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Abstract

A principal needs to make a decision, and wishes to incentivize an expert to ac-

quire relevant information, which requires costly effort. The expert can be rewarded

based on his reported information, and on the state of nature, which is revealed ex

post. Both parties are financially risk-neutral, and payments are constrained by

limited liability. The principal is uncertain about the expert’s information acquisi-

tion technology: she knows of some experiments the expert can perform, but there

may also be other experiments available. In the face of this uncertainty, the princi-

pal evaluates incentive contracts using a maxmin expected utility criterion. Under

quite general conditions, the optimal contract is a restricted investment contract, in

which the expert chooses from a subset of the decisions available to the principal,

and is paid proportionally to the value of his chosen decision in the realized state.
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1 Introduction

We consider an agency problem in which a principal needs to make a decision, and seeks

advice from an expert, who can privately obtain information relevant to the decision by

exerting effort. The expert has no intrinsic preferences over the decision being made, but

the principal can incentivize him to exert effort by making his payment depend on how

well the information he reports corresponds to information revealed after the decision is

made. More specifically, we assume that the state of nature (which determines the payoff

from each possible decision) becomes publicly known ex post, and payments can depend

on the reported information and the realized state. We assume both parties are financially

risk-neutral, and payments to the expert are constrained by limited liability.

We build on the work of Zermeño [10, 11], who gave a very general formulation of

the principal-expert problem. However, we depart from that work, and from most of

the existing agency literature, by assuming that the expert’s technology for acquiring

information is not common knowledge. Instead, as in this author’s previous work [2],

we take a robust-contracting approach: The principal knows some actions (experiments)

that the expert can perform to acquire information, but there may be other, unknown

experiments available. The principal does not have a probabilistic belief about which

experiments are and are not available. Rather, she evaluates incentive contracts based on

their worst-case performance over all possible technologies the expert may have access to.

In simpler settings, this kind of robustness concern can lead to linear contracts, in

which the agent is paid a constant share of the principal’s payoff (see [2]). In the present

problem, the optimal contract is a variation on a linear contract, which we call a restricted

investment contract. Instead of paying the expert a constant share of the principal’s own

realized payoff, she pays him proportionally to the payoff that would have accrued (in the

realized state) if she had been restricted to a certain subset of her possible decisions. By

excluding risky decisions, the principal can make the limited liability constraint less severe

and thus pay the expert less while maintaining incentives. In addition to this qualitative

description, we also show that the optimal contract — a potentially complicated object —

can actually be described in terms of a small number of parameters (one per state), so that

the computational problem of optimizing in any given application is greatly simplified.

This paper aims to make two main points. One is literal: we give a recipe that can

be used to write contracts in a particular agency setting, and the resulting contracts are

optimally robust in a precise sense. Moreover, the form of the contracts that come out of

the analysis is novel. The other point is methodological: we show how using a maxmin
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objective leads to a tidy and tractable model. By contrast, a Bayesian approach, with

the principal maximizing expected utility with respect to some belief over the space of

possible information acquisition technologies, would be unmanageable in general. (Even

with common knowledge of the technology, the problem is difficult; [10] gives an explicit

solution only for very special cases.)

Our assumption that the state is fully revealed ex post essentially means that the

principal finds out what the payoff from any other decision would have been, not just the

decision that was actually taken. This assumption is not realistic in all applications, but it

is reasonable in some. For example, the principal may be an investor, seeking the expert’s

advice as to which assets to invest in, and ex post she can see the returns on the assets

she didn’t invest in, as well as those that she did. For another application, the principal

may be a firm deciding how much to invest in developing each of several products. The

returns to each product depend on exogenous future shocks to market demand, and the

expert’s job is to try to predict these shocks; ex post, the realized shocks can be inferred

from market data.

By assuming that the state is fully revealed, we are able to separate the problem

of choosing the decision from that of providing incentives to the expert. In a more

general model, there would be a reason to distort decisions in favor of those that reveal

more information about how hard the expert worked [10]. Here, all decisions are equally

revealing, so the principal simply takes whichever decision is optimal condition on the

reported information.

In the next section, we present the formal model. We then give a more detailed

discussion of the intuition behind restricted investment contracts, before proceeding to

the formal analysis showing that such contracts are optimal. The main proof is essentially

an application of the same linear separation techniques used in [2]. In Section 3, we

briefly discuss a number of extensions and variations, including the question of when an

unrestricted investment contract is or is not optimal.

Besides the work of Zermeño [10, 11] cited above, several other authors previously con-

sidered agency problems involving incentives to acquire information, in particular Demski

and Sappington [5] (who introduced the term “expert”) and Malcolmson [7]. However

these models assumed that the decision is delegated to the expert, and that only the real-

ized payoff is observed, not the entire state. Osband [8] considered a model more similar

to the present paper in these respects, but focused on optimal screening with a prior belief

over the expert’s technology, in a very specific environment. In addition to this literature,

the present paper also contributes to the literature on mechanism design with maxmin
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objectives, e.g. [1, 4, 6]; see the author’s earlier paper [2] for more discussion.

2 Model and results

2.1 The setup

As already indicated, the model is quite similar to that of [10], with the main differ-

ence being the principal’s non-quantifiable uncertainty about the expert’s information

acquisition technology.

The principal needs to choose a decision d from some compact space D. The payoff

to each decision depends on a state of nature, ω, to be realized in the future. We assume

the set Ω of possible states is finite. Payoffs are represented by a continuous function

u : D × Ω → R. The principal has a prior belief about the state, p0 ∈ ∆(Ω), with

p0(ω) > 0 for each ω ∈ Ω.

Before the principal makes her decision, she can hire the expert to obtain information

about the state. The expert initially shares the prior p0, but can obtain more information

by performing an experiment. In principle, an experiment should be thought of as pro-

ducing a joint distribution on states ω and observed signals (outcomes of the experiment),

such that the marginal distribution over states is p0. However, the signal will matter only

through the expert’s resulting posterior belief about the state, so we take the notational

shortcut of representing experiments directly in terms of posteriors. Thus, we define an

experiment to be a pair (F, c) ∈ ∆(∆(Ω))×R
+ (here R+ is the set of nonnegative reals),

such that F has mean p0. The interpretation is that the expert can, at a cost of c, perform

the experiment, and obtain a posterior (an element of ∆(Ω)) drawn from distribution F .

The requirement that F should have mean p0 is simply the law of iterated expectations

— the posterior should, in expectation, be equal to the prior. We will typically use the

variable p for a posterior.

We give ∆(∆(Ω))×R
+ the natural product topology, and define an information acqui-

sition technology (IAT) to be a compact subset of ∆(∆(Ω))×R
+. An IAT then describes

the set of experiments available to the agent. There is some exogenously given IAT, I0,

consisting of the experiments which are mutually known to be available. From the princi-

pal’s point of view, the true set of experiments (known only to the agent) may potentially

be any IAT I such that I ⊇ I0. We will sometimes consider I0 satisfying the following

full-support condition: for every (F, c) ∈ I0, the support of F is all of ∆(Ω), or else

F = δp0 (a point mass on the prior).
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After the contract is chosen, the expert can acquire information, and make a report

to the principal, who then chooses decision d ∈ D. After the decision is made, the

true state is revealed, and payments can be made contingent on all relevant observable

information (the report and the realized state). Limited liability means that payments

can never be negative. Thus, a contract is a pair (M,w), consisting of a message space

M , some nonempty compact space; and a payment function w : M × Ω → R
+, which

must be continuous. (The topological assumptions ensure that the expert’s behavior is

well-defined.)

Because we are interested specifically in optimal contracts for the principal, we may

assume the expert reports the posterior as part of his message. Indeed, for any contract

(M,w), we may consider a contract (M ′, w′) with M ′ = M × ∆(Ω) and w′(m, p, ω) =

w(m,ω), so that the principal ignores the reported posterior when calculating payments,

and uses it only to choose the decision d. Then the expert’s incentives for information

acquisition, and for the m component of his report, are exactly the same as under the

original contract; and he is indifferent about the p component of his report, so he is willing

to report the true posterior, which clearly allows the principal to choose at least as good

a d as she could have chosen with only the message m. The full version of this argument

depends on the description of behavior and on a more precise definition of contracts,

but to avoid technical details we leave it to Appendix A, and for now simply assume

henceforth that the expert reports p in addition to the message m. (In fact, we could

apply the revelation principle more fully and assume that the expert reports only his

posterior; this approach is used in [10, 11]. However, we will be interested in contracts

that arguably are more naturally formulated using other message spaces.)

We can now summarize the timing of the game:

1. the principal offers a contract (M,w);

2. the expert, knowing I, chooses experiment (F, c) ∈ I;

3. a posterior p ∼ F is realized;

4. the expert chooses a message m ∈M to send, along with his posterior p;

5. the principal chooses decision d;

6. the state ω is revealed;

7. payoffs are received: u(d, ω)−w(m,ω) for the principal; w(m,ω)− c for the expert.
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It remains only to describe behavior. We give a brief summary here, and will introduce

formal notation shortly. The expert knows I, and he chooses (F, c) and then m to

maximize his expected payoff. If the expert is indifferent between several choices, then we

assume he acts so as to maximize the principal’s expected payoff. The above behavior by

the expert gives rise to an expected payoff for the principal for each possible IAT I; we

will notate this expected utility by VP (M,w, r|I). The principal evaluates each contract

(M,w, r) by the worst possible value of VP over all possible IAT’s I, knowing only that

I ⊇ I0. Finally, the question is how to design a contract to maximize this worst-case

value.

Before developing the formal notation, we introduce some other useful objects. Sup-

pose that the principal learns the expert’s posterior is p ∈ ∆(Ω). Then, clearly, she will

choose d to maximize Ep[u(d, ω)]. We denote this decision and the expected payoff by

d(p) = argmax
d∈D

Ep[u(d, ω)]; U(p) = max
d∈D

Ep[u(d, ω)].

Note that U is convex in p, since it is the maximum of the affine functions p 7→ Ep[u(d, ω)].

Similarly, when the expert has posterior p, he will choose message m so as to maximize

Ep[w(m,ω)]. We denote

W (p) = max
m∈M

Ep[w(m,ω)],

and call this function W : ∆(Ω) → R
+ the reduced form of the given contract. W is

likewise convex in p.

The expert’s incentives to acquire information depend only on the reduced form of the

contract. Zermeño [11] characterized the possible reduced forms of contracts, as Lipschitz

convex functions satisfying certain boundary conditions. However, for our purposes, it

will be more helpful simply to think of W as the upper envelope of the affine functions

∆(Ω) → R
+ given by p 7→ Ep[w(m,ω)], for each m ∈M .

Now we can describe behavior formally. The expert, given posterior p, chooses message

m as above, leading to expected paymentW (p). At the earlier, experiment-choosing stage,

he knows the IAT I and so chooses (F, c) ∈ I to maximize expected payoff EF [W (p)]− c.

We will write the value of the contract (M,w) to the expert as

VE(M,w|I) = max
(F,c)∈I

(EF [W (p)]− c)
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and the expert’s choice set as

I∗(M,w|I) = arg max
(F,c)∈I

(EF [W (p)]− c) .

When the principal learns the posterior p, whe will make decision d(p), gaining expected

gross payoff U(p). Thus, her expected net payoff from the contract under IAT I is

VP (M,w|I) = max
(F,c)∈I∗(M,w|I)

(EF [U(p)]− EF [W (p)])

(with the assumption that the expert breaks indifference in favor of the principal). The

principal evaluates each possible contract ex ante by its worst-case expected payoff over

all IAT’s I:

VP (M,w) = inf
I⊇I0

VP (M,w|I).

The principal’s problem, which we analyze, is then how to choose the contract (M,w)

to maximize VP .

From here on, we will maintain the non-triviality assumption that there exists some

contract (M,w) with VP (M,w) > U(p0). That is, the principal benefits from hiring the

expert. We shall shortly see conditions on primitives that ensure that this assumption is

satisfied.

2.2 Intuitions

How can the principal write a contract to guarantee herself a reasonably high expected

payoff? A natural first try would be to use a linear contract: pay the expert some fixed

fraction α ∈ (0, 1] of the principal’s gross payoff, adjusted by some constant β chosen so

that the limited-liability constraint binds. With contracts defined as above, this could be

implemented by setting M = D and

w(m,ω) = α(u(m,ω) + β). (2.1)

(Explicitly, the relevant value of β is β = −mind,ω u(d, ω).) For any given posterior, the

expert would then send a message equal to the principal’s optimal decision, m = d(p).

We can compute a payoff guarantee from such a contract just as in [2] (see also [3]).

If the expert chooses experiment (F, c), his expected payoff will be EF [W (p)] − c =
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α(EF [U(p)] + β)− c. Hence we have

α(EF [U(p)] + β) ≥ α(EF [U(p)] + β)− c = VE(M,w|I) ≥ VE(M,w|I0).

Whenever the expert earns some payoff α(y+β), the principal earns (1−α)y−αβ. Hence,

the principal’s expected payoff will be

(1− α)EF [U(p)]− αβ ≥
1− α

α
VE(M,w|I0)− β

=
1− α

α

[
max

(F,c)∈I0
α(EF [U(p)] + β)− c

]
− β

= max
(F,c)∈I0

(
(1− α)EF [U(p)]−

1− α

α
c

)
− αβ. (2.2)

Thus the guarantee from the linear contract, VP (M,w), is at least the right-hand side of

(2.2).

In particular, let F be any distribution over posteriors such that EF [U(p)] > U(p0)

— that is, any distribution that potentially provides useful information for the decision.

One can check that, as long as

c <
(√

EF [U(p)] + β −
√
U(p0) + β

)2

, (2.3)

there exists α such that the right side of (2.2) is greater than U(p0). (This can be seen by

choosing α to maximize the expression in (2.2), then solving the resulting inequality for

c.) Hence, if I0 contains some such (F, c), the non-triviality condition is satisfied. This is

our sufficient condition on primitives, as promised.

In the simpler, pure moral hazard setting of [2], linear contracts were optimal: the

only way to turn a guarantee on the agent’s expected payoff (provided by the known

technology) into a guarantee on the principal’s payoff was to have a linear relationship

between the two. Here, however, there is scope for improving on linear contracts in two

ways.

First, suppose we change a payment function by adding a quantity that depends only

on the realized state: given payment function w(m,ω), replace it by w(m,ω)+β(ω). This

provides exactly the same incentives as the original payment function, since the expert

has no control over the extra term. In symbols, the expected payoff from any experiment
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(F, c) is

EF [max
m

(Ep[w(m,ω) + β(ω)])]− c = EF [W (p) + Ep[β(ω)]]− c

= EF [W (p)] + Ep0 [β(ω)]− c

since F has mean p0; this differs from EF [W (p)]−c by a constant, so the expert’s incentives

as to which experiment to perform are unchanged. Hence, instead of (2.1), the principal

may as well adjust the linear contract with state-by-state constants so that limited liability

binds in each state:

w(m,ω) = α(u(m,ω) + β(ω)), β(ω) = −min
d∈D

u(d, ω).

The second reason why linear contracts may not be optimal is subtler: By cutting

out risky decisions, the principal can relax the limited liability constraint, and thus pay

a lower β. To see this, consider a situation with four decisions and two states, and the

following payoffs:

ω1 ω2

d1 10 0

d2 8 6

d3 6 8

d4 0 10

Each decision is optimal for some range of posteriors. This is shown in Figure 1, where

beliefs are represented as numbers in [0, 1] (representing the probability of state ω2);

each decision is shown as an affine function, mapping the belief p to the corresponding

expected payoff, and U(p) is the upper envelope of these four lines. Now, suppose the

principal chooses a linear contract, with, say, share α = 1/2. The corresponding choice

of β is zero (in each state), so if the posterior is such that, say, d2 is optimal, she will

have to pay 4 in state ω1 and 3 in state ω2. However, if she cuts out decisions d1 and

d2 from the message space, leaving only M = {d3, d4}, then she can adjust payments

by β = −3 without violating limited liability, and so never pay more than 1. Now, by

cutting out the extreme decisions, the principal may weaken the expert’s incentives for

information acquisition. However, if the known experiments rarely yield posteriors in the

ranges where d1 or d4 are optimal, then the effect on incentives is small, and the change

in β is more important. Note that under the new contract, the expert’s decisions would

not be restricted — she could still choose d1 or d4 if the expert happened to report an
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extreme posterior, but the expert would not be paid according to these decisions.

d
4

d
3

d
2

d
1

10 p

U(p)

Figure 1: An example decision problem with risky decisions

To formalize this idea, we define a restricted investment contract as follows: the mes-

sage space is some compact subset of decisions, M ⊆ D, and the payment function is

given by

w(m,ω) = α(u(m,ω) + β(ω)) (2.4)

for some α ∈ [0, 1] and some β : Ω → R, such that the resulting payments are always

nonnegative. The name emphasizes that the expert is allowed to “invest” in a restricted

subset of decisions, and once the state is revealed, he is compensated according to the

payoff that his chosen decision would have produced in that state.

What makes this setting different from the pure moral hazard setting, in which linear

contracts are optimal? Here, there is a separation between the incentive instrument

and the limited liability constraint: the expert’s incentives are determined by the reduced

formW (p), whereas limited liability applies to the state-by-state payments w(m,ω). This

separation means it is possible to relax limited liability appreciably while having only a

small effect on the expert’s incentives. As the arguments in the next subsection will make

clear, relaxing limited liability is the only reason to depart from pure linearity.
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2.3 Full analysis

So far, the discussion has emphasized restricted investment contracts. However, for the

formal analysis, it will be useful to make a conceptual distinction between these and a

related class, which we call transform-bounded contracts. Such a contract is parameterized

by a value of α ∈ [0, 1] and β : Ω → R, and is defined as follows: the message space M is

the set of all functions m : Ω → R
+ such that

Ep[m(ω)] ≤ α(U(p) + Ep[β(ω)]) for all p ∈ ∆(Ω),

and the payment function is simply

w(m,ω) = m(ω).

As long as the values of β are large enough so that U(p) + Ep[β(ω)] ≥ 0 for all p, the

resulting M is nonempty, and so we do obtain a contract.

We will say that two contracts are equivalent if they have the same reduced form. No-

tice that the values of VE(M,w|I), I∗(M,w|I), VP (M,w|I), and therefore also VP (M,w)

all depend on the contract (M,w) only through its reduced form; hence, any two equiva-

lent contracts give the same payoff both to the expert and to the principal. Our analysis

will show that transform-bounded contracts are optimal, and then that, under appropri-

ate circumstances, transform-bounded contracts are equivalent to restricted investment

contracts.

Thus, we state our first main result as:

Theorem 2.1. There is an optimal contract that is transform-bounded. Moreover, if

the known IAT I0 satisfies the full-support assumption, then every optimal contract is

equivalent to a transform-bounded contract.

For the second portion of the analysis, we will need one more definition. We will say

that the decision problem (D, u) is regular if, for all d, d′ ∈ D and all λ ∈ [0, 1], there

exists d̂ ∈ D such that

u(d̂, ω) ≥ λu(d, ω) + (1− λ)u(d′, ω)

for all ω.

This can be thought of as a kind of convexity condition on the efficient frontier of

decisions. For example, if we identify each decision with the vector of payoffs it generates
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(one for each state ω) so as to think of the decision space as a subset of RΩ, then the

decision space is regular if it is convex, e.g. if we allow for explicitly randomized decisions.

Regularity is also satisfied in the application where decisions involve investment of wealth

in several assets whose payoffs are state-dependent, if any asset allocation is possible,

and payoffs are concave in investment within each state. (This could happen because of

literally decreasing marginal returns, or constant returns but risk-aversion. To reconcile

the latter interpretation with our assumption of risk-neutrality, we should think of the

principal as risk-averse on the large scale of investment, but effectively risk-neutral on the

scale of potential payments to the expert.)

The second part of our analysis is then encapsulated in the following, purely technical

result:

Proposition 2.2. Suppose the decision problem is regular. Then every transform-bounded

contract is equivalent to a restricted investment contract. In fact, the transform-bounded

contract with parameters α, β is equivalent to the restricted investment contract with the

same parameters, and message space

DR(β) = {d ∈ D | u(d, ω) + β(ω) ≥ 0 for all ω}, (2.5)

unless α = 0 in which case we can just take M = D.

Combining these two results immediately gives:

Corollary 2.3. Suppose the decision problem is regular. Then there is some restricted

investment contract that is optimal. If I0 satisfies the full-support assumption, then every

optimal contract is equivalent to a restricted investment contract.

Now that the results are stated, we begin the proofs. The proof of Theorem 2.1 closely

parallels the analysis in [2]. We first characterize the worst-case payoff from any given

contract. The description is straightforward, but because of the assumption that the

expert’s indifference is broken in favor of the principal, there are a few technical details

to deal with.

We need to deal separately with zero contracts : those whose reduced form W satisfies

W (p) = 0 for all p (equivalently, those satisfying w(m,ω) = 0 for all m,ω). We denote

the guarantee of a zero contract by VP (0). If there exists some experiment (F, c) ∈ I0

with c = 0, then for any I, the agent will choose whichever such experiment maximizes

the principal’s expected payoff EF [U(p)]; hence, VP (0) is simply max(F,0)∈I0 EF [U(p)]. If
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there is no such experiment in I0, then when the IAT is I = I0∪{(δp0 , 0)}, the agent will

choose the latter experiment, and we see that VP (0) = U(p0). (The principal will not do

worse than this under any other IAT, by convexity of U .)

For nonzero contracts, we have the following.

Lemma 2.4. Let (M,w) be any nonzero contract such that VP (M,w) ≥ VP (0). Let W

be its reduced form. Then,

VP (M,w) = minEF [U(p)−W (p)] over F ∈ ∆(∆(Ω)) such that (2.6)

EF [p] = p0 and EF [W (p)] ≥ VE[M,w|I0].

Moreover, if VP (M,w) > U(p0), then for any F attaining the minimum, the expert’s

payoff constraint holds with equality: EF [W (p)] = VE[M,w|I0].

Proof: One direction is trivial: For any I ⊇ I0, and any experiment (F, c) chosen

by the expert, EF [W (p)] ≥ EF [W (p)]− c ≥ VE[M,w|I0], so F satisfies the constraints in

(2.6), and hence VP (M,w|I) is at least the indicated minimum. This holds for any I, so

VP (M,w) is at least the minimum in (2.6). (Note that this minimum is well-defined.)

To prove the reverse inequality, we begin by defining the affine function Z : ∆(Ω) →

R
+ by Z(p) =

∑
ω p(ω)W (δω). By convexity, W (p) ≤ Z(p) for every p. Now let F be

a distribution attaining the minimum in (2.6). Suppose F places positive probability on

posteriors p such that W (p) < Z(p). Then we have

EF [W (p)] < EF [Z(p)] = Z(p0)

where the equality holds because Z is affine. For small ǫ > 0, define a distribution F ′

as follows: with probability 1 − ǫ, F ′ chooses a posterior from F ; with the remaining

probability ǫ, F ′ picks a state ω ∼ p0 and gives posterior δω. Evidently, EF ′ [p] = p0, and

EF ′ [W (p)] = (1− ǫ)EF [W (p)] + ǫZ(p0) > EF [W (p)] ≥ VE[M,w|I0].

So if the IAT is I = I0 ∪ {(F ′, 0)}, the expert’s unique optimal choice of experiment is

(F ′, 0). The principal’s expected payoff VP (M,w|I) is then

EF ′ [U(p)−W (p)] = (1− ǫ)EF [U(p)−W (p)] + ǫEp0 [U(δω)−W (δω)].

By taking ǫ → 0, we see that the principal cannot be guaranteed a payoff higher than

EF [U(p)−W (p)], which is exactly the amount in (2.6).
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If, on the other hand, W (p) = Z(p) throughout the support of F , but EF [W (p)] >

VE[M,w|I0] strictly, then we can give a similar argument by taking I = I0 ∪ {(F, 0)}.

This leaves us with the case where

VE[M,w|I0] = EF [W (p)] = EF [Z(p)] = Z(p0).

For this to happen, it must be that whatever experiment (F0, c0) is chosen under I0

satisfies W (p) = Z(p) throughout the support of F0, and c0 = 0. However, in this case,

we have

VP (0) = EF0
[U(p)] > EF0

[U(p)−W (p)] = VP (M,w|I0) ≥ VP (M,w).

(The strict inequality follows from the assumptions that W is nonzero, and F0 has mean

p0 which has full support.) This contradicts our assumption that VP (M,w) ≥ VP (0), so

this case cannot happen.

Finally, suppose VP (M,w) > U(p0), and let F be a distribution attaining the minimum

in (2.6). Then certainly

EF [U(p)−W (p)] = VP (M,w) > U(p0) ≥ U(p0)−W (p0).

If EF [W (p)] > VE(M,w|I0) strictly, then define another distribution F ′ by drawing a

posterior from F with probability 1− ǫ, and placing the remaining probability mass ǫ on

p0. For small ǫ, F ′ still satisfies the constraints of (2.6), and

EF ′ [U(p)−W (p)] = (1− ǫ)EF [U(p)−W (p)] + ǫ[U(p0)−W (p0)] < EF [U(p)−W (p)],

contradicting minimality for F . �

We will also need the following result:

Lemma 2.5. There exists an optimal contract.

The proof is topological — we show that we can restrict attention to a compact set

of contracts, and that VP is upper semi-continuous on this set. (It is not continuous in

general.) The details are in Appendix B.

Accepting that detail, we can commence the proof of Theorem 2.1. We first use a linear

separation argument that shows that that for any given contract, there is some linear

transform of the principal’s reduced-form payoff — some function of the form α(U(p) +
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Ep[β(ω)] — that “looks like” the reduced form W (p) from the point of view of the worst-

case distribution F identified in Lemma 2.4. We can replace the given contract by the

transform-bounded contract with parameters α, β, and check that the new contract is

better for the expert. Because of the linear relationship between the transform-bounded

contract and the reduced-form payoff U , this can be mapped back to show that the

principal is better off as well.

Proof of Theorem 2.1: By Lemma 2.5, there exists an optimal contract, call it

(M,w). In particular, we have VP (M,w) ≥ VP (0) and, by non-triviality, VP (M,w) >

U(p0).

Consider the following two subsets of ∆(Ω) × R × R: S is the convex hull of points

(p,W (p), U(p)−W (p)); and T is the set of all points (p0, y, z) such that y ≥ VE[M,w|I0]

and z < VP (M,w). These two sets are disjoint — otherwise there would be some distribu-

tion F such that EF [p] = p0, EF [W (p)] ≥ VE[M,w|I0], and EF [U(p)−W (p)] < VP (M,w),

contradicting Lemma 2.4. Applying a proper separating hyperplane theorem (e.g. [9, The-

orem 11.3]) to these sets gives us λ ∈ R
Ω, µ, ν, ξ ∈ R such that

∑

ω

λωp(ω) + µW (p) + ν(U(p)−W (p)) ≤ ξ for all p ∈ ∆(Ω), (2.7)

∑

ω

λωp0(ω) + µVE[M,w|I0] + νVP (M,w) ≥ ξ; (2.8)

µ ≥ 0, ν ≤ 0; and we do not simultaneously have µ = ν = 0 and all the λω equal to each

other.

Moreover, we can let F ∗ be the distribution attaining the minimum in (2.6), and take

the expectation over p ∼ F ∗ in (2.7). Since EF ∗ [W (p)] = VE[M,w|I0] and EF ∗ [U(p) −

W (p)] = VP (M,w), we must have equality in (2.7) for all p in the the support of F ∗, and

also have equality in (2.8).

At least one of the inequalities µ ≥ 0, ν ≤ 0 must hold strictly: otherwise
∑
λωp(ω) ≤

ξ ≤
∑
λωp0(ω) for all p ∈ ∆(Ω), which would only be possible if all λω were equal (because

p0 has full support), but proper separation means this cannot happen. Let’s show that in

fact both inequalities are strict: µ > 0 and ν < 0.

First, suppose ν = 0. Then µ > 0, and (2.7) implies W (p) is bounded above by the

affine function Z(p) = (ξ −
∑

ω λωp(ω))/µ, with equality throughout the support of F ∗.

The equality in (2.8) then means that VE[M,w|I0] = EF ∗ [W (p)] = EF ∗ [Z(p)] = Z(p0).
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On the other hand, if (F, c) is the experiment the expert chooses under IAT I0, then

VE[M,w|I0] = EF [W (p)]− c ≤ EF [Z(p)]− c = Z(p0)− c,

so it must be that c = 0. Thus, there is an experiment available for free in I0 that gives

the principal at least VP (M,w). But then the principal could have gotten a strictly higher

payoff by using a zero contract, since she would get at least EF [U(p)] > EF [U(p)−W (p)] ≥

VP (M,w). This contradicts the assumption that VP (M,w) ≥ VP (0). This shows that

ν < 0 after all. Next, suppose µ = 0. Then (2.7) for p0 and the inequality in (2.8) imply

U(p0)−W (p0) ≥

∑
ω λωp(ω)− ξ

−ν
= VP (M,w),

contradicting the assumption VP (M,w) > U(p0). Thus µ > 0 strictly.

Now we can return to the main argument. We can rearrange (2.7) to obtain

W (p) ≤
−
∑

ω λωp(ω)− νU(p) + ξ

µ− ν
(2.9)

for all p. Put

α =
−ν

µ− ν
, β(ω) =

−λω + ξ

−ν
for each ω.

Let (M ′, w′) be the transform-bounded contract with these parameters (note indeed α ∈

[0, 1]), and let W ′ be its reduced form.

Let m be any message in the original contract. Then for all p, we have

Ep[w(m,ω)] ≤ W (p) ≤ α(U(p) + Ep[β(ω)])

where the first inequality is by definition of W (p) and the second is from (2.9). Thus, the

map ω 7→ w(m,ω) is in M ′. In particular, for all p, W ′(p) ≥ Ep[w(m,ω)]. Taking the

maximum over m gives W ′(p) ≥ W (p): the reduced form of the new contract dominates

the reduced form of the original contract (for the expert). On the other hand, we still

have

W ′(p) ≤ α(U(p) + Ep[β(ω)]) =
−
∑

ω λωp(ω)− νU(p) + ξ

µ− ν
(2.10)

by definition of the transform-bounded contract. This can be rearranged to

−νU(p) ≥
∑

ω

λωp(ω) + (µ− ν)W ′(p)− ξ,
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or

−ν(U(p)−W ′(p)) ≥
∑

ω

λωp(ω) + µW ′(p)− ξ. (2.11)

The relation W ′(p) ≥ W (p) for all p implies immediately that VE(M
′, w′|I0) ≥

VE(M,w|I0). Under the new contract, for any IAT I, the expert will choose an ex-

periment (F, c) such that EF [W
′(p)] ≥ EF [W

′(p)]− c = VE(M
′, w′|I0) and so

EF [U(p)−W ′(p)] ≥ EF

[∑
ω λωp(ω) + µW ′(p)− ξ

−ν

]
(by (2.10))

=

∑
ω λωp0(ω) + µVE(M

′, w′|I0)− ξ

−ν

≥

∑
ω λωp0(ω) + µVE(M,w|I0)− ξ

−ν
= VP (M,w). (from equality in (2.8))

This shows that VP (M
′, w′|I) ≥ VP (M,w) for all I, and so VP (M

′, w′) ≥ VP (M,w).

Since (M,w) was assumed to be an optimal contract, this must be an equality, and the

transform-bounded contract (M ′, w′) is again optimal.

Moreover, suppose that the full-support assumption holds, and suppose thatW ′ is not

identically equal toW . Then, we have VE(M
′, w′|I0) > VE(M,w|I0), since the experiment

chosen by the expert under (M,w) and I0 has full support (it cannot be distribution δp0

because of our assumption VP (M,w) > U(p0)) and so gives the expert strictly higher

expected payoff under (M ′, w′). Together with µ > 0, this implies that the third line of

the chain of inequalities above is a strict inequality; hence, VP (M
′, w′) > VP (M,w). This

contradicts the optimality of VP (M,w). Thus, W ′ must be equal to W after all — that

is, (M,w) is equivalent to the transform-bounded contract (M ′, w′). �

It remains only to make the leap from transform-bounded contracts to restricted in-

vestment contracts. In effect, we need to show that, for any given transform-bounded

contract, the payoff represented by its reduced form at any given posterior p is actually

attained by some decision available in the corresponding restricted decision space.

Proof of Proposition 2.2: Suppose that the decision problem is regular. Let (M,w)

be the transform-bounded contract with parameters α, β, and (M ′, w′) the corresponding

restricted investment contract identified in the proposition statement. Write W,W ′ for

the corresponding reduced forms. We wish to show that W and W ′ are identical. The

α = 0 case is trivial (both W and W ′ are zero), so assume α > 0.

First the easy direction: For any decision d ∈M ′, the message taking each state ω to
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w′(d, ω) = α(u(d, ω) + β(ω)) is in M . Thus for every posterior p, Ep[w
′(d, ω)] ≤ W (p).

Therefore W ′(p) = maxdEp[w
′(d, ω)] ≤ W (p).

Now for the reverse inequality. Fix a posterior p. Consider the following subset S of

R
Ω: S is the set of all functions m : Ω → R such that there exists some d ∈ D with

α(u(d, ω) + β(ω)) ≥ m(ω) for all ω. S is closed, and the regularity assumption implies it

is also convex. Now, by definition of the reduced form W , there is some m∗ ∈ M such

that Ep[m
∗(ω)] = W (p).

We will show that m∗ ∈ S. Suppose not. Then we can apply a strict separating

hyperplane theorem to conclude the existence of λ ∈ R
Ω and ξ such that

∑

ω

λωm(ω) < ξ for all m ∈ S, (2.12)

∑

ω

λωm
∗(ω) > ξ. (2.13)

(2.12) implies that λω ≥ 0 for all ω. Then, we can normalize to assume that
∑

ω λω = 1,

so that λ equals some probability distribution q ∈ ∆(Ω). Consider the decision d = d(q),

and m(ω) = α(u(d, ω) + β(ω)); then (2.12) and (2.13) give us

Eq[α(u(d, ω) + β(ω))] < ξ < Eq[m
∗(ω)].

But the definition of the transform-bounded contract requires that

Eq[m
∗(ω)] ≤ α(U(q) + Eq[β(ω)]) = Eq[α(u(d, ω) + β(ω))],

and so we have a contradiction.

Thus, m∗ ∈ S, which means that there is some d ∈ D satisfying

α(u(d, ω) + β(ω)) ≥ m∗(ω) ≥ 0

for all ω. Dividing through by α > 0, we see that this decision d lies in the restricted

decision spaceM ′ as well. Then the value of the restricted investment contract at posterior

p satisfies

W ′(p) ≥ Ep[α(u(d, ω) + β(ω))] ≥ Ep[m
∗(ω)] = W (p).

Now we have W ′(p) ≤ W (p) and W ′(p) ≥ W (p) for every p, so we are finished. �

Before wrapping up this section, we should comment a bit further on how to identify
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the parameters of the optimal (transform-bounded) contract. Although it is not possible

to express all the parameters in closed form, we can give an implicit characterization that

will be useful for further investigation in Subsection 3.6.

Given β : ω → R, put

M(β) = {m : Ω → R
+ | Ep[m(ω)] ≤ U(p) + Ep[β(ω)] for all p ∈ ∆(Ω)}

and then put

UR(p; β) = max
m∈M(β)

(Ep[m(ω)]− Ep[β(ω)]) .

Clearly UR(p; β) ≤ U(p). In the regular case, we have an especially straightforward

interpretation for UR: Proposition 2.2 implies that UR(p; β) = maxd∈M Ep[u(d, ω)] where

M is just the restricted decision space coming from a restricted investment contract with

parameter β.

We now have the following:

Proposition 2.6. Let (M,w) be the transform-bounded contract with parameters α, β.

Then, its payoff guarantee satisfies

VP (M,w) ≥ max
(F,c)∈I0

(
(1− α)EF [UR(p; β)]−

1− α

α
c

)
− α · Ep0 [β(ω)] (2.14)

where, if α = 0, we interpret the −((1− α)/α)c term as 0 for c = 0 and −∞ otherwise.

Moreover, there are some α, β such that the corresponding transform-bounded contract

is optimal and (2.14) is an equality.

The seemingly odd wording of the last sentence appears because we do not rule out

the possibility that different choices of α, β might give rise either to equivalent contracts,

or to distinct optimal contracts.

Proof: If α = 0, then if there does not any (F, 0) ∈ I0, the right side of (2.14) is −∞

and the contract cannot be optimal; and if there is such an experiment, the right side

is max(F,0)∈I0 EF [UR(p; β)] ≤ max(F,0)∈I0 EF [U(p)] which is exactly the payoff guarantee

from that contract. Equality holds if β is chosen large enough so that UR(p; β) = U(p).

Now suppose α > 0. The inequality is proven in the same way as the guarantee from

a linear contract (2.2). The reduced form of the transform-bounded contract is precisely

W (p) = α(UR(p; β) + Ep[β(ω)]). (2.15)
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Once the expert attains posterior p, his expected payoff is W (p) ≤ α(U(p) + Ep[β(ω)]),

while the principal’s is

U(p)−W (p) ≥ (1− α)U(p; β)− αEp[β(ω)]

≥
1− α

α
W (p)− Ep[β(ω)].

Therefore, whatever experiment (F, c) the expert performs, the principal’s expected payoff

VP (M,w|I) is

EF [U(p)−W (p)] ≥ EF

[
1− α

α
W (p)− Ep[β(ω)]

]

=
1− α

α
EF [W (p)]− Ep0 [β(ω)].

Since

EF [W (p)] ≥ EF [W (p)]− c ≥ VE(M,w|I0) = max
(F,c)∈I0

(EF [W (p)]− c),

we can plug in to obtain

VP (M,w|I) ≥
1− α

α
· max
(F,c)∈I0

(EF [W (p)]− c)− Ep0 [β(ω)].

Now plugging in from (2.15) gives exactly the right side of (2.14). Since this applies for

all I, (2.14) follows.

Now consider an optimal contract (M,w). Lemma 2.4 identifies its payoff guarantee

to the principal; let F ∗ be the worst-case distribution given by that lemma. In the proof

of Theorem 2.1, we obtained parameters (which were called α, β in that proof, but which

we here refer to as α′, β′ for distinctness) such that the corresponding transform-bounded

contract (M ′, w′), with reduced form W ′, satisfies:

• W ′(p) ≥ W (p) for all p, hence VE(M
′, w′|I0) ≥ VE(M,w|I0);

• VP (M
′, w′) ≥ VP (M,w) (from which (M ′, w′) is again an optimal contract); and

• W ′(p) = W (p) = α′(U(p) + Ep[β
′(ω)]) for all p in the support of F ∗.

The proof of Theorem 2.1 also showed that we cannot have VE(M
′, w′|I0) > VE(M,w|I0)

strictly, because that would imply VP (M
′, w′) > VP (M,w), contradicting optimality of

the original contract. Hence VE(M
′, w′|I0) = VE(M,w|I0), and so F ∗ satisfies the con-

straints of (2.6). Since EF ∗ [U(p)−W ′(p)] = EF ∗ [U(p)−W (p)], F ∗ must actually attain
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the minimum in (2.6) (for the new contract) — otherwise the minimum would be strictly

lower, and we would have VP (M
′, w′) < VP (M,w), a contradiction.

Now we show that (2.14) is satisfied for the new contract (M ′, w′). We may suppose

that α′ > 0 (otherwise we have the zero contract, and we have already covered this case).

From (2.6) we have

VP (M
′, w′) = EF ∗ [U(p)−W ′(p)]

= EF ∗ [(1− α′)U(p)− α′Ep[β
′(ω)]]

=
1− α′

α′
EF ∗ [W ′(p)]− Ep0 [β

′(ω)]

=
1− α′

α′
VE[M

′, w′|I0]− Ep0 [β
′(ω)].

And finally plugging in again W ′(p) = α′(UR(p; β
′)+Ep[β

′(ω)]) gives us exactly (2.14) —

with equality — for the new contract with its parameters (α′, β′). �

Proposition 2.6 immediately implies:

Corollary 2.7. The payoff guarantee from the optimal contract is equal to

max
α,β

(F,c)∈I0

(
(1− α)EF [UR(p; β)]−

1− α

α
c

)
− α · Ep0 [β(ω)]. (2.16)

Moreover, this guarantee is attained by a transform-bounded contract with the correspond-

ing values of α, β.

This is a natural time to emphasize that transform-bounded contracts are not only a

technical stepping stone, even though restricted investment contracts may be more imme-

diately interpretable. Transform-bounded contracts are also computationally convenient.

Indeed, while arbitrary contracts are very high-dimensional objects, and restricted invest-

ment contracts as we have defined them are still quite complicated (because the restricted

decision space M ⊆ D can be anything), transform-bounded contracts are parameterized

by just |Ω| + 1 numbers. Hence, Theorem 2.1 makes the search for the optimal contract

potentially computationally tractable. Moreover, Corollary 2.7 makes a further step in

this direction. In particular, if I0 consists of only a small number of experiments, one

can try out a grid of values of α and β, and calculate the value of (2.16) in each case

by considering each (F, c) ∈ I0 and computing EF [UR(p; β)] by simulation. And we can

further shave down one parameter by easily solving for the optimal α, given β. But at

this point, we defer further discussion to Subsection 3.6.
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3 Extensions and variations

We now consider a number of possible extensions to the model (independently of each

other). Several of these extensions are analogous to extensions of the basic robust moral

hazard model from [2], and the arguments are identical to arguments in that paper. In

these cases, we only describe the ideas briefly.

3.1 Participation constraint

Suppose that the principal needs to guarantee the expert some expected payoff UE > 0 in

order to hire him. Thus, the principal is restricted to contracts that satisfy EF [W (p)]−c ≥

UE for some (F, c) ∈ I0. We maintain non-triviality: assume there exists some such

contract (M,w) with VP (M,w) > U(p0).

As in [2], adding a participation constraint changes nothing. The compactness ar-

gument that ensures existence of an optimal contract still holds when we add the par-

ticipation constraint; and since the main step of the proof of Theorem 2.1 replaced the

given contract (M,w) by a transform-bounded contract that is weakly better for both the

expert and the principal, we see that if the original contract satisfies the participation

constraint, so does the new one. Then the results of Subsection 2.3 still hold.

3.2 Smaller sets of experiments

We have written the model so that the principal evaluates contracts by their worst case

over all possible IAT’s I ⊇ I0. This is perhaps an unrealistically large class of IAT’s. In

fact, we do not need such drastic uncertainty: As in [2], the results hold as long as every

IAT of the form I0 ∪ {(F, c)}, for some (F, c), is considered possible. Moreover, we can

restrict to distributions F whose support consists of at most 2|Ω|+2 posteriors. This holds

because the minimum in (2.6) is attained by some distribution whose support has size at

most |Ω| + 1. Indeed, if F ∗ is any distribution attaining the minimum, Carathéodory’s

Theorem (e.g. [9, Theorem 17.1]) implies that there exists F ′ with support contained

inside that of F ∗, such that EF ′ [p] = EF ∗ [p] = p0, EF ′ [W (p)] = EF ∗ [W (p)] = VE(M,w|I0),

and EF ′ [U(p) −W (p)] = EF ∗ [U(p) −W (p)] = VP (M,w); and the support of F ′ has size

at most |Ω|+ 2. (In fact, with a little more work we can trim this down to |Ω|+ 1.) The

extra |Ω| support points are needed to construct the auxiliary distributions used in the

proof of Lemma 2.4.
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3.3 Screening on technology

In general, the principal’s minmax payoff typically is strictly greater than her maxmin

payoff: that is, there is some payoff V P strictly greater than the guarantee of the maxmin-

optimal contract such that, if she knew the IAT I with certainty when choosing the

contract, she could achieve an expected payoff at least V P , no matter what I ⊇ I0 she

faced. This can be shown by the same arguments as in [2]. This suggests the possibility of

screening experts according to their IATs, by offering a menu of contracts (M,w), which

the expert chooses from before performing any experiment, so that experts with different

IATs may choose different contracts.

In fact, the principal cannot guarantee herself a better payoff with screening than

she can without screening. The argument is exactly the same as that given in [2]. If the

principal can guarantee herself some payoff V ∗
P using a menu of contracts, we show she can

also do so using just the contract (M0, w0) that the expert with IAT I0 would choose from

this menu. If this were not the case, then there would be some experiment (F ′, c′) such

that, under I1 = I0 ∪{(F ′, c′)}, the expert strictly prefers to perform experiment (F ′, c′),

and the principal’s resulting expected payoff is less than V ∗
P . Then, under the IAT I1,

the expert might choose a different contract from the menu, but she would again perform

experiment (F ′, c′), which means the principal’s payoff can only be even worse than under

(F ′, c′) and (M0, w0) (since the principal gets the same distribution over posteriors but now

has to pay the expert more). This means that the menu of contracts does not guarantee

V ∗
P , a contradiction.

3.4 Observable posteriors

Our model has assumed that information acquisition is private: when the expert performs

an experiment, only he observes the outcome. What if instead we assume that the prin-

cipal also observes the outcome, and so updates to the same posterior p as the expert?

What contract provides the optimal worst-case guarantee in this setting?

In this case, there is no need to provide incentives for truthful reporting, only for

exertion of effort in acquiring information. So instead of having payments depend on the

realized state, we can have them depend solely on the posterior: a contract is now any

continuous function W : ∆(Ω) → R
+. Since the principal’s gross payoff from posterior

p is U(p), this looks like the simple robust moral hazard model of [2]. This suggests

that the optimal contract should simply be affine in U(p) — that is, of the form W (p) =

α(U(p) + β).
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This is almost correct, except that the actions potentially available to the expert do

not produce all possible distributions over posteriors, only those distributions with mean

p0. Hence, the model actually fits into the extension with a lower bound on costs in [2].

Here all of p is observable, and the lower bound on the cost of an experiment is 0 if it

has mean p0 and ∞ otherwise. The results from that model then show that the optimal

contract is of the form W (p) = α(U(p) + Ep[β(ω)]) for some function β : Ω → R. That

is, it is simply an unrestricted investment contract, with state-by-state adjustments just

as for our restricted investment contracts.

Since the choice of β can have no effect on incentives (this term contributes α·Ep0 [β(ω)]

to expected payoff regardless of the experiment performed), its only role can be to relax

the limited liability constraint. Therefore the optimal choice of β is such that

min
p
(U(p) + Ep[β(ω)]) = U(p0) + Ep0 [β(ω)] = 0

— that is, β(ω) follows a subdifferential of U at the point p0.

3.5 Influencing states

What if we adopt the main model, except that we allow the expert’s actions to influence

the distribution of states, in addition to providing information? That is, we drop the

requirement EF [p] = p0 from the definition of an experiment, so an experiment is now

any element of ∆(∆(Ω))×R
+, and the rest of the model is left unchanged. (Zermeño [11]

allows for this as well.)

We can repeat the analysis, and find that Lemma 2.4 is the same except that the

constraint EF [p] = p0 is dropped from (2.6). Then, in the separation argument used to

prove Theorem 2.1, inequalities (2.7) and (2.8) hold with all coefficients λω equal to zero.

Hence, the same proof now shows that there is an optimal contract that is transform-

bounded with the adjustment term β(ω) constant across all states ω. In the regular case,

this means likewise that a restricted investment contract with β constant across all states

is optimal.

3.6 Restricted versus unrestricted investment

In this subsection we briefly consider the question of when the optimal contract is an

unrestricted investment contract, with M = D. Such contracts have a natural interpre-

tation, as delegating the decision directly to the expert, who is then paid a fraction α of
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the payoff plus the state-by-state adjustment β. If it also happens that the worst possible

payoff in each state is zero (mind u(d, ω) = 0 for each ω), then these contracts can be

interpreted even more simply: the expert chooses the decision and is paid a fixed fraction

of the realized payoff. This would bridge the gap between our model and some of the

prior principal-expert literature [5, 7] which assumed that the decision must be delegated

to the expert and compensation could depend only on the realized payoff.

We will maintain several assumptions throughout this subsection. To avoid uninter-

esting cases, we will assume for this subsection that the zero contract is not optimal. (For

example, this is the case if the known IAT I0 does not contain any experiment (F, 0), ex-

cept possibly F = δp0 .) We will also assume that in every state, not all decisions give the

same payoff. Moreover, we will assume that the decision problem is regular. Thus Propo-

sition 2.2 applies, and we can describe the optimal contract either as a transform-bounded

contract or as a restricted investment contract with the same parameters α, β. We im-

mediately see that β(ω) ≤ −mind∈D u(d, ω) for all ω (otherwise β(ω) can be decreased

without changing the restricted decision space M , thereby reducing the payments to the

expert without changing incentives); and we have an unrestricted investment contract if

and only if equality holds:

β(ω) = −min
d∈D

u(d, ω) for each ω.

Denote this β by β0. Finally, we assume that dominated decisions have been eliminated

a priori: for any distinct d, d′ ∈ D, there exists ω such that u(d, ω) > u(d′, ω). This

eliminates uninteresting cases where there is some decision giving extremely low payoffs

in every state, making an unrestricted investment contract extremely costly (via limited

liability forcing β(ω) to be high) even though the expert would never invest in that

decision.

We cannot give a complete characterization of when restriction is or is not optimal,

but we can give partial results that express some relevant intuitions. Recall the function

UR(p; β) defined toward the end of Section 2.3. Define, for each posterior p and each state

ω, the one-sided partial derivative

ψ(p, ω) =
∂U−

R

∂β(ω)

∣∣∣∣
(p,β0)

.

The main result in this subsection is the following:

Proposition 3.1. Fix the decision problem (D, u), which is enough to define β0 and ψ.
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The value ψ(p, ω) is well-defined and nonnegative.

If there is some state ω such that ψ(p, ω) = 0 for all p, then unrestricted investment

contracts cannot be optimal.

Conversely, if there is no such ω exists, then it is possible to choose I0 so that an

unrestricted investment contract is optimal. We can do this while satisfying the non-

triviality and full-support assumptions.

To help in understanding this proposition, consider Figure 2, which plots possible

decision problems. Each panel shows a decision problem with state space Ω = {ω1, ω2};

each decision is represented by the pair of payoffs (u(d, ω1), u(d, ω2)). The thick line

depicts the set of available decisions D. Within each state, payoffs have been normalized

so that the payoff of the worst decision is 0. For any posterior p, U(p) corresponds to

the maximal distance in direction (p(ω1), p(ω2)) represented by any available decision.

Then, ψ(p, ωi) represents how much this distance decreases when decisions are restricted

by requiring the state-ωi payoff to be incrementally larger than zero. Panel (a) shows a

decision problem for which ψ(p, ωi) = 0 for each p and each ωi: slightly trimming away

the endpoints of the decision space has only a second-order effect on the expected payoff

for any possible posterior. In panel (b), we have ψ(p, ω1) = 0 for all p, but ψ(p, ω2) > 0

if p puts sufficient weight on ω2.

ω
1

ω
2

U(p)

p

(a)

ω
1

ω
2

(b)

Figure 2: Example decision problems

We give a more general example in keeping with (b). Suppose that the decision space is
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the efficient frontier of the convex hull of a finite set of decisions. That is, suppose we begin

with finite set of decisions D0; we identify each decision d with the corresponding vector

of payoffs in R
Ω, and form the convex hull D1; and then D consists of all d ∈ D1 such that

there does not exist d′ ∈ D1 with d
′
ω ≥ dω for all ω, strictly for some ω. By elimination of

dominated decisions, we may as well assume D0 ⊆ D. In this situation, we claim that the

last condition in Proposition 3.1 is necessarily satisfied. We outline the argument here:

Choose any state ω0. We can pick some decision d for which u(d, ω0) is minimal, and

can take d to be a pure decision (d ∈ D0). If there are several such decisions, choose an

extreme one (not contained in the convex hull of the others). Then, using the assumption

that d is not dominated, an appropriate application of the separating hyperplane theorem

gives a posterior p under which d gives strictly higher expected payoff than any other

decision. Consequently, if the decision space is restricted to (mixed) decisions with payoff

at least u(d, ω0) + ǫ in state ω0, any such mixture must place weight proportional to ǫ on

decisions other than d, and so the maximum expected payoff under p is reduced by an

amount proportional to ǫ. More concretely, we get

ψ(p, ω0) =
Ep[u(d, ω)]−maxd′∈D0\{d}Ep[u(d, ω)]

maxd′∈D0
u(d′, ω0)− u(d, ω0)

> 0.

The proof of Proposition 3.1, which is in Appendix C, is straightforward: We consider

the payoff guarantee in (2.16), and solve for the optimal value of α given β; then we study

conditions under which β = β0 is or is not optimal.

Proposition 3.1 shows that for some decision problems an unrestricted investment

contract cannot possibly be optimal. Can the reverse situation hold — can there be

decision problems where restricting investment cannot be optimal, regardless of I0? The

answer is essentially no, by the logic of Figure 1, which is quite general. If the known

IAT only allows for posteriors in the neighborhood of the prior, or posteriors far away

are possible but very unlikely, then the principal can relax the incentive constraints by

trimming away extreme decisions at a low cost in terms of incentives.

We only need to rule out the knife-edge case in which extreme decisions are always

optimal. (This case can arise, for example, if all decisions are coplanar — that is, there

are positive weights λω such that
∑

ω λωu(d, ω) is constant over all d ∈ D.) Call a decision

d extreme if u(d, ω) = mind′∈D u(d
′, ω) for some ω.

Proposition 3.2. Take as given any decision problem satisfying the assumptions of this

subsection. Assume that there exists an open ball of beliefs P ⊆ ∆(Ω) such that there is

no one decision that is optimal for all p ∈ P , and such that extreme decisions cannot be
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optimal for any p ∈ P .

Then there exists a prior p0 ∈ P and a known IAT I0 satisfying non-triviality and full

support, such that a restricted investment contract, with M ⊂ D strictly, is optimal.

Proof: Let F be any continuous distribution over posteriors with support P . The

assumption that no decision is optimal throughout P ensures that EF [U(p)] > U(EF [p]).

By continuity, this remains true when we replace P by a sufficiently large closed sub-ball

P and F with the distribution conditioned on P , call it F . Let the prior be p0 = EF [p].

As noted at the beginning of Subsection 2.2, if c > 0 satisfies the bound (2.3), then

I0 = {(δp0 , 0), (F , c)} satisfies the non-triviality assumption. Let F ′ be any distribution

with full support on ∆(Ω) and with mean p0. By continuity of the formula (2.16), we can

take F = (1 − ǫ)F + ǫF ′ for sufficiently small ǫ > 0, and then I0 = {(δp0 , 0), (F, c)} still

satisfies non-triviality. It clearly satisfies full support as well.

We will show that for ǫ sufficiently small, under this I0, a restricted investment contract

is optimal. Compactness implies that for all p ∈ P , optimal decisions are uniformly

bounded away from extreme decisions; that is, one can choose β1 : Ω → R with β1(ω) <

β0(ω), such that for all p ∈ P , the optimal decision d(p) satisfies u(d(p), ω) + β1(ω) ≥ 0

for each ω.

In particular, UR(p; β1) = U(p) = UR(p; β0) for each such p.

Now consider the formula (2.16), but with β fixed at β0 but α allowed to assume

the maximizing value. The discussion around (2.3) ensures that the optimum is attained

with the experiment (F, c) (not (δ0, 0)), and α is bounded away from 0, say α ≥ α >

0, as ǫ varies near 0. We will show that if we now replace β0 by β1, the maximum

in (2.16) strictly increases. Indeed, the (1 − α)EF [UR(p, β)] term changes by at most

ǫ · (max u(p, ω) −min u(p, ω)), since there is no change for any of the realizations p ∈ P

(which occur with probability at least 1− ǫ). On the other hand, the final term changes

by

−α · Ep0 [β1(ω)] + α · Ep0 [β0(ω)] ≥ α · Ep0 [β1(ω)− β0(ω)] > 0.

Thus, this term changes by at least a positive amount that is independent of ǫ. So for

ǫ small enough, the change from β0 to β1 leads to a strict increase in the value of the

maximand in (2.16).

Thus, in this case, the value of the maximum in (2.16) is attained for some β 6= β0,

which means that the corresponding optimal contract is a restricted investment contract,

with M ⊂ D. �
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4 Conclusion

We wrap up by briefly recapitulating our results and putting them in context. We con-

sidered a principal-expert model, with risk-neutrality and limited liability, and ex-post

revelation of the state of nature. We assumed unquantifiable uncertainty about the ex-

pert’s information acquisition technology, represented by a maxmin objective. This led

quite generally to a novel form of contracts being optimal: transform-bounded contracts,

or equivalently (under a regularity assumption) restricted investment contracts, in which

the expert chooses to invest in one of a restricted subset of less-risky decisions, and is

paid proportionally to the payoff of the chosen decision in the realized state. The result

reflects the usual intuition about the robustness of linear payment rules, with the added

twist that by prohibiting investment in risky decisions, the principal can relax the limited

liability constraints and so pay the expert less.

The direct interpretation of our results is that they show how one can go about opti-

mally providing incentives to experts in uncertain environments. They offer both qualita-

tive insights into the shape of an optimal contract and an approach to actually computing

it.

More broadly, this work illustrates the value of the worst-case methodology. The

standard Bayesian version of the principal-expert problem, even under risk-neutrality and

limited liability as we have assumed here, seems to be intractable except in very special

cases [10]. The corresponding maxmin version offers traction quite generally — without

any functional-form assumptions on the known information acquisition technology — by

extending the linear separation methods of [2]. As in the earlier paper, we also saw

that the model can be extended in various directions without changing the underlying

methodology. The worst-case environments are not extreme, and the qualitative intuitions

that emerge seem to be valid even if one rejects the worst-case approach, or insists on a

more nuanced version of it.

A natural task for future work is to find as large as possible a class of contracting

problems (or other mechanism design problems) where a maxmin approach similarly offers

new ways forward. At a glance, we can identify some of the features of the problem in

this paper that make the tools successful. We identified the worst-case environment for

a given contract as the solution to a linear program (Lemma 2.4), and then used the

dual variables to construct from this a new contract in a small parameterized family

that performs at least as well as the old one. Hence, some important features are that

contracts are complex, high-dimensional objects (so that a result narrowing them down to
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a parameterized family is not trivial); and that the effective space of uncertainty (in this

case, the space of possible experiments) is defined by a small number of linear constraints,

so that the LP tools apply to identify the worst case.

A On direct reporting of posteriors

Here we elaborate formally the revelation-principle-style argument given intuitively in

Subsection 2.1: when looking for optimal contracts, we may assume that the expert

directly reports his posterior as one component of his message.

First we should clarify why this is not trivial. In order to define the principal’s payoff

guarantee form a contract, we need to describe behavior, and in particular we need to

specify how the expert chooses when he is indifferent between several messages. Following

the usual principal-agent literature, we would like to assume that the expert breaks ties

in the way that is best for the principal, as indicated in Subsection 2.1. However, the

principal’s expected payoff from a given message depends on her endogenous interpretation

of messages. That is, there is a signaling game in which the expert chooses which message

to send, and the principal makes a decision based on the message; this game may have

multiple equilibria.

One way to deal with this would be to require contracts to specify an equilibrium

of the game. (This is the setup termed principal-authority in [11].) However, we then

run into the thorny conceptual problem of how to define equilibrium in a Bayesian game

when one of the players is not Bayesian. Instead of taking a stand on this, we will define

contracts more broadly, and require them to specify strategies for both players, in which

only the expert’s strategy needs to be optimal (full commitment in [11]). We then show

that any such contract is weakly outperformed by a contract in which the expert reports

the posterior truthfully as part of his message, and the principal takes the corresponding

optimal decision; and we argue that the latter contract would survive any reasonable

equilibrium criterion.

Let IAT denote the set of all possible IAT’s I ⊇ I0. We properly define a contract

to consist of five parts:

• a compact message space M ;

• a continuous payment function w :M × Ω → R
+;

• an experiment strategy σ : IAT → ∆(∆(Ω))× R
+, such that σ(I) ∈ I for each I;
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• a reporting strategy ρ : IAT ×∆(Ω) →M ;

• a continuous decision rule r :M → D.

Thus (σ, ρ) forms the expert’s strategy, and r the principal’s strategy. (We could allow

for mixed strategies; this would change nothing.)

We want to restrict to contracts in which the expert’s strategy is optimal; this requires

defining payoffs. So for any posterior p, let

M∗(M,w, r|p) = arg max
m∈M

Ep[w(m,ω)],

the set of optimal messages, and define W (p) = maxm∈M Ep[w(m,ω)] as before. Then,

we define the optimal payoff for the principal, given that the expert chooses an optimal

message:

Û(M,w, r|p) = max
m∈M∗(M,w,r|p)

(Ep[u(r(m), ω)]−W (p)).

We say that the reporting strategy ρ is incentive-compatible if

ρ(I, p) ∈ arg max
m∈M∗(M,w,r|p)

Ep[u(r(m), ω)]

for all I and p. That is, the expert chooses a message to lexicographically maximize his

own expected payoff and then the principal’s. (The W (p) can be omitted on the right

side since it is independent of the choice of m ∈M∗(M,w, r|p).)

Now for the experimenting stage: For any IAT I, we define

I∗(M,w, r|I) = arg max
(F,c)∈I

(EF [W (p)]− c), VE(M,w, r|I) = max
(F,c)∈I

(EF [W (p)]− c)

(note these are independent of ρ) and say that the experiment strategy σ is incentive-

compatible if

σ(I) ∈ arg max
(F,c)∈I∗(M,w,r|I)

EF [Û(M,w, r|p)].

We now call the contract acceptable if both ρ and σ are incentive-compatible. As a

side note, given any M,w, r, there exist incentive-compatible choices of ρ and σ, from the

continuity and compactness assumptions.

Define the principal’s payoff as before:

VP (M,w, r|I) = max
(F,c)∈I∗(M,w,r|I)

EF [Û(M,w, r|p)], VP (M,w, r) = inf
I⊇I0

VP (M,w, r|I).
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(These payoffs do not depend on the specification of σ, ρ.) At last, we can give the formal

justification for our assumption that the expert directly reports his posterior.

Proposition A.1. Let (M,w, σ, ρ, r) be any acceptable contract. Then define a new

contract (M ′, w′, σ′, ρ′, r′) by taking:

• M ′ =M ×∆(ω);

• w′(m, p, ω) = w(m,ω);

• ρ′(I, p) = (ρ(I, p), p);

• r′(p) = d(p) (recall this was defined as argmaxd∈D Ep[u(d, ω)]); and

• σ′(I) is taken to be any (F, c) ∈ I that lexicographically maximizes EF [W (p)] − c

and then EF [U(p)−W (p)], where W is the reduced form of the original contract.

Then the new contract is also acceptable, and has at least as high a payoff guarantee VP

as the old contract.

Proof: At the reporting stage, the set of optimal messages is exactly those whose first

component was optimal under the old contract: M∗(M ′, w′, r′|p) =M∗(M,w, r|p)×∆(Ω).

And the reduced form of the new contract equals the old, W ′(p) = W (p). Given the

product structure for M∗(M ′, w′, r′|p), the expert optimally chooses which posterior p̂ to

report by maximizing Ep[u(r
′(p̂), ω)]. By construction, this is accomplished by reporting

p̂ = p. Hence, ρ′ is incentive-compatible. Also, the fact that the principal now takes the

optimal decision given the posterior implies that her decision-stage payoff under the new

contract satisfies

Û(M ′, w′, r′|p) ≥ Û(M,w, r|p).

Incentive-compatibility of σ′ is immediate from the definition, given that the new

contract has the same reduced form as the original, and Û(M ′, w′, r′|p) = U(p) −W (p).

Notice also that the expert’s choice set (before maximizing the principal’s payoff) is the

same under both contracts, I∗(M ′, w′, r′|I) = I∗(M,w, r|I).

Now the new contract is acceptable, since we showed that both ρ′ and σ′ were incentive-

compatible. And for any IAT I,

VP (M
′, w′, r′|I) = max

(F,c)∈I∗(M ′,w′,r′|I)
EF [Û(M

′, w′, r′|p)

≥ max
(F,c)∈I∗(M,w,r|I)

EF [Û(M,w, r|p)]

= VP (M,w, r|I).
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Taking the inf over I gives VP (M
′, w′, r) ≥ VP (M,w, r) as claimed. �

As mentioned earlier, we would like to argue that the new contract given by Proposition

A.1 is robust to any reasonable kind of Bayes-like refinement requiring the principal’s

decision rule r′ to be a best reply to beliefs. Under the expert’s strategy (σ′, ρ′), any

message (m, p) can only be sent if the true posterior really is p. Hence, for messages that

can be sent along the equilibrium path, any reasonable specification of the principal’s

beliefs following (m, p) should put probability 1 on the expert’s posterior really being p,

in which case r′(p) = d(p) is indeed the best decision for the principal to take. And for

off-path messages (m, p), we can specify any beliefs, so in particular we can specify beliefs

that still put probability 1 on the posterior being p.

One final comment on the more general class of indirect contracts we have defined in

this appendix: Because, in Proposition A.1, the new contract is equivalent to the original

contract (they have the same reduced form), we can see the equivalence results such as the

last statement of Theorem 2.1 continue to hold even with the indirect contracts considered

here.

B Existence of the optimum

Proof of Lemma 2.5:

Let U = maxp U(p), and W = (U − U(p0))/(minω p0(ω)). We may restrict attention

to contracts whose reduced form satisfies W (δω) ≤ W for all ω. To see this, note that if

there were some message guaranteeing the expert payoff higher than (U − U(p0))/p0(ω)

in some state ω, then whatever experiement the expert performs, he can always force

the principal to pay more than U − U(p0) in expectation (by just always sending this

message), so the principal’s expected payoff must be less than U(p0), and the principal is

worse off than by not hiring the expert.

Since W is convex, this restriction implies W (p) ≤ W for all p. Now say that a

function W : ∆(Ω) → R
+ is a reduced-form contract if it is the reduced form of some

contract. We make two claims:

• Claim 1: The set of reduced-form contracts W : ∆(Ω) → [0,W ] is compact in the

sup-norm topology.

• Claim 2: VP is upper semi-continuous on the set of reduced-form contracts (with

respect to the sup-norm topology).
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Together, these claims imply that VP attains a maximum over the reduced-form contracts

whose values never exceed W , which is then a global maximum, as needed.

To prove Claim 1, letW1,W2, . . . be a sequence of reduced-form contracts taking values

in [0,W ]. Note that each Wk must be a Lipschitz function with constant W (relative to

the L1 norm on ∆(Ω)). By passing to a subsequence, we may assume that Wk converges

pointwise at each rational point p ∈ ∆(Ω). Let W∞(p) = limkWk(p) for each such p.

Define M as the set of all affine functions m : ∆(Ω) → [0,W ] such that m(p) ≤ W∞(p)

for each rational p. Notice that M is a compact subset of RΩ. Define w :M ×Ω → [0,W ]

by w(m,ω) = m(ω). Then (M,w) is a contract, with reduced formW (p) = maxm∈M m(p).

For each rational p, we have W (p) = W∞(p). The direction W (p) ≤ W∞(p) is imme-

diate from the definition of W . For the reverse inequality, fix p. For each k, since Wk is a

reduced-form contract, there is some affine mk : ∆(Ω) → [0,W ] such that mk(p) = Wk(p)

and mk(p
′) ≤ Wk(p

′) for all other rational p′. There is some subsequence along which the

mk converge to some m∞. Then, m∞(p) = W∞(p), and m∞(p′) ≤ W∞(p′) for each other

rational p′, so that m∞ ∈M . Therefore W (p) ≥ W∞(p), and equality follows.

Now we claim that Wk → W in sup norm. If not, there exists some ǫ > 0 and a

subsequence of k’s and points pk along which |Wk(pk) −W (pk)| > ǫ. Again by taking a

subsequence, we may assume the pk converge to some point p. Now, we can find a rational

point q such that the L1 distance between p and q is at most ǫ/4W . Then, for k high

enough, |Wk(q)−W (q)| ≤ ǫ/4 (because W (q) = W∞(q) by the previous paragraph) and

therefore

|Wk(pk)−W (pk)| ≤ |Wk(pk)−Wk(q)|+ |Wk(q)−W (q)|+ |W (q)−W (pk)| ≤
3ǫ

4
,

a contradiction.

This shows that the set of reduced-form contracts taking values in [0,W ] is sequentially

compact, proving Claim 1.

For Claim 2, suppose we have a convergent sequence of reduced-form contracts Wk →

W . Consider any IAT I, and let (Fk, ck) be the expert’s chosen experiment under contract

Wk. Then, again by passing to a subsequence, we may assume that (Fk, ck) converges to

some limit (F, c). It follows that (F, c) ∈ I, and since

EF [W (p)]− EFk
[Wk(p)] = (EF [W (p)]− EFk

[W (p)]) + (EFk
[W (p)]− EFk

[Wk(p)]) → 0

(the first parenthesized expression goes to 0 by weak convergence of Fk, and the second
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by sup-norm convergence ofWk), we can conclude that (F, c) is an optimal experiment for

the expert underWk and I: If it were outperformed by some (F ′, c′), then this experiment

would also outperform (Fk, ck) under Wk for high enough k, a contradiction.

This same double-convergence argument also implies that

EF [U(p)−W (p)]− EFk
[U(p)−Wk(p)] → 0

from which

VP (W |I) ≥ EF [U(p)−W (p)] = lim
k
EFk

[U(p)−Wk(p)] = lim
k
VP (Wk|I) ≥ lim sup

k

VP (Wk).

Since this holds for all I, we have

VP (W ) ≥ lim sup
k

VP (Wk)

which proves Claim 2. �

C On the optimality of restricting investment

Here we prove Proposition 3.1. We begin by considering Corollary 2.7, which gives the

formula (2.16) for the parameters of the optimal contract, and solving out for α: given

β and (F, c), the α that attains the maximum is α =
√
c/(EF [UR(p; β)] + Ep0 [β(ω)]).

Plugging in this value of α, (2.16) turns into

max
β:Ω→R

(F,c)∈I0

(
EF [UR(p; β)] + c− 2

√
c (EF [UR(p; β)] + Ep0 [β(ω)]).

)
(C.1)

Moreover, the optimal contract uses the corresponding value of β. Thus if the maximum

in (C.1) is not attained at β = β0, then an unrestricted investment contract cannot be

optimal; if it is uniquely attained at β = β0, then an unrestricted investment contract

must be optimal.

Proof of Proposition 3.1: First we show that UR is concave in β. For values β

and β′, let m ∈ M(β) and m′ ∈ M(β′) attain the respective maxima in the definitions

of UR(p; β), UR(p; β
′). Suppose β′′ = λβ + (1− λ)β′ with λ ∈ [0, 1]. It is immediate that
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m′′ = λm+ (1− λ)M ′ ∈ UR(p;λβ + (1− λ)β′), from which

UR(p; β
′′) ≥ Ep[m

′′(ω)]− Ep[β
′′(ω)] = λUR(p; β) + (1− λ)UR(p; β

′).

We also can see that UR is increasing in β, since if β ≤ β′ componentwise, and m

attains the maximum for β, then m′(ω) = m(ω) + β′(ω)− β(ω) is in M(β′) and gives the

same value for the maximand in defining UR(p; β
′); thus UR(p; β

′) ≥ UR(p; β).

Since UR is concave and increasing on its domain, we see that the one-sided derivative

ψ(p, ω) is indeed well-defined and nonnegative.

Next, suppose there is some ω with ψ(p, ω) = 0 for all p. For ǫ ≥ 0, define βǫ : Ω → R

by βǫ(ω) = β(ω) − ǫ, and βǫ(ω
′) = β(ω′) for other ω′. The concavity of UR implies that

(UR(p; β)− UR(p; βǫ))/ǫ decreases as ǫ → 0, so we can invoke the monotone convergence

theorem to conclude that

d

dǫ+
EF [UR(p; βǫ)] = EF

[
d

dǫ+
UR(p; βǫ)

]
= 0.

Consequently, no matter what I0 is given, if we consider the maximand in (C.1), plugging

in β = βǫ and choosing the (F, c) that gives the maximal value for β = β0, then the

derivative of the maximand with respect to ǫ is equal to

p0(ω)

√
c

EF [UR(p; β0)] + Ep0 [β0(ω)]
> 0.

Thus, the maximum in (C.1) is not attained at β0, and an unrestricted investment contract

cannot be optimal.

Conversely, suppose that for each ω there is some p(ω) such that ψ(p(ω), ω) ≥ η > 0.

Let F be any distribution with full support, and mass at least ǫ on each p(ω). We will

show that an unrestricted investment contract is optimal under I0 = {(δ0, 0), (F, c)}, for

sufficiently small c > 0. Note that full support and non-triviality are satisfied.

We claim that for any β that is ≤ β0 componentwise,

EF [UR(p, β)] ≤ EF [UR(p, β0)]−
ǫη

|Ω|

∑

ω

(β0(ω)− β(ω)). (C.2)

Indeed, choose the state ω∗ for which β0(ω) − β(ω) is largest. Put β1(ω
∗) = β(ω∗) and
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β1(ω) = β(ω) for other states ω. Then increasingness and concavity imply

UR(p; β) ≤ UR(p; β1) ≤ UR(p; β0)− (β(ω∗)− β0(ω
∗))ψ(p, ω∗).

Applying expectations under F , noting that p = p(ω∗) arises with probability at least ǫ,

and β(ω∗)− β0(ω
∗) ≥

∑
ω(β(ω)− β0(ω))/|Ω| by choice of ω∗, leads to (C.2).

Thus, EF [UR(p, β)] is bounded above by an affine function of β that is uniquely maxi-

mized at β0, and this upper bound (C.2) holds with equality at β = β0. Since the quantity√
EF [UR(p; β)] + Ep0 [β(ω)] is locally Lipschitz in β near β0, adding a small multiple of

it will not change this fact. Hence, for c sufficiently small, the maximand in (C.1) is still

uniquely maximized over β by taking β = β0. (The optimum with respect to choice of

experiment must be given by (F, c), not (δp0 , 0), by non-triviality.) It follows that only an

unrestricted investment contract can be optimal. �
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