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1 Introduction and Overview

We develop an analytically tractable model of the optimal price setting decisions of a firm that

faces a fixed cost of price adjustment common to n ≥ 1 goods. This problem was proposed

by Lach and Tsiddon (1996, 2007) as a way to generate the small price changes as well as the

synchronized price adjustments within the firm that appear in the micro data (e.g. Cavallo

(2010)). We solve the firm’s decision problem, derive the steady state predictions for a cross-

section of firms and study the response of the aggregate economy to a monetary shock. The

challenges involved with modeling the propagation of monetary shocks in canonical menu

cost problems have led many authors to resort to numerical methods. Our contribution is to

present an approximate analytical solution to the general equilibrium of an economy where

firms face a multidimensional and non-convex control problem.

There are two sets of results. The first one concerns the model’s cross section predictions

in a steady state. The model substantially improves the ability of state-of-the-art menu cost

models to account for observed price setting behavior. As documented by several empirical

studies and summarized by e.g. Klenow and Malin (2010) the data display a large mass

of small price changes: the size distribution of price changes appears bell-shaped. Existing

menu cost cannot account for this fact: we show that when n = 1 or n = 2, as in the models

of Golosov and Lucas (2007) and Midrigan (2011) respectively, the size distribution of price

changes is bimodal and “U” shaped, featuring a minimal amount of small price changes.

Our model produces a bell-shaped distribution provided n ≥ 6, thus accounting for a robust

feature of the data while retaining tractability (any n can be studied). Simple expressions are

derived to map the model fundamental parameters (the size of the menu cost, the variance

of the shocks, the demand elasticity, the number of products sold) into observable statistics

such as the frequency of price adjustment Na, and the standard deviation of price changes

Std(∆pi).

The second set of results concerns the analytical characterization of the response of the

aggregate price level, and of output, to a monetary shock. This characterization extends

the pioneering contributions of Caballero and Engel (1993, 2007) by going beyond their

analysis of the impact effect, allowing for any number of goods (n ≥ 1), and justifying

their simplifying assumption of using the steady-state decision rules to analyze the transition

dynamics. The last result gives a proof, and an intuitive explanation, for when the general

equilibrium feedback on decision rules can be “neglected” in these models.1 The analytical

results highlight two key determinants of the scale and the shape of the output effect of a

1 This simplifying assumption was used by Caballero and Engel (2007)). Golosov and Lucas (2007) noticed
in their quantitative analysis that decision rules were very close to the ones of the steady state. We replicate
their findings and provide an explanation.
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monetary shock. For a given n the scale (or size) of the real effect of a monetary shock is

increasing in the ratio between the standard deviation and the frequency of price changes:

Std(∆pi)/Na. Compared to the previous literature, which focussed almost exclusively on

the frequency of price changes as a proxy of aggregate stickiness, our analysis suggests that

the dispersion of price changes is an equally important determinant of the real effect of a

monetary shock. Fixing the ratio Std(∆pi)/Na the shape of the impulse response depends on

n. We show that the flexibility of the aggregate price level is highest in the classic menu cost

model with n = 1, due the strong “selection effect” of price changes discussed by Golosov

and Lucas (2007). We show that the selection effect weakens as n increases, and vanishes

completely as n→ ∞. In this case the price level response to shocks is linear, as in a Taylor’s

(1980) model, and the real effects of monetary policy are maximal, about two times those of a

model where n = 1. This model thus provides an upper bound to the real effect of monetary

shocks which is still smaller (about half) than predicted by a Calvo pricing mechanism.

Overview of the analysis and main findings

In Section 2 we set-up the problem of a multi-product firm that can revise prices only after

paying a fixed cost. The key assumption is that once the fixed menu cost ψ is paid the

firm can adjust the price of all its products. We assume that the static profit maximizing

prices for each of the n products, i.e. the prices that would be charged absent menu cost,

follow n independent random walks without drift and with volatility σ. We refer to the

difference between the frictionless and the actual prices as to the (vector of) price gaps. The

period return function is shown to be proportional to the sum of the squared price gaps.

The proportionality constant B measures the second order losses associated with charging a

price different from the optimum, i.e. it is a measure of the curvature of the profit function.

The firm minimizes the expected discounted cost, which includes the stream of lost profits

from charging prices different from the frictionless as well as the fixed cost at the time of

adjustments.

The solution of the firm’s problem in Section 3 involves finding the set over which prices

are adjusted, and its complement the “inaction” set. To our knowledge this is the first

fixed cost adjustment problem in n-dimensions whose solution is analytically characterized.

Somewhat surprisingly the solution to this complex problem turns out to have a simple

form: the optimal decision is to control the price gaps as to remain in the interior of the

n-dimensional ball centered at the origin. The economics of this is clear: the firm will adjust

either if many of its price gaps have a medium size, or if a few gaps are very large. The

size of this ball, whose squared radius is denoted by ȳ, is chosen optimally. We solve for the

value function and completely characterize the size of the inaction set ȳ as a function of the
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parameters of the problem. We show that the approximate solution ȳ ≈ [2(n+ 2)σ2B/ψ]
1/2

gives an accurate approximation of the exact solution for a small cost ψ.2

In Section 4 we explore several steady-state implications of the model. First we show that

the expected number of price adjustments per unit of time, denoted by Na, is given by nσ2/ȳ,

which together with our result for ȳ gives a complete characterization of the frequency of

price adjustments. Second we solve in closed form for the hazard rate of the price changes as

a function of the time elapsed since the last change. The scale is determined by the expected

number of adjustment Na. Fixing the scale the shape of this function depends exclusively on

the number of products n. We show that the hazard rate gets steeper as n increases. Third,

while price changes occur simultaneously for the n products, we characterize the marginal

distribution of price changes, i.e. the statistic that is usually computed in actual data sets.

A closed form expression for the density of the marginal distribution of price changes as a

function of ȳ and n is derived and used to compute several statistics, such as the standard

deviation of price changes Std(∆pi), and other moments which are only functions of n, such

as the coefficient of variation and the excess kurtosis of the absolute value of price changes.

As the number of products increases the size of the adjustments decreases monotonically,

i.e. with more products the typical price adjustment of each product is smaller. These

cross-section predictions could be used to identify the parameters of the model and test its

implications. We show that, once the scale of price changes is controlled for, the shape of

the size-distribution is exclusively a function of the number of products n. For n = 2 the

distribution is bimodal, with modes at the absolute value of
√
ȳ, for n = 3 it is uniform, for

n = 4 it peaks at zero and it is concave, and for n ≥ 6 it is bell-shaped. As n → ∞, the

density of price changes converges to a Normal.

In Section 5 we use the firm’s optimal decisions to characterize the response of the ag-

gregate price level, and of output, to a monetary shock. In doing this we keep the decision

rules of the firms constant, an approximation used in some of the calculations by Golosov

and Lucas (2007) and Caballero and Engel (1991, 1993, 2007) among many others. Indeed,

we justify this practice in our model by showing that the general equilibrium feedback effects

have negligible consequences on the size of the inaction region –a result closely related to

the one in Gertler and Leahy (2008). In particular, we characterize analytically the effect on

aggregate prices of a permanent unexpected increase in money supply in an economy that

starts at the cross sectional stationary distribution of price gaps under zero inflation.

The analytical impulse response function (IRF for short) of prices to a monetary shock

is made of two pieces: an impact effect (a jump in the price level), and the remaining part.

2 The special case of n = 1 gives the same quartic root as in Barro, Karlin-Taylor, and Dixit, since ȳ is
the square of the price threshold.
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The IRF depends only on three parameters: the number of products n, the frequency of

price changes, Na, and the standard deviation of price changes, Std(∆pi). More precisely,

the IRF is homogenous of degree one in the size of the shock, δ, and in Std(∆pi). Instead the

duration of the impulse response is inversely proportional to the steady state frequency of

price changes, Na, i.e. time can be measured relative to the steady state average duration of

prices. When monetary shocks are larger than twice Std(∆pi) the economy features complete

price flexibility. Instead, for small monetary shocks the impact effect on prices is second order

compared to the shock size −and hence the impact effect on output is of the order of the

monetary shock. These results, together with the homogeneity, characterize the precise sense

in which the size of the shocks matters. Fixing the two steady state parameters –Na and

Std(∆pi)– the whole shape of the impulse response depends only on the number of products

n and the normalized size of the shock δ/Std(∆pi). As we move from n = 1 to a large number

of products (say n ≥ 10) the impact effect on prices, as well as the half life of a monetary

shock, more than double. Indeed as n → ∞ the IRF converges to the one corresponding to

the staggered price setting of Taylor’s (1980) model, or the inattentiveness model of Caballero

(1989), Bonomo and Carvalho (2004) and Reis (2006). In this case there is absolutely no

selection and the impulse response is linear in time, and has -for small shocks- a half-life

of 1/(2 Na), i.e. half the average duration of steady state price changes. In the language

of Golosov and Lucas (2007), economies with higher values of n have a smaller amount of

“selection”.

Our analysis extends Midrigan’s (2011) contribution to any number of goods n, and

derives the implication for the shape of the distribution of price changes and hazard rates,

not derived his paper. We show that the n = 2 case produces a size distribution of price

changes that is “strongly” bimodal, very similar to the one in Golosov and Lucas. We show

that a larger number of goods, in the order of n = 10, is necessary to replicate qualitatively

the large mass of small price changes and the bell-shaped distribution of price changes that

are seen in the data. Concerning the hazard rate Midrigan comments that “Economies of

scope flatten the adjustment hazard and thus weaken the strength of the selection effect even

further” (pp. 1167). We show that without fat tailed shocks the hazard rate steepens with

n, and indeed the economy converges to Taylors’ staggered adjustment model, not to Calvo’s

(flat hazard) random adjustment model. Concerning the optimal decision rule for adjustment

after an aggregate shock Midrigan interprets the price adjustment decision his model with

n = 2 using the techniques developed by Caballero and Engel for the case of n = 1 (Section

4.B, pages 1165-1168). We show in Section 5 that for the multi-product case (n > 1) the

threshold condition for price adjustments involves a vector of price gaps, not just one. Finally,

we clarify how the “multiproduct hypothesis” affects the consequences of monetary shocks
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in comparison to the seminal paper of Golosov and Lucas (2007). Midrigan (2011) tackled

this question numerically in a model where n = 2 which, moreover, assumed the presence of

infrequent - large shocks. A question then arises as to which of those features is responsible

for the large real effects produced by his model, about 4 times larger, which resemble those

of a “Calvo” model. Our analytical results show that without the infrequent-large shocks the

multiproduct hypothesis for the n = 2 case produces real effects that are only 20% larger than

in Golosov and Lucas (2007). We infer that the large effects of monetary shocks obtained

by Midrigan are due to the presence of the infrequent-large shocks, which reintroduce an

element of stochastic time dependence (a la Calvo) in the price setting decision.

The technical challenges in the analytical study of price setting problems with menu

cost have led researchers to consider simple environments. For instance a quadratic profit

function, or a quadratic approximation to it, has been used in the seminal work on price

setting problems with menu cost by Barro (1972), Dixit (1991), Tsiddon (1993), section 5

of Sheshinski and Weiss (1992), Caplin and Leahy (1997), and chapter 12 of Stokey (2008),

among others. Moreover the idiosyncratic shocks considered are stylized, e.g. random walks

with constant volatility, as used in Barro (1972), Tsiddon (1993), Gertler and Leahy (2008)

and Danziger (1999) among others. Facing the same challenges, we adopt similar assumptions

for each of the goods, which allows the complete characterization mentioned above. Our

analytical solution rests on carefully chosen approximations, whose precision is discussed in

Section 5 and explored quantitatively in Appendix C. The simplifications needed preclude

the analysis of the case of asymmetric demands for goods, although several extensions are

possible such as considering shocks that are correlated across goods and the presence of

inflation as discussed in Section 6. Extensions for future research are discussed in Section 7.

2 The firm’s problem: setup and interpretation

Let n be the number of products sold by the firm. The mathematical model we use has an

n-dimensional state p that we refer to as the vector of price gaps, whose interpretation is

discussed below. Each price gap pi, while it is not controlled, evolves according to a random

walk without drift, so that dpi = σ dWi where dWi is a standard Brownian Motion. The n

Brownian Motions (BM henceforth) are independent, so E [Wi(t)Wj(t
′)] = 0 for all t, t′ ≥ 0

and i, j = 1, ..., n. The value function V (p) is the minimum value of the function V defined

over the processes {τ ,∆p} ≡ {τj,∆pi(τj)}∞j=1:

V (p) = min
τ ,∆p

V(τ ,∆p; p) ≡ E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB

(

n
∑

i=1

p2i (t)

)

dt

∣

∣

∣

∣

∣

p(0) = p

]

(1)
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where each element of the vector of price gaps p follows

pi(t) = σWi(t) +
∑

j:τj<t

∆pi(τj) for all t ≥ 0 and i = 1, 2, ..., n, (2)

∆pi(τj) ≡ limt↓τj pi(t)− limt↑τj pi(t) and p(0) = p.

The τj are the (stopping) times at which control is exercised. At these times, after paying

the cost ψ, the state can be changed to any value in Rn. We denote the vector of changes

in the price gaps as ∆p(τj) ∈ Rn. This is a standard adjustment cost problem subject to a

fixed cost, with the exception that after paying the adjustment cost ψ the decision maker

can adjust the state in the n dimensions.

Next we discuss three interpretations of the problem that can be summarized by saying

that the firm “tracks” the prices that maximize instantaneous profits from the n products.

In each interpretation a monopolist sells n goods with additively separable demands; in the

first one subject to costs shocks, and in the second subject to demand shocks. For the first

interpretation consider a system of n independent demands, with constant elasticity η for each

product, random multiplicative shifts in each of the demand, and a time varying marginal

(and average) cost W Zi(t). This is a stylized version of the problem introduced by Midrigan

(2011) where the elasticity of substitution between the products sold within the firm is the

same as the one of the bundle of goods sold across firms. The instantaneous profit maximizing

price is proportional to the marginal cost, or in logs p∗i (t) = logW+logZi(t)+log (η/(η − 1)).

In this case we assume that the log of the marginal cost evolves as a random walk with drift

so that p∗i (t) inherits this property. The period cost is a second order expansion of the profit

function with respect to the vector of the log of prices, around the prices that maximize

current profits (see Appendix B for a detailed presentation of this interpretation). The units

of the objective function are loss profits relative to the the value of the current maximum

profits for the n goods. The first order price-gap terms in the expansion are zero because we

are expanding around p∗(t). There are no second order cross terms due to the separability of

the demands. Thus we can write the problem in terms of the gap between the actual price

and the profit maximizing price: p(t) = p̂(t)− p∗(t). Under this approximation the constant

B is given by B = (1/2)η(η−1)/n, where n appears in the denominator since the cost of the

deviations for the n price gaps is divided by the total profits generated by the n goods.3 The

fixed cost relative to the profit of the n products is then ψ/n. Clearly all that matters to

characterize the decision rules is the ratio of B to ψ, thus in equation (1) we omit the terms

that are common (such as n and the expression for total profits) which only scales the units

3The terms with η appear since the curvature of profits depends on the elasticity of demand, the term
1/2 comes from the second order expansion.
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of the value function. For the second interpretation of the model consider a monopolist facing

identical demands for each of the n products that she sells. The demands are linear in its

own price, and have zero cross partials with respect to the other prices. The marginal costs

of producing each of the products are also identical, and assumed to be linear. The intercepts

of each of the n demands follow independent standard BMs. In this interpretation the firm’s

profits are the sum of the n profit functions derived in the seminal work by Barro (1972), so

that our ψ is his γ and our B is his θ, as defined in his equation (12). A third interpretation

is in terms of an optimal inattention or inattentiveness problem, similar to the one studied

by Reis (2006), Abel, Eberly, and Panageas (2007) and Alvarez, Lippi, and Paciello (2011).

The firm has the same demand system for the n products, and hence the same total period

losses B||p(t)||2, which are assumed to be continuously and freely observed. Furthermore, if

the firm pays an observation cost ψ, it observes the determinants of the profits of each of

the products separately, and is able to set prices based on this information. In this case ψ

represents the cost of gathering and processing the information, in addition to (or instead

of) the menu cost of changing prices.

3 Characterization of the firm’s decisions

We first note the following properties of the firm’s problem:

1. Given the symmetry of the return function, of the law of motion and of target prices,

it is immediate to see that after an adjustment the state is reset at the origin, i.e.

p(τ+j ) = 0, or ∆p(τj) = −p(τ−j ).

2. The state space Rn can be divided in two open sets: an inaction region I ⊂ Rn and a

control region C ⊂ Rn. We use ∂I for the boundary of the inaction region. We have

that C ∩ I = ∅, that inaction is strictly preferred in I, that control is strictly preferred

in C, and that in ∂I the agent is indifferent between control and inaction.

3. The instantaneous return of the problem in equation (1) is a function of the scalar y,

the squared norm of the vector of price gaps:

y =
n
∑

i=1

p2i (3)

4. The process for y is a one dimensional diffusion given by:

dy = nσ2dt + 2σ
√
y dW for y ∈ [0, ȳ]. (4)
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To see why use Ito’s Lemma on equation (3) to get dy = nσ2dt + 2σ
∑n

i=1 pi(t)dWi

implying E(dy)2 = 4σ2 (
∑n

i=1 p
2
i (t)) dt, which gives the diffusion shown above.

5. Points 3 and 4 imply that the n dimensional state of the original problem and decision

rules can be summarized by a single scalar, namely y. The optimal policy for this

problem is given by a threshold rule such that if y < ȳ, there is inaction. The first

time that y reaches ȳ, all prices are adjusted to the origin, so that y = 0. The one

dimensional problem has the following value function

v(y) = min
ȳ

E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB y(t) dt

∣

∣

∣

∣

∣

y(0) = y

]

(5)

subject to equation (4) for y ∈ [0, ȳ] and the τj ’s are the times at which y(t) hits ȳ.

The function v solves:

r v(y) = By + nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) . (6)

Since policy calls for adjustment at values higher than ȳ we have: v(y) = v(0) + ψ for all

y ≥ ȳ. If v is differentiable at ȳ we can write the two boundary conditions:

v(ȳ) = v(0) + ψ and v′(ȳ) = 0 . (7)

These conditions are typically referred to as value matching and smooth pasting. For y = 0

to be the optimal return point, it must be a global minimum, and thus we require that:

v′(0) ≥ 0 . (8)

Note the weak inequality, since y is non-negative.

The next proposition gives an analytical solution for v in the range of inaction.

Proposition 1. Let σ > 0. The ODE given by equation (6) is solved by the following

analytical function:

v(y) =

∞
∑

i=0

βi y
i , for y ∈ [0, ȳ] . (9)

where for any β0 the coefficients {βi}∞i=1 solve:

β0 =
nσ2

r
β1 , β2 =

rβ1 − B

2σ2(n+ 2)
, βi+1 =

r

(i+ 1) σ2 (n+ 2i)
βi , for i ≥ 2 . (10)
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The proof follows by replacing the function in equation (9) into the ODE (6) and matching

the coefficients for the powers of yi. By the Cauchy-Hadamard theorem, the power series

converges absolutely for all y > 0 since limi→∞ βi+1/βi = 0. The next proposition shows that

there exists a unique solution of the ODE (6) satisfying the relevant boundary conditions

(see Appendix A for the proof).

Proposition 2. Assume r > 0, σ > 0, n ≥ 1. There exists ȳ and a unique function v(·)
solving the ODE (6) satisfying the boundary conditions in equations (7). Moreover: i) v(y)

is minimized at y = 0, ii) v(y) is strictly increasing in (0, ȳ), and iii) ȳ is a local maximum,

i.e. limy↑ȳ v
′′(y) < 0.

We conclude by noting that a slightly modified version of a verification theorem in

Øksendal (2000) can be used to prove that value function v and threshold policy ȳ that

we found in Proposition 2 for the one-dimensional representation indeed characterize the

inaction I = {p : ||p||2 < ȳ} and control sets C, as well as the value function V (p) for the

original n-dimensional problem (see Appendix C in Alvarez and Lippi (2012) for more details

and references to related results in the applied math literature).

We note that the solution for the n = 1 case and the expression for the approximation

for ȳ are the same ones derived in Karlin and Taylor (1981) Section 3.F in chapter 15, and

in Dixit (1991) expression (11). We finish this section by characterizing the optimal policy ȳ

in terms of the structural parameters of the model ( ψ
B
, σ2, n, r).

Proposition 3. The optimal threshold is given by a function ȳ = σ2

r
Q( ψ r2

B σ2
, n) so that

(i) ȳ is strictly increasing in ψ
B
with ȳ = 0 if ψ

B
= 0 and ȳ → ∞ as ψ

B
→ ∞,

(ii) ȳ is strictly increasing in n and ȳ → ∞ as n→ ∞,

(iii) ȳ is bounded below by
√

2(n + 2)σ2 ψ
B
and as ψ

B
r2

σ2
→ 0 then ȳ√

2(n+2)σ2 ψ
B

→ 1,

(iv) the elasticity of ȳ with respect to r and σ2 satisfy:

r

ȳ

∂ȳ

∂r
= 2

(ψ/B)

ȳ

∂ȳ

∂(ψ/B)
− 1 and

σ2

ȳ

∂ȳ

∂σ2
= 1− (ψ/B)

ȳ

∂ȳ

∂(ψ/B)
.

See Appendix A for the proof. For the case of n = 1 the formula for the threshold is the

same one derived by Barro (1972), Karlin and Taylor (1981), and in Dixit (1991), though

our characterization is a bit more general and, more importantly, holds for any number of
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products n ≥ 1.4 That ȳ is only a function of the ratio ψ/B is apparent from the definition

of the sequence problem. That, as stated in part (i), ȳ is strictly increasing in the ratio

of the fixed cost to the benefit of adjustment ψ/B is quite intuitive. Item (ii) says that

the threshold is increasing in the number of products n. This is because as n increases,

equation (4) shows that the drift of y = ||p||2 increases, thus if ȳ would stay constant

there will be more adjustments per unit of time, and hence higher menu cost will be paid.

Additionally, if ȳ remains unchanged, the average cost per unit of time also increases. One

can show that the second effect is smaller, and hence an increase in n makes it optimal to

increase ȳ. Part (iii) gives an expression for a lower bound for ȳ, which becomes arbitrary

accurate for either a small value of the cost ψ/B, so that the range of inaction is small, or a

small value of the interest rate r, so that the problem is equivalent to minimizing the steady

state average net cost. We note that in the approximation:

ȳ =

√

ψ σ2 2 (n+ 2)

B
, (11)

the effect of ψσ2/B is exactly the same as in the case of one product. Note that the approxi-

mation in part (iii) implies that the elasticity of ȳ with respect to ψ/B is 1/2 for small values

of the ψ/B ratio. Then, using part (iv), we obtain that ȳ has elasticity 1/2 with respect to

σ2 and also that it is independent of r. Moreover, for small normalized adjustment cost, i.e.

as ψ/(Bσ2) ↓ 0, (iii) and (iv) imply that ∂ȳ/∂r → 0, so that interest rates have only second

order effects on the range of inaction. Finally we found that the quadratic approximation

to v(·), which amounts to a quartic approximation to V (·), gives very accurate values for ȳ

across a very large range of parameters, as documented in Appendix C.1. What happens

is that for a realistic application the values of r and ψ are small relative to Bσ2, hence the

approximation of part (iii) applies.

4 Implications for frequency and size of price changes

In this section we explore the implications for the frequency and distribution of price changes.

The expected time for y(t) to hit the barrier ȳ starting at y is given by the function T (y)

satisfying: 0 = 1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) with a boundary condition

T (ȳ) = 0, which gives T (y) = ȳ−y
n σ2

for y ∈ [0, ȳ]. Thus T (0) gives the expected time between

successive price adjustments, so that the average number of adjustments, denoted by Na is

4See expression (19) in Barro (1972), Chapter 15, Section 3.F of Karlin and Taylor (1981) for the case
of undiscounted returns and expression (11) in Dixit (1991) for an approximation to the threshold for the
discounted case.

10



1
T (0)

. We summarize this result in:

Proposition 4. Let Na be the expected number of price changes for a multi-product

firm with n goods. It is given by

Na =
nσ2

ȳ
=

nr

Q
(

ψr2

B σ2
, n
)

∼=
√

B σ2

2 ψ

n2

(n+ 2)
. (12)

The second equality in equation (12) uses the function Q(·) derived in Proposition 3, while

in the last equality we use the approximation of ȳ for small ψr2/(Bσ2) (see Appendix C.1

for more documentation on the accuracy of the approximation). It is interesting that this

expression extends the well known expression for the case of n = 1, simply by adjusting

the value of the variance from σ2 to nσ2. The number of products n affects Na through

two opposing forces. One is that with more products the variance of the deviations of the

price gaps increases, and thus a given value of ȳ is hit sooner in expected value. This

is the “direct effect”. On the other hand, with more products, the optimal value of ȳ is

higher. Expression equation (12) shows that the direct effect dominates, and the frequency

of adjustment increases with n.

Next we characterize the hazard rate of price adjustments (see Appendix A for the proof)

Proposition 5. Let t denote the time elapsed since the last price change. Let Jν(·) be
the Bessel function of the first kind. The hazard rate for price changes is given by

h(t) =

∞
∑

k=1

ξn,k
∑∞

s=1 ξn,s exp
(

− q2n,sσ
2

2ȳ
t
)

q2n,kσ
2

2ȳ
exp

(

−
q2n,kσ

2

2ȳ
t

)

, where ν =
n

2
− 1 ,

ξn,k =
1

2ν−1Γ(ν + 1)

qν−1
n,k

Jν+1(qn,k)
, and qn,k are the positive zeros of Jν(·),

which asymptotes to T (0) · limt→∞ hn(t) =
q2n,1
2n

> max
{

1 , (n−1)2

2n

}

.

Proposition 5 compares the asymptote of the hazard rate with the expected time until

adjustment, which equals T (0) = ȳ/(nσ2), as derived above. Notice that for a model with

a constant hazard these two quantities are the reciprocal of each other, i.e. the expected

duration is the reciprocal of the hazard rate. We use the product T (0) · limt→∞ hn(t), which

is larger than one, as a measure of how close the model is to have a constant hazard rate,

or equivalently as a summary measure of how increasing the hazard function is. Also notice

that the expression in Proposition 5 immediately shows that, keeping the expected time until

11



adjustment T (0) fixed, the hazard rate is only a function of n. Thus the shape of the hazard

function depends only on the number of products n. Changes in σ2, B, ψ only stretch the

horizontal axis linearly.

Figure 1: Hazard rate of Price Adjustments for various choices of n
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For each n the value of σ2/ȳ is chosen so that the expected time elapsed between adjustments is one.

Figure 1 plots the hazard rate function h for different choices of n keeping the expected

time between price adjustment fixed at one. As Proposition 5 shows the function h has an

asymptote, which is increasing in the number of products n. Moreover, since the asymptote

diverges to ∞ as n increases with no bound, the hazard rate converges to a an inverted L

shape, as the one for a model where adjustment are done exactly every T (0) = 1 periods,

like in Taylor’s (1980) model. To see this note that, defining ỹ ≡ y/ȳ and fixing the ratio

T (0) = ȳ /(nσ2) so that for any n the expected time elapsed between price changes is T (0),

we have:

dỹ =
1

T (0)
dt + 2

√

ỹ
1

n T (0)
dW for ỹ ∈ [0, 1]. (13)

As n → ∞ the process for the normalized size of the price gap ỹ described in equation (13)

converges to the deterministic one, in which case the hazard rate is zero between times 0 and

below T (0) and ∞ precisely at T (0).

The shape of estimated hazard rates varies across studies, but many have found flat or

decreasing ones, and some have found hump-shape ones. As can be seen from Figure 1 the

12



hazard rate for the case of n = 1 is increasing but rapidly reaches its asymptote. As n is

increased, the shape of the hazard rate becomes closer to the inverted L shape of its limit as

n → ∞. For instance, when n = 10 the level of the hazard rate evaluated at the expected

duration is about twice as large as the one for n = 2. This is a prediction that can be tested

in the cross section using the data set in Bhattarai and Schoenle (2010) or Wulfsberg (2010).

Figure 2: Density of the price changes for various choices of n: w(∆p)
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normal

All distributions have the same standard deviation of price changes: Std(∆p) = 0.10.

Next we characterize the marginal distribution of price changes. The reason to focus on

the marginal distribution is that it corresponds to what is measured in the data, where no

record is kept of the joint distribution of price changes. This distribution is characterized

by two parameters: the number of goods n, and the optimal boundary of the inaction set ȳ.

The value of ȳ, as discussed above, depends on all the parameters. Let τ be a time when y

hits the boundary of the range of inaction: since after an adjustment all price gaps are reset

to zero, the price changes coincide with ∆p(τ) = −p(τ) where p(τ) ∈ ∂I ⊂ Rn, i.e. the price

vector belongs to the surface of an n-dimensional sphere of radius
√
ȳ. Given that each of the

(uncontrolled) pi(t) is independently and identically normally distributed, the price changes

∆p(τ) = −p(τ) are uniformly distributed on the n-dimensional surface of the sphere.5 We

can now state the following result:

5To see this notice that the p.d.f. of a jointly normally distributed vector of n identical and independent
normals is given by a constant times the exponential of the square radius of the sphere, divided by half of
the common variance.
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Proposition 6. Let p ∈ ∂I ⊂ Rn denote a vector of price gaps on the boundary of the

inaction region, triggering price changes ∆p = −p. The distribution of the price change of

an individual good i, i.e. the marginal distribution of ∆pi ∈ [−√
ȳ,

√
ȳ ], has density:

w(∆pi) =
1

Beta
(

n−1
2
, 1
2

) √
ȳ

(

1−
(

∆pi√
ȳ

)2
)(n−3)/2

(14)

where Beta(·, ·) denotes the Beta function. The standard deviation and kurtosis of the

price changes, the expected value of the absolute value of price changes and its coefficient of

variation are given by:

Std ( ∆pi ) =
√

ȳ
/

n , Kurt ( ∆pi ) =
3 n

n+ 2
,

E [ |∆pi| ] =

√
ȳ

n−1
2
Beta

(

n−1
2
, 1
2

) ,
Std ( |∆pi| )
E ( |∆pi| )

=

√

[

n− 1

2
Beta

(

n− 1

2
,
1

2

)]2
1

n
− 1 .

As n→ ∞ the distribution of ∆pi/Std(∆pi) converges point-wise to a standard normal.

The proof uses results from the characterization of spherical distributions by Song and

Gupta (1997), see Appendix A. Using the previous proposition and the approximation for

ȳ we obtain the following expression: Std ( ∆pi ) =
(

σ2ψ
B

2(n+2)
n2

)1/4

which shows that the

standard deviation of price changes is decreasing in n, while the kurtosis of the price changes

is increasing in n.6

The proposition establishes how the shape of the distribution of price changes w(∆p)

varies substantially with n, as shown in Figure 2. For n = 2 the distribution is U-shaped,

for n = 3 it is uniform, for n = 4 it has the shape of a half circle, and for n ≥ 6 it has a

bell shape. The proposition also establishes that as n → ∞ the distribution converges to a

normal: this can be seen in Figure 2 by the comparison of the distribution for n = 50 and

the p.d.f of a standard normal distribution with standard deviation equal the one obtained

when n = 50. Interestingly the expressions in Proposition 6 show that w(∆p) and |∆p|
depend only on n and on the scale of the distribution:

√
ȳ. Thus, any normalized statistic,

such as ratio of moments (kurtosis, skewness, etc) or a ratio of points in the c.d.f., depends

exclusively on n. This property can be used to parametrize or estimate the model.

We conclude this section by summarizing the most interesting results of the model con-

cerning the cross-section predictions in comparison with the data and with the previous

6 The approximations E [ |∆pi| ] ≈ Std (∆pi )
√

2
π

(

1 + 1
2 n

)

and Std( |∆pi| )
E( |∆pi| ) ≈

√

π
2

(

2n
1+2n

)

− 1 are useful

to see how these statistics vary with n.
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Table 1: Statistics for price changes as function of number of products: Model economy

statistics \ number of products n 1 2 3 4 5 6 10 20 50

Std(|∆pi|) / E(|∆pi|) 0 0.48 0.58 0.62 0.65 0.67 0.70 0.74 0.75

Kurtosis(∆pi) 1.0 1.5 1.8 2.0 2.1 2.3 2.5 2.8 2.9

Fraction: |∆pi| < 1
2
E(|∆pi|) 0 0.21 0.25 0.27 0.28 0.28 0.30 0.31 0.31

Fraction: |∆pi| < 1
4
E(|∆pi|) 0 0.10 0.12 0.13 0.14 0.14 0.15 0.16 0.16

∆pi denotes the log of the price change, and |∆pi| the absolute value of the log of price changes. They are
computed using the results in Proposition 6. All statistics in the table depend exclusively on n. Kurtosis
defined as the fourth moment relative to the square of the second.

literature. To this end Table 1 uses the the model to compute several moments of interest

that depend only on n. Table 2 reports the empirical counterparts to those moments as

estimated by Midrigan (2011) (using two scanner data sets) and by Bhattarai and Schoenle

(2010) (using BLS producer data).

First, in comparison with the menu cost models of Golosov and Lucas (2007) or Midrigan

(2011) the model ability to account for the shape of the distribution of price changes improves

dramatically. These models predict a bimodal distribution of price changes with a nil, or

very small, mass of small price changes, as can be seen by the n = 1 and the n = 2 cases in

Figure 2. In contrast, as documented by e.g. Klenow and Malin (2010) as well as Midrigan

(2011), the size distribution of price changes has a bell-shape and displays a large mass of

small price changes, as shown in Table 2. We showed that the number of goods that is

necessary to produce the bell-shaped distribution is at least 6. Therefore, compared to the

US data in Table 2, the models with n = 1, 2 generate too few small price changes. Much

bigger values of n are necessary to reproduce the patterns that are seen in the data.

Another novelty of the model is that, in addition to producing a larger mass of small

price changes compared to existing models, it also produces a greater mass of “large” price

changes, so that its Kurtosis is higher than the one obtained in models with small n. This is

seen immediately by noting that the kurtosis is 3n/(2 + n), an increasing function of n. The

multi product hypothesis is thus able to account for more kurtosis than the canonical menu

cost model. We notice however that despite this improvement the model is not yet able to

match the very high level of Kurtosis that are measured by some datasets. We see this as a
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Table 2: Statistics for price changes as function of the number of products: US data

Bhattarai and Schoenle Midrigan

Statistics Number of products n AC Nielsen Dominick’s
2 4 6 10 All No Sales All No Sales

Std(|∆pi|) / E(|∆pi|) 1.02 1.15 1.30 1.55 0.68 0.72 0.84 0.81

Kurtosis(∆pi) 5.5 7.0 11 17 3.0 3.6 4.1 4.5

Fraction: |∆pi| < 1
2
E(|∆pi|) 0.39 0.45 0.47 0.50 0.24 0.25 0.34 0.31

Fraction: |∆pi| < 1
4
E(|∆pi|) 0.27 0.32 0.35 0.38 0.10 0.10 0.17 0.14

Sources: For the Bhattarai and Schoenle (2010) data: the number of product n is the mean of the
categories considered based on the information in Table 1, the ratio Std(|∆pi|) / E(|∆pi|) is from Table
2 (Firm-Based), the fraction of |∆pi| which are small is from Table 14, the Kurtosis is from Figure 7.
The data from Midrigan (2009) are taken from distribution of standardized prices in Table 2a.

challenge, both theoretical and empirical, for future work.7

The model provides a simple explanation for the empirical regularity, documented by

Goldberg and Hellerstein (2009) and Bhattarai and Schoenle (2010) using BLS producer

prices, that firms selling more goods (or larger firms) tend to adjust prices more frequently

and by smaller amounts. This is precisely the model predictions as from equation (12) and

Proposition 6. Notice that this prediction holds even if, in doing the comparative statics

with respect to n, one assumes that the fixed cost ψ increases linearly with n.8

Finally, the model predicts that price changes are synchronized within the store, a feature

of the data that is found in many empirical analyses of the cross section of price changes

as in the seminal paper by Lach and Tsiddon (1996) who showed that price changes are

synchronized within stores but staggered across stores, and in the paper by Cavallo’s (2010)

who finds that price changes of similar goods (in online supermarket chains) are synchronized

within a store for goods of similar type.9

7The level of kurtosis appears imprecisely measured in the data: the estimates vary widely from around 3
to 20, depending on the data source, industry, sample selection criteria and measurement error as discussed
by Eichenbaum et al. (2012) and Alvarez, Le Bihan, and Lippi (2012).

8See the NBER version of the paper for a discussion of this point and some empirical evidence.
9 For more evidence on the synchronization of price changes see Lach and Tsiddon (1992), Baudry et al.

(2007), Dhyne and Konieczny (2007), Dutta et al. (1999), Midrigan (2009, 2011), and Neiman (2010).
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5 The response to a monetary shock

In this section we study the response of the aggregate price level to an unexpected permanent

monetary shock. Understanding this impulse response is useful to quantify the real effects of

monetary shocks in the presence of menu costs, to identify its determinants, and to charac-

terize how the effects vary with the number of products n sold by the firm. We will show how

the determinants of the real effects of monetary shocks map into simple observable statistics

about the size and frequency of price changes that are available for many economies.

A main novelty of this paper is to solve for the whole impulse response analytically

using an approximation to characterize the firm’s decision problem. In particular, besides

the second order approximation of the profit function and the assumption of no drift in

the price gaps used above, we assume that after an aggregate monetary shock the firm

uses the same decision rule ȳ used in the steady state, i.e. we ignore the feedback effect

on the firm’s decision that arises in a general equilibrium problem. Interestingly we show

that the approximation provides a very accurate benchmark to the exact solution of the

original problem. The explanation for this result, formally given in Proposition 7 below and

documented quantitatively in Appendix C, is that in the class of models we considered the

general equilibrium feedback only has second order effects on the decision rules.

The general equilibrium set up where we embed our price setting problem is an adaptation

of the one in Golosov and Lucas (2007) to multiproduct firms (see Appendix B for details).

The representative household has preferences given by

∫ ∞

0

e−rt
(

u (c(t))− αℓ(t) + log
M(t)

P (t)

)

dt , and c(t) =

(

∫ 1

0

n
∑

i=1

(Zk,i(t) ck,i(t))
η−1
η dk

)
η
η−1

where u(c) = (c1−ǫ−1)/(1−ǫ), ck,i(t) is the consumption of product i produced by firm k, ℓ(t)

are labor services,M(t) is the nominal quantity of money, P (t) is the nominal ideal price index

of one unit of aggregate consumption, and r > 0, ǫ ≥ 1, α > 0, η > 1 are parameters. The

elasticity of substitution between any two products η is the same, regardless of the firms that

produced them.10 The production function for good i in firm k at time t is linear in labor –the

only input in the economy– with productivity 1/Zki(t), so the marginal cost of that product is

W (t)Zik(t), where W (t) is the nominal wage. We assume that the idiosyncratic productivity

and demand shocks are perfectly correlated, and that Zik(t) = exp (σWki(t)) where Wki are

standard BM independent across all i, k. This assumption ensures that consumer expenditure

10If the elasticity of substitution across firms is different from the one across goods then the second or-
der approximation of the profit function will feature the cross products of the different price gaps. See
Appendix F.5 for a discussion of this point and an illustration of its solution.
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is the same across goods so that the ideal price index is well defined and has equal weights.

Firm k can adjust one or more of its n nominal prices paying a fixed menu cost equal to

a number of labor service units, which we express as ψ times the steady state profits from

producing n goods evaluated at the profit maximizing price. Markets are complete, and all

firms are owned by the representative household. We use R(t),W (t) and Pik(t) for the time

t nominal interest rate, nominal wage, and nominal price of firm k product i respectively. As

before we use pki(t) for the price gap: the log of the ratio of the nominal price of firm k on

product i to the frictionless optimal price, or

pki(t) = logPki(t)− log(WZki(t))− log (η/(η − 1)) . (15)

We consider an economy that starts at the invariant distribution of firm’s prices that

correspond to a steady state with constant money supply equal to M̄ . We assume that at

time t = 0 there is an unanticipated permanent increase in the level of the money supply by

δ log points, so logM(0) = log M̄ + δ, where bars denote the steady state values. As in the

general equilibrium sticky price model of Danziger’s (1999) or Golosov and Lucas’s (2007)

we have that, for all t ≥ 0, the interest rate is constant and wages and consumption follow

R(t) = r , log
W (t)

W̄
= δ , log

c(t)

c̄
=

1

ǫ

(

δ − log
P (t)

P̄

)

. (16)

The equation shows that the shock induces an immediate permanent increase in (the log of)

nominal wages, and hence marginal cost, by δ. The effect on output on the other hand is

gradual, and at each t it depends on how much the aggregate price level P (t).

The next proposition illustrates why the approximate decision rule ȳ derived in a partial

equilibrium from the quadratic loss function V(τ ,∆p; p) in equation (1) provides an accurate

approximation of the effect of a monetary shock δ in a general equilibrium. To this end recall

that {τ ,∆p} ≡ {τj ,∆pi(τj)}∞j=1 denote the stochastic processes for the stopping times and

the n price gaps, and let c ≡ {c(t)/c̄− 1}t≥0 denote the path of aggregate output deviations

from the steady state. Let the value function −V(τ ,∆p, c; p) measure the expected profits

in the general equilibrium of a generic firm with a vector of price gaps p. We have:

Proposition 7. Let δ ≥ 0. For all t ≥ 0 a general equilibrium satisfies:

(i) log
P (t)

P̄
= δ +

∫ 1

0

(

n
∑

i=1

(pki(t)− p̄ki)

)

dk +

∫ 1

0

(

n
∑

i=1

o(||pki(t)− p̄ki||)
)

dk

(ii) A Taylor expansion of V(τ ,∆p, c; p) around pi,t = 0 for all i = 1, ..., n and

around ct = c̄ is proportional to the quadratic loss function V(τ ,∆p; p); moreover the terms
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including the cross products of the price gap pit and the aggregate consumption ct are of

third order or higher.

Part (i) states that the effect of the shock on P (t) can be approximated by analyzing the

dynamic response of the price gaps, each of which falls by a constant δ before any adjustment

takes place, i.e. pki(0) = p̄ki− δ. Part (ii) states that the objective function V in the partial

equilibrium set-up of equation (1) is proportional to the objective function in the general

equilibrium setup V. The difference between these functions in terms of the price gaps (the

relevant object for the firm’s decision) only involves third and higher order terms, so that

the general equilibrium effect on the boundary of the inaction set, ȳ, is second order. The

result provides a foundation to Caballero and Engel (1991, 1993, 2007) who pioneered the

analytical study of the impulse response in Ss models while ignoring the general equilibrium

feedback effects on the decision rules. To see why the result holds note that, as Golosov

and Lucas (2007) remark, the general equilibrium feedback on the firms’ decision rules is

completely captured, at each time t, by the effect of the aggregate output c(t) on profits.

Inspection of the firm’s profit function shows that the discounted period t profits from good

i are the product of a term including the GE effect – a function of c(t)–, and a term whose

maximum is achieved by the frictionless price. Hence the discounted time t profits have a

zero first derivative with respect to the (log of the) price gap pi(t), and a zero second cross

derivative with respect to the (log of the) price gap pi(t) and c(t). Thus for small shocks δ

and small adjustment cost ψ, the general equilibrium effect on decisions are negligible (see

Appendix B for a proof and Appendix C for a quantitative exploration of this result).

Next we use the results of Proposition 7 to study the effect of an aggregate monetary shock

of size δ on the aggregate price level P (t) at t ≥ 0 periods after the shock, which we denote

by Pn(δ, t). As commonly done in the sticky price literature, we characterize the first order

approximation to the price index, so in particular we study Pn(δ, t) ≡ δ+
∫ 1

0
(
∑n

i=1 pki(t)) dk

≈ logP (t)/P̄ . Once we characterize the effect on the price level, we describe the effect

on employment and output. The impulse response is made of two parts: an instantaneous

impact adjustment (a jump) of the aggregate price level which occurs at the time of the

shock, denoted by Θn(δ), and a continuous flow of adjustments from t > 0 on, denoted by

θn(δ, t). The cumulative effect of the price level t ≥ 0 periods after the shock is

Pn(δ, t) = Θn(δ) +

∫ t

0

θn(δ, s)ds . (17)

We also study the impact effect on the fraction of firms that change prices, denoted by Φn(δ).

We focus on the cumulative price response because its difference with the monetary shock,

δ − Pn(t, δ), is proportional to the aggregate output at time t, as discussed in Section 5.5.
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Next we present our main results on Pn(δ, t) and Φn(δ) following an aggregate shock:

Proposition 8. Fix n, the number of goods sold by each firm.

1. Parameters. The impulse response Pn(δ, t) depends only on two parameters:
√
ȳ and

σ, which we re-parameterize as functions of two steady state statistics: the standard

deviation of price changes Std[∆p] and the frequency of price changes Na.

2. Scaling and Stretching: The IRF of an economy with steady state Std[∆p], Na and a

shock δ at horizon t ≥ 0 is a scaled version of the one of an economy with unit steady

state parameters, normalized monetary shock δ/Std[∆p], and a stretched horizon Na t:

Pn (δ, t; Na, Std[∆p] ) = Std[∆p] Pn
(

δ

Std[∆p]
, Na t; 1, 1

)

3. Impact Effects: the impact effects P(δ, 0) = Θn(δ) and Φn(δ) are strictly increasing

in δ, they are respectively strictly below δ and 1, in the interval (0, 2Std[∆p]) and

achieve these values outside this interval. Moreover, impact effects are second order on

the monetary shock: Θ′
n(0) = Φ′

n(0) = 0.

Part 1 of Proposition 8 provides a re-parameterization of the impulse response that is in-

teresting for three reasons: (i) the steady state statistics Std[∆p] and Na are readily available

for actual economies, (ii) the results of Section 4 imply that, even fixing n, one can always

choose two parameters values of ψ/B and σ2 to match these two statistics, and (iii) keeping

fixed these two observable statistics and just changing n we can isolate completely the role

of the number of products n.

Part 2 of Proposition 8 states a useful “scaling” property of the impulse response function.

First notice that at t = 0, the impact effect of a monetary shock Θn is the same for any

two economies with the same steady state average size of price changes Std[∆p], and is

independent of the value of the steady state frequency of price adjustment Na. Moreover,

for all times following the impact (t > 0) the effect of a monetary shock δ, in an economy

characterized by steady state statistics Std[∆p] and Na depend only on n. This means that

for a fixed n, the whole profile of the impulse response functions in economies with different

values of Std[∆p] and Na are simply scaled version of each other. For instance, fixing n, δ

and Std[∆p], the impulse response functions in two economies that differ in the frequency

of price adjustments, say Na vs 2 Na, will have exactly the same values of Pn but will

reach these values at different times, respectively 2 t vs t, i.e. an economy with twice more

flexible prices in steady state has an impulse response that reaches each value in half of the

time. Furthermore, keeping Na fixed, the height of the whole impulse response function Pn
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is proportional to the scaled value of the monetary shock. We find this characterization

interesting in itself, i.e. even interesting for the n = 1 case, but more importantly it will

allow us to compare the impulse response for economies that feature different values of n.

Part 3 of Proposition 8 shows that the size of the monetary shock matters, so for large

shocks there is instantaneous full price flexibility (Θn = δ), but for small shocks the size

of the initial jump in price is second order compared to the shock. This, together with

part 2, implies that whether a monetary shock is large or not is completely characterized by

comparing it with the typical price change in steady state, i.e. it is a function of δ/Std[∆p].

Figure 3: The impact effect of an aggregate shock on the price level: Θn
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Std[∆p], the steady state standard deviation of price changes. See the text for more details.

For the reader who is not interested in the derivation of the impulse responses, and an

explanation of the different effects behind it, we include two figures that summarize the

quantitative conclusions of our analysis. Before getting to these figures, we note that its

computation for large value of n would have been extremely costly without the characteri-

zation given in the sections below. Figure 3 has two panels that illustrate the impact effect

on prices of monetary shocks of different size for economies with different values of n. The

left panel shows the normalized impact on the aggregate price level, Θn/Std[∆p] (on the

vertical axis), of a normalized monetary shock, i.e. a shock δ/Std[∆p] (on the horizontal

axis). Each line plotted in this panel corresponds to a different number of products n. Recall

that if Θn(δ) = δ the shock is neutral, and that instead when Θn(δ) < δ the shock implies

21



an increase in real output. As stated in Proposition 8, if δ ≥ 2
√

ȳ/n = 2Std[∆p], then all

firms adjust prices, and hence the shock is neutral. This explains the range of the normalized

shock, between 0 and 2. For the quantification of this figure it is helpful to notice that on the

one hand a typical estimate of the standard deviation of price changes for US or European

countries is 10% or higher, i.e. Std[∆p] ≈ 0.1. On the other hand to quantify δ note that

in a short interval -say a month- changes of the money supply or prices in the order 1% are

very rare.11 This figure also shows that for small δ the aggregate price effects are of order δ2,

as stated in Proposition 8. Interestingly, the impact response of a monetary shock changes

order with respect to n as the value of δ increases, as can be seen for shocks smaller than

δ/Std[∆p] ≈ 0.7. Note that using Std[∆p] = 0.1 this means that shock for which they reverse

order is higher than 7%, a very large value. The right panel of Figure 3 displays four lines,

each corresponding to a different value of δ. Each line shows the aggregate effect on prices

as n changes, relative to the n = 1 case. From these two panels it can be seen that, for

monetary shocks in the order of those experienced by economies with inflation close to zero,

i.e. for increases in money δ/Std[∆p] smaller than a 0.5 (or for the benchmark value, for δ

smaller than 5%), economies with more products are more sticky than those with fewer.

Figure 4 plots the impulse response function Pn(δ, t) for economies with different n keeping

fixed the steady state deviation of price changes to 10%, i.e. Std[∆p] = 0.1 and an average

of one price change per year, i.e. Na = 1. The size of the monetary shock is 1%, so that

δ/Std[∆p] = 0.1. In this figure we have time aggregated the effect on the aggregate price

level up to daily periods. As required, all impulse responses display impact effect on the first

period, and a monotone convergence to the full adjustment of the shock. The impact effect

of the monetary shock during the first periods is to increase prices about 5% of the long run

value (i.e. 5 basis points) for n = 1. This effect is smaller in economies where firms produce

more products, i.e. the impact at t = 0 is decreasing in n. This difference is small between

one and two products, but the effect is almost halved for firms with 10 products, as shown

in Figure 3 for a monetary shock of the same size.

Likewise, the shape and duration of the shocks depend on n. The half-life of the shock

more than doubles as the number of products goes from 1 to 10. The shape of the impulse

responses for n = 1 is quite concave, but for large n it becomes almost linear, up to a value of

t of about 1/Na. This pattern of the shape is consistent with the result of Proposition 5 which

shows that for large n the model becomes a version of either Taylor (1980) staggering price

model or of Caballero (1989), Bonomo and Carvalho (2004) and Reis (2006) inattentiveness

model, where the staggering lasts for T (0) = 1/Na periods. Indeed, in Proposition 12 below

11For instance, the monthly innovations on a time series representation of M1 are on the order of 50 basis
points, and that is without any conditioning. Presumably exogenous monetary shocks are much smaller.
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we show that as n→ ∞ the impulse response becomes linear up to time 1/Na because there

is no “selection effect”. Summarizing, we find that extending the analysis from n = 1 to a

larger number of product (say n ≈ 10) almost halves the impact effect on the aggregate price

level and doubles the half-life of the shock, for empirically reasonable monetary shocks.12

Figure 4: Impulse response of the aggregate price level

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1 percent monetary shock, Na = 1 , Std[∆p ] =0.1

months

C
P
I
re
sp

o
n
se
,
in

p
er
ce
n
ta
ge

 

 

δ
S td [∆p ]= 0.1

n = 1
n = 2
n = 3
n = 10
n = 30

The rest of this section is organized as follows. First, we obtain a closed form solution for

the IRF in the case of n = 1. This result, which is novel and interesting in its own right, is

also helpful to better understand the derivation for the n ≥ 2 case as well as to compare the

results. After that, we develop the analytical expressions for the n ≥ 2 case, concentrating

first on the impact effects and then on the remaining part of the impulse response. The proof

of Proposition 8, as well as explicit expressions for the impulse responses, are presented as

separate propositions in the next subsections. We conclude the section by discussing the real

effect of the monetary shocks.

5.1 Impulse response for the n = 1 case

In the n = 1 case, which we refer to (abusing a bit the analogy) as the Golosov and Lucas

(GL) case, the firms controls the price gap between two symmetric thresholds, ±p̄, and when

12The results are very similar for shocks of 1/2 and 2 percent, as reported in the Appendix E.3.
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the price gap hits either of them it returns it to zero. Hence the invariant distribution of price

gaps is triangular: the density function has a maximum at the price gap p = 0 and decreases

linearly on both sides to reach a value of zero at the thresholds p̄ and −p̄, since firms that

reach the thresholds will adjust upon a further shock. An example of such a distribution is

depicted by the solid line in the left panel Figure 5. A straightforward computation gives

that the slope of this density is ±(1/p̄)2. Consider an aggregate shock that displaces the

distribution by reducing all price gaps by δ. If the value of δ > 2p̄ then all the firms will

adjust their price, so that Φ = 1, and after a simple calculation one can see that the aggregate

price level is increased by δ. Instead, if the value of δ is smaller than 2p̄, only the firms with

a sufficiently small price gap will adjust. Denoting the price gap right after the shock by p0,

these are the firms that end up with p0 < −p̄. The density of the distribution of the price

gaps immediately after the shock, denoted by λ, is depicted by the dotted line of Figure 5

and it is given by:

λ(p0, δ; p̄) =







1
p̄

(

1 + δ
p̄
+ p0

p̄

)

if p0
p̄
∈ [−1 − δ

p̄
,− δ

p̄
]

1
p̄

(

1− δ
p̄
− p0

p̄

)

if p0
p̄
∈ (− δ

p̄
, 1− δ

p̄
]

(18)

For a shock of size δ the mass of such firms is Φ = (1/2)(δ/p̄)2, which uses the slope of the

density given above (to simplify notation we suppress the n = 1 subindex). Note that the

magnitude of this fraction is proportional to the square of the shock, a feature that is due

to the fact that there are a few firms close to the boundary of the inaction set. This case

is depicted by the dotted line in the left panel of Figure 5. Firms that change prices “close

the price gap” completely, so that price increase will be δ + p̄ for the firm that prior the

shock had price gap −p̄ and it will be equal to p̄ for the firm with pre-shock price gap equal

to −p̄ + δ. Using the triangular distribution of price gaps we have that the average price

increase among those that adjust prices equals p̄+ δ/3. Let us denote by Θ the impact effect

on aggregate prices of a monetary shock of size δ, the product of the number of firms that

adjust times the average adjustment among them. Note that in steady state the average size

of price changes, as measured by the standard deviation of price changes Std[∆p], is given

by p̄. Thus for δ ≤ Std[∆p] = p̄ we can write

Θ = Std[∆p]
1

2

(

δ

Std[∆p]

)2(

1 +
1

3

δ

Std[∆p]

)

so that for an economy with one good the impact effect on prices, normalized by the steady

state average price change, depends on the normalized monetary shock, and it is locally

quadratic, at least for a small shock. Note that the degree of aggregate stickiness is indepen-
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dent of the steady state fraction of price changes.

Figure 5: The selection effect on impact for the n = 1 and n = 2 case
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We now develop expression for the impulse response at horizons t > 0. The density of

the price gaps p0 right after the monetary shock δ is the displaced triangular distribution λ

plotted in Figure 5 and described in equation (18), and hence it has p̄ as a parameter. It

peaks at −δ, it has support [−p̄− δ, p̄− δ]. Note that the impact adjustment is concentrated

on the firms whose price gap is smaller than −p̄. Now consider the contribution to the change

in aggregate prices of the firms whose price gap is p0 ∈ [−p̄, p̄− δ], so they have not adjusted

on impact, and of which there are λ(p0; δ) dp0. Let G−(t; p0) be the probability that a firm

with price gap p0 at time zero will increase price before time t, i.e. the probability that

its price gap will hit −p̄ before time t without first hitting p̄. Likewise define G+(t; p0, ) as

the corresponding probability of a price decrease, let G(t; p0) = G−(t; p0)−G+(t; p0) be the

difference between these probabilities, and let g be its density. We note that these functions

have (p̄, σ2) as parameters. We can now define the contribution to the change in the price

level of the adjustments that take place between t and t + dt as:13

θ(δ, t) = p̄

∫ p̄−δ

−p̄
g(t; p0) λ(p0; δ)dp0 . (19)

13Alternatively one could compute the impulse response for the n = 1 case by adapting ideas from Bertola
and Caballero (1994). They study the evolution of the whole cross section distribution following a shock for
an irreversible investment problem with a reflecting barrier. Their formulas should be adapted to our fixed
cost problem whose optimal return point implies a jump (not a reflection) of the state.
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The integral excludes the initial price gaps p0 that are below −p̄. These correspond to firms

that adjusted on impact. Note that θ(δ, t) have (p̄, σ2) as parameters. Expressions for the

densities g+ and g− can be found in equations (15)-(16) of Kolkiewicz (2002). This gives

g(t; p0) =
σ2

2 p̄2

∞
∑

k=1

e
− k2π2

2 p̄2
σ2t
kπ

[

sin

(

kπ

(

1 +
p0
p̄

))

− sin

(

kπ

(

1− p0
p̄

))]

Four remarks are in order. First, by substituting our expressions for g and λ we have a

closed form solution for each expression in equation (19). Second, note that we did not need

to compute the evolution of the whole cross section distribution. Instead, we just follow each

firm until the first time that it adjusted its price. This is because the subsequent adjustments

have a zero net contribution to aggregate prices, since after the adjustment every firm price

gap returns to zero, and the subsequent adjustments are as likely to be increases as decreases.

Third, note that the role of the monetary shock is just to displace the initial distribution,

i.e. δ is not an argument of g. Fourth, note that this function has two interesting forms of

homogeneity. The first type of homogeneity is that it is homogenous of degree one in σ, p̄

and δ. This follows because scaling p̄ and δ will just scale proportionally the distribution λ of

the initial price gaps. Furthermore, scaling p̄ and σ keeps the probabilities of hitting any two

scaled up values in the same elapsed time to be the same. The second type of homogeneity

uses that a standard Brownian Motion at time t started at time zero has a normal distribution

with variance t. So scaling the variance of the shock, the price gaps will hit any given value

in a scaled time. These two homogeneity properties can be seen by integrating the previous

expression gives an IRF which satisfies the properties stated in Proposition 8:

P(δ, t) = Θ(δ) + Std[∆p]
∞
∑

k=1

1− e−
k2π2

2
Nat

kπ
×

∫ 1− δ
Std(∆p)

−1

[sin (kπ (1 + x))− sin (kπ (1− x))]λ

(

x,
δ

Std[∆p]
; 1

)

dx

5.2 Invariant distribution of y = ||p||2

Here we study the invariant distribution of the sum of the squares of the price gaps y ≡ ||p||2 =
∑n

i=1 p
2
i (t) under the optimal policy. This will be used to describe the starting point of the

economy before the monetary shock. We will denote the density of the invariant distribution

by f(y) for y ∈ [0, ȳ]. This is interesting to study the response of firms that are in the

steady state to an unexpected shock to their target that displaces the price gaps uniformly.

The density of the invariant distribution for y is found by solving the corresponding forward

Kolmogorov equation, and the relevant boundary conditions (see Appendix A for the proof).
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Proposition 9. The density f(·) of the invariant distribution of the sum of the squares

of the price gaps y, for a given thresholds ȳ in the case of n ≥ 1 products is for all y ∈ [0, ȳ]

f(y) =
1

ȳ
[log(ȳ)− log(y)] if n = 2, and

f(y) = (ȳ)−
n
2

(

n

n− 2

)

[

(ȳ)
n
2
−1 − (y)

n
2
−1
]

otherwise. (20)

The density has a peak at y = 0, decreases in y, and reaches zero at ȳ. The shape depends

on n. The density is convex in y for n = 1, 2, 3, linear for n = 4, and concave for n ≥ 5.

This is intuitive, since the drift of the process for y increases linearly with n, hence the mass

accumulates closer to the upper bound ȳ as n increases. Indeed as n → ∞ the distribution

converges to a uniform in [0, ȳ]. Proposition 9 makes clear also that the shape of the invariant

density depends exclusively on n, the value of the other parameters, ψ,B, σ2 only enters in

determining ȳ, which only stretches the horizontal axis proportionally.

5.3 Impact response in the n ≥ 2 case

Now we turn to studying the economy-wide impact effect of the aggregate shock. To find out

what is the fraction of firms that will adjust prices under the invariant we need to characterize

some features of the invariant distribution of p ∈ Rn. We assume that the aggregate shock

happens once and for all, so that the price gap process remains the same and the firms

solve the problem stated above. First we find out which firms choose to change prices and,

averaging among their n products, by how much. A firm with price gap p ∈ Rn and state

||p||2 = y ≤ ȳ before the shock, will have its price gaps displaced down by δ in each of its n

goods, i.e. its state immediately after the shock is ||p− 1nδ||, where 1n is a vector of ones.

This firm will change its prices if and only if the state will fall outside the range of inaction,

i.e. ||p− 1nδ|| ≥ ȳ, or equivalently if and only if:

||p||2 − 2δ

(

n
∑

i=1

pi

)

+ nδ2 ≥ ȳ or

∑n
i=1 pi√
y

≤ ν(y, δ) ≡ y − ȳ

2δ
√
y
+ n

δ

2
√
y
. (21)

Thus ν(y, δ) gives the highest value for the sum of the n price gaps for which a firm with

state y will adjust the price. The normalized sum of price gaps
∑n

i=1 pi/
√
y takes values on

[−√
n,

√
n]. The right panel of Figure 5 shows the n = 2 case by plotting a circle centered at

zero that contains all the pre-shock price gap, and showing the “displaced” price gaps right

after the δ shock, which are given by a circle centered at (−δ, δ). The shaded area contains

all the price gaps of the firms that, after the shock, will find it optimal to adjust their prices,

i.e. firms for which equation (21) holds.
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A firm whose price gap p satisfies equation (21), i.e. one with (1/
√
y)
∑n

i=1 pi ≤ ν(y, δ),

will change all its prices. The mean price change, averaging across its n products, is δ −
(1/n)

∑n
i=1 pi .

14 Thus we can determine the fraction of firms that change its prices, and

the amount by which they change them, analyzing the invariant distribution of the squared

price gaps, f(y). Let S(z) denote the cumulative distribution function of the sum of the

coordinates of the vectors distributed uniformly in the n dimensional unit sphere. Formally

we define S : R → [0, 1] as

S(z) =
1

L(Sn)

∫

x∈Rn,||x||=1

I {x1 + x2 + ... + xn ≤ z}L(dx) .

where Sn is the n−dimensional sphere and where L denotes its n − 1 Lebesgue measure.

Note that S(·) is weakly increasing, that 0 = S (−√
n), S(0) = 1/2, S (

√
n) = 1 and that

it is strictly increasing for z ∈ (−√
n,

√
n). Remarkably, as shown in Proposition 10, the

distribution of the sum of the coordinates of a uniform random variable in the unit n-

dimensional sphere is the same, up to a scale, than the marginal distribution of any of

the coordinates of a uniform random variable in the unit n-dimensional sphere (which we

discussed in Proposition 6), i.e. the c.d.f. satisfies:

S ′(z) ≡ s(z) =
1

Beta
(

n−1
2
, 1
2

) √
n

(

1−
(

z√
n

)2
)(n−3)/2

for z ∈
(

−
√
n,

√
n
)

(22)

for n ≥ 2, and for n = 1 the c.d.f. S has two points with mass 1/2 at −1 and at +1. Now

we are ready to give expressions for the effect of an aggregate shock δ. First consider Φn,

the fraction of firms that adjust prices. There are f(y)dy firms with state y in the invariant

distribution; among them the fraction S(ν(y, δ)) adjusts. Integrating across all the values

of y we obtain the desired expression. Second, consider Θn, the change in the price level

across all firms. There are f(y)dy firms with state y in the invariant distribution; among

them we consider all the firms with normalized sum of price gaps less than ν(y, δ), for which

the fraction s(z)dz adjust prices by δ − √
y z/n. Considering all the values of y we obtain

the relevant expression. This gives:

Proposition 10. Consider an aggregate shock of size δ. The fraction of price changes

on impact, Φn, and the average price change across the n goods among all the firms in the

14Recall that pi are the price gaps, thus in order to set them to zero the price changes must take the
opposite sign. Moreover, since δ has the interpretation of a cost increase, it decreases the price gap, and
hence its correction requires a price increase.
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economy, Θn, are given by:

Φn(δ) =

∫ ȳ

0

f(y) S (ν(y, δ)) dy (23)

Θn(δ) = δΦn(δ)−
∫ ȳ

0

f(y)

√
y

n

[

∫ ν(y,δ)

−√
n

z s(z)dz

]

dy (24)

where s(·) is given by equation (22) which depends on n, and where f(·) and ν(·), which are

also functions of ȳ and n, are given in equation (20) and equation (21) respectively.

See Appendix A for the proof. Appendix E gives a closed form solution and the numerical

evaluation of equation (23) and equation (24), and a lemma with the analytical characteri-

zation of Θn and Φn stated in part 3 of Proposition 8.

5.4 Impulse response at horizons t > 0 in the n ≥ 2 case

We develop an expression for the impulse responses at horizon t > 0 for the general case

of n ≥ 1, in particular we derive an expression for the flow impact on the price level at

horizon t which we denote as θn(δ, t). As in the case of one good, we start by describing the

distribution of firms indexed by their price gaps, immediately after the monetary shock δ but

before any adjustment takes place. The cdf Λn(p0) gives the fraction of price gaps smaller or

equal to p0 at time zero right after the impact adjustment caused by the monetary shock δ.

Note that Λn(p0) ≤ Θn(δ) for all p0. To understand this expression, let p̃0 ∈ Rn be the price

gap before the monetary shock, which has y = ||p̃0||2 distributed according to the density

f(y) described in equation (20). The price gaps with a given value of ||p̃0||2 ≡ y ≤ ȳ have

a uniform distribution on the sphere, so its density depends only of ||p̃0||2, and integrates

to the area of the sphere with square radius y. The surface area of this sphere is given by

2πn/2y(n−1)/2Γ(n/2). Right after the monetary shock these price gaps become p0 = p̃0 − 1nδ,

where 1n is an n dimensional vector of ones. So we have that the density of the distribution

of the price gaps immediately after the monetary shock, but before any adjustment is

λ(p0, δ) = f
(

||p0 + 1nδ||2
) Γ (n/2)

2 πn/2 ||p0 + 1nδ||n−1
(25)

and recall that f(y) = 0 for any y > ȳ. We note that λ is a function of ȳ and δ, but it is

independent of σ2.

The next step is to find the contribution of those firms with price gap p0 to the change

in aggregate prices at horizon t. As in the case of one good, it suffices to consider the

contribution of those firms that have the first price change exactly at t. This is because all
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the subsequent adjustment have a zero net contribution to prices, since after the adjustment

the firm start with a zero price gap. Since firms will adjust a price when the square radius of

the vector of price gaps first reaches ȳ at time t, we use the distribution of the corresponding

hitting times and place in the sphere. In particular let G(p; t, p0), the probability that if a

firm has a price gap p0 at time zero, it will hit the surface of a sphere of radius
√
ȳ at time

t or before, with a price gap smaller or equal than p. Note that G is a function of σ2 and

ȳ but it is independent of δ. Explicit expressions for the joint density g of the hitting time

t and place p can be found in Wendel (1980) and Yin and Wang (2009). When the price

gap of the firm hits the sphere of radius
√
ȳ with a price gap p, the average change of its n

prices is given by “closing” each of the n price gaps, i.e. the average price change is given by

−(p1 + ...+ pn)/n. Thus the contribution to the change in aggregate prices at time t after a

shock δ at time zero is given by

θn(δ, t) =

∫

||p0||2≤ȳ

[
∫

||p||2=ȳ

− (p1 + p2 + ...+ pn)

n
g(p, t, p0) dp

]

λ(p0, δ) dp0 (26)

Note that the outer integral is computed only for the firms that have not adjusted on impact,

i.e. for the price gaps ||p0||2 ≤ ȳ. Given the knowledge of the closed form expressions for

both λ and g we can compute the multidimensional integrals in θn(δ, t) by Monte Carlo.

We adapt the expression for the density g of hitting times and places in Theorem 3.1 of

Yin and Wang (2009) to the case of a BM with variance σ2. Using the expression for the

surface area of an n dimensional sphere into equation (26) we obtain:

Proposition 11. Fix n ≥ 2, then the impulse response can be written as

Pn(δ, t)−Θn(δ) =
∞
∑

m=0

∞
∑

k=1

em,k
(

δ,
√
ȳ, n
)

[

1− exp

(

−
q2m,k
2n

nσ2

ȳ
t

)]

(27)

where the coefficients qm,k are the ordered (positive) zeroes of the Bessel function Jm+n
2
−1(·).

The coefficients em,k(·, ·, n) are functions homogeneous of degree one in (δ,
√
ȳ) and do not

depend on σ2. Furthermore
∑∞

m=0

∑∞
k=1 em,k(δ, ·, ·) = δ −Θn(δ) ≤ δ.

See Appendix A for the proof. Using the properties of Θn from Proposition 10, and the

homogeneity property of em,k in equation (27) one verifies part 1 and part 2 of Proposition 8.

We end this section with a full characterization of the impulse response function in the

limit case in which n → ∞. The next proposition shows that when n is large the impulse

response is linear, identical to the one in the exogenous staggering model of Taylor (1980) and

the model of Reis (2006), where the staggering emerges from the optimal choice of adjustment

subject to costly information gathering.
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Proposition 12. Assume that δ < Std(∆p). We will let n → ∞ adjusting ȳ and σ2 to

keep Std(∆p) =
√

ȳ/n and Na fixed. Then the fraction of immediate adjusters Φn(δ) →
(δ/Std(∆p))2, the immediate impact in the price level Θn(δ) → δΦn(δ), and the impulse

response becomes linear, i.e. Pn(δ, t) → Θn(δ) + δ Na t for 0 < t < T ≡ (1− Φn(δ)) /Na

and Pn(δ, t) → δ for t ≥ T . Furthermore, the average price change across firms at every

0 ≤ t ≤ T is equal to δ.

See Appendix A for the proof. The impact effect on the price level is of the order δ3, and

hence for small values of δ it is negligible compared to the the impact for the n = 1 case,

i.e. Θn/Θ1 ↓ 0 for δ ↓ 0, as shown in Figure 3. Moreover, Figure 4 shows that the half life

of the shock is (1/2− (δ/Std(∆p))2) /Na, which converges to 1/(2Na) for small shocks. In

Figure 4, describing a 1% shock in the money supply, the half life is three times greater than

the one produced by the n = 1 case. A main consequence of the large n is that there is no

selection effect. This is to be compared with the case of n = 1 where the selection effect

is strongest and where, in the periods right after the shock (small t), all price adjustments

are price increases. The reason for the lack of selection when n is large is that for a firm

selling many products there are, upon adjustment, many cancellations since some prices will

be increased and others decreased, so that the average price change across the firms’ good is

simply δ.

5.5 On the output effect of monetary shocks

This section discusses how the impulse response for prices are informative about the inter-

pretation, time-profile and size of the output effect of a monetary shock. In the general

equilibrium set-ups discussed at the beginning of this section the deviation of output from its

steady state value is proportional to the deviation of the real balances, δ−Pn(δ, t), as shown
in equation (16) and common to the models of Golosov and Lucas (2007); Caplin and Leahy

(1997); Danziger (1999). From now on we refer to δ − Pn(δ, t) as to the impulse response of

output, which is the expression predicted by our model in the case of log preferences (ǫ = 1).15

The half life of the output response is identical to the half life of the price level only in

the case in which Θn = 0, i.e. when there is no jump of the price level on impact, a condition

that holds for infinitesimal shocks. When the price level jumps on impact (Θn > 0), the

half-life of the output response is longer than the half-life of the price level. The reason is

that the jump shortens the time required for the price level to reach its half-life value (i.e.

δ/2), whereas the half-life target of the real output effect, given by ( δ−Θn(δ) )/2 shifts, and

so its half life is longer. To picture this effect in Figure 4, notice that different impact levels

15If ǫ 6= 1 then the effect on output should be divided by ǫ, as shown in equation (16).
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(corresponding to e.g. different values of n) do not shift the half-life line (whose position

is at 0.5%), but will shift the half life line of the real-output effect (this line is not drawn

in the figure, it is above 0.5 and shifts up as Θn increases). The impact effect on output

also depends on the size of the shock: on one hand for very large shocks there is full price

flexibility and hence no effect on output regardless of n; on the other hand for small monetary

shocks the impact effect on prices is of order smaller than δ, and hence the impact effect on

output is approximately δ for all values of n.

As a summary statistic of the real effect of monetary shock we use the area under the

impulse response for output, i.e.

Mn(δ) =

∫ ∞

0

(δ −Pn(δ, t)) dt

which can be interpreted as the cumulative effect on output following the shock. This measure

combines the size of the output deviations from the steady state with the duration of these

deviations. Since Pn(δ, t) depends only on the parameters Std(∆p) and Na, so does Mn(δ).

Because of the homogeneity of Pn(δ, t) discussed in part 2 of Proposition 8, and the way time

(Na t) enters Pn(δ, t) shown in Proposition 11, we can thus write

Mn ( δ ; Na , Std(∆p ) ) =
Std(∆p)

Na

Mn

(

δ

Std(∆p)
; 1 , 1

)

(28)

so that the effect of a shock of size δ in an economy characterized by parameters Std(∆p)

and Na can be readily computed using the “normalized” effect for an economy with unit

parameters and a standardized shock.

The determinants of the real effects of monetary shocks identified by equation (28) offer

a new insight to measure the degree of aggregate price stickiness in menu cost models. The

previous literature has focused almost exclusively on the frequency of price changes, Na,

as a measure of stickiness, and hence of the effect of monetary policy. But equation (28)

shows that the dispersion of price changes, Std(∆), is an equally important determinant.

Indeed the area under the impulse response of output is proportional to the ratio of these

two quantities, where the constant of proportionality depends on the (normalized) size of the

monetary shock, δ/Std(∆p) and, in our set-up, on the number of products n.

Figure 6 illustrates how the real output effect of a monetary shock varies with the size of

the shock (δ) and the number of goods sold by the firm (n). The figure plots the summary

impact measure as a function of δ for an economy with Std(∆p) = 0.10 and Na = 1, for four

values of n. It is shown that for each value of n the cumulative real effect of a monetary

shock is hump-shaped in the size of the shock (δ). The effect is nil at extremes, i.e. at δ = 0
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Figure 6: Cumulative Output effect M(δ) ; Parameters: Na = 1 , Std(∆p) = 0.10
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and at 2 Std(∆p) (not shown), as a reflection of the fact that large shocks induce full price

flexibility (see part 3 of Proposition 8). The picture shows that the real effect is maximum

for a shock size δ that is about 1/2 of the standard deviation of prices. More interestingly,

for the purpose of this paper, the size of the real effects varies with the number of goods n.

Larger values of n, i.e. firms selling more goods, produce larger cumulative effects for small

values of the shock and also larger maximum values of the effect. In this sense the stickiness

of the economy is increasing in n. The maximum cumulative effect on output, in the order

of 1.5% output points, is obtained as n → ∞, a similar value though obtains already for

n = 10. On the other hand, smaller effects are produced in models with n = 1 or n = 2.

6 Extension: correlated shocks across products

This section extends the baseline model to the case of price gaps pi that are mutually cor-

related and/or that have a common drift. These extensions impair the symmetry of the

problem so that one might fear to lose the tractability that was exploited above. Surpris-

ingly, despite the apparent complexity of these extensions, the modified problem remains

tractable: instead of the scalar state variable y, the state of the problem with either drift,

correlation, or both, now includes only one additional variable measuring the sum of the

coordinates of the vector, namely z =
∑n

i=1 pi. For ease of exposition we focus here on the

problem with correlated price gaps but no drift. We formulate the problem, derive its cross
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section implications and characterize the impulse response to a monetary shock. A fuller

derivation of the results, computations, and more extensions including the case with both

drift and correlation, is given in Appendix F.

The problem solved by the firm is, as before, the minimization of the value function in

equation (1), subject to a law of motion for the pi that allows for correlation but no drift.

The diffusions for the price gaps satisfy: E [dp2i (t)] = σ̂2 dt and E [dpi(t)dpj(t)] = ρ σ̂2 dt for

all i = 1, ..., n and j 6= i and for two positive constants σ̂2 and ρ. Then we can write that

each price gap follows dpi(t) = σ̄ dW̄(t) + σdWi(t) for all i = 1, ..., n where W̄ ,Wi(t) are

independent standard BMs so that σ̂2 = σ̄2 + σ2 and the correlation parameter is ρ = σ̄2

σ̄2+σ2
.

Define: y(t) =
∑n

i=1 p
2
i (t) and z(t) =

∑n
i=1 pi(t), which by Ito’s lemma obey the diffusions

dy(t) = n
[

σ2 + σ̄2
]

dt + 2σ
√

y(t) dWa(t) + 2σ̄z(t) dWc(t)

dz(t) = n σ̄ dWc(t) +
√
nσ







z(t)
√

n y(t)
dWa(t) +

√

√

√

√1−
(

z(t)
√

n y(t)

)2

dWb(t)







where (Wa,Wb,Wc) are three standard (univariate) independent BM’s. Notice that the

introduction of correlation makes the variance of y depend on the level of z.

In the case where σ and σ̄ are both positive the state of this problem will be the pair

(y, z) and the value function, denoted by v(y, z), is symmetric in z around zero, so v(y, z) =

v(y,−z). The optimal policy is to have an inaction region I = {(y, z) : 0 ≤ ȳ(z)} for some

function ȳ(z) satisfying ȳ(z) = ȳ(−z) > 0 for al z > 0. We solve v(y, z) numerically for a

problem with r = 0.05 per year, B = 20, and a volatility of each price gap of 13% with a

pair-wise correlation of 1/2, so σ = σ̄ = 0.13/
√
2. The menu cost is 4% of friction-less profits

per good, so ψ/n = 0.04. We display the results for the case of n = 10 products per firm.

The left panel of Figure 7 plots the value function over its (y, z) domain. The value

function region where control (i.e. price adjustment) is optimal is marked by green stars.

The feasible state space for the firm is the y, z region inside the parabola in the right panel of

the figure. For each z the shape of the value function is similar to the case with no correlation.

Fixing y, the value function is decreasing in |z|. This is because a higher |z| implies a higher

conditional variance of y, and hence a higher option value. Because of the higher option

value the threshold ȳ(z) is increasing in |z|. While the inaction set is two-dimensional we

emphasize that the state of the problem is n dimensional: for instance in the figure n = 10.

We use the decision rule described above to produce the invariant distribution of a cross

section of firms using simulations. The model parameterization is close to the one used

in the main body of the paper, i.e. it produces a frequency of adjustments per year that

is Na = 1.3 and a standard deviation Std(∆pi) = 0.11. The left panel of Figure 8 plots
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Figure 7: Value function and decision rules with correlated shocks: ρ = 0.5
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the standardized distribution of price changes w(∆pi) for n = 2, 3, 50 when the correlation

between the shocks is ρ = 0.5. The key effect of correlation is to increase the mass of price

changes with similar sign, i.e. to move mass from the center of the distribution towards

both sides. Not surprisingly, adding correlation makes the model closer to the n = 1 case,

a feature that is important for both its empirical plausibility (i.e. the comparison with

empirical distribution of price changes) and for the predicted effect of monetary shocks. The

case of n = 3 is particularly revealing since for zero correlation the distribution is uniform,

but as the correlation is positive the density becomes U shaped, with a minimum at zero

and two maxima at a high values of the absolute value, as in the case of n = 1. The case of

n = 50 is also informative because with zero correlation this distribution is essentially normal.

However with positive correlation the distribution of price changes becomes bimodal, with

a local minimum of its density at zero. Interestingly the simultaneous near normality and

bimodality (i.e. the dip of the density around the center of the support) which is displayed

by the n = 50 case with correlation, is apparent in several data sets such as Midrigan (2009)

(see Figure 1, bottom two panels), Wulfsberg (2010) (see Figure 4), and has been explicitly

tested and estimated by Cavallo and Rigobon (2010).

We conclude with the analysis of the price level response to a once and for all shock to

the money supply in the presence of correlated shocks. We stress that to solve for the IRF

for any n we only need to keep track of a two-dimensional object. This makes the procedure

computationally feasible. We assume a correlation between shocks equal to ρ = 1/2 for four
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Figure 8: The aggregate economy with correlated shocks: ρ = 0.5
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economies with n = 1, 2, 3, 10. These economies are observationally equivalent in the steady

state in terms of the price adjustment frequency Na and standard deviation Std(∆p).16 The

impulse responses for n = 2, 3, 10, displayed in Figure 8, show that introducing correlation

significantly increases the price flexibility at all horizons: all impulse responses are now very

close the the one produced by the model with n = 1. Contrast this outcome to the one

that was obtained with no correlation in Figure 4. The intuition for this result is simple:

introducing correlation increases the mass of “large” price changes, as was explained above.

This effect brings back the “selection” effect that was being muted as n got large in models

with uncorrelated shocks.

7 Concluding remarks

This paper presented a stylized model of price setting that substantially improves the cross-

sectional predictions of menu cost models in comparison to the patterns that characterize

the micro data. For instance, the model is able to produce a substantial mass of small price

changes and a bell-shaped size distribution of price changes. The analytical tractability of

16Motivated by the scaling and stretching results of Proposition 8 we normalize the parameters so that the
expected number of price changes per year is 1 (Na = 1) and consider a shock of 10% of the size of the steady
state standard deviation of price changes (i.e. say δ = 0.01 and Std(∆p) = 0.1, i.e. a one percent change in
money supply and a 10% steady state standard deviation of price changes).
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the model allowed us to derive a full characterization of the steady state predictions as well

as of the economy’s aggregate response to a once and for all unexpected monetary shock

which we summarized in the Introduction.

Several simplifying assumptions were key in obtaining analytical results. In particular,

our solution for the firm’s decision problem used a second order approximation of the profit

function and assumed no drift in the price gaps.17 Moreover the impulse response functions

were computed using the steady state decision rules i.e. ignoring the general equilibrium

feedback effect. The paper discussed several extensions of the basic model allowing for

drift (in e.g. inflation or aggregate productivity) as well as correlated shocks among the

different goods, showing that the model retains a great deal of tractability.18 We showed in

Section 6 that correlation among the shocks tends to reinforce the selection effect, so that

the real effect of monetary policy becomes smaller as correlation increases. Moreover we

extensively explored the robustness of our analytical results compared to the ones produced

by models that feature an asymmetric profit function, the presence of drift, and that account

for the general equilibrium feedback on decision rules following the aggregate shock. These

investigations, reported in Appendix C, show that the approximate results obtained in the

paper provide very accurate predictions of the exact numerical solution produced by models.

We think that several extensions are interesting for future research. One feature of the

data that our model misses concerns the kurtosis of price changes. In the model the maximum

level of kurtosis for the distribution of price changes predicted by the model is 3, as in the

Normal distribution. This value is larger than the prediction of the classical Barro’s (1972)

or Dixit’s (1991) menu cost models (where kurtosis is 1), but it is still small compared to

the large excess kurtosis detected in micro datasets. Larger values of the kurtosis can be

obtained by introducing the possibility of random adjustment opportunities, as in models

where the size of the menu cost is stochastic. We explore this problem in Alvarez, Le

Bihan, and Lippi (2012) and show that this assumption improves the empirical fit of the

model cross section to the micro data and that it increases the real effect of a monetary

shock by reducing the “selection” effect. Another interesting extension concerns the role of

the linear production function (and no capital). The precision of our approximate solution

benefited from this assumption since the firm’s “optimal prices” did not depend on the level

of the aggregate consumption. Instead, if production features decreasing returns to scale, the

strength of the “pricing complementarities” increases, i.e. the optimal price depends on the

17In Alvarez, Lippi, and Paciello (2011) we proved that the zero inflation assumption provide a good
approximation to the true rules for inflation rates that are small relative to the variance of idiosyncratic
shocks, an assumption that seems appropriate for developed economies (see Gagnon (2009); Alvarez et al.
(2011) for related evidence).

18We thank Ricardo Caballero, and especially Carlos Carvalho, for suggesting a two-dimensional state
space representation that allowed a tractable analysis of the problem.
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aggregate consumption. We leave it for the future to explore the quantitative importance of

this alternative assumption.
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A Proofs

Proof. (of Proposition 2 ) Notice that v′(0) = β1 and that v(0) = β0, so that we require
β1 > 0, which implies β0 > 0. Moreover, if β1 > B/r then v is strictly increasing and strictly
convex. If β1 = B/r then v is linear in y. If 0 < β1 < B/r, then v is strictly increasing at
the origin, strictly concave, and it reaches its unique maximum at a finite value of y. Thus,
a solution that satisfies smooth pasting requires that 0 < β1 < B/r, and the maximizer is ȳ.
In this case, y = 0 achieves the minimum in [0, ȳ]. Thus we have verified i), ii) and iii).

Next we prove uniqueness. Let βi(β1) be the solution of equation (10), as a function of β1.
Note that for 0 < β1 < B/r, all the βi(β1) < 0 for i ≥ 2 and are increasing in β1, converging to
zero as β1 goes to B/r. Smooth pasting can be written as 0 = v′(ȳ; β1) ≡

∑∞
i=1 i βi(β1) ȳ

i−1

where the notation emphasizes that all the βi can be written as a function of β1. From the
properties of the βi(·) discussed above it follows that we can write the unique solution of
0 = v′(ρ̄(β1); β1) as a strictly increasing function of β1, i.e. ρ̄

′(β1) > 0. The value matching
condition at ȳ gives: ψ = v(ȳ, β1) − v(0, β1) = v(ȳ, β1) − β0(β1) =

∑∞
i=1 βi(β1) ȳ

i. We
note that, given the properties of βi(·) discussed above, for any given y > 0 we have that
v(y, β1)− β0(β1) is strictly increasing in β1, as long as 0 < β1 < B/r. Thus, define

Ψ(β1) = v(ρ̄(β1), β1)− v(0, β1) =

∞
∑

i=1

βi(β1) ρ̄(β1)
i .

From the properties discussed above we have that Ψ(β1) is strictly increasing in β1 and that
it ranges from 0 to ∞ as β1 ranges from 0 to B/r. Thus Ψ is invertible. The solution of the
problem is given by setting: β1(ψ) = Ψ−1(ψ) and ȳ(ψ) = ρ̄(β1(ψ)). �

Proof. (of Proposition 3 ) Using the expression for {βi} obtained in Proposition 1, the
value matching and smooth pasting conditions can be written as two equations in β2 and ȳ:

ψ

ȳ2
=

B

rȳ
+ β2

[

2σ2(n + 2)

rȳ
+ 1 +

∞
∑

i=1

κi r
i ȳi

]

, 0 =
B

rȳ
+ β2

[

2σ2(n+ 2)

rȳ
+ 2 +

∞
∑

i=1

κi (i+ 2) ri ȳi

]
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where κi = r−i β2+i
β2

=
∏i

s=1
1

σ2(s+2)(n+2s+2)
. This gives an implicit equation for ȳ:

ψ =
B

r
ȳ

[

1−
2σ2(n+2)

rȳ
+ 1 +

∑∞
i=1 κi r

i ȳi

2σ2(n+2)
rȳ

+ 2 +
∑∞

i=1 κi (i+ 2) ri ȳi

]

Since the right hand side is strictly increasing in ȳ, and goes from zero to infinity, then we
obtain Part (i). Since the right hand side is strictly decreasing in n, and goes to zero as
n→ ∞, then we obtain Part (ii). Rearranging this equation and defining z = ȳ r/σ2

ψ 2(n+ 2)

Bσ2
r2 = z2 + z3

[

2(n+ 2)
∑∞

i=1 ωi (i+ 1) zi−1 − 2−∑∞
i=1 ωi (i+ 2) zi

2(n+ 2) + 2z + z
∑∞

i=1 ωi (i+ 2) zi

]

(29)

where ωi =
∏i

s=1
1

(s+2)(n+2s+2)
. Using the expression for ωi and collecting terms on zi one

can show that the square bracket of equation (29) that multiplies z3 is negative, and hence
ȳ >

√

ψ 2(n+ 2)σ2/B. Letting b = ψr22(n+ 2)/(Bσ2) we can write equation (29) as:

1 =
z2

b

(

1 + z

[

2(n+ 2)
∑∞

i=1 ωi (i+ 1) zi−1 − 2−∑∞
i=1 ωi (i+ 2) zi

2(n+ 2) + 2z + z
∑∞

i=1 ωi (i+ 2) zi

])

Since z ↓ 0 as b ↓ 0, then z2/b ↓ 1 as b ↓ 0, establishing Part (iii). From equation (29) it is
clear that the optimal threshold satisfies ȳ = σ2

r
Q
(

ψ
Bσ2

r2, n
)

. Differentiating this expression
we obtain Part (iv). �

Proof. (of Proposition 5 ) The proof uses probability theory results on the first passage time
of an n-dimensional brownian motion. Let τ be the stopping time defined by the first time
when ||p(τ)||2 reaches the critical value ȳ, starting at ||p(0)|| = 0 at time zero. Let Sn(t, ȳ) be
the probability distribution for times t ≥ τ , alternatively let Sn(·, ȳ) be the survival function.
Theorem 2 in Ciesielski and Taylor (1962) shows that for n ≥ 1:

Sn(t, ȳ) =
∞
∑

k=1

ξn,k exp

(

−
q2n,k
2ȳ

σ2 t

)

, where ξn,k =
1

2ν−1Γ(ν + 1)

qν−1
n,k

Jν+1(qn,k)

where Jν(z) is the Bessel function of the first kind, ν = (n − 2)/2 and qn,k are the positive
zeros of Jν(z), indexed in ascending order according to k, and where Γ is the gamma function.
The hazard rate is then given by:

hn(t, ȳ) = − 1

Sn(t, ȳ)

∂Sn(t, ȳ)

∂t
, with asymptote lim

t→∞
hn(t, ȳ) =

q2n,1 σ
2

2 ȳ
.

For n > 2 Hethcote (1970) provides the lower bound: q2n,k >
(

k − 1
4

)2
π2 +

(

n
2
− 1
)2

. �

Proof. (of Proposition 6 ) We first establish the following Lemma.

Lemma 1. Let z be distributed uniformly on the surface of the n-dimensional sphere of
radius one. We use x for the projection of z in any of the dimension, so zi = x ∈ [−1, 1].
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The marginal distribution of x = zi has density:

fn(x) =
∫∞
0

s(n−3)/2e−s/2

2(n−1)/2 Γ[(n−1)/2]
e−sx

2/[2(1−x2)]
√
2π

s1/2

(1−x2)3/2 ds =
Γ(n/2)

Γ(1/2) Γ[(n−1)/2]
(1− x2)(n−3)/2

where the Γ function makes the density integrate to one.

The lemma applies Theorem 2.1, part 1 in Song and Gupta (1997) using p = 2 so that the
norm is Euclidian and k = 1 so that we have the marginal of one dimension. Now consider
the case where the sphere has radius different from one. Let p ∈ ∂I, then p = p

∑n
i=1 p

2
i
ȳ =

p√
∑n
i=1 p

2
i

√
ȳ = z

√
ȳ where z is uniformly distributed in the n dimensional sphere of radius

one. Thus each pi has the same distribution than x
√
ȳ. Using the change of variable formula

we obtain the required result. Some algebra using equation (14) for the density w(·), gives the
expressions for the standard deviation, kurtosis, and the other moments in the proposition.

For the convergence of ∆pi/Std(∆pi) to a Normal, we show that y = x2 n converges to a
chi-square distribution with 1 d.o.f., where x is the marginal of a uniform distribution in the
surface of the n-dimensional sphere. The p.d.f of y ∈ [0, n], the square of the standardized

x, is
Γ(n2 )

n Γ(n−1
2 ) Γ( 1

2)

(

1−
(

y
n

))(n−3)/2 ( y
n

)−1/2
, and the p.d.f. of a chi-square with 1 d.o.f. is

exp(−y/2) y−1/2

√
2 Γ( 1

2)
. Then, fixing y, taking logs in the ratio of the two p.d.f.’s, and taking the limit

as n→ ∞, using that
Γ(n2 )

√
2

Γ(n−1
2 )

√
n
→ 1 as n→ ∞ we obtain the desired convergence result. �

Proof. (of Proposition 9 ) The forward Kolmogorov equation is:

0 =
1

2

∂2

∂y2

(

[2σ
√
y]2 f(y)

)

− ∂

∂y

(

nσ2f(y)
)

for y ∈ (0, ȳ) , (30)

with boundary conditions: 1 =
∫ ȳ

0
f(y) dy and f(ȳ) = 0 . The first boundary ensures that

f is a density. The second is due to the fact that when the process hits ȳ it is returned to the
origin, so the mass escapes from this point. Equation (30) implies the second order ODE:
f ′(y)(n

2
− 2) = yf ′′(y). The solution of this ODE for n 6= 2 is f(y) = A1y

n/2−1 + A0 for
two constants A0, A1 to be determined using the boundary conditions: 0 = A1(ȳ)

n/2−1 + A0

and 1 = A1

n/2
(ȳ)n/2 + A0ȳ. For n = 2 the solution is f(y) = −A1 log(y) + A0 subject to the

analogous boundary conditions. Solving for A0, A1 gives the desired expressions. �

Proof. (of Proposition 10) The only result to be established is that the distribution of
the sum of the coordinates of a vector uniformly distributed in the n−dimensional sphere
has density given by equation (22). Using the result in page 387 of Khokhlov (2006), let
c : R → R be measurable, and let L be the Lebesgue measure in n dimensional sphere, then

∫

x∈Rn,||x||=1

c(x1 + ... + xn)dL(x) =
2π(n−1)/2

Γ(n−1
2
)

∫ 1

−1

c
(√

nu
)

(1− u2)(n−3)/2du

=
2πn/2√

n Γ
(

1
2

)

Γ(n−1
2
)

∫

√
n

−√
n

c
(√

nu
)

(

1−
(√

nu√
n

)2
)(n−3)/2

d
(√

nu
)
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Consider a function c(x1 + · · ·+ xn) = 1 if α ≤ x1 + · · ·+ xn ≤ β. Dividing by the surface
area of the n−dimensional sphere we obtain equation (22). �

Proof. (of Proposition 11) We use the expression (3.1) in Theorem 3.1 of Yin and Wang
(2009) into equation (26) to obtain for n ≥ 2:

θn(δ, t) =

∞
∑

m=0

∞
∑

k=1

̺m,k(δ,
√
ȳ, n) σ2 e−

q2m,k
2n

nσ2

ȳ
t where (31)

̺m,k(δ,
√
ȳ, n) =

∫

||p0||2≤ȳ

[
∫

||p||2=ȳ

(p1 + p2 + ...+ pn)

n
̟m,k(p, p0,

√
ȳ, n) dp

]

λ(p0, δ) dp0

where ̟m,k are given by

̟m,k(p, p0,
√
ȳ, n) =

Γ(n
2
− 1) (m+ n

2
− 1)Z

n
2
−1

m (cos (∠p0p0)) qm,k Jm+n
2
−1

(

||p||
||p0|| qm,k

)

2 π
n
2 ||p||n2+2 ||p0||

n
2
−1 J ′

m+n
2
−1(qm,k)

where Zν
m (x) are Gegenbauer polynomials of degree m and ν, ∠p0p0 ≡ (p · p0) / (||p|| ||p0||) is

the angle between p0 and p, qm,k is the k-th (ordered) zero of the Bessel function Jm+n
2
−1(·),

and J ′
m+n

2
−1(·) is the derivative of the Bessel function. The expression in Proposition 11

follows by integrating the right hand side of equation (31) with respect to t, thus the co-
efficients em,k are given by em,k(δ,

√
ȳ, n) = ̺m,k(δ,

√
ȳ, n) ȳ 2/ q2m,k . It is immediate that

the homogeneity of degree one of em,k(·, n) is equivalent to the homogeneity of degree −1 of
̺m,k(·, n). To establish the homogeneity we prove two properties: i) Write λ (p0, δ,

√
ȳ) which

include ȳ as an argument, since it is an argument of f , see equation (20). Direct computation
on equation (25) gives λ (p0, aδ, a

√
ȳ) = λ (p0/a, δ,

√
ȳ) /an+1 for any a > 0. ii) Direct com-

putation on ̟m,k gives the following: ̟m,k(p, p0, a
√
ȳ, n) = ̟m,k(p/a, p0/a,

√
ȳ, n)/an+1 for

any a > 0. Using i) and ii) into the expression for ̺m,k and the change of variables p′0 = p0/a
and p′ = p/a, and that the determinant of the Jacobian in each of the two integrals is an

proves the homogeneity of degree −1 of ̺m,k.
�

Proof. (of Proposition 12). Let ỹ ≡ y/ȳ be the values under the invariant distribution f in
equation (20), and let ỹ(δ) denote the values of the same price gaps right after the monetary
shock but before adjustment. Let p be a vector of price gaps satisfying ỹ = ||p||2/ȳ so that,
for this p, ỹ(δ) = ||p − δ1n||2/ȳ. Taking y ∈ (0, ȳ), developing the square in the expression
for the corresponding value of ỹ(δ), multiplying and dividing the cross-product term by

√
y,

and using the definition of ỹ and Std(∆p) =
√

ȳ/n we have:

ỹ(δ) = ỹ − 2δ

√

y

ȳ

∑n
i=1 pi√
y

1√
ȳ
+
n

ȳ
δ2 = ỹ − 2δ

√

ỹ

(∑n
i=1 pi√
y

1√
n

)

1

Std(∆p)
+

(

δ

Std(∆p)

)2

Conditional on ỹ, we can regard ỹ(δ) as a random variable, whose realizations correspond to
each of the price gaps with ||p||2/ȳ = ỹ, and where the price gaps p are uniformly distributed
on the sphere with square radius y. Proposition 10 gives the density of the random variable
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∑n
i=1 pi√
y

, and using Proposition 6 it follows that for all n its standard deviation is equal to

one and its expected value equal to zero. Thus
∑n
i=1 pi√
y

1√
n
has an expected value equal to

zero and variance 1/n. Hence limn→∞ ỹ(δ) = ỹ +
(

δ
Std(∆p)

)2

where the convergence to a

(degenerate) random variable is in distribution. Combining this result for each ỹ ∈ [0, 1]
with Proposition 9 for n→ ∞ we obtain that the distribution of ỹ(δ) converges to a uniform

distribution in the interval

[

(

δ
Std(∆p)

)2

, 1 +
(

δ
Std(∆p)

)2
]

. Immediately after the monetary

shock any firm with y > ȳ, or equivalently any firm with ỹ(δ) > 1, adjust its prices. From
here we see that the fraction of firms that adjusts immediately after the shock, denoted by
Φn, converges to (δ/Std(∆p))2.

To characterize Pn for t ≥ 0 we establish three properties: i) the expected price change
conditional on adjusting at time t = 0 is equal to δ, ii) the fraction of firms that adjusts for
the first time after the shock between 0 and t < [δ −Θn(δ)] / [δ Na] equals Na t, and iii) the
expected price change conditional on adjusting at time 0 ≤ t < [δ −Θn(δ)] / [δ Na] is equal
to δ. To establish i), note that, as argued above, as n → ∞ firms adjust its price if and
only if they have a price gap p before the monetary shock with square radius larger than
1 − (δ/Std(∆p))2. Since in the invariant distribution price gaps are uniformly distributed
on each of the spheres, the expected price change across the firms with the same value of y
equals to δ. To establish ii) note that, keeping constant Na as n becomes large, the law of
motion for ỹ in equation (13) converges to a deterministic one, namely ỹt = ỹ0 +Na t. This,
together with the uniform distribution for ỹ0 implies the desired result. Finally, iii) follows
from combining i) and ii). �

45



ONLINE APPENDICES

Price setting with menu cost

for multi-product firms

Fernando Alvarez and Francesco Lippi

November 20, 2012



B General Equilibrium Set-Up

This appendix outlines the general equilibrium set-up that underlies our approximation. The
preferences of the representative agents are given by:

∫ ∞

0

e−rt
[

U (c(t))− α ℓ(t) + log

(

M(t)

P (t)

)]

dt (32)

where c(t) is an aggregate of the goods produced by all firms, ℓ(t) is the labor supply, M(t)
the nominal quantity of money, and P (t) the nominal price of one unit of consumption,
formally defined below (all variables at time t). We will use U(c) = (c1−ǫ− 1)/(1− ǫ). There
is a unit mass of firms, index by k ∈ [0, 1], and each of them produces n goods, index by
i = 1, ..., n. There is a preference shock Ak,i(t) associated with good i produced by firm k
at time t, which acts as a multiplicative shifter of the demand of each good i. Let ck,i(t) be
the consumption of the product i produced by firm k at time t. The composite Dixit-Stiglitz
consumption good c is

c(t) =

[

∫ 1

0

(

n
∑

i=1

Ak,i(t)
1
η ck,i(t)

η−1
η

)

dk

]
η
η−1

(33)

For firm k to produce yk,i(t) of the i good at time t requires ℓk,i(t) = yk,i(t)Zk,i(t) units
of labor, so that W (t)Zk,i(t) is the marginal cost of production. We assume that Ak,i(t) =
Zk,i(t)

η−1 so the (log) of marginal cost and the demand shock are perfectly correlated. We
assume that Zk,i(t) = exp (σWk,i(t)) where Wk,i are standard BM’s, independent across all
i, k.

The budget constraint of the representative agent is

M(0)+

∫ ∞

0

Q(t)

[

Π̄(t) + τ(t) + (1 + τℓ)W (t)ℓ(t)− R(t)M(t)−
∫ 1

0

∑

i=1

Pk,i(t)ck,i(t)dk

]

dt = 0

where R(t) is the nominal interest rates, Q(t) = exp
(

−
∫ t

0
R(s)ds

)

the price of a nominal

bond, W (t) the nominal wage, τ(t) the lump sum nominal transfers, τℓ a constant labor
subsidy rate, and Π̄(t) the aggregate (net) nominal profits of firms.

The first order conditions for the household problem are (with respect to ℓ,m, c, ck,i):

0 = e−rtα− λ0(1 + τℓ)Q(t)W (t)

0 = e−rt
1

M(t)
− λ0Q(t)R(t)

0 = e−rtc(t)−ǫ − λ0Q(t)P (t)

0 = e−rtc(t)−ǫc(t)1/ηck,i(t)
−1/ηAk,i(t)

1/η − λ0Q(t)Pk,i(t)

where λ0 is the Lagrange multiplier of the agent budget constraint. If the money supply

1



follows M(t) =M(0) exp (µt), then in an equilibrium

λ0 =
1

(µ+ r)M(0)
and for all t : R(t) = r + µ , W (t) =

α

1 + τℓ
(r + µ)M(t) (34)

Moreover the foc for ℓ and the one for c give the output equation

c(t)−ǫ =
α

1 + τℓ

P (t)

W (t)
(35)

From the household’s f.o.c. of ck,i(t) and ℓ(t) we can derive the demand for product i of
firm k, given by:

ck,i(t) = c(t)1−ǫηAk,i(t)

(

α

1 + τℓ

Pk,i(t)

W (t)

)−η
(36)

In the impulse response analysis of Section 5 we assume µ = 0, τℓ = 0, and that the initial
value of M(0) is such that M(0)/P (0), computed using the invariant distribution of prices
charged by firms, is different from its steady state value.

The nominal profit of a firm k from selling product i at price Pk,i, given the demand shock
is Ak,i, marginal cost is Zk,i, nominal wages are W and aggregate consumption c, is (we omit
the time index):

c1−ǫηAk,i

(

α

1 + τℓ

Pk,i
W

)−η
[Pk,i −WZk,i]

or, collecting WZk,i and using that Ak,iZ
1−η
k,i = 1, gives

Wc1−ǫη
(

α

1 + τℓ

Pk,i
WZk,i

)−η [
Pk,i
WZk,i

− 1

]

so that the nominal profits of firm k from selling product i with a price gap pk,i is

W (t) c(t)1−ǫη Π(pk,i(t)) where Π(pk,i) ≡
(

α

1 + τℓ

η

η − 1

)−η
e−η pk,i

[

epk,i
η

η − 1
− 1

]

(37)

where we rewrite the actual markup in terms of the price gap pk,i, defined in equation (15), i.e.
Pk,i
WZk,i

= epk,i η
η−1

. This shows that the price gap pk,i is sufficient to summarize the value of prof-

its for product i. Note also that, by simple algebra, Π(pk,i)/Π(0) = e−η pk,i [1 + η epk,i − η],
which we use below.

Next we show that the ideal price index P (t), i.e. the price of one unit of the composite
good, can be fully characterized in terms of the price gaps. Using the definition of total expen-
diture (omitting time index) P c =

∫ 1

0

∑n
i=1 (Pk,i ck,i) dk, replacing ck,i from equation (36),

and using the first order condition with respect to c to substitute for the c−ǫ term, gives

P =W

(

∫ 1

0

n
∑

i=1

(

Pk,i
WZk,i

)1−η
dk

)
1

1−η

(38)
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which is the usual expression for the ideal price index, and can be written in terms of the
price gaps using

Pk,i
WZk,i

= epk,i η
η−1

.

B.1 The firm problem

We assume that if firm k adjusts any of its n nominal prices at time t it must pay a fixed
cost equal to ψℓ units of labor. We express these units of labor as a fraction ψ of the steady
state frictionless profits from selling one of the n products, i.e. the dollar amount that has to
be paid in the event of a price adjustment at t is ψℓW (t) = ψ W (t)c̄1−ηǫΠ(0). To simplify
notation, we omit the firm index k in what follows, and denote by p the vector of price gaps
and by pi its i− th component.

The time 0 problem of a firm selling n products that starts with a price gap vector p is
to choose {τ ,∆p} ≡ {τj ,∆pi(τj)}∞j=1 to minimize the negative of the expected discounted
(nominal) profits net of the menu cost. The signs are chosen so that the value function is
comparable to the loss function in equation (1):

−E

[

∫ ∞

0

e−rt

(

n
∑

i=1

W (t) c(t)1−ǫηΠ (pi(t))

)

dt−
∞
∑

j=1

e−rτjW (t) ψℓ

∣

∣

∣

∣

∣

p(0) = p

]

Letting Π̂(pi) ≡ Π(pi)/Π(0), using that equilibrium wages are constant W (t)/W̄ = eδ, and
the parameterization of fixed cost in terms of steady state profits: ψℓ = ψ c̄1−ηǫ Π(0) gives
(where bars denote steady state values):

V(τ ,∆p, c; p) ≡ −W̄ eδ c̄1−ǫηΠ(0)E

[

∫ ∞

0

e−rt
n
∑

i=1

S (c(t), pi(t)) dt−
∞
∑

j=1

e−rτjψ
∣

∣ p(0) = p

]

(39)
subject to equation (2), ∆pi(τj) ≡ limt↓τj pi(t) − limt↑τj pi(t) for all i ≤ n and j ≥ 0, where
c = (c(t))t≥0 and where the function S : R+ × R+ → R gives the normalized per-product
profits as a function of aggregate consumption c and the price gap of the product g as follows:

S(c, g) ≡
(c

c̄

)1−ηǫ
Π̂ (g) =

(c

c̄

)1−ηǫ
e−η g [1 + η eg − η] .

Expanding S(c, g) around c = c̄, g = 0 and using that:

∂S(c, g)
∂g

∣

∣

∣

∣

g=0

=
∂2S(c, g)
∂p ∂c

∣

∣

∣

∣

g=0

= 0 ,
∂2S(c, g)
∂g ∂g

∣

∣

∣

∣

g=0,c=c̄

= η(1− η)
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into equation (39), we obtain:

V(τ ,∆p, c; p) = W̄ Π(0) c̄1−ηǫ eδ
{

V(τ ,∆p; p)− 1

r

− (1− ǫη)

∫ ∞

0

e−rt

(

c(t)− c̄

c̄
+

1

2
ηǫ

(

c(t)− c̄

c̄

)2

− 1

6
ηǫ(1 + ηǫ)

(

c(t)− c̄

c̄

)3
)

dt

− E

[

∫ ∞

0

e−rt
(2η − 1)η(η − 1)

6

(

n
∑

i=1

pi(t)
3

)

dt

∣

∣

∣

∣

∣

p(0) = p

]

+ E

[

∫ ∞

0

e−rt(1− ǫη)
η(η − 1)

2

(

c(t)− c̄

c̄

n
∑

i=1

pi(t)
2

)

dt

∣

∣

∣

∣

∣

p(0) = p

]

+ E

[
∫ ∞

0

e−rto(||(p(t), c(t)− c̄)||3) dt
∣

∣

∣

∣

p(0) = p

]}

where V(τ ,∆p; p) is given by equation (1) with B = (1/2)η(η − 1). We can then write:

V(τ ,∆p, c; p) = ΥeδV(τ ,∆p; p) + E

[
∫ ∞

0

e−rto
(

||(p(t), c(t)− c̄)||2
)

dt

∣

∣

∣

∣

p(0) = p

]

+ ι(δ, c)

where the constant Υ = W̄ Π(0) c̄1−ηǫ is the per product maximum (frictionless) nominal
profits in steady state, and where the function ι does not depend of (τ ,∆p).

C Numerical accuracy of the approximations

This appendix documents the precision of our analytical results in comparison to the exact
numerical solution of a model that uses no approximations. In particular, recall that our
solution used a second order approximation of the profit function, no drift in the price
gaps, and that the impulse response functions were computed using the steady state decision
rules i.e. ignoring the general equilibrium feedback effect which, as stated in Proposition 7,
were shown to be second order. This section explores the robustness of our approximations
compared to a model that features an asymmetric profit function, the presence of drift, and
takes into account the general equilibrium feedback on decision rules following the aggregate
shock.

The section has two parts. In the first one we show that the steady state decision rule for
the quadratic problem ȳ of equation (11) discussed in Section 3 gives a very good approxi-
mation to the exact solution of the quadratic problem for the parameters used (this should
not come as a surprise given point (iii) of Proposition 3). The second part is substantially
more involved. It discusses the accuracy of our impulse response analysis in comparison to
the impulse response generated by a model that uses a non-quadratic objective function,
features drift in the price gap, and takes account of the general equilibrium feedback effect
on decision rules. To this end we solve numerically two models that can be computed: one
for the case of n = 1 and one for the case of n = ∞. We compare the results with the ones
produced by our approximations of Section 5. We show that the approximate results are

4



very close to the exact results. The reason, explained in Proposition 7, is that the general
equilibrium feedback effect on the decision rules is second order.

C.1 On the accuracy of the approximate decision rules

Figure 9: Ratio of ȳ and of v(0) for the approximation relative to the “exact” solution
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Note: parameter values are B = 20 , σ = 0.25 , ψ = 0.03 and r = 0.03.

Next we present some evidence on the numerical accuracy of the approximation for the
decision rule ȳ. Figure C.1 compares the value of ȳ obtained from the quadratic approxima-
tion to v described above, with what we call the “exact” solution, which is the numerical
solution using up to 30 terms for βi in its the expansion. The approximation are closer for
smaller values of σ and ψ, which we regard as more realistic.

C.2 On the accuracy of the impulse responses

First we describe the case of n = 1. We solve for the optimal firms policy of a firm in
steady state. This is done using the non-quadratic objective function from the implied CES
preferences described in the general equilibrium setup of Appendix B. The optimal policy is
of the sS nature, but given the lack of symmetry on the objective function, the thresholds are
not symmetric (i.e. the distance between the optimal return point and the lowest adjustment
threshold -which gives the size of the price increases- is not equal to the distance between
the highest thresholds and the optimal return point -which gives the size of price decreases).
Another difference with the model in the main body of the paper is that we reported results
assuming the price gap had no drift, due to zero inflation an no drift in the real marginal
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costs. In this section we assume that marginal cost has a negative drift, due to productivity
growth Zt, equal to 2%. Similar results are obtained by assuming a small inflation rate.
Because of these differences the optimal return point (i.e. the optimal price upon resetting)
does not need to be equal the zero, i.e. the frictionless optimal.19 A positive drift in the price
gap will give the firm a motive to set a positive price gap to hedge against the anticipated
depreciation of the sale price. Another motive for the non zero price gap is that the profit
function associated to the CES demand is asymmetric, so that price below the optimum are
more costly (in terms of foregone revenues) than prices above the optimum. Both forces will
give the firm a motive for setting a positive price gap upon resetting.

We solve numerically a discrete time model, with a very small time period (half a day),
where the shock to the (log) of the firm marginal cost follows a discrete time analog to
the Brownian motion (used in the main model) with drift equal to the trend growth of
productivity, so that the price gap will have a small drift. The parameterization of the non-
linear model is chosen to be the same as the one of the quadratic model (with the noted
exception of the small drift in the price gap).

Solving for the impulse response involves the following steps:

Figure 10: Approximate vs exact solution after a 1% shock to money supply for n = 1
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Note: the parameter values are: η = 6.8 (so that B = 20), σ = 0.10, ψ = 0.035, ρ = 0.02, the
productivity drift is 2%; in the approximate model these produce Na = 1, Std(∆p) = 0.10. Very
similar values are produced by the exact model. The simulation to compute the impulse response
function uses a cross section of 500,000 firms.

19Of course these differences vanish as the adjustment cost ψ goes to zero.

6



• We compute the steady state (invariant) distribution of the price gaps. Since the
thresholds are not symmetric the distribution is not necessarily symmetric either.

• We draw a large number of firms (N = 500, 000) with price gaps distributed according to
the invariant distribution. In the cases of n = 1 and n = ∞ such invariant distribution
can be derived analytically solving the ODE of the associated Kolmogorov forward
equation.

• We shock the nominal value of each firm’s price gap, by the same proportion at time
t = 0. This uses the fact that, as in Golosov and Lucas (2007), the equilibrium path of
nominal wages, and nominal interest rates, can be solved independently of the aggregate
output and the distribution of prices of the final good (see Appendix B).

• (1) We simulate the shocks for each of the N firms until T years, keeping track of the
price gap of each of the j firms in each period. We use the decision rules obtained for
a given assumed path of future aggregate consumption {ct}

• (2) For each time period between t = 0 and t = T we use the cross section of the N
firms’s price gap to compute the ideal price index and the associated aggregate con-
sumption. At the end of this procedure we have a path for the aggregate consumption
and one for the price level: {c′t, Pt}Tt=0.

• If the assumed aggregate consumption path {ct} equals the new path {c′t}, up to nu-
merical tolerance, we stop the algorithm. If it does not, we let {ct} = {c′t}, return to
(1) and iterate again until convergence.

The left panel of Figure 10 plots the decision rules produced by this procedure for the
model with n = 1 for a shock δ = 1%, as considered in the main body of the paper. The
threshold levels for the price gaps p, p̄ , delimiting the inaction range, and the optimal return
point p̂. The vertical axis measures the time elapsed since the shock occurred. These lines are
virtually vertical, indicating that the optimal decision rules are virtually overlapping with the
steady state ones. The only visible effect appear for p̄ in the periods immediately following
the shocks. Much larger shocks are needed, in the order δ = 10%, to see more actions (still
rather small) in the decision thresholds. The reason was given in Proposition 7 where it was
shown that the general equilibrium feedback effect on the decision rules is second order.

The right panel of Figure 10 plots the “exact” impulse response function that takes into
account general equilibrium effect, drift and the non-quadratic profit function as well as
the impulse response produced by our model for the analogue parametrization, which was
presented in Figure 4 of Section 5. The two curves appear almost on top of each other, and
their half life is virtually identical. The figures shows that our model provides a very good
approximation for a 1% monetary shock (which is not a small shock historically).

C.2.1 On the solution for the decision rule along a transition for the n = 1 model

Using equation (39) we write the profit function relative to the steady state frictionless profit.
We do this for the n = 1 case. Let T be the time when consumption reverts to the steady
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state. For each t ∈ (0, T ) there is a triplet, two inaction bands and an optimal return point,
that satisfy value matching and smooth pasting for the following value functions

v̄(ct, pt) = S(ct, pt)∆ +
1

1 + ∆r
E v(ct+∆, pt+∆)

and

v̂(ct, pt) = max
p̂

(

S(ct, pt)∆− ψ +
1

1 + ∆r
E v(ct+∆, pt+∆)

∣

∣

∣

∣

pt = p̂

)

where

S(c, p) =
(c

c̄

)1−ηǫ
e−η p [1 + η ep − η] .

C.2.2 On the exact solution of the n = ∞ case

Consider V (p1, ..., pn; τ)/n where (p1, ...., pn) is the vector of price gaps and τ is the time
since last adjustment. The period return for this Bellman equation is

∑n
i=1 c(t)

a Π(pi(t))/n
where a = 1 − ηǫ and Π(pi) is the function in equation (37) deflated by nominal wages. As
n→ ∞ the law of large numbers gives that we can write the period return as

n
∑

i=1

c(t)a Π(pi(t))/n→ c(t)a E[Π(p(τ)) | p(0)] = c(t)a F (τ, p(0))

where F (τ, p(0)) is a function that gives the expected value of Π(p(τ)) after τ periods since
resetting each price gap at p(0). We can write the steady state Bellman equation as:

V = max
p,T

∫ T

0

e−rt ca F (t, p) dt+ e−rT [V − ψℓ]

where V is the optimal value function right after an adjustment of prices, i.e.:

V = max
p1,...,pn

V (p1, ...., pn, 0)/n

and ψℓ = Π(0)ca ψ as assumed in Section B.1. Recall, from equation (37), that

Π(p) ≡
(

α

1 + τℓ

η

η − 1

)−η
e−η p

[

ep
η

η − 1
− 1

]

Recall that the price gap p is given by equation (15) so it has the following diffusion

dp = (γ − µ)dt+ σdB

Next define the function f(τ, p) as the ratio between the expected profits τ periods after
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resetting a price gap p and the frictionless profit term Π(0):

f(τ, p) ≡ E

[

Π(pt+τ )

Π(0)

∣

∣

∣
pt = p

]

=
F (t+ τ, p)

F (0, 0)

= ηe(1−η)p e

(

(η−1)(µ−γ)+σ2

2
(η−1)2

)

τ − (η − 1)e−η pe

(

η(µ−γ)+σ2

2
η2

)

τ
. (40)

Then the firm’s value function, scaled by the frictionless profits Π(0)ca, solves the Bellman
equation

v = max
p,T

∫ T

0

e−rt f(t, p) dt+ e−rT (v − ψ) (41)

To match the model moments to the observables note the following. To keep the number
of adjustments finite let ψ = n ψ1 so that as n increases the cost per good stays constant at

ψ1. Thus as n→ ∞ we have that Na =
√

Bσ2

2ψ
and Std(∆p) =

√

σ2/Na. Under the invariant

the distribution of the y/ȳ is uniform in (0, 1) as in Section 5.2. After the shock hits the
distribution is shifted .

Figure 11: Approximate vs exact solution after a 1% shock to money supply for n = ∞
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Note: the parameter values are: η = 6.8 (so that B = 20), σ = 0.10, ψ = 0.035, ρ = 0.02, the
productivity drift is 2%; in the approximate model these produce Na = 1, Std(∆p) = 0.10. Very
similar values are produced by the exact model. The simulation to compute the impulse response
function uses a cross section of 500,000 firms.
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C.2.3 On the solution for the decision rule along a transition

Let T be the time when consumption reverts to the steady state. For each t ∈ (0, T ) there
is a value function vt, an optimal return point p̂t and a time until the next review τt, that
solve the following Bellman equation (scaled by the steady state frictionless profits Π(0)ca),

vt = max
pt,τt

∫ τt

0

e−rs
(ct+s

c̄

)1−ηǫ
f(s, pt) ds+ e−rτt

(ct+τt
c̄

)1−ηǫ
(vt+τt − ψ) (42)

where vT = v, i.e. the steady state value function. For a given guess of the aggregate
consumption profile ct the value functions can be solved backward.

We first determine which firms will adjust prices immediately as the shock arrives. Let
p̂ be the price gap chosen by firms in the steady state and T̂ be the time until the next
adjustment in the steady state. After a monetary shock all firms find their price gaps reduced
by δ, so their value function corresponds to one in which the last price gap upon was reset at
p̂− δ. This determines a new planned date for adjusting prices: τ0 which by the first order
condition with respect to τt in equation (42) solves

f(τ0, p̂− δ)− r (vτ0 − ψ) = 0 . (43)

After computing the value functions vt one can thus determine the new times until adjustment
τ0. All firms who adjusted prices t periods ago with t ∈ (τ0, T̂ ) will immediately adjust prices.
Thus the fraction of firms that will jump on impact after the monetary shock is given by
T̂−τ0
T̂

. All other firms will adjust when the age of their price will reach τ0, and that that point
use the decision rules {τt, pt} prescribed by equation (42). Numerically, as occurred for the
n = 1 case, the left panel of Figure 11 shows that for a shock δ = 1%, as those considered in
the main text, these rules are virtually identical to the ones of the steady state. The main
difference compared to the approximate rule derived in the main text of the paper concerns
the size of the impact effect which the model slightly under-estimates which is due to the
fact that the rule in the paper uses T̂ as the optimal adjustment date whereas the exact
model prescribes τ0. The right panel of Figure 11 shows that the difference between the
approximate and the exact impulse response is tiny.20

D Asymptotic hazard rates

For completeness, Table 3 computes the first zero -denoted by qn,1- for the relevant Bessel
functions and the (normalized) asymptotic hazard rate for several value of n.

20Likewise, Figure 7 in Golosov and Lucas (2007) compares an impulse response that includes the general
equilibrium feedback effect with one computed ignoring this effect, i.e. keeping the firms decision rules
constant. The authors conclude that “Evidently, the approximation works very well for the effects of a one-
time shock, even a large one.” Likewise, small general equilibrium feedback effects are found in Alvarez, Lippi,
and Paciello (2012) and in Appendix C where we solve numerically a model with the general equilibrium
structure of Golosov and Lucas using idiosyncratic shocks and adjustment cost corresponding to the ones of
this paper for n = 1.
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Table 3: Normalized limit hazard rates for various values of n

number of products n

1 2 3 4 6 8 10 20 50 100

first zero of Jn
2
−1(·) : qn,1 1.6 2.4 3.1 3.8 5.1 6.4 7.6 13 30 56

T (0) · limt→∞ hn(t) 1.2 1.4 1.6 1.8 2.2 2.5 2.9 4.5 8.8 16

T (0) is the expected duration and T (0) · limt→∞ hn(t) = q2n,1 / (2n) is the normalized limit hazard rate.

E Details on the Impulse response to Monetary Shocks

E.1 Numerical Evaluation of Impact Effects

The expression in equation (23) is readily evaluated by either numerical integration, or using
that S(z) is proportional to the hypergeometric function 2F1(·). Likewise, equation (24) is
easy to evaluate, since it has the following closed form solution:

S(z) =
2F1

(

1
2
, 3−n

2
, 3
2
, z

2

n

)

Beta
(

n−1
2
, 1
2

) √
n

and

∫ ν

−√
n

z s(z)dz = −
n
(

1− ν2

n

)(n−1)/2

(n− 1)Beta
(

n−1
2
, 1
2

) √
n
.

E.2 Analytical Characterization of Impact Effects

The next lemma characterize the impact effect of an aggregate shock in terms of properties
of the Θn and Φn functions.

Lemma 2. Let Φn and Θn be, respectively, the fraction of firms that change prices and the
average price change across the n goods after a monetary shock of size δ. We have:

(i) Fix n ≥ 1 and ȳ > 0. If δ ≥ 2
√

ȳ/n (large shocks) then Φn(δ, ȳ) = 1 and Θn(δ, ȳ) = δ .

(ii) Φn,Θn are homogenous in (δ,
√
ȳ): Φn(δ, ȳ) = Φn

(

δ√
ȳ
, 1
)

and 1√
ȳ
Θn (δ, ȳ) = Θn

(

δ√
ȳ
, 1
)

.

(iii) Φn and Θn are both weakly increasing in δ; the function Φn is decreasing in ȳ and, for
small δ, Θn is decreasing in ȳ.

(iv) Impact effects are second order

∂Φn(0, ȳn)

∂δ
=

∂Θn(0, ȳn)

∂δ
= 0 ,
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Proof. (of Lemma 2 )
Point (i): follows by noting that the “last” firm to be pushed out of the inaction region

is a firm with a price gap y = ȳ and all individual price gaps equal to
√

ȳ/n so that
∑n

i=1 pi =
√
nȳ. Intuitively, this is the firm with the largest possible positive price gaps and

the shock is helping the firm to reduce them. Using this assumption in equation (21) gives
the smallest δ = 2

√

ȳ/n such that all prices adjust, so that Φn = 1. The symmetry of the
density of price changes immediately gives the result Θn = δ.

Point (ii): Let us start by stating the homogeneity property, and defining two related
functions Φ̂n and Θ̂n:

Φ̂n

(

δ√
ȳ

)

≡ Φn

(

δ√
ȳ
, 1

)

= Φn(δ, ȳ) and Θ̂n

(

δ√
ȳ

)

≡ Θn

(

δ√
ȳ
, 1

)

=
Θn(δ, ȳ)√

ȳ
.

The homogeneity follows from a change of variables in equation (23) and equation (24), taking
into account that f(y) is homogenous of degree −1 in (ȳ, y) as displayed in equation (20),
and that ν(y, δ) is homogenous of degree zero in (

√
y,
√
ȳ, δ), as displayed in equation (21).

In contrast S(z) and s(z), evaluated at a given z, do not depend on δ nor on ȳ.

Point (iii): The monotonicity of Φn and Θn with respect to δ follows, after manipulating
the derivatives, from the monotonicity of ν(·) and S(·). To show that for small δ the func-
tion Θn is decreasing in ȳ, differentiate totally with respect to ȳ the expression stating the
homogeneity of this function obtaining

Θn,2(δ, ȳ) =
1

2

δ√
ȳ





Θn

(

δ√
ȳ
, 1
)

δ
−Θn,1

(

δ√
ȳ
, 1

)



 ,

where Θn,i denote the derivative with respect to the ith argument of this function. Use that,

for small values of δ, the function Θn(δ/
√
ȳ, 1) is increasing and convex on Θ̂, so that the

expression in squares brackets is negative. That this function is increasing and convex follows
since its first derivative is zero at δ = 0 and the function is increasing. For Φn it follows from
differentiating with respect to ȳ the definition of homogeneity, obtaining:

Φn,2(δ, ȳ) = −1

2

δ√
ȳ
Φn,1

(

δ√
ȳ
, 1

)

,

hence this function is decreasing in ȳ in its domain. That Φ is strictly increasing in δ follows
from the monotonicity of S and ν.

Point (iv): The zero derivative of Φn and Θn with respect to δ at zero can be obtained
by considering two related functions, Φ̄n and Θ̄n which are obtained by replacing ν with
ν̄ = δ/(2

√
y) and, without loss of generality, by replacing the lower extreme of integration

w.r.t. y by the y(δ), which solves ν(y(δ), δ) = −√
n. Note that y(δ) goes to ȳ as δ ↓ 0, and

that, by monotonicity, these functions are upper bounds for Φn and Θn. The result follows
by differentiating Φ̄n and Θ̄n w.r.t. δ and letting δ go to zero.
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Zero first derivatives of the Φ̂n and Θ̂n functions at δ = 0

To show that Φ′(0) = 0 we use the following. i) equation (21) implies that

S(ν(y, δ)) = 0 for 0 ≤ y ≤ y(δ) ≡
(

max
{√

ȳ − δ
√
n , 0

})2
, (44)

hence the integration with respect to y in equation (23) and equation (24) can be done
between y(δ) and ȳ. ii) note that y(δ) → ȳ as δ ↓ 0, iii) once we have defined the integral
w.r.t y in Φ in the interval (y, ȳ), we can replace the function ν by an upper bound ν̄(y, δ) ≡
nδ/(2

√
y) and define upper bounds for Φ as

Φ̄ ≡
∫ ȳ

y(δ)

f(y) S (ν̄(y, δ)) dy ≤ Φ =

∫ ȳ

y(δ)

f(y) S (ν(y, δ)) dy (45)

iv) the density f(ȳ) = 0. Then differentiating the expression for Φ̄ w.r.t. δ, evaluating the
derivative at δ = 0 we obtain that Φ̄′(0,

√
ȳ) = 0. v) since Φ̄ ≥ Φ ≥ 0 this establishes the

desired result.
To show that Θ̂′(0) = 0 notice that Θ = Φ× Eδ[∆p|∆p 6= 0], i.e. the change in prices is

equal to the fraction of firms that change prices times the expectation that of a price change,
conditional on having a price change. Using that Φ(0,

√
ȳ) = Φ′(0,

√
ȳ) = 0 we obtained that

Θ′(0,
√
ȳ) = 0.

�

As a benchmark, note that in a flexible price economy all firms change prices, i.e. Φn(δ) =
1 and hence the average price change equals the monetary impulse, i.e. Θn(δ) = δ for all δ.
Part (i) of the lemma states that, for large shocks i.e. for δ ≥ 2

√

ȳ/n, all the firms adjust
prices change on average by δ, so that the economy behaves like one with no frictions.

Part (ii) illustrates a convenient homogeneity property of the Φn,Θn functions: after
normalizing the monetary shock in terms of the price gap, these functions have only one
argument. Part (iii) states that the fraction of adjusters and the response of the aggregate
price level are increasing in the size of the shock.

E.3 Sensitivity analysis of the IRF to the size of monetary shock

We explore the sensitivity of the impulse responses of considering different values for the
monetary shock, by considering the case when the monetary shock is half and twice as large
as in the benchmark case of Figure 4. The results, which are aligned to the benchmark case,
are shown in Figure 12 and Figure 13.

F Correlation, drift and cross products

Our paper studies the problem of a firm who controls an n-dimensional vector of price gaps
p ∈ Rn subject to a common menu cost ψ. Assuming that the individual price gaps pi had
no drift and were mutually uncorrelated, and that the objective function was to minimize
the square of the price gaps we showed that the n dimensional state of the problem could be
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Figure 12: Impulse Response of CPI, smaller shock δ
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Figure 13: Impulse Response of CPI, larger shock δ
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collapsed into a single state variable y =
∑n

i=1 p
2
i , measuring the squared norm of the price

gaps. This delivered a lot of analytical tractability.
This appendix extends the model to the possibility that the price gaps pi are mutually

correlated and/or that the gaps have a common drift and that the objective function has
non-zero cross partial terms (all equal to a common constant). These extensions impair the
symmetry of the problem so that one might fear to lose the tractability that was obtained
before. Surprisingly (to us at least), we show that despite the apparent complexity of these
extensions, the modified problem remains tractable: instead of the single state variable y
defined above, the state of the problem with either drift, correlation, and cross product, or
any combination of them now includes only one additional variable measuring the sum of
the coordinates of the vector, namely z =

∑n
i=1 pi. Importantly, this not only allows to solve

numerically the steady state problem of the firm for any n ≥ 1, but also to compute the
impulse response, since the effect on the aggregate price level can be obtained by keeping
track of z for each firm.

For ease of exposition and because its implications are more important to judge the
robustness of the benchmark case, the next section shows how to solve the firm problem
when the price gaps are correlated but there is no drift. The value function and decision
rules for the problem are presented in Section F.1. Section F.2 illustrates the cross section
implications of an economy where firms follow these decision rules, presenting the implications
for the cross-section distribution of price changes, a statistic that is central to the empirical
analyses of the price setting problem. Section F.3 moves on to characterize how the aggregate
economy will respond to a monetary shocks. We will show how the response of the economy
to a monetary shock varies as we change (1) the number of goods n sold by each firm and (2)
the correlation ρ between the shocks of the price gaps of the firm. Finally, Section F.4 shows
how to further extend the firm problem to include a common drift in all all price gaps, e.g.
inflation, and Section F.5 shows how to include non-zero cross-partial derivatives (between
the price gaps of the different goods) in the instantaneous return function.

F.1 The case of correlated price gap

We assume that the price gaps are diffusions that satisfy:

E [dpi(t)] = 0 dt, E
[

dp2i (t)
]

= σ̂2 dt, and E [dpi(t)dpj(t)] = ρ σ̂2 dt (46)

for all i = 1, ..., n and j 6= i and for two positive constants σ̂2 and ρ. Then we can write that
each price gap follows

dpi(t) = σ̄ dW̄(t) + σdWi(t) for all i = 1, ..., n . (47)

where W̄,Wi(t) are independent standard BMs, so that σ̂2 = σ̄2 + σ2 and the correlation
parameter is ρ = σ̄2

σ̄2+σ2
. Define:

y(t) =

n
∑

i=1

p2i (t) and z(t) =

n
∑

i=1

pi(t) (48)
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Using Ito’s Lemma:

dy(t) =
[

nσ2 + nσ̄2
]

dt + 2σ

n
∑

i=1

pi(t)dWi(t) + 2σ̄

[

n
∑

i=1

pi(t)

]

dW̄(t)

and

dz(t) = nσ̄dW̄(t) + σ

n
∑

i=1

dWi(t)

This implies that :

E [ dy(t) ]2 = 4σ2

(

n
∑

i=1

p2i (t)

)

dt+ 4σ̄2

(

n
∑

i=1

pi(t)

)2

dt

= 4σ2 y(t) dt+ 4σ̄2 z(t)2 dt , (49)

E [ dz(t) ]2 = σ2 n dt + σ̄2 n2 dt and (50)

E [ dy(t) dz(t) ] = 2σ2

(

n
∑

i=1

pi(t)

)

dt+ 2nσ̄2

(

n
∑

i=1

pi(t)

)

dt

= 2
(

σ2 + nσ̄2
)

z(t) dt (51)

Thus define the diffusions

dy(t) = n
[

σ2 + σ̄2
]

dt + 2σ
√

y(t) dWa(t) + 2σ̄z(t) dWc(t) (52)

dz(t) = n σ̄ dWc(t) +
√
nσ







z(t)
√

n y(t)
dWa(t) +

√

√

√

√1−
(

z(t)
√

n y(t)

)2

dWb(t)






(53)

where (Wa,Wb,Wc) are three standard independent BM’s.
Note that if σ̄ = 0 then z does not affect y, and hence the state of the problem is y. Also

note that if σ̄ > σ = 0 then the specification coincides with a one good model (n = 1 and no
correlation), so the state can be taken to be y too. In the case where σ and σ̄ are positive
the state of this problem will be the pair (y, z). We offer some preliminary characterization
of the problem:

1. We require that:
z(t)2 ≤ n y(t) (54)

If z(0)2 ≤ n y(0) and {y(t), z(t)}t>0 generated by equation (52)-equation (53) satisfy
this inequality. To see why, consider the case where z =

√
y n, and use Ito’s lemma

to compute d(yn) and d(z2). At this point the two process have the same drift and
diffusion. A similar argument follows at z = −√

y n where the diffusions coefficient
differ only on their sign. Thus z2/(y n) stays in [0, 1].

2. The diffusions defined by equation (52)-equation (53) satisfy: equation (49), equa-
tion (50) and equation (51).
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3. The value function has arguments (y, z), denoted by v(y, z). Alternatively V (p1, p2, ..., pn) =
v (
∑n

i=1 p
2
i ,
∑n

i=1 pi).

4. The value function is symmetric in z around zero, so v(y, z) = v(y,−z) for all (y, z) ∈
R2

+. This follows because clearly V (p) = V (−p).

5. The optimal policy is to have an inaction region I = {(y, z) : 0 ≤ ȳ(z)} for some
function ȳ(z).

6. At the threshold we have value matching and, if the function is C1 in the entire domain,
smooth pasting:

Vi(p) = 0 and V (p) = V (0) + ψ if ȳ
(

n
∑

i=1

pi
)

=
n
∑

i=1

p2i or (55)

v(ȳ(z), z) = v(0, 0) + ψ and v1(ȳ(z), z)2z + nv2(ȳ(z), z) = 0 (56)

Differentiating value matching w.r.t z and comparing with smooth pasting we have:

v1(ȳ(z), z)ȳ
′(z) + v2(ȳ(z), z) = 0 all z =⇒ v1(ȳ(z), z)

[

ȳ′(z)− 2z

n

]

= 0 (57)

We conjecture that for all z we have v1(ȳ(z), z) = 0 and hence v2(ȳ(z), z) = 0 too.
These are required if v is C1 in the entire domain.

7. The threshold ȳ(z) satisfies ȳ(z) = ȳ(−z) > 0 for al z > 0 and ȳ′(z) = −ȳ′(−z) for all
z > 0.

There are two special cases of interest for which we can solve for ȳ(z). One is when
σ̄ = 0 < σ so the correlation is zero, which is our benchmark case for which we have an
analytical solution of the problem. In this case ȳ(z) does not depend on z i.e. ȳ′(z) = 0 for
all z. The second case corresponds to perfect correlation, i.e. when σ = 0 < σ̄. This case
corresponds to the case with only one product, since for any history where pi(0) = 0 for all
i = 1, .., n we have pi(t) = p(t) and y(t) = n p(t)2 = (1/n) [n p(t)]2 = z(t)2/n. In this case
only the values of ȳ(z) at the edges of the state space can be achieved. The two diffusions
give:

dy(t) = n σ̄2 dt + 2 z(t) σ̄ dWc(t) (58)

dz(t) = n σ̄ dWc(t) (59)

where Wc is standard BM. If y = z2/n we can write this also as:

dy(t) = (n σ̄2) dt + 2
√

y(t) (n σ̄2) dWc(t) (60)

which coincides with the law of motion of the case of one product with an innovation variance
of nσ̄2. The common optimal value for ȳ at these two points can be found by solving the
problem with no correlation with the same r, B and ψ but with (σ′ , n′) = (

√
n σ̄ , 1).
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F.1.1 The case of a large number of products

In this section we analyze the limit case as n→ ∞ in the presence of correlation. The process
for the average square gap is the sum of two processes obtained in the benchmark case of
no correlation. One process corresponds to the case of n = 1 with instantaneous variance
s̄igma2, and the other one is the deterministic process corresponding to the case of n = ∞
with drift σ2. Let us define

ỹ(t) ≡ y(t)

n
=

1

n

[

n
∑

i=1

σ2Wi(t)
2 + σ̄2 W̄ (t)2 + 2 σσ̄Wi(t) W̄ (t)

]

with ỹ(0) = 0. Thus

V ar [ỹ(t) | ỹ(0) = 0] =
1

n2

[

n
∑

i=1

σ4E[Wi(t)
4] + σ̄4E[W̄ (t)4] + 2 σ2σ̄2E[Wi(t)

2]E[W̄ (t)2]

]

+
n(n− 1)

n2
σ̄4E[W̄ (t)]4

=
t2

n

[

σ4 + σ̄4 + 2 σ2σ̄2
]

+
t2(n− 1)

n
σ̄4

dỹ(t) =
[

σ2 + σ̄2
]

dt + 2σ̄ z̃(t) dW(t) and dz(t) = σ̄ dW(t) (61)

or

ỹ(t) = σ2t+ y1(t) where dy1 = σ̄2dt + 2σ̄
√
y1dW

F.1.2 Discrete time approximation

Let ∆ > 0 be the length of the time period. We approximate the pair of diffusions as follows:

y′ = Y (y, z, e) ≡ max
{

y + n
[

σ2 + σ̄2
]

∆+ 2
√
∆σ

√
y ea + 2

√
∆ σ̄z ec , 0

}

(62)

z′ = Z (y′, y, z, e) ≡ max
[

−
√

y′ n ,

min







z + n
√
∆ σ̄ ec +

√
n∆σ





z√
n y

ea +

√

1−
(

z√
n y

)2

eb



 ,
√

n y′









 (63)

where e = {ea, eb, ec} is a vector of three independent random variables, with zero mean and
unit variance. An example will be three binomials, each taking the values ±1 with probability
1/2. The set of binomial shocks is denoted by E = {ei ∈ {−1, 1} for i = a, b, c}. We let E
denote the set of innovations, and for notational purposes we use F for its its CDF. The max
and min operators in the previous definitions ensure that y stays positive and that z2 ≤ ny.
Let the state space be S =

{

(y, z) : y ≥ 0 , −√
y n ≤ z ≤ √

y n
}

⊂ R+ × R.
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To simplify the notation we let S : S× E → S mapping (y, z, e) into (y′, z′) as follows:

(y′, z′) = S (y, z, e) ≡ (Y (y, z, e) , Z (Y (y, z, e) , y, z, e) ) (64)

The discrete time Bellman equation becomes for all (y, z) ∈ S:

v(y, z) = min

{

ψ + v(0, 0) , ∆By + e−∆r

∫

e∈E
v (S (y, z, e)) dF (e)

}

(65)

We solve v(y, z) by repeated iterations in a grid included in S. We use the value function
for the uncorrelated case (with the same volatility for each price gap, i.e.

√
σ2 + σ̄2) as the

initial function. To compute expected value of the value function in each iteration we need
to be able to evaluate the value function outside the grid points. Let’s us denote a set of N
grid points in S by G. To do so, in each iteration we fit a polynomial in (y, z) to the grid
points that are in the inaction region. We use the following polynomial:

v(y, z) = β0 + β1 y + β2 y
2 + β3 y

3 + β4 z
2 + β5 z

4 + β6 y z
2 + β7 y

2 z2 + β8 y
3 z2 (66)

for (y, z) ∈ G. Note that this polynomial imposes symmetry w.r.t. z, and includes the third
order approximation for the case of no correlation. For the case with no correlation we have
found that this functional form gives very accurate results. The coefficient of this polynomial
are fitted to the grid points (yi, zi) for which v(yi, zi) < maxj∈G v(yj, zj), i.e. it is fitted to
the inaction set.

We display two numerical examples of the value function and policies for the following
parameters. We measure time in years and let the real discount rate by 5% or r = 0.05,
use a markup of about 15% which implies B = 20, and a volatility of each price gap of 10%
with a pair-wise correlation of 1/2, so σ = σ̄ = 0.05. The menu cost is 4% of friction-less
profits per good, so ψ/n = 0.04. We solve the model for daily periods, so ∆ = 1/365. We
display results for the case of n = 10 products per firm. Figure 14 plots the value function
as a function of y and z.

Figure 15 plots the decision rule of the firm. This figure plots the level of the value
function in all the grid points we have used to compute it. The values of the value function
for which control (i.e. price adjustment) is optimal are marked with green starts. The feasible
state space for the firm is given by the region in the y, z inside the parabola. For each z
the value function has a similar shape as the one for the case of no correlation. Fixing y,
the value function is decreasing in |z|. This is because higher |z| implies higher conditional
variance of y, and hence higher option value. As anticipated the function ȳ(z) is symmetric
around z = 0 and increasing for larger values of |z|. The fact that ȳ is increasing in |z| reflects
the option value effect of z just described. For comparison we plot an horizontal line with
the value ȳ for the case on uncorrelated price gaps but with the same innovation variance
per unit of time of each of the price gaps, i.e. with with σ2 + σ̄2 as well as the case with
perfectly correlated price gaps. While the inaction set can be summarized in an R2 space,
we emphasize that the state of the problem is n which can be much higher, for instance it is
n = 10 for this example.
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Figure 14: Value function v(y, z)
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Figure 15: Decision rules
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F.2 Cross section implications with correlated shocks

We use the decision rules described above to produce the invariant distribution of a cross
section of firms using simulations. The model parameterization is close to the one used in the
main body of the paper, i.e. it produces a frequency of adjustments per year that is Na = 1.3
and a standard deviation Std(∆p) = 0.11. Figure 16 plots the standardized distribution of
price changes w(∆p) for different values of n = 1, 2, 3, 50 and different levels of correlation
between the shocks: ρ = 0, our baseline case, as well as ρ = 0.5 and ρ = 0.75.

The marginal distribution of price changes is obtained as follows. First we solve for the
optimal decision rules, which gives us the function ȳ(·). Then we simulate a discrete time
version of the n-dimensional process {pt} described equation (47), and use the optimal policy
to stop it the first time it reaches the adjustment region, upon which the n price gaps are
set to zero. In particular each draw of the joint n−dimensional distribution is obtained
by starting p0,i = 0 for all i = 1, ..., n, simulating {pt} and the associated yt, zt defined by
equation (68). Letting the first time τ that yτ ≥ ȳ(zτ ), we obtain each of the n price changes
as ∆pi = −pτ,i. We set the length of the time period ∆ = 1/(2 × 365), i.e. half a day,
and simulate 50,000 price changes of the n products.21. We represent the outcome of the
simulations by fitting a smooth kernel density to the simulated data.

The first panel contains the distribution of price changes for the case of one product,

21We simulate half as many, and then we use a symmetry to reflect it and obtain a sample twice as large,
a standard importance sampling procedure
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Figure 16: Distribution of price changes: ∆pi
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All distributions have been standardized to have Std(∆p) = 0.1.
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i.e. n = 1. In this case ȳ is flat, and the correlation should make no difference. The
distribution of price changes should be degenerate, but given that we simulate a discrete
time process, albeit with a small time period, the price changes are distributed tightly, but
not degenerately, around two values. This is included as a check of the procedure and to
control the difference that is due to the discretization of the model. The case of n = 2 shows
that as the correlation increases the distribution has more mass for small price changes. Not
surprisingly, adding correlation to the shocks makes the n = 2 case to be closer to the n = 1
case, a feature that is important for both its empirical plausibility (i.e. the comparison with
empirical distribution of price changes) and for the predicted effect of monetary shocks. The
case of n = 3 is particularly revealing since for zero correlation the distribution is uniform,
but as the correlation is positive the density decreases to have a minimum at zero and two
maxima at a high values of the absolute value, as in the case of n = 1 . The case of n = 50
is also informative because with zero correlation the marginal distribution of price changes
is essentially normal. Nevertheless with positive correlation the distribution of price changes
remains bimodal, with a minimum of its density at zero.

Interestingly the simultaneously near normality and bimodality (or the dip on the density
of the distribution on a central value of price changes) which is displayed in the figure for
n = 50 is apparent in several data sets such as Midrigan (2009) using scanner AC Nielsen
data for US (see Figure 1, bottom two panels), in Wulfsberg (2010) using Norway’s CPI data
(see Figure 4), and has been explicitly tested and estimated by Cavallo and Rigobon (2010)
using online supermarket data for 23 countries.

F.3 Impulse responses with correlated shocks

In this section we compute the impulse response function of the price level to a once and
for all shock to the money supply. We investigate the effect of correlation on the results. In
particular for a shock of the same size, and for several values of n we compare the IRF of
prices for correlation ρ = 0, ρ = 0.4 and ρ = 0.75. We stress that to solve for the IRF for
any n we only need to keep track of a two dimensional object, which makes the procedure
computationally feasible.

We obtain the IRF as follows. We start with the optimal steady state decision rules,
summarizing them by the function ȳ(·).

• We simulate a discrete time version of the the process for {yjt , zjt } for a large number
of firms, say j = 1, ...,M . We use M = 500, 000.

• We let t = 0 the first period, t = T the period where the aggregate monetary shock of
size δ occurs, and t = T + T ′ the last period of the simulation.

• The first T periods discrete time versions of the firms’ sate are simulated so that at
t = T the distribution of (yjt , z

j
t ) across j = 1, ...,M gives an accurate representation

of the invariant distribution without aggregate shocks. During the first T periods
whenever a firm’s state reaches yjt ≥ ȳ (zj) we set yjt = zjt = 0, corresponding to a
price adjustment on the n products, and we keep simulating the process for yjt+1, z

j
t+1

according to its law of motion.
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• At time t = T we shock the values of (zjt , y
j
t ) of each of the j firms by decreasing the

price gap in each of the n component by δ > 0.

• The value of the state for each firm right after the shock but right before the adjustment
can be characterized as a the following two dimensional shift. We denoting with Y ′

and Z ′ the post monetary shock (but pre-adjustment) value of the state for a firm with
state y, z:

Y ′(δ, y, z) ≡
n
∑

i=1

(pi − δ)2 = y − 2 δ z + n δ2 and Z ′(δ, y, z) ≡
n
∑

i=1

(pi − δ) = z − n δ .

• At time t = T before the adjusting decision takes place we replace yjt by Y ′(δ, yjt , z
j
t )

and zjt by Z ′(δ, yjt , z
j
t ) for all j = 1, ..., J .

• We simulate the process for state for each firm j up to the first time t = τj ≥ T in

which it adjust its prices. In particular the first time τj were y
j
τj
≥ ȳ

(

zjτj

)

. Note that

at time τj firm j sum of the price changes across the n goods equals the negative of zjτj .
If at time t = T + T ′ the firm j has not adjusted its price, we force to change it.

• For each time t = T, ...T + T ′ we compute the contribution of each firm to the change
in equal weighted aggregate price level:

θt = − 1

M

M
∑

j=1

zjτj × It=τj for t = T, T + 1, ..., T + T ′ .

where It=τj is the indicator function taking the value of one if the firm j adjust the
price at time t and zero otherwise.

• The effect on the equal-weighted price level at time t is:

P(δ, t) =
t
∑

s=T

θt for t = T, T + 1, ..., T + T ′ .

Figure 17 displays the result of IRF of the price level with respect to a monetary shock.
Each panel of this figure consider different values of the number of product (n = 2, 3, 10 and
n = 50), and for each n we plot 3 cases: the case of n = 1 (which is the same as the case
with perfect correlation), correlation equal to zero (ρ = 0) and correlation equal to one half
(ρ = 1/2). Motivated by the scaling and stretching results we have shown for the case of
zero correlation, we normalize the parameters so that the expected number of price changes
per year is 1 (Na = 1) and consider a shock of 10% of the size of the steady state standard
deviation of price changes (i.e. say δ = 0.01 and Std(∆p) = 0.1, i.e. one percent change in
money supply and 10% steady state standard deviation of price changes). Thus, each figure
corresponds to an economy with the same steady state. The case of n = 2 shows that going
from zero correlation to one half makes reduces by more than half the distance between the
n = 2 and n = 1 case, i.e. it significantly increases the price flexibility at all horizons. The
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other cases are even more extreme, i.e. the vertical distance between the IRF with correlation
ρ = 1/2 and ρ = 1 is very small compared with the distance between the IRF with ρ = 1/2
and the IRF for ρ = 0. Recall that the effect on ouput is proportional to the vertical distance
between the level of the IRF and a constant at δ, so a correlation of one half reduced the
effect of output significantly towards the case of n = 1, i.e. towards the Golosov and Lucas
case.

Figure 17: Impulse response to a monetary shock: δ/Std(∆p) = 0.1
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F.4 The case with drift and correlation

This section further extends the problem to the case of the joint presence of drift and corre-
lation. Let each price gap follow

dpi(t) = −µ dt + σ̄ dW̄(t) + σdWi(t) for all i = 1, ..., n . (67)

where W̄ ,Wi(t) are independent standard BMs. Define:

y(t) =
n
∑

i=1

p2i (t) and z(t) =
n
∑

i=1

pi(t) (68)

Using Ito’s Lemma:

dy(t) =
[

nσ2 + nσ̄2 − 2µz(t)
]

dt + 2σ
n
∑

i=1

pi(t)dWi(t) + 2σ̄

[

n
∑

i=1

pi(t)

]

dW̄(t)

and

dz(t) = −nµ dt + nσ̄dW̄(t) + σ
n
∑

i=1

dWi(t)

This implies that :

E [ dy(t) ]2 = 4σ2

(

n
∑

i=1

p2i (t)

)

dt+ 4σ̄2

(

n
∑

i=1

pi(t)

)2

dt

= 4σ2 y(t) dt+ 4σ̄2 z(t)2 dt , (69)

E [ dz(t) ]2 = σ2 n dt + σ̄2 n2 dt and (70)

E [ dy(t) dz(t) ] = 2σ2

(

n
∑

i=1

pi(t)

)

dt+ 2nσ̄2

(

n
∑

i=1

pi(t)

)

dt

= 2
(

σ2 + nσ̄2
)

z(t) dt (71)

Thus define the diffusions

dy(t) =
[

nσ2 + nσ̄2 − 2µz(t)
]

dt + 2σ
√

y(t) dWa(t) + 2σ̄z(t) dWc(t) (72)

dz(t) = −nµ dt + n σ̄ dWc(t) +

√
nσ







z(t)
√

n y(t)
dWa(t) +

√

√

√

√1−
(

z(t)
√

n y(t)

)2

dWb(t)






(73)

where (Wa,Wb,Wc) are three standard independent BM’s.
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F.5 Incorporating cross partial terms on the objective function

We show here that if the profit function is symmetric across the n price gaps, but with non-
zero cross derivative evaluated at the optimal choice of price gap, then we can extend the
second order approximation to the profit function in terms of y and z. In particular, we can
consider the case where the elasticity of substitution between products produced by firm, ̺,
is different from the elasticity of substitution between composite goods across firms, η. In
this case the second order approximation to the losses from the frictionless profit of a firm
with n products is:

B y + D z2 ≡ 1

n

(

̺(η − 1)

2
y − (̺− η)(η − 1)

2n
z2
)

which becomes By = η(η − 1)/(2n) y in the benchmark case.
Consider a profit function of the firm as a function Π(p) of the n price gaps p = (p1, ..., pn)

and assume that the price gaps are interchangeable, so that profits are the same for any
permutation of the price gaps such, for example Π(a, b, ...) = Π(b, a, ...). Evaluating this
function around the maximizing choice pi = 0 for all i we have

b̄ ≡ − 1

Π(0, 0, ..., 0)

∂Π2(0, ..., 0)

∂pi∂pi
and d̄ ≡ − 1

Π(0, 0, ..., 0)

∂Π2(0, ..., 0)

∂pj∂pi
if i 6= j ,

where the negative sign is included to define the cost problem. We can write:

Π(0, 0, ..., 0)− Π(p1, p2, ...., pn)

Π(0, 0, ..., 0)
=

b̄

2

(

n
∑

i=1

p2i

)

+ d̄

(

∑

1≤i 6=j≤1

pi pj

)

+ o
(

||p||2
)

=
b̄− d̄

2
y +

d̄

2
z2 + o

(

||p||2
)

≡ B y + D z2 + o
(

||p||2
)

Thus we can define the second order approximation of Π(·) in terms of y and z as defined
above. For ∂Π2/(∂p∂p) to be negative semi-definite around p = 0 (or equivalently for the
cost problem to be convex) we require: b̄ − d̄ > 0 and b̄ + (n − 1)d̄ > 0, since 0 ≤ z2 ≤ ny
and y ≥ 0. Note that if d̄ = 0 we recover our benchmark case setting b̄/2 = B.

Now we consider the particular case where the cross product comes from a different
elasticity of substitution between products produced by the firm, denoted by ̺ and between
the composite good produced by different firms, denoted by η. Let the period t utility be:

c(t)1−ǫ

1− ǫ
with c(t) =

[
∫ 1

0

ck(t)
1−1/ηdk

]

η
η−1

and ck(t) =

[

n
∑

i=1

(Zki(t) cki(t))
1−1/̺

]̺/(̺−1)

.

Using CES structure of preference we can write the demand from the product i of the
firm k at time t as:

cik(t) =

(

Pik(t)

Pk(t)

)−̺
Zik(t)

̺−1

(

Pk(t)

P (t)

)−η
c(t)
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where Pk(t) is the ideal price index of the products produced by firm k and P (t) is the ideal
price index of all the goods produced in the economy:

P (t) =

[
∫ 1

0

Pk(t)
1−η dk

]

1
1−η

and
Pk(t)

W (t)
=

[

n
∑

i=1

(

Pki(t)

W (t)Zki(t)

)1−̺
]

1
1−̺

The time t nominal profits of the firm k are:

n
∑

i=1

(Pik(t)− Zik(t)W (t)) cik(t)

= W (t)

(

Pk(t)

P (t)

)−η
c(t)

n
∑

i=1

Zik(t)
̺−1

(

Pik(t)

Pk(t)

)−̺(
Pik(t)

W (t)
− Zik(t)

)

= W (t)

(

W (t)

P (t)

)−η (
Pk(t)

W (t)

)̺−η
c(t)

n
∑

i=1

(

Pik(t)

W (t)Zki(t)

)−̺(
Pik(t)

W (t)Zki(t)
− 1

)

Using the foc for ℓ(t) and c(t):

W (t) (1 + τℓ)

P (t)
= α c(t)ǫ

we can write the the nominal profit of the firm k at time t as:

n
∑

i=1

(Pik(t)− Zik(t)W (t)) cik(t)

= W (t)

(

α

1 + τℓ

)−η
c(t)1−ǫη

(

Pk(t)

W (t)

)̺−η n
∑

i=1

(

Pik(t)

W (t)Zki(t)

)−̺(
Pik(t)

W (t)Zki(t)
− 1

)

or omiting time indices, using pi for the price gap of the firm k defined as exp(pi) =
η
η−1

Pki/(WZki)
we get

Π(p1, ..., pn) =

(

η

η − 1

)−η
1

η − 1

[

n
∑

i=1

epi(1−̺)

]
̺−η
1−̺ n

∑

i=1

e−pi̺ (ηepi − (η − 1))

where the scaled profit satisfy:

n
∑

i=1

(Pik(t)− Zik(t)W (t)) cik(t) = W (t)

(

α

1 + τℓ

)−η
c(t)1−ǫη Π (p1k(t), ..., pkn(t))
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so that Π(0, ..., 0) =
(

η
η−1

)−η
1/(η − 1)n1+ ̺−η

1−̺ We have:

Πj(p1, ..., pn)

Π(0, ..., 0)
=

1

n

[

1

n

n
∑

i=1

epi(1−̺)

]
̺−η
1−̺ {

e(1−̺)pj
[

(̺− η)η − (̺− η) (η − 1)

∑n
i=1 e

−̺pi
∑n

i=1 e
pi(1−̺)

]

+
[

(1− ̺)ηepj(1−̺) + ̺(η − 1)e−̺pj
]}

Thus

0 =
Πj(0, ..., 0)

Π(0, ..., 0)
for all j = 1, ..., n,

b̄ ≡ Πjj(0, ..., 0)

Π(0, ..., 0)
= −1

n

{

(̺− η)(1− ̺) +
(̺− η)(η − 1)

n
+ (1− ̺)2η + ̺2(1− η)

}

,

d̄ =
Πji(0, ..., 0)

Π(0, ..., 0)
= −1

n

(̺− η)(η − 1)

n
forj 6= i

The conditions for concavity of the profit function (or convexity of the cost function) are

b̄− d̄ = −(̺− η)(1− ̺)− (1− ̺)2η − ̺2(1− η) = ̺(η − 1) > 0 and

b̄+ (n− 1)d̄ = −(̺− η)(1− ̺) + (̺− η)(η − 1)− (1− ̺)2η − ̺2(1− η) = η(η − 1) > 0

which are satisfied provided that η > 1.
We finish this section with an asymptotic result: as n get large one can ignore the presence

of cross products. The form of the coefficient for the cross-products derived above means
that we can write the period return as as:

̺(η − 1)

2

y

n
− (̺− η)(η − 1)

2

(z

n

)2

As we let n→ ∞, by the law of large numbers, z/n converges to its expected, namely 0,
with probability one. In this case the objective function, and thus decision rules, converge
to the same ones derived for the case with no cross-products, i.e. ȳ(z) is independent of z.
Thus all the analysis for the case of no cross product apply as n→ ∞
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