent trading.

But one can imagine many other ways to organize the market. For example, the market

could clear every day; or every ∆ ∈ (0, T ) . Or the market could be opened at 0, then closed

for some time interval ∆ and then be opened continuously. Or, the market could start being

6The infrequent trading model is the same as the model in Akerlof (1970) if T = ∞. Even with T < ∞
the proof of existence and ineffi ciency of the equilibrium is standard so we leave it to the appendix.
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opened continuously and close some ∆ before T (i.e. at t = T − ∆). In this section we

consider some of these alternative timings.

4.1.1 When Infrequent Trading is Optimal

We start with providing a suffi cient condition for the infrequent trading to dominate all these

other possible designs:

Proposition 4 If f(c)
F (c)

v(c)−c
1−δ+δv′(c) and

f(c)
F (c)

(v (c)− c) are decreasing,7 then infrequent trading,
ΩI = {0, T} , generates higher expected gains from trade than any other market design.

Proof. We use mechanism design to establish the result. Consider the following relaxed

problem. There is a mechanism designer who chooses a direct revelation mechanism that

maps reports of the seller to a probability distribution over times he trades and to transfers

from the buyers to the mechanism designer and from the designer to the seller. The con-

straints on the mechanism are: incentive compatibility for the seller (to report truthfully);

individual rationality for the seller and buyers (the seller prefers to participate in the mech-

anism rather than wait till T and get v (c) and the buyers do not lose money on average);

and that the mechanism designer does not lose money on average. Additionally, we require

that the highest type, c = 1, does not trade until T (as in any equilibrium he does not).

For every game with a fixed Ω, the equilibrium outcome can be replicated by such a

mechanism, but not necessarily vice versa, since if the mechanism calls for the designer

cross-subsidizing buyers across periods, it cannot be replicated by a competitive equilibrium.

Within this class of direct mechanisms we characterize one that maximizes ex-ante ex-

pected gains from trade. We then show that under the conditions in the proposition, in-

frequent trading replicates the outcome of the best mechanism and hence any other market

design generates lower expected gains from trade.

A general direct revelation mechanism can be described by 3 functions x (c) , y (c) and

P (c) , where y (c) is the probability that the seller will not trade before information is

released, x (c) is the discounted probability of trade over all possible trading times and P (c)

is the transfer received by the seller conditional on trading before information is released.8

Note that y (c) ∈ [0, 1] but x (c) ∈ [δ, 1] .

7A suffi cient condition is that v′′ (c) ≥ 0 and f(c)
F (c) (v (c)− c) is decreasing.

8Letting Gt (c) denote for a given type the distribution function over the times of trade:

x (c) =

∫ T

0

e−rtdGt (c) .
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The seller’s value function in the mechanism is:

U (c) = y (c) [(1− δ) c+ δv (c)] + (1− y (c)) [P (c) + (1− x (c)) c] (4)

= max
c′

y (c′) [(1− δ) c+ δv (c)] + (1− y (c′)) [P (c′) + (1− x (c′)) c] (5)

Using the envelope theorem:9

U ′ (c) = y (c) [(1− δ) + δv′ (c)] + (1− y (c)) (1− x (c))

= δy (c) (v′ (c)− 1) + 1− x (c) (1− y (c))

Let V (c) = δv (c) + (1− δ) c be the no-trade surplus, so:

U ′ (c)− V ′ (c) = δy (c) (v′ (c)− 1) + 1− x (c) (1− y (c))− (δv′ (c) + (1− δ))
= (1− y (c)) (−x (c)− δ (v′ (c)− 1))

As a result, we can write the expected seller’s gains from trade as a function of the allocations

x (c) and y (c) only:

S =

∫ 1

0

(U (c)− V (c)) f (c) dc

= (U (c)− V (c))F (c) |c=1
c=0 −

∫ 1

0

(U ′ (c)− V ′ (c))F (c) dc

=

∫ 1

0

(1− y (c)) [x (c)− δ (1− v′ (c))]F (c) dc (6)

Clearly, the mechanism designer will leave the buyers with no surplus (since he could use it to

increase effi ciency of trade) and so maximizing S is the designer’s objective (see Samuelson

1984). That also means that the no-losses-on-average constraint is:∫ 1

0

(1− y (c)) (x (c) v (c)− P (c)) f (c) dc ≥ 0

9This derivative exists almost everywhere and hence we can use the integral-form of the envelope formula,
(6) .
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From the expression for U (c) we have

U (c)− y (c) [(1− δ) c+ δv (c)]− (1− y (c)) (1− x (c)) c = (1− y (c))P (c)

U (c)− V (c) + (1− y (c)) (δ (v (c)− c) + x (c) c) = (1− y (c))P (c)

So the constraint can be re-written as a function of the allocations alone (where the last

term expands as in (6)):∫ 1

0

(1− y (c)) (x (c)− δ) (v (c)− c) f (c) dc−
∫ 1

0

(U (c)− V (c)) f (c) dc ≥ 0 (7)

We now optimize (6) subject to (7) , ignoring necessary monotonicity constraints on x (c)

and y (c) that assure that reporting c truthfully is incentive compatible (we check later that

they are satisfied in the solution).

The derivatives of the Lagrangian with respect to x (c) and y (c) are:

Lx (c) = (1− y (c)) [F (c) + Λ ((v (c)− c) f (c)− F (c))]

−Ly (c) = (x (c)− δ (1− v′ (c)))F (c) + Λ [(x (c)− δ) (v (c)− c) f (c)− (x (c)− δ (1− v′ (c)))F (c)]

where Λ > 0 is the Largrange multiplier.

Consider Lx (c) first. Note that [F (c) + Λ ((v (c)− c) f (c)− F (c))] is positive for c = 0.

We know that in the optimal solution it has to be negative for c = 1, since otherwise we could

achieve effi ciency without subsidizing the mechanism and it is not possible. Hence, Λ > 1.

Suppose f(c)
F (c)

(v (c)− c) is decreasing, which is one of the conditions in the proposition. Let
c∗ be a solution to 1− f(c)

F (c)
(v (c)− c) = 1

Λ
. Then the second term in Lx (c) changes sign once

at c∗. An optimal x (c) is therefore:

x (c) =

{
1 if c ≤ c∗

δ if c > c∗

Now consider −Ly (c) . For all c ≤ c∗, using the optimal x (c) , it simplifies to:

−Ly (c) = (1− δ + δv′ (c))F (c)+Λ [(1− δ) (v (c)− c) f (c)− (1− δ + δv′ (c))F (c)] for x (c) = 1

If f(c)
F (c)

v(c)−c
1+ δ

(1−δ)v
′(c)
is decreasing in c, which is one of the conditions in the proposition, Ly (c)

changes sign once in this range. It is negative for c ≤ c∗∗ and positive for c > c∗∗, where

c∗∗ < c∗ is a solution to f(c)
F (c)

(v (c)− c) =
(
1− 1

Λ

) (
1 + δ

(1−δ)v
′ (c)
)
. Therefore the optimal
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y (c) in this range is

y (c) =

{
0 if c ≤ c∗∗

1 if c > c∗∗

For c > c∗, using the optimal x (c) , the derivative Ly (c) simplifies to

Ly (c) = − (1− Λ) δv′ (c)F (c) for x (c) = δ

since Λ > 1, this is positive and the optimal y (c) is equal to 1. That finishes the description

of the optimal allocations in the relaxed problem: there exists a c∗ such that types below c∗

trade immediately and types above it wait till after information is revealed at T. The higher

the c∗ the higher the gains from trade. The largest c∗ that satisfies the constraint is the

largest solution of:

E [v (c) |c ≤ c∗] = (1− δ) c∗ + δv (c∗)

since the LHS is the IR constraint of the buyers and the RHS is the IR constraint of the

c∗ seller. This is also the equilibrium condition in a market with design Ω = {0, T} , so that
equilibrium implements the solution to the relaxed problem.

The condition in the proposition is similar to the standard condition in optimal auction

theory/pricing theory that the virtual valuation/marginal revenue curve be monotone. In

particular, think about a static problem of a monopsonist buyer choosing a cutoff (or a

probability to trade, F (c)), by making a take-it-or-leave-it offer equal to P (c) = (1− δ) c+

δv (c) . In that problem f(c)
F (c)

v(c)−c
1−δ+δv′(c) decreasing guarantees that the marginal profit crosses

zero exactly once.10 In our relaxed mechanism design problem this condition appears as a

bang-for-the-buck formula that captures how much gain from trade we can get from a type

(the numerator) to the information rents we need to give him.

Our proof considers a relaxed mechanism design problem with a market maker who could

cross-subsidize buyers buying in different periods and who has to break even only on average.

For T =∞, this is a problem analyzed in Samuelson (1984).11 Samuelson (1984) shows that
this problem has a solution that has at most two steps. That is, for any v (c) and F (c) , the

optimal solution is characterized by two cutoffs, c1 and c2, such that types c ∈ [0, c1] trade at

time t = 0, types c ∈ [c1, c2] trade at some time t∗ > 0 and all the higher types do not trade

at all. In some cases c1 = c2 (and our proposition has suffi cient conditions for it). In that

10The FOC of the monopolist problem choosing c is: (1− δ) f (c) (v (c)− c)−F (c) ((1− δ) + δv′ (c)) = 0.

11A slight difference is that he is studying a static mechanism design. However, when T = ∞ the two
problems are mathematically equivalent since time discounting and probability of trade enter the utilities of
all players the same way.
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case the solution to the relaxed problem can be implemented by a competitive equilibrium

and hence in all these cases the ΩI design is the most effi cient. However, if c1 6= c2, then, as

shown in Samuelson (1984), the mechanism designer makes money on the trades at t = 0 and

loses money on the trades at t∗. That allocation cannot be implemented by a competitive

equilibrium for any Ω.

It is an open question how to solve for the optimal Ω in case the solution to the relaxed

problem calls for trade in more than one period. The diffi culty is that the constraints on the

mechanism are then endogenous. A mechanism that calls for a set of types to trade at time

t has to have a price equal to the average v (c) across these types. Hence, as Ω changes (or

the range of the allocation function changes), the set of constraints changes as well.

Remark 2 One way to implement ΩI = {0, T} in practice may be via an extreme anonymity
of the market. In our model we have assumed that the initial seller of the asset can be told

apart in the market from buyers who later become secondary sellers. However, if the trades

are completely anonymous, even if Ω 6= {0, T} , the equilibrium outcome would coincide with

the outcome for ΩI . The reason is that the price can never go up since otherwise the early

buyers of the low-quality assets would resell them at the later markets.

Such extreme anonymity may not be feasible in some markets (for example, IPO’s), or not

practical for reasons outside the model. Yet, it may be feasible in some situations. For

example, a government as a part of an intervention aimed at improving effi ciency of the

market may create a trade platform in which it would act as a broker who anonymizes trades

and traders.

4.1.2 Closing the Market Briefly after Initial Trade.

Even if the condition in Proposition 4 does not hold and we cannot find the optimal Ω, we

can show that under very general conditions it is possible to improve upon the continuous

trading market.

In particular, consider the design ΩEC ≡ {0} ∪ [∆, T ]: there is trade at t = 0, then the

market is closed till∆ > 0 and then it is opened continuously till T.We call this design "early

closure". We show that there always exists a small delay that improves upon continuous

trading:

Proposition 5 For every r, T, F (c) , and v (c) , there exists ∆ > 0 such that the early

closure market design ΩEC = {0}∪ [∆, T ] yields higher gains from trade than the continuous

trading design ΩC = [0, T ].
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Proof. To establish that early closure increases effi ciency of trade we show an even stronger
result: that for small ∆ with ΩEC there is more trade at t = 0 than with ΩC by t = ∆. Let

kEC∆ be the highest type that trades at t = 0 when the design is ΩEC . Let kC∆ the equilibrium

cutoff at time ∆ in design ΩC . Then the stronger claim is that for small ∆, kC∆ < kEC∆ . Since

lim∆→0 k
EC
∆ = lim∆→0 k

C
∆ = 0 (for kEC∆ see discussion in Step 1 below). So it is suffi cient for

us to rank:

lim
∆→0

∂kEC∆

∂∆
vs. lim

∆→0

∂kC∆
∂∆

Step 1: Characterizing lim∆→0
∂kEC∆

∂∆
.

Consider ΩEC . When the market reopens at t = ∆ the market is continuously open from

then on. Hence, the equilibrium in the continuation game is the same as the equilibrium

characterized in Proposition (2) albeit with a different starting lowest type. Namely, for

t ≥ ∆

pt = v (kt)

r (v (kt)− kt) = v′ (kt) k̇t

with a boundary condition:

k∆ = kEC∆ .

The break even condition for buyers at t = 0 implies:

p0 = E
[
v (k) |k ∈

[
0, kEC∆

]]
and type kEC∆ must be indifferent between trading at this price at t = 0 or for p∆ = v

(
kEC∆

)
at t = ∆ :

v
(
kEC∆

)
− p0 =

(
1− e−r∆

) (
v
(
kEC∆

)
− kEC∆

)
For small ∆ , E

[
v (c) |c ≤ kEC∆

]
≈ v(kEC∆ )

2
so the benefit of waiting is approximately

v(kEC∆ )
2

while the cost is approximately rTv (0) so kEC∆ for small T solves approximately

v
(
kEC∆

)
2

≈ rTv (0)

and more precisely:

lim
∆→0

∂kEC∆

∂∆
=

2rv (0)

v′ (0)

17



Step 2: Characterizing lim∆→0
∂kC∆
∂∆
.

Consider ΩC . Since kt is defined by the differential equation

r (v (kt)− kt) = v′ (kt) k̇t,

for small ∆ :

kC∆ ≈ rT
v (0)

v′ (0)
,

and more precisely:

lim
∆→0

∂kC∆
∂∆

=
rv (0)

v′ (0)
.

Summing up steps 1 and 2, we have:

lim
∆→0

∂kEC∆

∂∆
= 2 lim

∆→0

∂kC∆
∂∆

which implies the claim.

A closely related result is that when the private information is short lived, closing the

market after the initial trade and waiting until the information arrives dominates continuous

trading:

Corollary 1 For every r, v (c) , and F (c) there exists a T ∗ > 0 such that for all T ≤ T ∗

the infrequent trading market design generates higher expected gains from trade than the

continuous trading design.

The proof is analogous to the proof of the previous Proposition by noting that in either

situation: ΩEC = {0} ∪ [∆, T ] or ΩI = {0, T = ∆} the cutoff type trading at time 0 chooses

between p0 and price v (k0) . In case information is revealed at T this is by assumption that

the market is competitive at T. In case the market is open continuously after the early closure

it is by our observation that the continuation equilibrium has smooth screening of types so

the first price after closure is p∆ = v
(
kEC∆

)
.

4.1.3 Closing the Market Briefly before Information Arrives

The final design we consider is the possibility of keeping the market opened continuously from

t = 0 till T −∆ and then closing it till T. Such a design seems realistic and in some practical

situations may be easier to implement than ΩEC because it may be easier to determine when

some private information is expected to arrive (i.e. when t = T ) than when it is that the

seller of the asset is hit by liquidity needs (i.e. when t = 0).
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The comparison of this "late closure" market with the continuous trading market is much

more complicated than in the previous section for two related reasons. First, if the market

is closed from T −∆ to T, there will be an atom of types trading at T −∆. As a result, there

will be a "quiet period" before T −∆ : there will be some time interval [t∗, T −∆] such that

despite the market being open, there will be no types that trade on the equilibrium path

in that time period. The equilibrium outcome until t∗ is the same in the "late closure" as

in the continuous trading design, but diverges from that point on. That brings the second

complication: starting at time t∗, the continuous trading market benefits from some types

trading earlier than in the "late closure" market. Therefore it is not suffi cient to show

that by T there are more types that trade in the late closure market. We actually have to

compare directly the total surplus generated between t∗ and T. These two complications are

not present when we consider the "early closure" design since there is no t∗ before t = 0 for

the earlier trade to be affected by the early closure.

The equilibrium in the "late closure" design is as follows. Let p∗T−∆, k
∗
T−∆ and t∗ be a

solution to the following system of equations:

E [v (c) |c ∈ [kt∗ , kT−∆]] = pT−∆ (8)(
1− e−r∆

)
kT−∆ + e−r∆v (kT−∆) = pT−∆ (9)(

1− e−r(T−∆−t∗)) kt∗ + e−r(T−∆−t∗)pT−∆ = v (kt∗) (10)

where the first equation is the zero-profit condition at t = T − ∆, the second equation is

the indifference condition for the highest type trading at T −∆ and the last equation is the

indifference condition of the lowest type that reaches T −∆, who chooses between trading

at t∗ and at T −∆. The equilibrium for the late closure market is then:

1) at times t ∈ [0, t∗] , (pt, kt) are the same as in the continuous trading market

2) at times t ∈ (t∗, T −∆), (pt, kt) = (v (kt∗) , kt∗)

3) at t = T −∆, (pt, kt) =
(
p∗T−∆, k

∗
T−∆

)
Condition (10) guarantees that given the constant price at times t ∈ (t∗, T −∆) it is

indeed optimal for the seller not to trade. There are other equilibria that differ from this

equilibrium in terms of the prices in the "quiet period" time: any price process that satisfies

in this time period

(
1− e−r(T−∆−t)) kt∗ + e−r(T−∆−t)pT−∆ ≥ pt ≥ v (kt∗)

satisfies all our equilibrium conditions. Yet, all these paths yield the same equilibrium
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outcome in terms of trade and surplus (of course, the system (8) − (10) may have multiple

solutions that would have different equilibrium outcomes).

Despite this countervailing ineffi ciency, for our leading example:

Proposition 6 Suppose v (c) = 1+c
2
and F (c) = c. For every r and T there exists a ∆ > 0

such that the "late closure" market design, ΩLC = [0, T −∆]∪{T} , generates higher expected
gains from trade than the continuous trading market, ΩC. Yet, the gains from late closure

are smaller than the gains from early closure.

The proof is in the appendix. It shows third-order gains of welfare from the late closure

(while the gains from early closure are first-order). Figure 4.1.3 below illustrates the reason

the gains from closing the market are smaller relative to when the market is closed at time

zero. The bottom two lines show the evolution of the cutoff type in ΩC (continuous curve)

and in ΩLC (discontinuous at t = T −∆ = 0.9). The top two lines show the corresponding

path of prices. The gains from bringing forward trades that occur when the market is

exogenously closed in t ∈ (9, 10) (i.e. the jump in types at t = 0.9) are partially offset by

the delay of types in the endogenous quiet period t ∈ (8.23, 9). If we close the market for

t ∈ (0,∆) instead, there is no loss from some types postponing trade because there is no

time before 0.

The intuition why the gains (if any) are in general very small is that we prove that the

endogenous quiet period is on the same order as ∆. The reasoning in Proposition 5 implies

that the jump in types at time T−∆ is approximately twice as large as the continuous increase

in the cutoffwhen the market is opened continuously over a time interval of length∆. Putting

these two observations together implies that the final cutoffat time T is approximately (using

a first-order approximation in ∆) the same for these two designs, as seen in Figure 4.1.3.

Hence, any welfare effects are tiny.

8.0 8.5 9.0 9.5 10.0

0.5

0.6

0.7

0.8

time

k(t)

p(t)

Market ClosedQuiet Period

Figure 4: Late Closure
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T = 10 ∆ = 1 r = 0.1 v (c) =
c+ 1

2
F (c) = c

Given our results so far showing the benefits of restricting opportunities to trade, one

might speculate that the optimal Ω may not contain any continuous-trading intervals but

instead be characterized by a discrete grid of trading times Ω = {0,∆1,∆2,∆3, ..., T} . We
do not know how to prove or disprove this claim without any restrictions on v (c) and f (c).

What we can show is that there are cases when some restrictions to continuous trading,

even small, can reduce welfare. An example of such a situation is f (c) = 2 − 2c and

v (c) = c + 1. In this case, by direct calculations we can show that "late closure" reduces

expected gains from trade. The intuition is that even though the gains from trade are constant

across all types, since f (c) is decreasing, the distribution assigns a higher weight to the types

that delay in the endogenous "quiet period" than to the types that speed up thanks to the

closure.

5 Implications for Asset Purchases by the Government

Market failure due to information frictions sometimes calls for government intervention.

During the recent financial crisis several markets effectively shut down or became extremely

illiquid. One of the main reasons cited for this was the realization by market players that

the portfolios of asset backed securities that banks held were not all investment grade as

initially thought. Potential buyers of these securities which used to trade them without much

concern suddenly became very apprehensive of purchasing these assets for the potential risk

of buying a lemon. The Treasury and the Federal Reserve tried many different things to

restore liquidity into the markets. Some of the measures were aimed at providing protection

against downside risk via guarantees effectively decreasing the adverse selection problem

or by removing the most toxic assets from the banks’balance sheets (for example, via the

TARP I and II programs or central banks’acceptance of toxic assets as collateral).

Our model provides a natural framework to study the potential role for government. To

illustrate consider the case in which if v (c) = γc for 2 > γ > 1 and F (c) = c.12 Then for all

Ω the unique equilibrium is for there never to be any trade before the information is revealed.

12This model arises for example if the seller has a higher discount rate than the buyers.
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So the market is completely illiquid and no gains from trade are realized. The government

could intervene in this market by making an offer pg > 0 to buy any asset sellers are willing

to sell at that price (these programs are by and large voluntary).

In this example, the average quality of these assets will be pg
2
and hence the government

would lose money on them. On the bright side is that once the toxic assets have been

removed from the market and the remaining distribution is truncated to c ∈
[
pg
γ
, 1
]
now

even if Ω = [0+, T ] buyers would be willing to start making offers again.

We want to make two observations about this intervention. First, In the post-intervention,

continuously-opened market the liquidity is characterized by (1) which in this example sim-

plifies to:

rkt
γ − 1

γ
= k̇t

Therefore, the larger the initial intervention, the faster the trade in the free market af-

terwards. Second, this government intervention benefits not only the direct recipients of

government funds but also all other sellers since by reducing the adverse selection problem

in the market they will now have an opportunity trade with a private counterparty.

Optimal government interventions in very similar (though richer) models have been studied

recently by Philippon and Skreta (2012) and Tirole (2012). In these papers the government

offers financing to firms having an investment opportunity and it is secured by assets that

the firms have private information about. That intervention is followed by a static com-

petitive market in which firms that did not receive funds from the government can trade

privately. This creates a problem of "mechanism design with a competitive fringe" as named

by Philippon and Skreta (2012).

The setup in these two papers can be roughly mapped to ours if we assume v (c)−c = γ.13

Our paper directly applies to section II (Buybacks only) in Tirole (2012), but we believe

that the following observations apply more broadly.

Both papers show that the total surplus cannot be improved by the government shutting

down private markets: see Proposition 2 in Tirole (2012) and Theorem 2 in Philippon and

Skreta (2012). Since the post-intervention market creates endogenous IR constraints for

the agents participating in the government program, making it less attractive could make it

easier for the government to intervene. However, these two papers argue that this is never a

good idea.

13In both papers there is an additional restriction that the seller needs to raise a minimal amount of money
to make a profitable investment, which is the source of gains from trade. That additional aspect does not
change our conclusions.
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Our results show that taking into account the dynamic nature of the market changes this

conclusion. In particular, the assumptions in Tirole (2012) satisfy the assumptions in Propo-

sition 4 (he assumes f(c)
F (c)

is decreasing). Therefore it would be optimal for the government

to concentrate post-intervention trades to be right after it and commit to shutting down

the market afterwards. This could be achieved by organizing a market at t = 0, offering a

subsidy to trades and announcing that all trades afterwards will be taxed. Alternatively, of-

fering (partial) insurance for assets traded at a particular time window but not later. Finally,

creating an anonymous exchange (see Remark 2) may be a practical solution.

Additionally, our analysis of the late closure suggests that if the market expects the govern-

ment may run a program of that nature in near future, the market may close endogenously,

even if trade would continue if no such intervention is expected. The reasoning is the same:

if a non-trivial fraction of seller types participate in the government transaction, the post-

intervention price is going to be strictly higher than the current cutoff’s v (kt) and hence

there are no trades that could be profitable for both sides.

6 Discussion

In this section we explore a few extensions of the model.

6.1 Stochastic Arrival of Information

So far we have assumed that it is known that the private information is revealed at T. How-

ever, in some markets, even if the private information is short-lived, the market participants

may be uncertain about the timing of its revelation. We now return to our motivating exam-

ple to illustrate that trade-offs we have identified so far apply also to the stochastic duration

case.

Let v (c) = 1+c
2
and F (c) = c. Suppose that with a Poisson rate λ information arrives

that publicly reveals seller’s type. Upon arrival trade is effi cient at p = v (c) . Analogously

to what we have done before, let infrequent trading market mean that the seller can trade

only at t = 0 (or after information arrives). Let continuous trading market mean that the

seller can trade at any time.

In the infrequent trading market, the equilibrium (p0, k0) is determined by:

p0 =
λ

λ+ r
v (k0) +

r

λ+ r
k0

p0 = E [v (c) |c ≤ k0]
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where the first equation is the indifference condition of the cutoff type and the second

equation is the usual zero-profit condition. In our example we get

k0 =
2r

3r + λ
, p0 =

4r + λ

6r + 2λ

In the continuous trading market the equilibrium is described by the same equations as

in the deterministic T case (see Proposition 2), with a solution kt = 1− e−rt. The intuition
the equilibrium path of prices before information arrives is the same in the stochastic and

deterministic arrival of information cases as follows. In the deterministic case, the effect of

delaying trade by dt is that the price increases by ṗtdt. In the stochastic case, the price also

increases, but additionally with probability λdt the news arrives. If so, the current cutoff

type gets a price v (kt) instead of pt+dt. However, since pt = v (kt) , price pt+dt is only of order

dt higher. Hence the additional term is on the order dt2 and does not affect incentives to

delay.

We now can compare the gains from trade. The total gains from trade in the infrequent

trading market are:

SI =

∫ k0

0

(v (c)− c) dc+
λ

λ+ r

∫ 1

k0

(v (c)− c) dc.

In the continuous trading market the gains are:

SC =

∫ +∞

0

λe−λt
(∫ kt

0

e−rτ(c) (v (c)− c) dc+ e−rt
∫ 1

kt

(v (c)− c) dc
)
dt

where τ (c) = − ln(1−c)
r

is the time type c trades if there is no arrival before τ (c) . Direct

calculations yield:

S0 (z)− SC (z) =
1

2
(z + 3)−2 > 0

where z ≡ λ
r
. So, for every λ, the infrequent trading market is more effi cient than the

continuous trading market.

6.2 Beyond Design of Ω : Affecting T

In this paper we analyze different choices of Ω. A natural question is what else could a

market designer affect to improve the market effi ciency. One such possibility is information

structure, as we have discussed in Remark 2. There are of course other options for changing
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information (for example, should past rejected offers be observed or not?), but that is beyond

the scope of this paper.

Another possibility is affecting T. Clearly, if the market designer could make T very small,

it would good for welfare since it would make the market imperfections short-lived. That

may not be feasible though. Suppose instead that the designer could only increase T (for

example, by making some verification take longer).14 Surprisingly, it turns out that in some

cases increasing T could improve effi ciency. While it is never beneficial in the continuous-

trading case (since it does not affect trade before T and only delays subsequent trades), it

can help in other cases. To illustrate it, Figure ?? graphs the expected gains from trade

in our leading example for ΩI = {0, T} as a function of δ. It turns out that if and only if
e−rT < 1

2
, increasing T is welfare improving.
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Figure 5: Surplus with infrequent

trading as a function of T

6.3 Common Knowledge of Gains from Trade

We have assumed that v (0) > 0 and v (1) = 1, that is, strictly positive gains from trade for

the lowest type and no gains on the top. Can we relax these assumptions?

6.3.1 Role of v (0) > 0

If v (0) = 0 then Proposition (4) still applies. As we argued above, if the market is opened

continuously, in equilibrium there is no trade before T (to see this note that the starting

price would leave the lowest type with no surplus, so that type would always prefer to wait

14We thank Marina Halac for suggesting this question.
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for a price increase). That does not need to be true for other Ω. For example, if v (c) =
√
c

and F (c) = c, then for all T the conditions in Proposition (4) are satisfied. Therefore,

ΩI = {0, T} is welfare-maximizing and ΩC = [0, T ] is welfare-minimizing over all Ω; and if

δ < 2
3
then the ranking is strict since there is some trade with ΩI .

6.3.2 Role of v (1) = 1

The main reason we assume v (1) = 1 is that in this way we do not need to define equilibrium

market prices after histories where the seller trades with probability 1. That is, when v (1) =

1, the highest type never trades in equilibrium no matter how large is T . This makes our

definition of competitive equilibrium simpler than in Daley and Green (2011) (compare our

condition (3) "Market Clearing" with Definition 2.1 there).

To illustrate how the freedom in selecting off-equilibrium-path beliefs can lead to a mul-

tiplicity of equilibria with radically different outcomes consider the following heuristic rea-

soning. Assume:

F (c) = c ; v (c) = c+ s

Suppose that Ω = {0,∆, 2∆, ..., T} for ∆ > 0. Let s > 1
2
so that in a static problem trade

would be effi cient.

Case 1: Assume that when an offer that all types accept on the equilibrium path is

rejected, buyers believe the seller has the highest type, c = 1. That is, post-rejection price

is 1 + s. Then, taking a sequence of equilibria as ∆→ 0, we can show that in the limit trade

is smooth over time (no atoms) with:

pt(k) = v (kt)

kt = rst

On equilibrium path all types trade by:

τ =
1

rs

unless τ < T. If the last offer, pτ = 1 + s is rejected, the price stays constant after that,

consistently with the beliefs and competition.

Case 2: Alternatively, assume that when an offer that all types accept on the equilibrium
path is rejected, buyers do not update their beliefs. That is, after that history they believe
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the seller type is distributed uniformly over [kt, 1] , where kt is derived from the history of the

game. In that case we can construct the following equilibrium for all ∆ > 0. At t = 0 there

is an initial offer p0 = 1
2

+ s and all types trade. If that initial offer is rejected, the buyers

believe c˜U [0, 1] and continue to offer pt = p0 for all t > 0 (and again all types trade). This

is indeed and equilibrium since the buyers break even at time zero (and at all future times

given their beliefs) and no seller type is better off by rejecting the initial offer.

These equilibria are radically different in terms of effi ciency: only the second one is effi -

cient. It is beyond the scope of this paper to study in what situations or under what model

extensions this multiplicity could be resolved and how. v (1) > 1 creates similar problems

for large T even if immediate effi cient trade is not possible. On the other hand, if the gap on

top is small so that for a given T in equilibrium it is not possible that all types trade before

T, then our analysis still applies.

7 Conclusions

In this paper we have analyzed a dynamic market with asymmetric information. Our two

main results are that, first, under mild regularity conditions restricting trade to ΩI = {0, T}
dominates any other design. Second, even more generally, effi ciency can be improved over

continuous-time trading by the "early closure" design which after initial auction restricts

additional trading for some interval of time. We discussed how these findings can inform

government policy geared towards resolving market failures due to the lemons problem.

Unlike the previous papers using a static model of the market, we argue that an intervention

would be more successful if the government could at least partially restrict dynamic trading

after the intervention. The bottom line is that we have identified a non-trivial cost to

dynamic trading: it makes the adverse selection problem worse.

Many open questions remain. On a more technical note, it is an open question how to

compute the optimal Ω if our regularity conditions do not hold. On a more practical note,

in many markets the time the game actually starts is ill-defined and/or sellers arrive to the

market at different times (as opposed to a whole market being hit by liquidity shocks as in

the recent financial crisis). Even in the case of IPOs it is not clear how to define the first

time the market considers the owners of the startup to delay an offering with the hope of

affecting investors’beliefs (i.e. at which point signaling via delay starts). Moreover, one

may be interested in embedding this model into a larger market with many sellers hit by

liquidity needs at different times to gain additional insights about market design. Janssen
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and Karamychev (2002) show that equilibria in dynamic markets with dynamic entry can be

qualitatively different from markets with one-time entry if the "time on the market" is not

observed by the market (see also Hendel, Lizzeri and Siniscalchi 2005 and Kim 2012 about

the role of observability of past transaction/time on the market). As pointed out recently

by Roy (2012), a dynamic market can suffer from an additional ineffi ciency if buyers are

heterogeneous because the high valuation buyers are more eager to trade sooner and it

may be that they are the effi cient buyers of the high quality goods. Incorporating these

considerations into our design questions may introduce new tradeoffs.

Finally, in our model there were only two sources of signaling: delay and the exogenous

signal that arrives only once. In many markets sellers may want to wait for multiple pieces

of news to arrive over time before they agree to sell (as in Daley and Green 2011), and a

market designer may try to influence both the timing of possible trades and the timing of

information release.

8 Appendix

Proof of Proposition 1. Consider a distribution that approximates the following: with

probability ε c is drawn uniformly on [0, 1] ; with probability α (1− ε) it is uniform on [0, ε] ;

and with probability (1− α) (1− ε) it is uniform on [c1, c1 + ε] for some c1 > v (0) . In other

words, the mass is concentrated around 0 and c1. Let v (c) = 1+c
2
as in our example.

For small ε there exists α < 1 such that

E [v (c) |c ≤ c1 + ε] < c1

so that in the infrequent trading market trade will happen only with the low types. In

particular, if α is such that

αv (0) + (1− α) v (c1) < c1

then as ε → 0 and T → ∞, the infrequent trading equilibrium price converges to v (0) and

the surplus converges to

lim
ε→0,T→∞

SI = αv (0) + (1− α) c1

The equilibrium path for the continuous trading market is independent of the distribution
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and hence

lim
ε→0,T→∞

SC = αv (0) + (1− α)
[
e−rτ(c1)v (c1) +

(
1− e−rτ(c1)

)
c1

]
= lim

ε→0,T→∞
SI + (1− α)

(
e−rτ(c1) (v (c1)− c1)

)
where τ (k) is the inverse of the function kt. The last term is strictly positive for any c1 <

v (c1) . In particular, with v (c) = 1+c
2
, e−rτ(c) = (1− c) and v (c1)− c1 = 1

2
(1− c1) , so

lim
ε→0,T→∞

SC = lim
ε→0,T→∞

SI +
1

2
(1− α) (1− c1)2 .

Proof of Proposition 3. 1) Existence. The equilibrium conditions follow from the

definition of equilibrium. To see that there exists at least one solution to (2) and (3) note

that if we write the condition for the cutoff as:

E [v (c) |c ≤ k0]−
((

1− e−rT
)
k0 + e−rTv (k0)

)
= 0 (11)

then the LHS is continuous in k0, it is positive at k0 = 0 and negative at k0 = 1. So there

exists at least one solution. 15

2) Uniqueness. To see that there is a unique solution under the two assumptions, note
that the derivative of the LHS of (11) at any k is

f (k)

F (k)
(v (k)− E [v (c) |c ≤ k])− (1− δ)− δv′ (k)

When we evaluate it at points where (11) holds, the derivative is

f (k)

F (k)
(v (k)− k) (1− δ)− (1− δ)− δv′ (k)

and that is by assumption decreasing in k.

Suppose that there are at least two solutions and select two: the lowest kL and second-

lowest kH . Since kL is the lowest solution, at that point the curve on the LHS of (11)

must have a weakly negative slope (since the curve crosses zero from above). However, our

assumption implies that curve has even strictly more negative slope at kH . That leads to a

15If there are multiple solutions, a game theoretic-model would refine some of them, see section 13.B of
Mas-Colell, Whinston and Green (1995) for a discussion.
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contradiction since by assumption between [kL, kH ] the LHS is negative, so with this ranking

of derivatives it cannot become 0 at kH
Proof of Proposition 6.
In this case the equilibrium conditions (8) , (9) and (10) simplify to

1

2
+
kt∗ + kT−∆

4
= pT−∆ (6′)(

1− e−r∆
)
kT−∆ +

(
1

2
+
kT−∆

2

)
e−r∆ = pT−∆ (7′)(

1− e−r∆2
)
kt∗ + e−r∆2pT−∆ =

1

2
+
kt∗

2
(8′)

where ∆2 = T −∆− t∗.
Solution of the first two equations is:

kT−∆ =
kt∗ + 2− 2e−r∆

3− 2e−r∆

pT−∆ =
1

2

(
2− e−r∆
3− 2e−r∆

kt∗ +
4− 3e−r∆

3− 2e−r∆

)
Substituting the price to the last condition yields

(
1− e−r∆2

)
kt∗ + e−r∆2

(
1

2

(
2− e−r∆
3− 2e−r∆

kt∗ +
4− 3e−r∆

3− 2e−r∆

))
=

1

2
+
kt∗

2

which can be solved for ∆2 independently of kt∗ (given our assumptions about v (c) and

F (c)).

r∆2 = − ln
3− 2e−r∆

4− 3e−r∆

Note that

lim
∆→0

∂∆2

∂∆
= lim

∆→0

∂

∂∆

1

r

(
− ln

3− 2e−r∆

4− 3e−r∆

)
= 1

so ∆2 is approximately equal to ∆.

In the continuous trading cutoffs follow kt = 1 − e−rt, k̇t = re−rt. Normalize T = 1 (and

rescale r appropriately). Then

kt∗ = 1− e−r(1−∆−∆2) = 1− 4− 3e−r∆

3− 2e−r∆
er∆δ

where δ = e−r and

t∗ = 1−∆−∆2 = 1−∆ +
1

r
ln

3− 2e−r∆

4− 3e−r∆
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We can now compare gains from trade in the two cases. The surplus starting at time t∗ is

(including discounting):

Sc (∆) =

∫ 1−e−r

kt∗

e−rτ(c) (v (c)− c) dc+ δ

∫ 1

1−e−r
(v (c)− c) dc

=

∫ 1−e−r

kt∗

(1− c)
(

1− c
2

)
dc+ δ

∫ 1

1−e−r

(
1− c

2

)
dc

where we used e−rτ(c) = 1− c.

∂Sc (∆)

∂∆
= −∂kt

∗

∂∆

(1− kt∗)2

2

and since lim∆→0
∂kt∗
∂∆

= −2rδ we get that

lim
∆→0

∂Sc (∆)

∂∆
= rδ3

For the "late closure" market the gains from trade are

SLC (∆) = e−r(1−∆)

∫ kT−∆

kt∗

(v (c)− c) dc+ e−r
∫ 1

kT−∆

(v (c)− c) dc

after substituting the computed values for kt∗ and kT−∆ it can be verified that

lim
∆→0

∂SLC (∆)

∂∆
= rδ3

which is the same as in the case of continuous market, so to the first approximation even

conditional on reaching t∗ the gains from trade are approximately the same in the two market

designs.

We can compare the second derivatives:

lim
∆→0

∂S2
LC (∆)

∂∆2
= 3δ3r2

lim
∆→0

∂S2
c (∆)

∂∆2
= 3δ3r2
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and even these are the same. Finally, comparing third derivatives:

lim
∆→0

∂S3
LC (∆)

∂∆3
= 13r3δ3

lim
∆→0

∂S3
c (∆)

∂∆3
= 9r3δ3

so we get that for small ∆, the "late closure" market generates slightly higher expected

surplus, but the effects are really small.
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