Redistributive Taxation in a Partial Insurance Economy

Jonathan Heathcote

Federal Reserve Bank of Minneapolis

Kjetil Storesletten

Federal Reserve Bank of Minneapolis, and Oslo University

Gianluca Violante

New York University

University of Chicago – Money and Banking Workshop – October 10th, 2012

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Redistributive Taxation

• How progressive should earnings taxation be?

Redistributive Taxation

- How progressive should earnings taxation be?
- Arguments in favor of progressivity:
 - 1. Social insurance of privately-uninsurable shocks
 - 2. Redistribution from high to low innate ability

Redistributive Taxation

- How progressive should earnings taxation be?
- Arguments in favor of progressivity:
 - 1. Social insurance of privately-uninsurable shocks
 - 2. Redistribution from high to low innate ability
- Arguments against progressivity:
 - 1. Distortion to distribution of labor supply
 - 2. Distortion to human capital investment
 - 3. Redistribution from low to high taste for leisure
 - 4. Inefficient financing of G expenditures

Ramsey Approach

Government/Planner takes policy instruments and market structure as given, and chooses the CE that yields the largest social welfare

- CE of an heterogeneous-agent, incomplete-market economy
- Nonlinear tax/transfer system
- Utilitarian social welfare function
- Valued public expenditures also chosen by the government

Ramsey Approach

Government/Planner takes policy instruments and market structure as given, and chooses the CE that yields the largest social welfare

- CE of an heterogeneous-agent, incomplete-market economy
- Nonlinear tax/transfer system
- Utilitarian social welfare function
- Valued public expenditures also chosen by the government

Tractable equilibrium framework clarifies economic forces shaping the optimal degree of progressivity

• Huggett (1994) economy: ∞-lived agents, idiosyncratic productivity risk, and a risk-free bond in zero net-supply, plus:

- Huggett (1994) economy: ∞-lived agents, idiosyncratic productivity risk, and a risk-free bond in zero net-supply, plus:
 - 1. differential "innate" (learning) ability
 - 2. endogenous skill investment + multiple-skill technology

- Huggett (1994) economy: ∞-lived agents, idiosyncratic productivity risk, and a risk-free bond in zero net-supply, plus:
 - 1. differential "innate" (learning) ability
 - 2. endogenous skill investment + multiple-skill technology
 - 3. endogenous labor supply
 - 4. heterogeneity in preferences for leisure
 - 5. valued government expenditures

- Huggett (1994) economy: ∞-lived agents, idiosyncratic productivity risk, and a risk-free bond in zero net-supply, plus:
 - 1. differential "innate" (learning) ability
 - 2. endogenous skill investment + multiple-skill technology
 - 3. endogenous labor supply
 - 4. heterogeneity in preferences for leisure
 - 5. valued government expenditures
 - 6. additional partial private insurance (other assets, family, etc)

- Huggett (1994) economy: ∞-lived agents, idiosyncratic productivity risk, and a risk-free bond in zero net-supply, plus:
 - 1. differential "innate" (learning) ability
 - 2. endogenous skill investment + multiple-skill technology
 - 3. endogenous labor supply
 - 4. heterogeneity in preferences for leisure
 - 5. valued government expenditures
 - 6. additional partial private insurance (other assets, family, etc)
- Steady-state analysis

Demographics and preferences

- Perpetual youth demographics with constant survival probability δ
- Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment effort (s):

$$U_i = v(s_i) + \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u_i(c_{it}, h_{it}, G)$$

$$v(s_i) = -\frac{1}{\kappa_i} \frac{s_i^2}{2\mu}$$

 $u_i(c_{it}, h_{it}, G, s_{it}) = \log c_{it} - \exp(\varphi_i) \frac{h_{it}^{1+\sigma}}{1+\sigma} + \chi \log G$

$$\kappa_i \sim Exp(\eta)$$

 $\varphi_i \sim N\left(\frac{v_{\varphi}}{2}, v_{\varphi}\right)$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Technology

• Output is CES aggregator over continuum of skill types:

$$Y = \left[\int_0^\infty N(s)^{\frac{\theta-1}{\theta}} ds\right]^{\frac{\theta}{\theta-1}}, \quad \theta \in (1,\infty)$$

Aggregate effective hours by skill type:

$$N(s) = \int_0^1 I_{\{s_i=s\}} \, z_i h_i \, di$$

• Aggregate resource constraint:

$$Y = \int_0^1 c_i \, di + G$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Individual efficiency units of labor

$$\log z_{it} = \alpha_{it} + \varepsilon_{it}$$

•
$$\alpha_{it} = \alpha_{i,t-1} + \omega_{it}$$
 with $\omega_{it} \sim N\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)$
 $\alpha_{i0} = 0 \quad \forall i$

- ε_{it} i.i.d. over time with $\varepsilon_{it} \sim N\left(-\frac{v_{\varepsilon}}{2}, v_{\varepsilon}\right)$
- $\varphi \perp \kappa \perp \omega \perp \varepsilon$ cross-sectionally and longitudinally

Individual efficiency units of labor

$$\log z_{it} = \alpha_{it} + \varepsilon_{it}$$

•
$$\alpha_{it} = \alpha_{i,t-1} + \omega_{it}$$
 with $\omega_{it} \sim N\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)$
 $\alpha_{i0} = 0 \quad \forall i$

•
$$\varepsilon_{it}$$
 i.i.d. over time with $\varepsilon_{it} \sim N\left(-\frac{v_{\varepsilon}}{2}, v_{\varepsilon}\right)$

- $\varphi \perp \kappa \perp \omega \perp \varepsilon$ cross-sectionally and longitudinally
- Pre-government earnings:

 $y_{it} = \underbrace{p(s_i)}_{\text{skill price}} \times \underbrace{\exp(\alpha_{it} + \varepsilon_{it})}_{\text{efficiency}} \times \underbrace{h_{it}}_{\text{hours}}$

determined by skill, fortune, and diligence

Markets

- Competitive good and labor markets
- Competitive asset markets (all assets in zero net supply)
 - Non state-contingent bond

Markets

- Competitive good and labor markets
- Competitive asset markets (all assets in zero net supply)
 - Non state-contingent bond
 - Full set of insurance claims against ε shocks
 - If $v_{\varepsilon} = 0$, it is a bond economy
 - If $v_{\omega} = 0$, it is a full insurance economy

If $v_{\omega} = v_{\varepsilon} = v_{\varphi} = 0$ & $\theta = \infty$, it is a RA economy

Markets

- Competitive good and labor markets
- Competitive asset markets (all assets in zero net supply)
 - Non state-contingent bond
 - Full set of insurance claims against ε shocks
 - If $v_{\varepsilon} = 0$, it is a bond economy
 - If $v_{\omega} = 0$, it is a full insurance economy

If $v_{\omega} = v_{\varepsilon} = v_{\varphi} = 0$ & $\theta = \infty$, it is a RA economy

Perfect annuity against survival risk

Budget constraints

- 1. Beginning of period: innovation ω to α shock is realized
- 2. Middle of period: buy insurance against ε :

$$b = \int_{\boldsymbol{E}} Q(\varepsilon) B(\varepsilon) d\varepsilon,$$

where $Q(\cdot)$ is the price of insurance and $B(\cdot)$ is the quantity

3. End of period: ε realized, consumption and hours chosen:

$$c + \delta q b' = \lambda (wh)^{1-\tau} + B(\varepsilon)$$

Government

- Runs a two-parameter tax/transfer function to redistribute and finance publicly-provided goods *G*
- Disposable (post-government) earnings:

 $\tilde{y}_i = \lambda y_i^{1-\tau}$

Government budget constraint (no government debt):

$$G = \int_0^1 \left[y_i - \lambda y_i^{1-\tau} \right] di$$

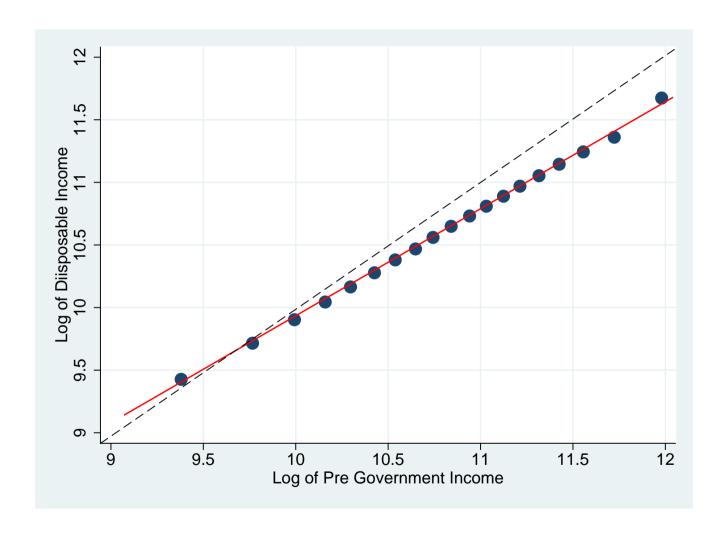
Government chooses (G, τ) , and λ balances the budget residually

$$T(y_i) = y_i - \lambda y_i^{1-\tau}$$

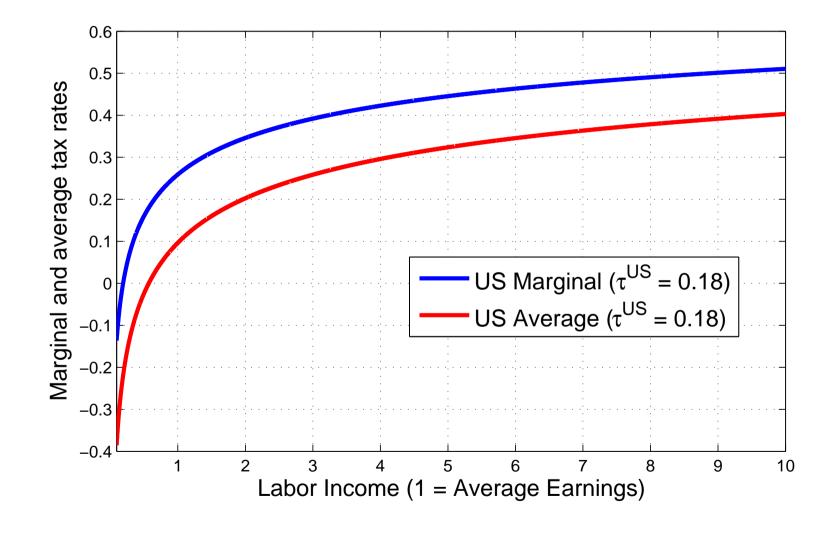
- The parameter τ measures the rate of progressivity:
 - $\tau = 1$: full redistribution $\rightarrow \tilde{y}_i = \lambda$
 - $0 < \tau < 1$: progressivity $\rightarrow \frac{T'(y)}{T(y)/y} > 1$
 - $\tau = 0$: no redistribution \rightarrow flat tax 1λ
 - $\tau < 0$: regressivity $\rightarrow \frac{T'(y)}{T(y)/y} < 1$

$$T(y_i) = y_i - \lambda y_i^{1-\tau}$$

- The parameter τ measures the rate of progressivity:
 - $\tau = 1$: full redistribution $\rightarrow \tilde{y}_i = \lambda$
 - $0 < \tau < 1$: progressivity $\rightarrow \frac{T'(y)}{T(y)/y} > 1$
 - $\tau = 0$: no redistribution \rightarrow flat tax 1λ
 - $\tau < 0$: regressivity $\rightarrow \frac{T'(y)}{T(y)/y} < 1$
- Marginal tax rate monotone in earnings
- Negative average tax rates below $y^0 = \lambda^{\frac{1}{\tau}}$



• CPS 2005, Nobs=52,539: $R^2 = 0.92$ and $\tau = 0.18$



Recursive stationary equilibrium

- Given (G, τ), a stationary RCE is a value λ*, asset prices {Q(·), q}, skill prices p(s), decision rules s(φ, κ, 0), c(α, ε, φ, s, b), h(α, ε, φ, s, b), and aggregate quantities N(s) such that:
 - households optimize
 - markets clear
 - the government budget constraint is balanced

Recursive stationary equilibrium

- Given (G, τ), a stationary RCE is a value λ*, asset prices {Q(·), q}, skill prices p(s), decision rules s(φ, κ, 0), c(α, ε, φ, s, b), h(α, ε, φ, s, b), and aggregate quantities N(s) such that:
 - households optimize
 - markets clear
 - the government budget constraint is balanced
- The equilibrium features no bond-trading
 - $b = 0 \rightarrow$ allocations depend only on exogenous states
 - α shocks remain uninsured, ε shocks fully insured

No bond-trade equilibrium

- Micro-foundations for Constantinides and Duffie (1996)
 - CRRA, unit root shocks to log disposable income
 - In equilibrium, no bond-trade $\Rightarrow c_t = \tilde{y}_t$

No bond-trade equilibrium

- Micro-foundations for Constantinides and Duffie (1996)
 - CRRA, unit root shocks to log disposable income
 - In equilibrium, no bond-trade $\Rightarrow c_t = \tilde{y}_t$
- Unit root disposable income micro-founded in our model:
 - 1. Skill investment+shocks: \rightarrow wages
 - 2. Labor supply choice: wages \rightarrow pre-tax earnings
 - 3. Non-linear taxation: pre-tax earnings \rightarrow after-tax earnings
 - 4. Private risk sharing: after-tax earnings \rightarrow disp. income
 - 5. No bond trade: disposable income = consumption

Equilibrium risk-free rate r^*

$$\rho - r^* = (1 - \tau) \left((1 - \tau) + 1 \right) \frac{v_\omega}{2}$$

- Intertemporal dissaving motive = precautionary saving motive
- Key: precautionary saving motive common across all agents
- $\frac{\partial r^*}{\partial \tau} > 0$: more progressivity \Rightarrow less precautionary saving \Rightarrow higher risk-free rate

• FOC
$$\rightarrow \frac{s}{\kappa\mu} = (1 - \beta\delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s}$$

• FOC
$$\rightarrow \frac{s}{\kappa\mu} = (1 - \beta\delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s}$$

• Skill price has Mincerian shape: $\log p(s) = \pi_0 + \pi_1 s$

$$\pi_1 = \sqrt{\frac{\eta}{\theta \mu \left(1 - \tau\right)}}$$
 (return to skill)

• FOC
$$\rightarrow \frac{s}{\kappa\mu} = (1 - \beta\delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s}$$

• Skill price has Mincerian shape: $\log p(s) = \pi_0 + \pi_1 s$

$$\pi_1 = \sqrt{\frac{\eta}{\theta \mu \left(1 - \tau\right)}}$$
 (return to skill)

$$var(\log p(s)) = \frac{1}{\theta^2}$$

Offsetting effects of τ on s and p(s) leave pre-tax inequality unchanged

• FOC
$$\rightarrow \frac{s}{\kappa\mu} = (1 - \beta\delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s}$$

• Skill price has Mincerian shape: $\log p(s) = \pi_0 + \pi_1 s$

$$\pi_1 = \sqrt{\frac{\eta}{\theta \mu \left(1 - \tau\right)}}$$
 (return to skill)

$$var(\log p(s)) = \frac{1}{\theta^2}$$

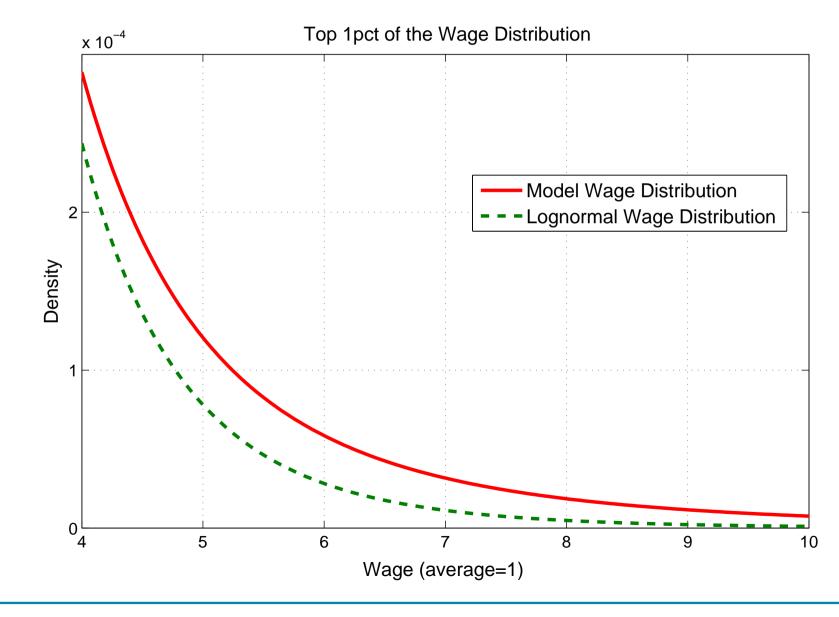
Offsetting effects of τ on s and p(s) leave pre-tax inequality unchanged

• Distribution of skill prices (in level) is Pareto with parameter θ :

$$\frac{E[p(s)|s>s^*]}{p(s^*)} = \frac{\theta}{\theta-1}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Upper tail of wage distribution



Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Equilibrium consumption allocation

$$\log c^*(\alpha, \varphi, s; G, \tau) = \underbrace{\log \lambda^*(G, \tau) + \frac{1}{1 + \hat{\sigma}} \log (1 - \tau)}_{\text{C of representative agent}} + \underbrace{\mathcal{M}(v_{\varepsilon})}_{\text{level effect from ins. variation}} + (1 - \tau) \underbrace{\log p(s; \tau)}_{\text{skill price}}$$

- Response to variation in $(p(s), \varphi, \alpha)$ mediated by progressivity
- Invariant to insurable shock ε

Equilibrium hours allocation

$$\log h^*(\varepsilon,\varphi;G,\tau) = \underbrace{\frac{1}{(1-\tau)(\widehat{\sigma}+1)}\log(1-\tau)}_{\text{H of representative agent}} \\ - \underbrace{\frac{1}{\widehat{\sigma}(1-\tau)}\mathcal{M}(v_{\varepsilon})}_{\text{level effect from ins. variation}} \\ + \underbrace{\frac{1}{\widehat{\sigma}}\varepsilon}_{\text{ins. shock}}$$

- Response to ε mediated by tax-modified Frisch elasticity $\frac{1}{\hat{\sigma}} = \frac{1-\tau}{\sigma+\tau}$
- Invariant to skill price p(s) and uninsurable shock α

Utilitarian Social Welfare Function

• Steady states with constant (G, τ)

$$\mathcal{W}(G,\tau) \propto \sum_{k=-\infty}^{\infty} \mu_k \int_0^1 U_{i,k}(\cdot;G,\tau) di$$

- Government sets weights: $\mu_k = \beta^k \times \text{ cohort size}$
 - SWF becomes average period utility in the cross-section
 - Skill acquisition cost for those currently alive imputed to SWF proportionally to their remaining lifetime

Utilitarian Social Welfare Function

• Steady states with constant (G, τ)

$$\mathcal{W}(G,\tau) \propto \sum_{k=-\infty}^{\infty} \mu_k \int_0^1 U_{i,k}(\cdot;G,\tau) di$$

- Government sets weights: $\mu_k = \beta^k \times \text{ cohort size}$
 - SWF becomes average period utility in the cross-section
 - Skill acquisition cost for those currently alive imputed to SWF proportionally to their remaining lifetime
- WLOG, government chooses g = G/Y

Exact expression for SWF

$$\begin{aligned} \mathcal{W}(g,\tau) &= \log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- (1-\tau)^2 \frac{v_{\varphi}}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_{\omega}}{2} - \log \left(\frac{1-\delta \exp\left(\frac{-\tau(1-\tau)}{2} v_{\omega} \right)}{1-\delta} \right) \right] \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} \end{aligned}$$

Representative Agent component

$$\begin{split} \mathcal{W}(g,\tau) &= \underbrace{\log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})}}_{\text{Representative Agent Welfare} = \mathcal{W}^{RA}(g,\tau)} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- (1-\tau)^2 \frac{v_{\varphi}}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_{\omega}}{2} - \log \left(\frac{1-\delta \exp \left(\frac{-\tau(1-\tau)}{2} v_{\omega} \right)}{1-\delta} \right) \right] \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} \end{split}$$

Representative Agent

$$\max_{C,H} U = \log C - \frac{H^{1+\sigma}}{1+\sigma} + \chi \log G$$

s.t.
$$C + G = Y = H$$

$$G = Y - \lambda Y^{1-\tau}$$

$$\mathcal{W}(g,\tau) = \log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Representative Agent

$$\max_{C,H} U = \log C - \frac{H^{1+\sigma}}{1+\sigma} + \chi \log G$$

s.t.
$$C + G = Y = H$$

$$G = Y - \lambda Y^{1-\tau}$$

$$\mathcal{W}(g,\tau) = \log(1+g) + \chi \log g + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})}$$

• Welfare maximizing (g, τ) pair:

$$g^* = \frac{\chi}{1+\chi}$$
$$\tau^* = -\chi$$

• Allocations are first best

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Exact expression for SWF

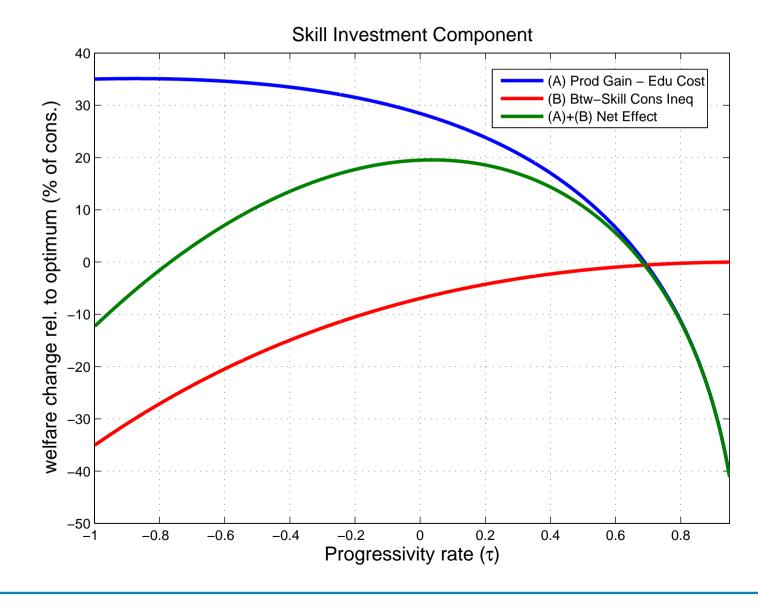
$$\begin{aligned} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_\omega}{2} - \log \left(\frac{1-\delta \exp \left(\frac{-\tau(1-\tau)}{2} v_\omega \right)}{1-\delta} \right) \right] \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_\varepsilon \end{aligned}$$

Skill investment component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \underbrace{\left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu (1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right]}_{\text{productivity gain} = \log E \left[(p(s)) \right] = \log (Y/N)} \\ &\underbrace{-\frac{1}{2\theta} (1-\tau)}_{\text{avg. education cost}} - \underbrace{\left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right]}_{\text{consumption dispersion across skills}} \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_\omega}{2} - \log \left(\frac{1-\delta \exp \left(\frac{-\tau(1-\tau)}{2} v_\omega \right)}{1-\delta} \right) \right] \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_\varepsilon \end{split}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Skill investment component



Uninsurable component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- \underbrace{\left(1-\tau \right)^2 \frac{v_{\varphi}}{2}}_{\text{cons. disp. due to prefs}} \\ &- \underbrace{\left[(1-\tau) \frac{\delta}{1-\delta} \frac{v_{\omega}}{2} - \log \left(\frac{1-\delta \exp \left(\frac{-\tau(1-\tau)}{2} v_{\omega} \right)}{1-\delta} \right) \right]}_{\text{consumption dispersion due to uninsurable shocks}} \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} \end{split}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Uninsurable component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- \underbrace{(1-\tau)^2 \frac{v\varphi}{2}}_{\text{cons. disp. due to prefs}} \\ &- \underbrace{(1-\tau)^2 \frac{\delta}{1-\delta} \frac{v\omega}{2}}_{\approx \quad (1-\tau)^2 v_{\alpha}} \\ &- (1+\chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_{\varepsilon}}{2} + (1+\chi) \frac{1}{\hat{\sigma}} v_{\varepsilon} \end{split}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

Insurable component

$$\begin{split} \mathcal{W}(\tau) &= \chi \log \chi - (1+\chi) \log(1+\chi) + (1+\chi) \frac{\log(1-\tau)}{(1+\hat{\sigma})(1-\tau)} - \frac{1}{(1+\hat{\sigma})} \\ &+ (1+\chi) \left[\frac{-1}{\theta-1} \log \left(\sqrt{\frac{\eta\theta}{\mu(1-\tau)}} \right) + \frac{\theta}{\theta-1} \log \left(\frac{\theta}{\theta-1} \right) \right] \\ &- \frac{1}{2\theta} (1-\tau) - \left[-\log \left(1 - \left(\frac{1-\tau}{\theta} \right) \right) - \left(\frac{1-\tau}{\theta} \right) \right] \\ &- (1-\tau)^2 \frac{v\varphi}{2} \\ &- \left[(1-\tau) \frac{\delta}{1-\delta} \frac{v\omega}{2} - \log \left(\frac{1-\delta \exp \left(\frac{-\tau(1-\tau)}{2} v\omega \right)}{1-\delta} \right) \right] \\ &- (1+\chi)\sigma \quad \frac{1}{\hat{\sigma}^2} \frac{v\varepsilon}{2} \\ &+ (1+\chi) \quad \frac{1}{\hat{\sigma}} v\varepsilon \\ &\text{prod. gain from ins. shock=} \log(N/H) \end{split}$$

• Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}, \}$

- Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}, \}$
- To match G/Y = 0.20: $\rightarrow \chi = 0.25$

- Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}, \}$
- To match G/Y = 0.20: $\rightarrow \chi = 0.25$
- Frisch elasticity (micro-evidence): $\rightarrow \sigma = 2$

- Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}, \}$
- To match G/Y = 0.20: $\rightarrow \chi = 0.25$
- Frisch elasticity (micro-evidence): $\rightarrow \sigma = 2$

$$cov(\log h, \log w) = \frac{1}{\hat{\sigma}} v_{\varepsilon}$$
$$var(\log h) = v_{\varphi} + \frac{1}{\hat{\sigma}^2} v_{\varepsilon}$$
$$var^0(\log c) = v_{\varphi} + \frac{1}{\theta^2}$$
$$var(\log w) = \frac{1}{\theta^2} + v_{\alpha} + v_{\varepsilon}$$
$$\Delta var(\log w) = v_{\omega}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"

- Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}, \}$
- To match G/Y = 0.20: $\rightarrow \chi = 0.25$
- Frisch elasticity (micro-evidence): $\rightarrow \sigma = 2$

$$cov(\log h, \log w) = \frac{1}{\hat{\sigma}} v_{\varepsilon} \qquad \rightarrow v_{\varepsilon} = 0.18$$

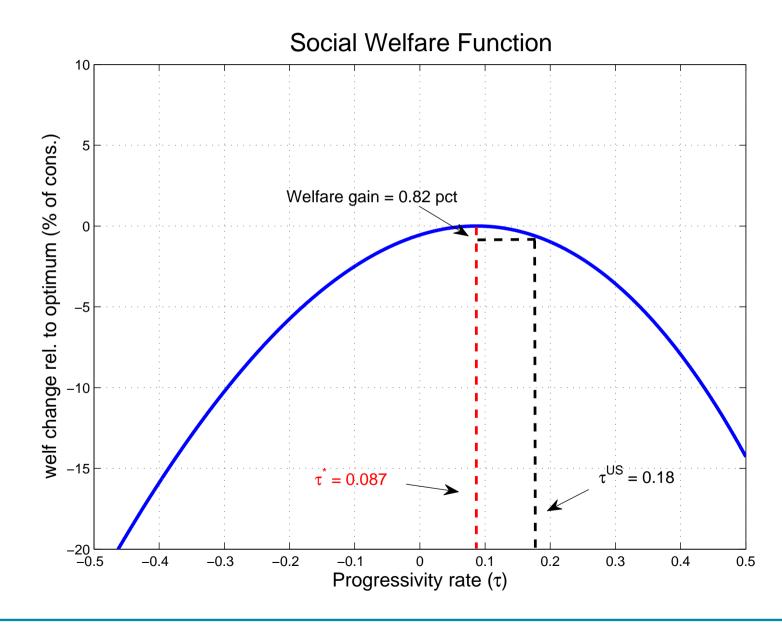
$$var(\log h) = v_{\varphi} + \frac{1}{\hat{\sigma}^2} v_{\varepsilon} \qquad \rightarrow v_{\varphi} = 0.06$$

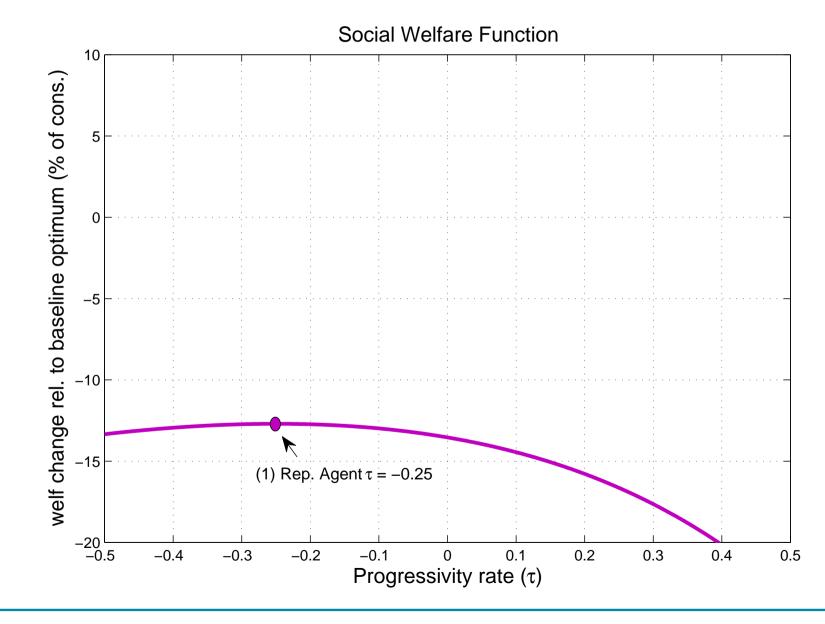
$$var^0(\log c) = v_{\varphi} + \frac{1}{\theta^2} \qquad \rightarrow \theta = 3$$

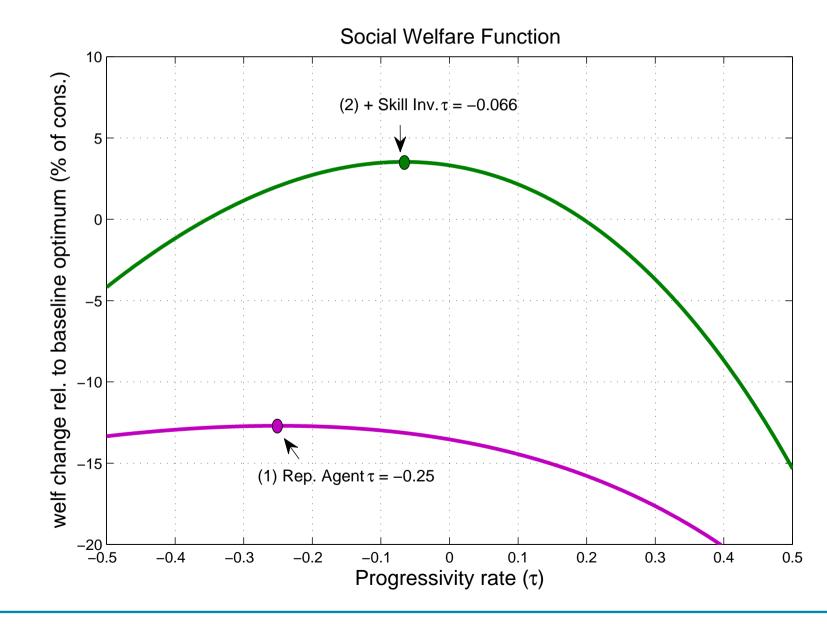
$$var(\log w) = \frac{1}{\theta^2} + v_{\alpha} + v_{\varepsilon} \qquad \rightarrow v_{\alpha} = 0.13$$

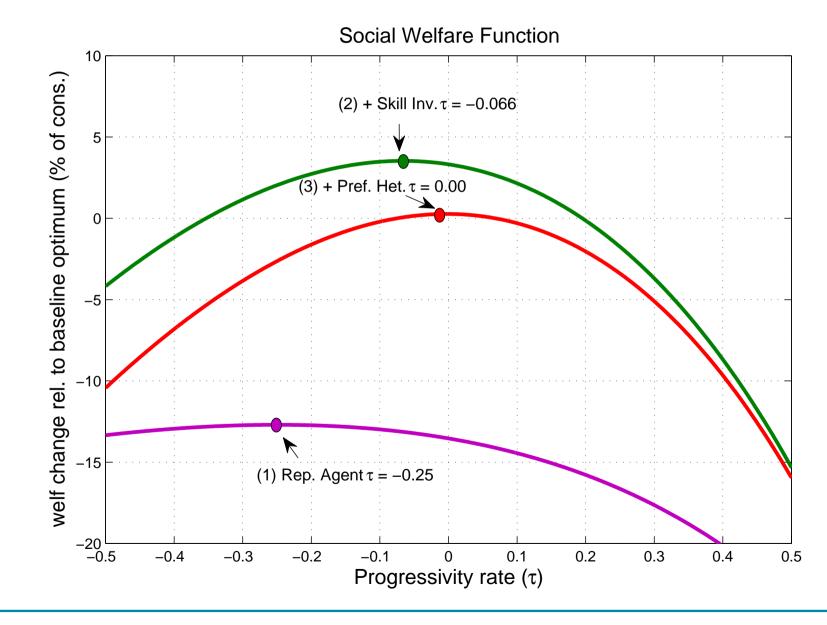
$$\Delta var(\log w) = v_{\omega} \qquad \rightarrow v_{\omega} = 0.005, \delta = 0.963$$

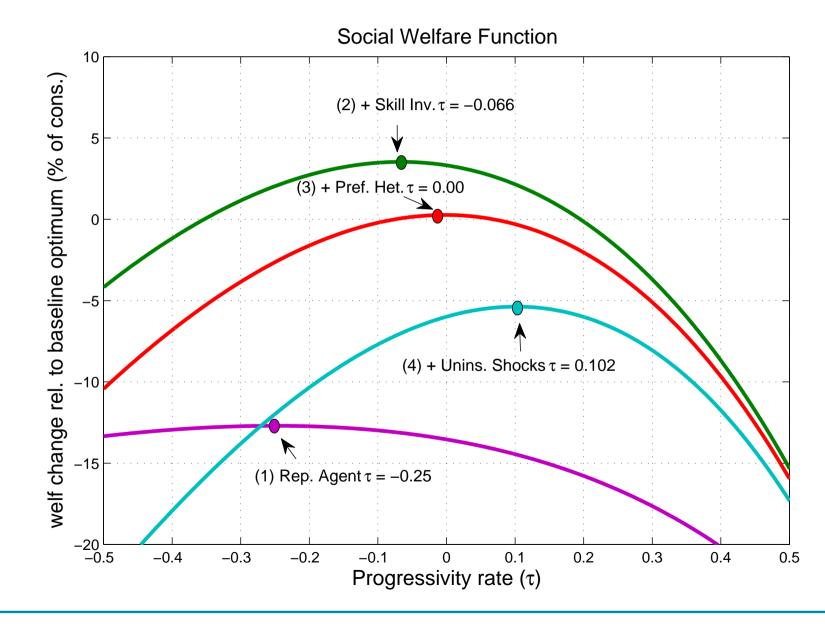
Optimal progressivity

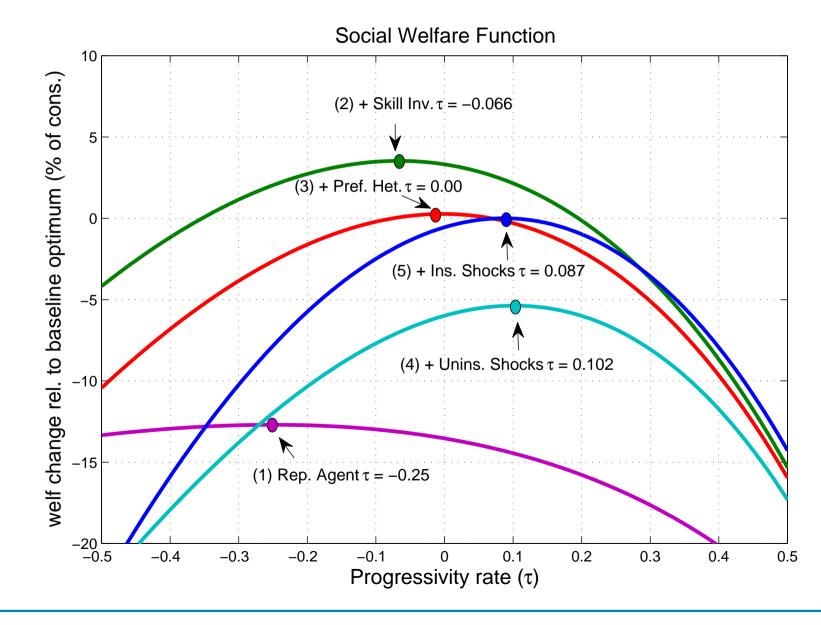












Alternative SWF

Utilitarian SWF embeds desire to insure and to redistribute wrt (κ, φ)

Isolate desire to insure against ω shocks

Utilitarian SWF embeds desire to insure and to redistribute wrt (κ, φ)

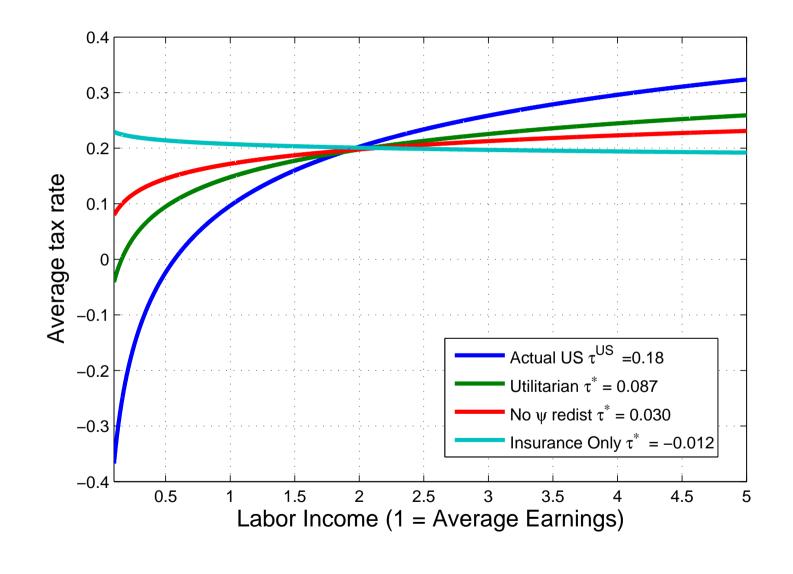
Isolate desire to insure against ω shocks

- Economy with heterogeneity in (κ, φ) , and $\chi = v_{\omega} = \tau = 0$
- Compute CE allocations
- Compute Negishi weights s.t. planner's allocation = CE
- Use these weights in the SWF

Alternative SWF

	Utilitarian	κ -neutral	arphi-neutral	Insurance-only
Redist. wrt κ	Y	N	Y	\overline{N}
Redist. wrt φ	Y	Y	N	N
Insurance wrt ω	Y	Y	Y	Y
$ au^*$	0.087	0.046	0.030	-0.012
Welf. gain (pct of c)	0.82	1.33	1.66	2.67

Optimal progressivity: alternative SWF



Alternative assumptions on G

1. G endogenous and valued: $\chi = 0.25$, $G^* = \chi/(1 + \chi) = 0.2$

Alternative assumptions on G

- 1. G endogenous and valued: $\chi = 0.25$, $G^* = \chi/(1 + \chi) = 0.2$
- 2. G endogenous but non valued: $\chi = 0$, $G^* = 0$
- 3. G exogenous and proportional to *Y*: $G/Y = \bar{g} = 0.2$
- 4. G exogenous and fixed in level: $G = \overline{G} = 0.2 \times Y^{US}$

Alternative assumptions on G

- 1. G endogenous and valued: $\chi = 0.25$, $G^* = \chi/(1 + \chi) = 0.2$
- 2. G endogenous but non valued: $\chi = 0$, $G^* = 0$
- 3. G exogenous and proportional to *Y*: $G/Y = \bar{g} = 0.2$
- 4. G exogenous and fixed in level: $G = \overline{G} = 0.2 \times Y^{US}$

			Utilitarian SWF	Insurance-only SWF
		$\frac{G}{Y(\tau^*)}$	$ au^*$	$ au^*$
G endogenous	$\chi = 0.25$	0.200	0.087	-0.012
G endogenous	$\chi = 0$	0.000	0.209	0.103
g exogenous	$\bar{g} = 0.2$	0.200	0.209	0.103
G exogenous	$\bar{G} = 0.2 \times Y(\tau^{US})$	0.188	0.095	0.002

Progressive consumption taxation

$$c = \lambda \tilde{c}^{1-\tau}$$

where c are expenditures and \tilde{c} are units of final good

- Implement as a tax on total (labor plus asset) income less saving
- Consumption depends on α but not on ε
- Can redistribute wrt. uninsurable shocks without distorting the efficient response of hours to insurable shocks
- Higher progressivity and higher welfare