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1 Introduction

The market for collateralized debt obligations (CDOs) has been at the core of the recent financial crisis.

Global CDO issuance ballooned to 520.6 billion US Dollar in 2006 (up from 158 billion in 2004). While

issuance decreased significantly to 4.3 billion in 2009 in the wake of the financial crisis, it has started to pick

up again, reaching 13 billion in 2011.1 From these observations and earlier episodes of financial distress it

appears that debt and debt-like structures are at the core of these periods of distress, but nonetheless prevail

as one of of the major forms of lending in the modern financial system. The structure of assets traded in

financial markets has been a matter of interest to researchers and practitioners alike. The economic literature

in the past 30 years has focused on the strategic aspects of their design process. One major finding in the

literature is that standard debt contracts are optimal with respect to informational concerns in a variety of

settings (see e.g. Townsend [21], Gale and Hellwig [13], Innes [16], Nachman and Noe [19]).

One interesting strand of literature has been initiated by Gorton and Pennacchi [14] and later developed

by [7]. [14] point out that debt dominates equity with respect to protecting uninformed market participants

from exploitation by informed ones. Hence, debt is argued to be less information sensitive than equity. [7]

fully endogenize the security design process. In a model of strategic security design where securities are

traded, they find that standard debt contracts are optimal. This is due to two features: Standard debt min-

imizes other market participant’s incentive to acquire private information and therefore mitigates adverse

selection. Furthermore, it is most robust to interim public information as it minimizes resell value variance.

The present article isolates the public information problem in [7] but generalizes the information struc-

ture. We find that the securities most robust to interim public information are composed of debt tranches.

While standard debt contracts (SDCs) are composed of a single standard debt tranche and hence in the class

of such contracts, we provide conditions for the non-optimality of SDCs. Any security which is not standard

debt is leveraged. Leverage increases the incentive of other market participants to acquire private informa-

tion. Hence, following the analysis by [7], there is a misalignment in the interests of investors: Standard

debt contracts minimize the incentive for private information acquisition, whereas leveraged debt tranches -

in certain cases even leveraged equity - are most robust to public information arrival.

Furthermore, we identify conditions such that the resulting security traded is composed of multiple im-

perfect debt tranches. This is a new result in that it is not motivated by different risk attitudes of market

participants and explicitly accounts for the issuance of multiple tranches. The literature at large typically

obtains a result of tranching where a single debt tranche (or equity tranche) is split off from a cash flow and

sold (or held), see for example DeMarzo [9]. [9] shows that an informed investor may exploit her private

information best by pooling assets it acquires from an issuer and tranching off a highly liquid standard debt

tranche. This tranche can be sold due to its low information sensitivity, with the issuer retaining the result-

ing equity tranche. Our article, on the other hand, motivates tranching by showing that assets composed

1Data: Securities Industry and Financial Markets (SIFMA) press release, 2012.
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of multiple debt tranches are most robust to interim public information arrival. The multiple debt tranches

are imperfect in the sense that they can not be combined in a single tranche. Hence, the issuer holds on to

not one but multiple residual equity tranches. These are kept on the books of the security issuing institution

and correspond structurally to the risk retention by sponsors of ABCP conduits as documented by Acharya

et al. [1].

The interaction of private and public information effects is fundamental for understanding the performance

of real world financial markets, particularly the CDO market in the recent crisis. As [7] point out, adverse

information about an asset’s value may render it more information sensitive and thus lead to adverse selection

and a collapse of trade. The present article does not address this interaction. However, in contrast to their

framework, it exhibits a basic tradeoff for the security designer, whose incentives with respect to the public

and private information issues may be misaligned. Standard debt is not necessarily optimal with respect to

interim public information arrival.

1.1 Relation to the Literature

As highlighted in the introduction, there are multiple channels through which information affects the secu-

rity design process. Private information is a well-known issue since it may lead to losses when trading with

better informed parties. Conversely, if the seller of a security is informed, she faces a lemons problem as in

Akerlof [3]. Another important factor is public, i.e. symmetric, information arrival since gains and losses

from information may be incurred differently. Specifically, it may be the case that the de facto gains from

positive information about an asset’s value may not be fully capitalized on due to liquidity constraints of po-

tential trading partners. If the losses from negative information, however, are fully incurred, even symmetric

information arrival during the holding period affects liquidity considerations.

Starting with the seminal papers by Diamond and Verrecchia [11], Diamond and Dybvig [10] and [14], a

multitude of authors has examined the effects of asymmetric information on financial markets and connected

it to the structure of traded assets. [11] focus on information aggregation in markets without financial inter-

mediaries and show that price is not always fully revealing. [10] describe how a financial intermediary can

improve the situation of agents who face idiosyncratic uncertainty by providing liquidity irrespective of the

state of the world.

The article by [14] takes the issue of informational impact on trading one step further end explicitly models

both uninformed and informed traders active in a single market. It shows that a financial intermediary can

prevent uninformed traders’ losses to insiders who hold private information by issuing them (riskless) debt.

Liquidity in this context refers to securities or assets which can be traded without losses to potentially better

informed parties. A common feature in the literature is the existence of debt which is motivated by its feature

of low information sensitivity. Low information sensitivity refers to the concept of minimizing the value of

information. This concept has two main characteristics: On the one hand, in the presence of - potentially
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exogenous - asymmetric information in the market, gains from exploiting the informational advantage are

minimized. On the other hand, if information has to be acquired, incentives for doing so are minimized

because the aforementioned exploitation yields minimal profits. This strand of literature, however, takes

the existence of debt as given and thus does not explicitly show how debt arises in an endogenous fashion.

While it is established that trading with debt as the financial instrument of choice is superior (in terms

of preventing losses on behalf of the uninformed party) to other securities, the issue of actual optimality

of debt was not studied until recently. It should be noted that in settings with costly state verification or

non-verifiable returns, studied for example by [21], [13] and Aghion and Bolton [2], debt is shown to be

optimal for issuing a security in a primary market. The asymmetric information in these settings, however, is

assumed to be exogenous instead of arising endogenously following choices and actions of the involved agents.

DeMarzo and Duffie [8] analyze a security designer and issuer whose private information results in illiq-

uidity in the sense of a downward sloping demand curve. Standard debt is shown to be optimal under certain

conditions, primarily the existence of a uniform worst case, because it minimizes the value of the private in-

formation the issuer holds. Furthermore, by retaining the resulting leveraged equity on its books, the issuer

gives a signal which lessens the lemons problem. This signal is credible but costly due to the preference for

cash over longterm investments. Biais and Mariotti [4] consider an alternative approach to the trading game.

They let the issuer commit to a price-quantity menu before private information is observed and the fraction

of the security offered is chosen. Analyzing different forms of competition amongst liquidity suppliers, they

find that debt is optimally issued because it minimizes the consequences of adverse selection (competitive

case) and mitigates the market power of the liquidity supplier (monopolistic case).

The idea is expanded in [7]. Building on Dang [6], who analyzes bargaining with endogenous information

acquisition, they show that standard debt is least information sensitive among the class of nondecreasing

securities satisfying limited liability and nonnegativity constraints. In this sense, they extend the compara-

tive result from [14]. Furthermore, the paper proposes an explanation for the central involvement of debt in

financial crises: The authors argue that a crisis is a collapse of trade after one-sided information acquisition

has been triggered. This collapse is due to adverse selection and hence a sharp drop in trading volume.2 In

similar fashion, Yang [22] analyzes a game where information acquisition is no longer rigidly structured but

flexible and arrives at the same conclusion: Standard debt contracts minimize incentives to acquire informa-

tion and therefore maximize liquidity. This result is stronger than that of [7] in that it holds irrespective of

the composition of the underlying asset pool, i.e. of the number of assets and the correlation between their

returns.

[7] further show that debt is not only optimal with respect to potential private information acquisition

but also most robust to public information arrival. In this sense, the incentives of the investor align: stan-

dard debt disincentivizes potential trading partners to acquire information and is least sensitive to public

2This drop is due to the lemons problem.
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information arrival during the holding period. The general idea that information may inhibit efficiency in

trading contexts is in line with a literature revolving around the articles by Kaplan [18] and Pagano and

Volpin [20]. [18] shows that it can be efficient for a bank to commit to a policy keeping information about

its risky assets secret despite being thus forced to offer non-contingent deposit contracts only. [20] in turn

show that issuers of assets choose to publish coarse instead of precise ratings to enhance liquidity in the

primary market, even though this reduces secondary market liquidity. Both articles have in common that,

endogenously, not all available information is utilized. However, these articles assume the existence of debt.

Nonetheless, the optimality of debt for trading in both primary and secondary markets critically relies on

the structure of the public information which becomes available between the trading periods. By altering

the structure, incentives to deviate from debt and instead move towards leveraged securities may come into

play, thus misaligning the incentives to minimize potential information production and to minimize the resell

value variance.

Farhi and Tirole [12] consider a security trading game with a binary state of nature. In this setup, tranching

of securities is feasible only in the sense that they consist of a riskless debt and a pure equity component.

They provide conditions under which the insulation effect, i.e. the effect that tranching off riskless debt

protects this tranche from liquidity risk, outweighs the trading adjuvant effect of increasing the likelihood

that the risky equity tranche is not sold. Furthermore, irrespective of the relative weight of the two effects,

tranching always works against communality of information: Tranching deters information acquisition when

it should be encouraged and encourages it when it should be deterred. Hence, even if tranching is superior

because the insulation effect outweighs the trading adjuvant effect, it becomes undesirable once information

acquisition is endogenized. [12] also extend their framework to a dynamic setting and show that liquidity is

self-fulfilling. The expectation of liquidity in future states increases liquidity in the present.

While the conclusion that tranching has socially adverse effects is seemingly opposed to our finding that

tranched debt contracts are optimal, it is important to note the differences in the analyses: [12] consider

private information and its potential acquisition whereas we are concerned with interim public information

arrival. Thus, the the idea that the incentives of security designers are not aligned with respect to the dif-

ferent types of information is in fact corroborated. Furthermore, they analyze a binary outcome space as

opposed to a continuum. Our notion of tranching is not implementable in their framework.

The paper proceeds as follows: Section 2 introduces the model as well as key concepts and definitions.

Section 3 solves the security design and trading problem after public information has arrived, and Section

4 addresses the security design problem at the initial trading stage. Section 5 further characterizes the op-

timal (tranched debt) contracts and provides examples. Section 6 discusses extensions of the model and its

robustness. Section 7 concludes.
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2 The Model

The model is that of [7] without private information acquisition, but with a generalized public information

structure. There are three agents in the economy: An institution (called ’bank’ or ’issuing institution’) B,

an investor I and a representative agent M who reflects the market. In the absence of private information

and associated information asymmetries, the market is composed of agents willing to transfer utility across

periods. The utilities of the agents are additively separable across three time periods t = 1, t = 2 and t = 3

with U i being the utility of agent i and

UB = CB
1 +

1

φ
CB

2 + CB
3

U I = CI
1 + σCI

2 + CI
3

UM = CM
2 + CM

3 .

Ci
t denotes the consumption of agent i in period t and φ > 1, σ > 1 are parameters reflecting the intertempo-

ral difference in marginal returns to consumption. The bank has (weak) preference for consumption at t = 1.

Think for example of a preference for undertaking outside investment options which require further cash. I

prefers consumption in period 2. Consumption is assumed to occur at the end of a given period. At period 2,

M reflects agents willing to transfer consumption and therefore utility from the second into the third period.3

The agents’ endowments are nonstorable and given as follows: The bank owns a pool of assets with stochastic

return X distributed on I ⊆ R+ which is due at t = 3. For ease of notation, we restrict attention to open

intervals of the form (xL, xH) ⊂ R+, including (xL,∞).4 The inclusion of boundary points (if an upper

bound exists) would not alter the results as long as mass points are ruled out. I holds an endowment of

ω at t = 1, while M holds an endowment of ωm at t = 2. Formally, letting ωi = (ωi
1, ω

i
2, ω

i
3) denote the

endowment vector of agent i,5

ωB = (0, 0, X)

ωI = (ω, 0, 0)

ωM = (0, ωm, 0).

X is stochastic and its payoff is publicly observable at t = 3. At t = 2, interim information about the distri-

3A preference for consumption in period 3 could be introduced and would not alter the analysis performed. However, the
intertemporal rate of substitution is normalized to 1 to simplify expressions. Likewise, the issuing institution is set up to be
indifferent between consumption at t = 1 and t = 3 for expositional purposes.

4Hence, canonical distributions such as exponential distributions or χ2-distributions are valid.
5The remaining endowments are normalized to 0 for simplicity. Cash endowments at these points in time would lead to first

trading them before securitizing the collateral and trading these securities. The problem would remain unchanged.
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bution of X arrives. The endowments ω, ωm are fixed with ω > xL.
6 The analysis performed in the following

sections remains unchanged if ωm is stochastic, as long as it is independent of the public news. Finally, we as-

sume ω < Ef [X] to ensure that the whole project cannot be acquired by I at t = 1. Note that since the model

abstracts from private information concerns, there is no disagreement about the value of the assets involved.

Thus, the problem is that of a (limited) number of agents who wish to shift a known amount of consumption

intertemporally. Above some threshold value of owned assets, gains from good interim news can no longer be

realized because there is no agent willing and/or liquid enough to buy the assets for their underlying value.7

The problem corresponds to that of Diamond-Dybvig-type models where a limited fraction of the population

is patient and therefore willing to shift a limited amount of consumption into the last period by buying as-

sets in the interim period, see for example [10], Jacklin and Bhattacharya [17] and Chari and Jagannathan [5].

In this setup, a public planner can realize gains from trade through a simple reallocation of endowments.

For I to consume at t = 2, she needs to trade with B at t = 1 by buying (parts of) the project. She can

then sell shares in the project to M at t = 2. When agents trade, they exchange promises contingent on the

observable realization of X. These promises are called securities. Throughout this article, securities have to

satisfy the following requirements:

Definition 1 A security is a mapping from a domain D ⊆ R+ into the real numbers,

s : D → R,

that satisfies the following restrictions:

• limited liability: s(x) ≤ x for all x ∈ D

• non-negativity: s(x) ≥ 0 for all x ∈ D

• non-decreasingness: ∀x1, x2 ∈ D : x1 ≥ x2 ⇒ s(x1) ≥ s(x2).

The set of securities s : D → R satisfying these restrictions is denoted SD.

For simplicity, stochastic contracts are ruled out because they make the nondecreasingness requirement hard

to evaluate. The nondecreasingness restriction in itself is a standard assumption justified by a moral hazard

opportunity of the agent who can throw away output, see for example Innes [16] or Hellwig [15]. Pooling of

securities based on different projects, i.e. X1, X2, is not included in the model and explicitly ruled out at

t = 2.8 However, the random endowment X can be interpreted as a collection of different assets/securities.

Similarly, the setup does not rule out tranching. Since agents have constant marginal returns to consumption

in any given period, they can be thought of as representing an arbitrarily large number of identical agents

who hold an endowment with the aggregate endowment being what is represented in the model. If that is the

6If ω ≤ xL, riskless debt with a face value lower or equal to xL can always be issued. This debt is then unaffected by public
information.

7Likewise, portfolio considerations may lead potential buyers to not wish to overinvest in the specific security class offered.
Hence, they have no incentive to buy the assets at their (conditional) expected value above some threshold.

8Allowing pooling of securities depending on correlated underlying payoffs would affect the results. However, the main idea
that individual securities should minimize resell value variance subject to the public information still factors into the security
design process unless the underlying projects are perfectly negatively correlated. We address this issue in Section 6.
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case, any tranching which overall still satisfies limited liability can also be represented by a single contract.9

In interpreting the results, it is natural to think of the ’optimal’ security as composed of different tranches

which are sold separately to interchangeable market participants with identical intertemporal substitution

rates.

The timing of the game is as follows: At t = 1, I makes a take-it-or-leave-it offer to the bank. This offer

consists of a security s conditional on the return of X at t = 3 which she is willing to buy, and a price p which

she pays in exchange. At t = 2, a public signal regarding the distribution of X is revealed to all agents. Then,

I may make a take-it-or-leave-it offer to agent M . This offer consists of a security ŝ conditional on the return

of s (and hence of X), and a price p̂. We assume that the bargaining power lies in the hand of the investor in

both stages. This, coupled with the assumption that marginal utility is constant, is made to isolate the secu-

rity design process with respect to arriving public information.10 The second trading stage is only relevant

if trade occurred at t = 1. Furthermore, the limited liability constraint imposes that ŝ(x) ≤ s(x) for all x ∈ I.

Ex ante, X is distributed randomly on I with density f(x), cumulative distribution function F (x) and

finite mean
∫

I
xdF (x) < ∞. To model information arrival, let f be a mixture distribution, i.e. let λ ∈ (0, 1)

and

f(x) = λf1(x) + (1− λ)f2(x) (1)

where f1 and f2 are strictly positive densities.11 The public signal arriving at t = 2 reveals the true

distribution, i.e. whether X is distributed according to f1 or according to f2. All distributions are common

knowledge, as well as λ. The public information is not verifiable, i.e. securities can not be made contingent

on the realization of the public signal. [7] order the underlying distributions by imposing the monotone

likelihood ratio property, i.e. that f1(x)
f2(x)

is monotone in x. We generalize the condition by imposing ordering

via first order stochastic dominance:

FOSD: ∀x ∈ (xL, xH) : F1(x) ≥ F2(x). (2)

For densities, first order stochastic dominance nests the monotone likelihood ratio property. Hence, if the

monotone likelihood ratio property holds, first order stochastic dominance is also satisfied, whereas the reverse

is not necessarily true. Note that for nondecreasing securities, first order stochastic dominance implies that

∀s : Ef1 [s(x)] ≤ Ef [s(x)] ≤ Ef2 [s(x)]. (3)

9Consider for example the issuance of two securities contingent on X, s1(x) and s2(x) with s1(x)+ s2(x) ≤ x, ∀x ∈ (xL, xH),
which are also nondecreasing. Due to the constant marginal returns to consumption and the unique trading partner (see above),
this is equivalent to issuing a single security s(x) = s1(x) + s2(x), ∀x ∈ (xL, xH), which will still satisfy limited liability and
nondecreasingness.

10In this particular game, the security design problem remains identical as long as the investor has at least some bargaining
power in the first trading stage.

11The strict positivity facilitates but does not qualitatively change the analyses. It allows for certain existence and uniqueness
statements to be made without accounting for the special case of f(·) being locally zero.
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To sum up, this is the timeline of the game in extensive form:

t = 1.0: I makes a take-it-or-leave-it offer (s, p) to B

t = 1.1: issuer B accepts the contract (s, p) or not

t = 2.0: distribution Fi, i = 1, 2 is publicly observed

t = 2.1: I makes a take-it-or-leave-it offer (ŝ, p̂) to M

t = 2.2: agent M accepts the contract (ŝ, p̂) or not

t = 3.0: x is realized and publicly observed, I is paid s(x), M is paid ŝ(x).

2.1 Concepts and Definitions

There are several classes of securities which play an important role in the subsequent analysis. One such

class is that of standard debt contracts. Standard debt contracts are contracts which pay out according to the

limited liability constraint up to their face value; in case the realization of the underlying collateral exceeds

this value, the payoff is capped. Formally, the following definition captures this idea.

Definition 2 A standard debt contract (SDC) on an interval I ⊆ R+ is given by

sSDC(x;D) = min{x,D}

where D ≥ 0 is the face value of the debt contract.

Note that if ∀x ∈ I : D ≥ x, sSDC corresponds to an equity contract

sSDC(x;D) = x.

return x

payoff

sSDC (x;D)

Standard Debt Contract

D

Figure 1: Standard Debt Contract

A second class of securities which is important for our analysis is the class of leveraged equity contracts.

Leveraged equity contracts only pay out if the payoff of the collateral exceeds a certain threshold (L), but

then pay up to the limited liability constraint. Formally, this is captured by the following definition.
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Definition 3 A leveraged equity contract (LE) on an interval I ⊆ R+ is given by

sLE(x;L) = x · Ix≥L

where L is the equity cutoff.

return x

payoff sLE(x;L)

L

Figure 2: Leveraged Equity Contract

Given ω < Ef [x] and the strict positivity of densities f1 and f2, there exists a unique face value D (a

unique equity cutoff L) such that the induced expected value of the standard debt contract (leveraged equity

contract) is equal to ω. This is captured by Lemma 1.

Lemma 1 For any given ω < Ef [X], there exists a unique D(ω) such that

Ef [s
SDC(x;D(ω))] = ω.

Likewise, there exists a unique L(ω) such that

Ef [s
LE(x;L(ω))] = ω.

As stated above, the proof follows immediately from the strict positivity of densities and is thus omitted.

Another important class of contracts are what we denote tranched debt contracts. Tranched debt contracts

are interval-by-interval composed of debt tranches.

Definition 4 A tranched debt contract is characterized by a strictly increasing sequence {xi}
N
i=1 ∈ (xL, xH)

of points and a strictly increasing sequence {Di}
N
i=1 ∈ R+ of face values where

xi > Di−1∀i ≥ 2.

The tranched debt contract sTD is then characterized by the following payoff structure:

sTD(x) =















0 for x < x1

min{x,Di} if x ∈ (xi, xi+1), i < N

min{x,DN} if x ∈ (xN , xH)
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whenever N is finite, and

sTD(x) =















0 for x < x1

min{x,Di} if x ∈ (xi, xi+1), i < N

min{x,D} if x ≥ supj xj

otherwise, where D = supj Dj if the supremum exists and D = +∞ otherwise.12 At all points of the sequence

{xi}, the payoff is arbitrary but has to be consistent with limited liability and nondecreasingness of sTD.

Tranched debt contracts have payoffs either on the 45 degree line s(x) = x, which corresponds to binding

limited liability, or on a flat part of the security, up to pointwise deviations with measure 0. Contracts which

satisfy the tranched debt requirement are of the following form (here an example with two tranches)

s(x) =















0 for x ∈ (xL, x1)

min[x,D1] for x ∈ [x1, x2)

min[x,D2] for x ∈ [x2, xH)

where D2 > D1 and x2 > D1. This security is the sum of the two tranches:

sDT1(x) =







0 for x ∈ (xL, x1)

min[x,D1] for x ∈ [x1, xH)

sDT2(x) =







0 for x ∈ (xL, x2)

min[x,D2]−D1 for x ∈ [x2, xH).

return x

payoff

xL x1 x2 xH

sDT (x)

Senior Debt Tranche sDT1

Junior Debt Tranche sDT2

Figure 3: Canonical Tranched Debt Contract

sDT2 in the example is a junior tranche: It pays out only for high realizations of x, and thus only after sDT1 ,

the senior tranche, has been paid in full.

12Hence, the last tranche is a leveraged equity tranche in that case.
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From the above definitions, it is clear that any standard debt contract - as well as any leveraged equity

contract - is also a tranched debt contract, but the reverse does not hold. Furthermore, the contracts differ

with respect to the concept of leverage.

Definition 5 A non-decreasing security s on the interval (xL, xH) includes leverage if

∃x, x̂ ∈ (xL, xH) such that s(x) < x ∧ s(x) < s(x̂).

Leverage refers to the idea of speculating on high returns. A security is leveraged if it does not pay up to

the limited liability constraint for certain values, but then has a higher payoff for higher realizations of the

collateral. By increasing the payoff where limited liability is not binding, this dependability on high returns

can be mitigated.

The only non-leveraged contracts are standard debt contracts, whereas tranched debt contracts which are

not simultaneously standard debt are leveraged. As [7] have shown, leverage leads to higher incentives for

private information acquisition.

We will show that tranched debt contracts are optimal with respect to interim public information arrival.

This introduces a tradeoff in the investor’s incentives: the investor wishes to buy a standard debt contract

to avoid private information acquisition by his potential trading partners and prefers tranched debt due to

its robustness to interim public information.

3 Security Design and Trading after Information Arrival

To solve for an equilibrium of the game, we first determine the optimal security designed and issued after

public information arrival at t = 2. At t = 2, the bank B and representative market agent M cannot

profitably trade. Thus, trade may only occur if I possesses some security s acquired from B at t = 1. She

may either sell or use this security as collateral for a new security which is offered to M at t = 2. Since all

information is public, trade can only occur at a price equal to the common conditional expected value of the

offered security.13 Hence, the optimal strategy for I depends on the relation of the updated value of s after

public information to the market endowment ωm.

Lemma 2 Suppose I holds a security s at t = 2 after the arrival of the public information. Any security ŝ

which is in equilibrium traded to M satisfies:

(i) If E[s(x)|fi] ≤ ωm :

ŝ(x) = s(x) for all x ∈ (xL, xH)

13Recall that the bargaining power lies with I and that M is indifferent between consumption at t = 2 and t = 3.
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(ii) If E[s(x)|fi] > ωm :

E[ŝ(x)|fi] = ωm and

ŝ(x) ≤ s(x) for all x ∈ (xL, xH)

ŝ is then sold to M at the fair price p̂ = E[ŝ|fi].

One particular ŝ(x) which can implement this for E[s(x)|fi] > ωm is

ŝ(x) = τs(x) for all x ∈ (xL, xH)

where τ = ωm

E[s(x)|fi]
.

Lemma 2 follows immediately from the fact that I makes a take-it-or-leave-it offer to M and has preference

for consumption at t = 2. Intuitively, if the asset is worth weakly less than the market endowment ωm, it

is optimal for I to sell the whole security to maximize consumption at t = 2. If the endowment constraint

binds, I sells a security that is worth strictly less than E[s(x)|fi]. This new security ŝ must satisfy limited

liability with respect to s and E[ŝ|fi] = ωm to maximize consumption at t = 2. In this case, I holds on to

the residual security (s− ŝ) and consumes this remainder - if it is positive - at t = 3 after the realization of

X becomes observable and s, ŝ pay out.

Lemma 2 greatly simplifies the analysis of the security design problem faced by I at t = 1. It allows to

write the expected utility of I, given that she acquires a security s at t = 1, as follows:

EU(s) = ω − Ef [s(x)] + λ (σmin {Ef1 [s(x)], ωm}+max {Ef1 [s(x)]− ωm, 0})

+(1− λ) (σmin {Ef2 [s(x)], ωm}+max {Ef2 [s(x)]− ωm, 0}) (4)

= ω + (σ − 1) (λmin {Ef1 [s(x)], ωm}+ (1− λ)min {Ef2 [s(x)], ωm}) (5)

where we have used Ef [s(x)] = λEf1 [s(x)] + (1− λ)Ef2 [s(x)] and Ef1 [s(x)] ≤ Ef [s(x)] ≤ ω. Hence, utility is

weakly increasing in both Ef1 [s(x)] and Ef2 [s(x)] and it is weakly optimal for I to exhaust her endowment

at t = 1, i.e. to acquire a security valued Ef [s(x)] = ω at t = 1. Furthermore, of all securities with the same

unconditional expected value, i.e. of all s with Ef [s(x)] = k, the security with maximal value under bad

information induces the (weakly) highest utility for I. This is due to Ef1 [s(x)] ≤ Ef2 [s(x)], which follows from

nondecreasingness and F1, F2 being ordered by first order stochastic dominance: The endowment constraint

binds in the good state if it binds in the bad state, whereas the reverse is not true. These incentives lead

to the following observation. It is always an equilibrium of the game to trade solutions to the following

equivalent optimization problems at t = 1:
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(P1) max
s∈SI

Ef1 [s(x)] s.t. λEf1 [s(x)] + (1− λ)Ef2 [s(x)] = ω

or equivalently

(P2) min
s∈SI

Ef2 [s(x)] s.t. λEf1 [s(x)] + (1− λ)Ef2 [s(x)] = ω.

Denote SI,ω ≡ {s ∈ SI such that Ef [s(x)] = ω}. Then it holds that a solution to

(P1) max
s∈SI,ω

Ef1 [s(x)]

exists (and hence also a solution to (P2)).

Proposition 1 There exists a solution to (P1), i.e.

∃s∗ ∈ SI,ω : Ef1 [s
∗(x)] ≥ Ef1 [s(x)] for all s ∈ SI,ω.

The proof for Proposition 1 is relegated to the appendix. It can be shown that (P1) corresponds to the

maximization of a continuous mapping from the convex and closed set SI,ω into the real numbers. Hence, a

maximum is attained on this set.

As noted above, incentives for I are such that acquiring a solution to (P1) at t = 1 is an equilibrium strategy.

Nonetheless, it may be possible that securities which do not solve (P1) can be traded in equilibrium. The

following Proposition yields conditions under which this applies only to solutions to (P1).

Proposition 2 Denote Ef1 [s
∗(x)] and Ef2 [s

∗(x)] the expected value of a solution to (P1) under bad infor-

mation and good information respectively. If

(i) Ef2 [s
∗(x)] ≥ ωm ≥ ω or

(ii) Ef1 [s
∗(x)] ≤ ωm ≤ ω

then only solutions to (P1) are traded in equilibrium at t = 1. Otherwise, there is multiplicity in the sense

that securities with different (state-contingent) expected values may be issued at t = 1.

The proof is relegated to the appendix. There are parameterizations such that the set of securities which

may be traded at t = 1 in equilibrium consists only of solutions to (P1). These parameterizations capture

economically relevant problems: Unless ωm is very high or very low, the conditions of Proposition 2 are

satisfied.
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If ωm is too high, the security design problem becomes less interesting because many securities allow a

full realization of gains from trade by never inducing a binding endowment constraint. If ωm is too low, any

security exhausting the constraint in both states captures the realizable surplus. The problem is again less

interesting because many securities have this characteristic. Even in cases where the conditions of Proposition

2 do not apply, however, trading solutions to (P1) at t = 1 constitutes equilibrium behavior. Nonetheless,

multiplicity not only in securities (there may be different securities solving (P1)) but also in state-contingent

expected values arises.

For example, in the case of Ef1 [s
∗(x)] > ωm, a security ŝ with Ef [ŝ(x)] < ω can be issued at t = 1 in

equilibrium as long as Ef1 [ŝ(x)] ≥ ωm, i.e. as long as it exhausts the endowment of M at t = 2 in both

states.

Henceforth, we will focus on characterizing solutions to (P1) and assume that condition (i) or (ii) from

Proposition 2 is satisfied.

To illustrate the impact of the generalized information structure in contrast to [7], consider what happens if

the two underlying distributions have an identical upper tail. This is not possible under the MLRP restriction

except for the trivial case f1 = f2, i.e. the case without uncertainty, but covered by the assumption of FOSD.

If f1 and f2 possess a common upper tail, leveraged securities may be traded in equilibrium because they

allow for zero value variance, i.e. are not affected by interim public information.

Proposition 3 If the two distributions f1 and f2 have an identical upper tail, i.e. if there exists x̄ ∈ I such

that

∀x > x̄ : f1(x) = f2(x) = f(x)

and if ω ≤
∫ xH

x̄
xdF (x),

then any security s∗ with

s∗(x) = 0 for x ∈ (xL, x̄)

and

Ef [s
∗(x)] = ω

solves (P1). One such security is the leveraged equity contract

sLE(x;L(ω)) = x · Ix≥L(ω).
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The Proposition follows from the fact that specifying positive payoffs only on the common upper tail induces

zero resell value variance. Due to (2), securities with zero resell value variance always solve (P1).14 This

yields leverage of the traded securities. Leverage, however, implies an incentive asymmetry for the secu-

rity designer in the [7] setting: Non-leveraged standard debt is optimal with respect to private information,

whereas leveraged securities are perfectly robust to interim public information.

The following section presents the general security design problem faced by I at t = 1.

4 The Security Design Problem at t = 1

As noted before, securities are optimal and thus designed and traded at t = 1 if they are solutions to the

problems (P1) and (P2).

As in [7], a key role in the analysis is played by the likelihood ratio f1(·)
f2(·)

. The analysis in this section

proceeds as follows: First, a solution to (P1) is established under specific global requirements on the be-

havior of the likelihood ratio. Second, it is shown that certain local variations of a security do not affect

global nondecreasingness and limited liability while preserving optimality. Third, it is shown that any global

problem can be broken down into local ones. These local ones, however, correspond to global problems for

which the solution is known. Thus, the general structure of solutions to (P1) is obtained and it is established

that there always exists an optimal contract composed of debt tranches. Moreover, under certain conditions

all optimal contracts satisfy this criterion.

The following Lemma plays an important rule in the subsequent analysis.

Lemma 3 Consider two disjoint intervals A,B ⊂ I and securities s1, s2. Suppose that for all x ∈ A,

s1(x) ≥ s2(x) and that for all x ∈ B, s1(x) ≤ s2(x). If ∃k ∈ R+ such that

(i)
∫

A
(s1(x)− s2(x))dF1(x) ≤ k

∫

A

(s1(x)− s2(x))dF2(x)

(ii)
∫

B
(s2(x)− s1(x))dF1(x) ≥ k

∫

B

(s2(x)− s1(x))dF2(x) and

(iii)
∫

A∪B
s1(x)dF (x) =

∫

A∪B

s2(x)dF (x)

then

(iv)

∫

A∪B

s1(x)dF1(x) ≤

∫

A∪B

s2(x)dF1(x).

If (i) or (ii) holds strictly, so does (iv).

14Typically, such securities do not exist - otherwise, the problem would be trivial. However, they exist for the given restrictions
due to the common high tail and upper bound on ω. L(ω) ≥ x̄ follows from this upper bound.
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Henceforth, all proofs are relegated to the appendix. Lemma 3 states the following: Suppose that two secu-

rities have the same expected value on the union of disjoint intervals A,B under the mixture distribution f .

Furthermore, suppose that s1 lies weakly above s2 on A and s2 weakly above s1 on B. If the ratio of the

expected values of the difference s1 − s2 on A under bad information (i.e. f1 being the true distribution)

to that under good information (f2) is weakly (strictly) lower than the ratio of the expected values of the

difference s2−s1 on B under bad information to that under good information, then s2 has a weakly (strictly)

higher expected value on A∪B under good information than s1. The idea is that unconditionally, decreasing

s1 to s2 on A and simultaneously increasing s1 to s2 on B does not change the expected value. However, of

the change in expected value on A, less is attributed to a change in the expected value under bad information

than of the change on B. Therefore, s2 yields a higher overall expected value under bad information and

conversely a lower one under good information than s1.

The following Lemma is a restatement of the [7] Proposition about the optimality of standard debt con-

tracts whenever the monotone likelihood ratio property holds, i.e. whenever f1(x)
f2(x)

is weakly decreasing in x.

The proof differs from that in [7] and is included in the appendix for expositional purposes as it follows the

same structure as other proofs throughout this article.

Lemma 4 Let f1(x)
f2(x)

be weakly decreasing in x on I. Then one security solving (P1) is the standard debt

contract

sSDC(x;D(ω)) = min{x,D(ω)}.

If f1(x)
f2(x)

is strictly decreasing, then the standard debt contract sSDC(x;D(ω)) is the (up to pointwise deviations)

unique security solving (P1).

Intuitively, the standard debt contract sSDC(x;D(ω)) with Ef [s
SDC(x;D(ω))] = ω is optimal because it puts

as much of the security payoff on the lower returns of X as possible. By the MLRP, the relative likelihood of

payoffs is decreasing in the realized value of the collateral. Therefore, this maximizes expected payoff under

bad information, i.e. whenever f1 is the true distribution.

As argued previously, the assumption of a decreasing monotone likelihood ratio is restrictive. For exam-

ple, following Proposition 1, for distributions with a common upper tail leveraged contracts are optimal.

Lemma 5 Let f1(x)
f2(x)

be weakly increasing in x on I. Then one security solving (P1) is the leveraged equity

contract

sLE(x, L(ω)) = x · Ix≥L(ω).

If f1(x)
f2(x)

is strictly increasing, then the leveraged equity contract sLE(x, L(ω)) is the (up to pointwise deviations)

unique security solving (P1).

Corollary 1 Let f1(x)
f2(x)

be weakly increasing in x on I. Then one security solving the modified problem (P1*)

including an upper bound u
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(P1*) max
s∈SI

Ef1 [s(x)] s.t. λEf1 [s(x)] + (1− λ)Ef2 [s(x)] = ω

s(x) ≤ u for all x ∈ I,

where

ω ≤

∫

I

min[x, u]dF (x),

is the leveraged debt contract

sLD(x;L(ω), u) = min{x, u} · Ix≥L(ω)

where L(ω) is uniquely determined by Lemma 1. If f1(x)
f2(x)

is strictly increasing, then the leveraged debt contract

is the (up to pointwise deviations) unique security solving (P1*).

Lemma 4, Lemma 5 and Corollary 2 are statements about how global behavior of f1(·)
f2(·)

on I impacts the

solution to (P1). If the likelihood ratio f1(·)
f2(·)

is weakly decreasing, standard debt solves (P1). In the case

of an increasing likelihood ratio f1(·)
f2(·)

, leveraged equity or, if an upper bound for the security payoffs is

specified, leveraged debt are solutions.15 Note that an increasing likelihood ratio is inconsistent with F1(·)

being first order stochastically dominated by F2(·) except for the case of no uncertainty f1 = f2 = f . It

nonetheless is essential for further analysis: If f1(·)
f2(·)

is locally increasing on some interval (ξ1, ξ2) ⊂ I, the

problem on this interval can be transformed into one where the Proposition and/or the following corollary

applies. Such a transformation also applies if f1(·)
f2(·)

is locally decreasing. Hence, Lemma 4 and Lemma 5

provide the foundation for the following two observations:

Lemma 6 Suppose that f1(x)
f2(x)

is weakly decreasing in x on (x, x) ⊂ I with x < x ≤ xH . Let s be an optimal

security solving (P1) on (xL, xH) ≡ I. Denote e ≡
∫ x

x
s(x)dF (x).

Define

s∗(x) =







s(x) if x /∈ (x, x)

ŝ(x) if x ∈ (x, x)

with

ŝ(x;D(e)) = min{x,D(e)}

15The restriction ω ≤
∫
I
min[x, u]dF (x) ensures that there is a security s ∈ SI which satisfies Ef [s(x)] = ω and the constraint

s(x) ≤ u.
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where D(e) is the by Lemma 1 unique solution to

∫ x

x

ŝ(x)dF (x) = e.

s∗ is then also a solution to (P1). Furthermore, s∗ is globally (i.e. on (xL, xH)) nondecreasing and satisfies

the tranched debt property on (x, x).

Lemma 7 Suppose that f1(x)
f2(x)

is weakly increasing in x on (x, x) ⊂ I with x < x ≤ xH . Let s be an optimal

security solving (P1) on (xL, xH) ≡ I. Denote e ≡
∫ x

x
s(x)dF (x).

Define

s∗(x) =







s(x) if x /∈ (x, x)

ŝ(x) if x ∈ (x, x)

with

ŝ(x) =







s(x) if x < L

min{x,D} if x ≥ L

where

D = sup
ξ∈(x,x)

s(ξ)

and L(e) is the by Lemma 1 unique solution to

∫ x

x

ŝ(x)dF (x) = e.

s∗ is then also a solution to (P1). Furthermore, s∗ is globally nondecreasing (i.e. on (xL, xH)) and satisfies

the tranched debt property on (x, x).

Intuitively, Lemma 6 and Lemma 7 state that even if a security s is locally inconsistent with the tranched

debt property, there exists a security ŝ which satisfies the tranched debt property locally. Furthermore, the

security s∗ which is equal to s everywhere but the local interval (x, x), and equal to ŝ on that interval, is

globally nondecreasing on I and satisfies the limited liability and nonnegativity constraints. If s is a solution,

it also solves (P1).

We are now able to state the main Proposition of this article: Proposition 4 states that if a solution to

(P1) exists, there also exists a solution which satisfies the tranched debt property. Furthermore, if the den-

sities f1(·) and f2(·) are continuous and never proportional on any interval, any solution s to (P1) satisfies

the property: In that case, any security designed and issued in equilibrium at t = 1 is composed of debt

tranches.

Proposition 4 Let s be a security solving (P1) on (xL, xH) ≡ I. Then the following statements hold:
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(i) There exists a valid security s∗ which is also a solution to (P1) on (xL, xH) ≡ I and satisfies the

tranched debt property.

(ii) If f1(x) and f2(x) are continuous and never proportional, i.e. if

∀(ξ1, ξ2) ⊆ I : ∀k ∈ R+∃x ∈ (ξ1, ξ2) : f1 6= kf2

then s satisfies the tranched debt property.

The nonproportionality condition 4.(ii) requires that the likelihood ratio is never constant on any interval in

I. It is satisfied by most canonical distributions, including the class of exponential distributions with different

rate parameters λ, the class of χ2-distributions with different degrees of freedom, and the class of F (d1, d2)-

distributions with fixed d2 and varying d1. Furthermore, it is easy to evaluate given parameterizations of f1

and f2.

The intuition for the result is as follows: Any interval where a solution s to (P1) is inconsistent with

the tranched debt property can be decomposed into intervals where f1(·)
f2(·)

is weakly decreasing and weakly in-

creasing respectively, up to points with measure zero. On these intervals, local changes preserving optimality

exist by Lemmata 6 and 7. These changes yield a security s∗ which is optimal and composed of debt tranches.

Furthermore, if continuity and local nonproportionality of densities hold, any interval where a solution s to

(P1) is inconsistent with the tranched debt property can be decomposed into intervals where f1(·)
f2(·)

is strictly

decreasing and strictly increasing respectively. On these intervals, however, a local transformation exists

which increases the expected payoff under bad information. This would violate optimality of s, thus implying

that s must have been composed of debt tranches.

5 Characterization of Tranched Debt Contracts

This section analyzes which tranched debt contracts are optimal under certain conditions and further pro-

vides examples of optimal securities given specific parameterizations of f1, f2.

The following Proposition provides a condition such that the tranched debt contract solving (P1) includes

a standard debt tranche.

Proposition 5 Suppose that for all x ∈ I it holds that F1(x) > F2(x). Let local nonproportionality and

continuity of densities by satisfied. The any solution s to (P1) satisfies

∀x ∈ I : s(x) > xL.

Thus, s includes a standard debt tranche.

∀x ∈ I : s(x) > xL implies inclusion of a standard debt tranche because local nonproportionality establishes

that any solution is composed of debt tranches. The condition F1(x) > F2(x) on the interior of I is satisfied
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by most canonical distributions, including the aforementioned exponential distributions, χ2-distributions and

F-distributions. Furthermore, as can be seen in Example 2 below, if F1(x) = F2(x) for some x ∈ I, a security

perfectly robust to public information can be constructed for ω below a certain upper bound.

The final Proposition yields a condition for the non-optimality of standard debt contracts.

Proposition 6 Denote D(ω) the face value of the standard debt contract sSDC(x;D(ω)) with Ef [s
SDC(x;D(ω))] =

ω. Let G(x) ≡ 1−F1(x)
1−F2(x)

. Suppose that f1, f2 are continuous.

If

(i) ∃ξ ∈ (D(ω), xH) : G(ξ) > inf
x∈(xL,D(ω)]

f1(x)

f2(x)

then sSDC(x;D(ω)) is not a solution to (P1). Hence, the optimal contract necessarily involves leverage.

Propositions 4, 5 and 6 yield the following insight: There are conditions under which the optimal security

is composed of debt tranches, includes a standard debt tranche, but is not simultaneously a standard debt

contract. Therefore, the optimal security is composed of multiple, leveraged debt tranches. In the following,

Example 1 discusses the analysis of a case where such a structure is optimal.

5.1 Examples

Example 1:

Consider the following densities f1, f2 and the associated CDFs:

x

f(x)

f(x)

f1(x)

f2(x)

(a) Densities

x

f(x)

F (x)

F1(x)

F2(x)

(b) Cumulative Distribution Functions

Figure 4: Densities and CDFs for Example 1

In Example 1, it is straightforward to see that local nonproportionality of the densities is satisfied. Hence,

the optimal security is a tranched debt contract by Proposition 4. Furthermore, F1(x) > F2(x) for all x.

Proposition 5 applies and a standard debt tranche is included in the optimal contract. Since a standard debt

tranche is included, it remains to be checked whether the optimal contract is indeed a standard debt contract

or whether it involves multiple tranches. Proposition 6 identifies a sufficient condition for non-optimality of

a standard debt contract which can be evaluated using the following illustration.
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x

f(x)

f1(x)
f2(x)

G(x)

D̂

(a) LR and G(·)-function

D(ω)/x

infx∈(xL,D(ω)]
f1(x)
f2(x)

/G(x)

infx∈(xL,D(ω)]
f1(x)
f2(x)G(x)

D̂

(b) G(·)-function vs. infimum of LR

Figure 5: Likelihood Ratio and G(·)-function for Example 1

For D(ω) and therefore ω large enough, ∃ξ ∈ (D,xH) : G(ξ) > infx∈(xL,D(ω)]
f1(x)
f2(x)

. Hence, multiple tranches

are optimal. This holds for D(ω) > D̂. For those D(ω) and thus ω, the optimal tranched debt contract sTD

will have a structure as indicated in Figure 5.16 Note the endogenous residual equity tranche(s) which will

not be traded but remain(s) on the books of the institution emitting the security.

x

payoff

sTD(x)

Standard Debt Tranche

Junior Debt Tranche(s)

Residual

Equity

Figure 6: Tranched Debt Contract with Standard Debt Tranche

Example 2:

Consider the following densities f1, f2 and the associated CDFs:

16The number of junior debt tranches is not specified; at least one junior tranched debt is included in the optimal security by
Proposition 4.
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x

f(x)

f(x)
f1(x)

f2(x)

x̂

(a) Densities

x

f(x)

F (x)

F1(x)

F2(x)

x̂

(b) Cumulative Distribution Functions

Figure 7: Densities and CDFs for Example 1

At x̂, F1(x̂) = F2(x̂) = F (x̂). Therefore, any debt tranche sDT with

sDT (x;D) =







0 if x < x̂

D if x ≥ x̂,

where D ≤ x̂, is perfectly robust to interim public information, i.e.

Ef [s
DT (x;D)] = Ef1 [s

DT (x;D)] = Ef2 [s
DT (x;D)].

With ω small enough, i.e. ω ≤
∫ xH

x̂
x̂dF (x), there exists a unique D(ω) which solves Ef [s

DT (x;D(ω)] = ω.

Because F1(ξ) > F2(ξ) for all ξ ∈ (xL, xH)\x̂, the security sDT (x;D(ω)) is the unique security which offers

perfect robustness. Hence, the optimal security is composed of a single leveraged debt tranche. Again, a

residual equity tranche is kept on the books of the issuing institution (along with a leveraged equity tranche).

x

payoff

sTD(x)

Leveraged Debt Tranche

Leveraged Equity Tranche

Residual

Equity

Figure 8: Single Leveraged Debt Tranche

5.2 Explaining the Residual Equity Tranches

One prediction of the model are residual equity tranches (see the above examples). The residual equity

tranches are the non-traded parts of the initially owned collection of assets, X, and are hence kept on the
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books of the issuing institution. They do not appear to be traded explicitly in financial markets. However,

we argue that they structurally correspond to the risk retention by sponsors of ABCP conduits.

[1] analyze the use of conduits, particularly asset-backed commercial paper (ABCP) conduits, in the early

phase of the financial crisis of 2007-2009. They document that sponsors of conduits, especially of single seller

conduits, retained significant risk when endowing conduits with assets. Extendible notes guarantees and guar-

antees via structured investment vehicles (SIV) lead to partial insurance of the conduit’s investors. Hence,

the conduit’s sponsor retained the risk of the conduit’s assets - assets which it originally endowed the con-

duit with. Full credit and full liquidity guarantees went even further and in effect provided full risk insurance.

To see the correspondence to the residual equity tranches, suppose that a sponsor endows its conduit with

a debt tranche (either junior or senior debt). The conduit uses this debt tranche as collateral to secure the

asset-backed commercial paper it issues. If the sponsor is (partially) covering the conduit’s risk, in particular

the risk of a deterioration of the conduit’s asset values - i.e. the value of the debt tranche the conduit was

endowed with - this may give rise to the sponsoring institution being liable for the residual equity tranche.

return x

payoff

debt tranche DT

sponsor endows conduit with DT

return x

payoff

DT used as collateral

conduit uses DT as collateral for ABCP

payoff

return x

amount of ABCP issued

sponsor

retains

risk

DT repays sufficiently

Figure 9: Process of Securitization via Conduit

If the debt tranche is used as collateral for the asset backed commercial paper issued by the conduit, a

deterioration of the conduit’s asset values corresponds to a realization of states of the world where the debt
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tranche pays off less than the value of the issued ABCP. This issue is particularly prominent if the face value

of the endowment is the base for the issued commercial paper, ignoring the ’risk’ that the debt tranche itself

may not pay in full. This is depicted in Figure 10. If the sponsor provides insurance to the conduit via

guarantees, it implicitly keeps this risk on the books. This structurally corresponds to holding on to (parts

of) the residual equity tranche.

payoff

return x

amount of ABCP issued

sponsor

retains

risk

DT repays sufficiently

Figure 10: Face value of debt tranche equals amount of ABCP

6 Robustness and Potential Extensions

There are several ways the presented analysis can be modified and extended. Naturally, it is of interest to

analyze the case of more than two underlying distributions. One way to model this goes back to [7]. There,

the binary state of the world forms the baseline but the public signal does not reveal which distribution is

the true one but instead the ’updated’ probability of the true distribution being f1. Hence, the signal reveals

λ. This does not change the analysis presented in the previous sections.

Furthermore, it is of interest to address pooling. Suppose that the issuing institution holds not a single

collection of assets with uncertain return X but explicitly consider the case where there are multiple assets

X1, X2, · · · , XN which are affected by the same signal. In this case, it can again be established that for any

given bundle, tranched debt is optimal if first order stochastic dominance is satisfied not just for the solitary

assets but also for the bundle. However, first order stochastic dominance does not need to be satisfied, for

example if the returns of the assets are negatively correlated.

This leads to another interesting avenue to explore: How are the results affected if the ordering by first

order stochastic dominance does not hold and f1, f2 (and corresponding F1, F2) are arbitrary densities with

full support? It turns out that there always exists an optimal security which either is a tranched debt contract

or a convex combination of two tranched debt contracts offering perfect robustness to the public signal.

In the following subsections, we address these three modifications of the model in detail.
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6.1 Multiple underlying distributions

Consider first the modification as in [7]. Let f1, f2 be such that F1(x) ≥ F2(x) for all x ∈ I. However, let

the public signal now reveal λ, i.e. let f(x) = λ̂f1(x) + (1− λ̂)f2(x) be the distribution prior to the interim

information arrival and let f(x|λ) = λf1(x) + (1 − λ)f2(x), with λ being the public information arriving at

the interim stage.

In that case the analysis remains unchanged and the optimal contract is of the tranched debt form. To

see this, consider a solution s∗ to (P1) and any other security s. Since s∗ solves (P1), it holds that

Ef1 [s(x)] ≤ Ef1 [s
∗(x)] ≤ Ef2 [s

∗(x)] ≤ Ef2 [s(x)]

Hence, for any realization λ, it holds that

U(s|λ) = ω + (σ − 1) (λmin[Ef1 [s(x)], ωm] + (1− λ)min[Ef2 [s(x)], ωm])

≤ ω + (σ − 1) (λmin[Ef1 [s
∗(x)], ωm] + (1− λ)min[Ef2 [s

∗(x)], ωm])

= U(s∗|λ).

This is due to the fact that if the endowment constraint binds under f1, it also does so under f2 by first

order stochastic dominance and nondecreasingness of s, s∗.17 Since this holds for any λ, the expected utility

of s∗ ex ante is higher than that of s. Thus, the analysis performed in the previous sections holds true and

the characterization of solutions to (P1) remains the matter of interest.

6.2 Pooling of multiple assets

For simplicity, consider the case where the issuing institution ex ante owns two assets with uncertain return

X1, X2. Further suppose that X1 is distributed according to f(x1) = λf1(x1)+(1−λ)f2(x1) and X2 accord-

ing to g(x2) = λg1(x2) + (1 − λ)g2(x2). Let the public signal reveal the true distribution in the sense that

X1 is distributed according to f1 and X2 according to g1 with probability λ. With probability (1 − λ), the

true distribution of X1 is f2 and that of X2 is g2. By pooling the two assets, i.e. by considering the asset

X ≡ X1 +X2, this asset is distributed according to h(x) = λh1(x) + (1− λ)h2(x).

If F1(x1) ≥ F2(x1) and G1(x2) ≥ G2(x2) for all x1, x2 in the respective support, i.e. if the ordering of

the distributions by first order stochastic dominance applies in the same direction (for both assets, the signal

is bad with probability λ and good with probability (1−λ)), then it follows that H1(x) ≥ H2(x) for all x ∈ I.

Hence, irrespective of whether the assets are pooled or not, the analysis performed holds and the optimal

contract will be a tranched debt contract. It nonetheless needs to be evaluated separately whether pooling is

17The detailed proof of this claim follows that of Proposition 2 and is omitted. Intuitively, the higher value of s∗ under bad
information allows to capture a (weakly) larger surplus from trading in those cases where the endowment constraint does not
bind for s under bad information.
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beneficial or not; this in particular will depend on how the endowments of the liquidity shifters (agents M)

covary with the pooling decision.

However, it is possible that the assets’ returns are negatively correlated in the sense that good news for one

asset is bad news for the other. Consider for example the case that F1(x1) ≥ F2(x1) and G1(x2) ≤ G2(x2).

In this case, there is no clear ordering with respect to the distributions of the pooled asset. This directly

leads to our last modification.

6.3 Arbitrary F1, F2 without ordering

Suppose that f1, f2 are arbitrary densities and that first order stochastic dominance does not hold. Fix

ωm = ω for simplicity and recall that first order stochastic dominance was only employed to reduce the game

to solving the problem (P1). Reconsider

(P1) max
s∈SI

Ef1 [s(x)] s.t. λEf1 [s(x)] + (1− λ)Ef2 [s(x)] = ω

and denote s a solution to (P1). Note that all solutions have the same expected values in all states.

Furthermore, let

(P1’) max
s∈SI

Ef2 [s(x)] s.t. λEf1 [s(x)] + (1− λ)Ef2 [s(x)] = ω

and let s′ be a solution to (P1’). By the analysis performed in this paper, it is known that there always

exist s, s′ which are composed of debt tranches. There are the following cases:

Ef1 [s(x)] ≥ ω Ef1 [s(x)] < ω

Ef2 [s
′(x)] ≥ ω Case 1 Case 2

Ef2 [s
′(x)] < ω Case 3 Case 4

Case 4 is impossible as Ef2 [s
′(x)] < ω implies Ef1 [s(x)] ≥ Ef1 [s

′(x)] > ω. In Case 1, it follows that a

convex combination s∗ of s and s′ can be constructed which has perfect robustness to public information, i.e.

Ef [s
∗(x)] = Ef1 [s

∗(x)] = Ef2 [s
∗(x)] = ω. Furthermore, Case 2 corresponds to a case where the endowment

constraint ωm may only bind if the true distribution is f2. If that is the case, the analysis presented in

the previous sections carries through and s will be an optimal security. In Case 3, the role of f1 and f2 is

reversed: s′ is optimal, f1 can be considered good information and f2 bad information.

This classification allows the statement that irrespective of any ordering imposed on f1 and f2, there al-

ways exists an optimal security which is either composed of debt tranches or which is perfectly robust to

interim public information and can be constructed as the convex combination of two tranched debt con-
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tracts. Hence, even in the case of pooling where first order stochastic dominance no longer holds, tranched

debt contracts play a pivotal role in designing the optimal security.

7 Conclusion

This article has built upon the analysis by [7] to analyze a security design problem where public information

arrives between trading periods. In the absence of private information acquisition, a security is optimal if it

is least sensitive to interim public information: Since ’gains’ from good interim information can not be fully

capitalized upon whereas ’losses’ from bad information are fully incurred, an optimal security has maximal

value in the bad information state and correspondingly minimal value after good information has arrived in

the interim period.

If good information and bad information can be differentiated according to an ordering imposed by the

monotone likelihood ratio property, standard debt is optimal as shown by [7]. However, this ordering is re-

strictive. Whenever the arriving information only affects e.g. the low tail of the distribution of returns of the

underlying collateral, a more general information structure seems prudent. We model such a generalization

by imposing ordering by first order stochastic dominance which nests the previous analysis.

As a result an optimal security can be seen as a composition of debt tranches. Contracts with a tranched

debt form range from the standard debt contract to leveraged equity and multiple tranches of different se-

niorities. We identify conditions under which the optimal security includes, but is not limited to a standard

debt tranche.

The results provide an explanation for the endogenous occurrence of tranches which are frequently seen

in financial markets. This explanation is new in that it is independent of private information. Instead, the

tranches arise because they allow to put the most weight on those returns of the underlying collateral which

are more likely to be met even after ’bad’ information arrived. If the monotone likelihood ratio criterion on

the underlying distributions fails to hold, it no longer is necessarily optimal to put the most weight of the

payoffs on the lowest realized returns, i.e. to issue standard debt. Instead, it may even be optimal to trade

leveraged equity. Furthermore, our notion of tranching differs from that in the literature. We provide an

explanation for designing securities composed of multiple, imperfect tranches, whereas the literature typically

focuses on (pooling and) tranching off a single standard debt tranche and holding on to the residual equity.

Following our results, if the initially traded contract is composed of different debt tranches, the issuer will

always hold on to multiple residual equity tranches.

The residual equity tranches are a specific prediction of the model. While they are not explicitly traded

in financial markets, we argue that they arise from the use of conduits in the ABCP market as documented

by [1]. Specifically, a sponsor who endows its conduit with a debt tranche, and who retains the risk of the

conduit through guarantees, implicitly keeps the risk that the debt tranche does not pay up to face value
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on the books. This structurally corresponds to the residual equity tranches which arise endogenously in our

model.

Lastly, there are implications for the relation between private and public information concerns. While private

information acquisition is abstracted from in our framework, it is clear from [7] that leveraged contracts do

not minimize other market participant’s incentives to acquire private information. Quite to the contrary,

the possible case of leveraged equity maximizes these incentives. Furthermore, while tranching is beneficial

with respect to the interim public information arrival, [12] show that it works against communality of in-

formation when looking at the private information problem. Hence, there exists a tradeoff for the security

designer: With the more general structure of public information, tranches involving leverage will be optimal

in terms of creating a security robust to interim public information. Nonetheless, a standard debt contract

would minimize the other market participants’ desire to acquire private information. How this tradeoff plays

out is an interesting avenue to explore in the future. Intuitively, for very large costs of private information

acquisition, the public information issue should dominate and leveraged debt tranches should be issued.
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Appendix: Proof of Lemmata and Propositions

Proposition 1 There exists a solution to (P1), i.e.

∃s∗ ∈ SI,ω : Ef1 [s
∗(x)] ≥ Ef1 [s(x)] for all s ∈ SI,ω.

Proof:

Existence is established in the following way: (P1) corresponds to the optimization of Ef1 [s(x)] over the set

SI,ω ≡ {s ∈ SI such that Ef [s(x)] = ω}. The objective Ef1 [s(x)] corresponds to a mapping h : SI,ω → R where

h(s) = Ef1 [s(x)]. By showing that SI,ω is convex and closed and h is continuous, existence of a maximum of h on the

set SI,ω follows.

To see that SI,ω is convex, consider s1, s2 ∈ SI,ω. It has to be shown that

∀α ∈ [0, 1] : αs1 + (1− α)s2 ∈ SI,ω. (6)

Note that:

• nondecreasingness of s1, s2 implies that αs1 + (1− α)s2 is nondecreasing as well

• (∀x ∈ I : s1(x) ≤ x, s2(x) ≤ x) ⇒ αs1(x) + (1− α)s2(x) ≤ x, for all x ∈ I

hence, αs1 + (1− α)s2 satisfies limited liability

• (∀x ∈ I : s1(x) ≥ 0, s2(x) ≥ 0) ⇒ αs1(x) + (1− α)s2(x) ≥ 0, for all x ∈ I

hence, αs1 + (1− α)s2 satisfies nonnegativity

• Ef [αs1(x) + (1− α)s2(x)] = αEf [s1(x)] + (1− α)Ef [s2(x)] = ω.

Thus, (6) follows.

Before establishing continuity of h and closedness of SI,ω, we first need to define a distance metric on the room

SI,ω. Let s1, s2 ∈ SI,ω. Define

d(s1, s2) ≡ sup
x∈I

|s1(x)− s2(x)|. (7)

It follows that

∀s1, s2, s3 ∈ SI,ω : d(s1, s2) ≥ 0 (8)

d(s1, s2) = 0 ⇔ (∀x ∈ I : s1(x) = s2(x)) ⇔ s1 = s2 (9)

∀x ∈ I : |s1(x)− s2(x)| ≤ |s1(x)− s3(x)|+ |s3(x)− s2(x)|

⇒ supx∈I
|s1(x)− s2(x)| ≤ sup

x∈I

|s1(x)− s3(x)|+ sup
x∈I

|s3(x)− s2(x)|. (10)

Hence, (7) constitutes a metric on SI,ω. Therefore,

si
i→∞
−−−→ s⇔ d(si, s)

i→∞
−−−→ 0. (11)

Closedness follows from the fact that for any converging sequence si
i→∞
−−−→ s where si ∈ SI,ω for all i, the limit s

is contained in SI,ω. We will show that s ∈ SI,ω by establishing that it satisfies limited liability, nondecreasingness,

nonnegativity and has an expected value Ef [s(x)] = ω.

First, Ef [s(x)] = ω is established. Suppose Ef [s(x)] > ω (the contradiction for Ef [s(x)] < ω works analogously). Let

δ ≡ Ef [s(x)]− ω. Then si
i→∞
−−−→ s implies for any ǫ > 0, ǫ < δ:

∃N : ∀i ≥ N : si(x) ≥ s(x)− ǫ for all x ∈ I. (12)

Hence, for all i ≥ N it follows that

Ef [si(x)] ≥ Ef [s(x)]− ǫ > Ef [s(x)]− δ = ω. (13)
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This is a contradiction to si ∈ SI,ω.

Next, suppose that s does not satisfy limited liability, i.e. that s(ξ) > ξ for some ξ ∈ I. By si
i→∞
−−−→ s, this implies

that

∃N : ∀i ≥ N : si(ξ) > ξ. (14)

This contradicts si ∈ SI,ω for i ≥ N . In the same manner, nonnegativity of s is established.

Finally, suppose that s violates nondecreasingness, i.e. that

∃x1, x2 ∈ I such that x1 < x2 ∧ s(x1) > s(x2). (15)

However, si is nondecreasing for all i. Hence, si(x1) ≤ si(x2) for all i. Since si
i→∞
−−−→ s, a contradiction again follows.

s(x1) > s(x2) requires si(x1) > si(x2) for all i ≥ N for some N .

Lastly, continuity of h is established. Recall

h(s) = Ef1 [s(x)] =

∫ xH

xL

s(x)dF1(x). (16)

Now take si
i→∞
−−−→ s. It follows that

lim
i→∞

h(si) = lim
i→∞

∫ xH

xL

si(x)dF1(x)

=

∫ xH

xL

lim
i→∞

si(x)dF1(x)

=

∫ xH

xL

s(x)dF1(x)

= h(s), (17)

which yields continuity of h.

We have thus established that SI,ω is convex and closed and that h is continuous. Hence, h(s) = Ef1 [s(x)] attains a

maximum on SI,ω and a solution to (P1) exists.

Proposition 2 Denote Ef1 [s
∗(x)] and Ef2 [s

∗(x)] the expected value of any solution to (P1) under bad information

and good information respectively. If

(i) Ef2 [s
∗(x)] ≥ ωm ≥ ω or

(ii) Ef1 [s
∗(x)] ≤ ωm ≤ ω

then only solutions to (P1) are traded in equilibrium at t = 1. Otherwise, there is multiplicity in the sense that

securities with different (state-contingent) expected values may be issued at t = 1.

Proof:

Let Ef1 [s
∗(x)] be the expected value of a solution s∗ to (P1) after bad information. By construction of (P1), all

solutions have the same state-contingent expected values. Recall (5), i.e. the expected utility of I from acquiring a

security s at t = 1:

EU(s) = ω + (σ − 1) (λmin[Ef1 [s(x)], ωm] + (1− λ)min[Ef2 [s(x)], ωm]) .

Consider any security s which could be traded at t = 1, i.e. which satisfies
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Ef [s(x)] ≤ ω = Ef [s
∗(x)], (18)

and which is not a solution to (P1). It needs to hold that

Ef1 [s(x)] < Ef1 [s
∗(x)]. (19)

If Ef1 [s(x)] ≥ Ef1 [s
∗(x)], a contradiction would be obtained in the sense that s∗ is not a solution or that s is a solution

to (P1).

Ef1 [s(x)] > Ef1 [s
∗(x)] implies that ŝ with ŝ(x) ≥ s(x) at all x ∈ I exists, where Ef [ŝ(x)] = ω and Ef1 [ŝ(x)] >

Ef1 [s
∗(x)]. This violates s∗ being a solution and follows from the strict positivity of densities.

If Ef1 [s(x)] = Ef1 [s
∗(x)] and Ef [s(x)] = ω, then s would be a solution, whereas Ef1 [s(x)] = Ef1 [s

∗(x)], Ef [s(x)] < ω

and strict positivity of densities again yields existence of ŝ with

ŝ(x) ≥ s(x) for all x ∈ I

∧ ∃A ⊆ I : ŝ(x) > s(x)∀x ∈ A,

∫

A

1dF (x) > 0 (20)

∧ Ef [ŝ(x)] = ω.

Hence, Ef1 [ŝ(x)] > Ef1 [s
∗(x)] due to ŝ(x) > s(x)∀x ∈ A. Thus, (19) needs to hold as otherwise a contradiction is

obtained.

If condition (i) or (ii) is satisfied, Ef2 [s
∗(x)] ≥ ωm.18 Therefore, using (19),

EU(s) = ω + (σ − 1) [λmin[Ef1 [s(x)], ωm] + (1− λ)min[Ef2 [s(x)], ωm]]

≤ ω + (σ − 1) [λmin[Ef1 [s(x)], ωm] + (1− ωm)]

= ω + (σ − 1) [λEf1 [s(x)] + (1− λ)ωm)] (21)

< ω + (σ − 1) [λEf1 [s
∗(x)] + (1− λ)ωm)]

= EU(s∗).

Hence we have established that only solutions to (P1) are traded in equilibrium at t = 1 if (i) or (ii) holds.

If ωm < ω and Ef1 [s
∗(x)] > ωm, then multiplicity arises in the sense that securities which may be traded in equi-

librium at t = 1 differ in their expected values across states. Specifically, any security s which satisfies Ef1 [s] ≥ ωm
(and hence also Ef2 [s] ≥ Ef1 [s] ≥ ωm by first order stochastic dominance) along with Ef [s(x)] ≤ ω may be traded in

equilibrium at t = 1. These securities have in common that they fully exhaust the trading capacity which is limited

by the endowment constraint ωm.

If ω ≤ Ef2 [s
∗(x)] < ωm, any security s with Ef [s(x)] = ω and Ef2 [s(x)] ≤ ωm may also be issued. Even though

those securities have a higher value after good interim information than solutions to (P1), they still do not induce a

binding endowment constraint ωm. Gains from trade are fully realized, i.e. the security acquired at t = 1 is fully sold

irrespective of the interim public information.

Lemma 3 Consider two disjoint intervals A,B ⊂ I and securities s1, s2. Suppose that for all x ∈ A, s1(x) ≥ s2(x)

and that for all x ∈ B, s1(x) ≤ s2(x). If ∃k ∈ R+ such that

18For condition (ii) this follows from Ef2 [s
∗(x)] ≥ ω and ω ≥ ωm.
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(i)
∫

A
(s1(x)− s2(x))dF1(x) ≤ k

∫

A

(s1(x)− s2(x))dF2(x)

(ii)
∫

B
(s2(x)− s1(x))dF1(x) ≥ k

∫

B

(s2(x)− s1(x))dF2(x) and

(iii)
∫

A∪B
s1(x)dF (x) =

∫

A∪B

s2(x)dF (x)

then

(iv)

∫

A∪B

s1(x)dF1(x) ≤

∫

A∪B

s2(x)dF1(x).

If (i) or (ii) holds strictly, so does (iv).

Proof:

The proof is straightforward and done here for (i) or (ii) holding strictly. If both hold weakly, the same steps yield

the result with the weak inequality for (iv). Fix k and suppose without loss of generality that (i) holds strictly, i.e.

∫

A

(s1(x)− s2(x))dF1(x) < k

∫

A

(s1(x)− s2(x))dF2(x). (22)

Recall (1), i.e. f(x) = λf1(x) + (1− λ)f2(x). Now it holds that

∫

B

(s2(x)− s1(x))dF1(x) ≥ k

∫

B

(s2(x)− s1(x))dF2(x)

∧

∫

A

(s1(x)− s2(x))dF1(x) < k

∫

A

(s1(x)− s2(x))dF2(x) (23)

Thus, since

(λ+ k(1− λ))
∫

A
(s1(x)− s2(x))dF1(x)

= λ
∫

A
(s1(x)− s2(x))dF1(x) + k(1− λ)

∫

A
(s1(x)− s2(x))dF1(x)

< λ
∫

A
(s1(x)− s2(x))dF1(x) + (1− λ)

∫

A
(s1(x)− s2(x))dF2(x) (24)

= λ
∫

B
(s2(x)− s1(x))dF1(x) + (1− λ)

∫

B
(s2(x)− s1(x))dF2(x)

≤ λ
∫

B
(s2(x)− s1(x))dF1(x) + k(1− λ)

∫

B
(s2(x)− s1(x))dF1(x)

= (λ+ k(1− λ))λ
∫

B
(s2(x)− s1(x))dF1(x)

it holds that

∫

A

(s1(x)− s2(x))dF1(x) <

∫

B

(s2(x)− s1(x))dF1(x) (25)

and therefore

∫

A∪B

(s1(x)− s2(x))dF1(x) < 0

⇔

∫

A∪B

s1(x)dF1(x) <

∫

A∪B

s2(x)dF1(x). (26)

This concludes the proof.

Lemma 4 Let f1(x)
f2(x)

be weakly decreasing in x on I. Then one security solving (P1) is the standard debt contract
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sSDC(x;D(ω)) = min{x,D(ω)}.

If f1(x)
f2(x)

is strictly decreasing, then the standard debt contract sSDC(x;D(ω)) is the (up to pointwise deviations) unique

security solving (P1).

Proof:

First note that D(ω) is unique by Lemma 1. Now consider the standard debt contract sSDC(x;D(ω)) and any

contract s with Ef [s(x)] = ω and s 6= sSDC(x;D(ω)) in the sense that they differ on a subset of I with positive

measure. Formally, consider s such that, letting

∆ ≡
{

x ∈ I such that s(x) 6= sSDC(x;D(ω))
}

, it holds that

∫

∆

1dF (x) > 0. (27)

To show that the standard debt contract solves (P1), it is sufficient to show that for all such s, Ef1 [s(x)] ≤

Ef1 [s
SDC(x;D(ω))] and equivalently Ef2 [s(x)] ≥ Ef2 [s

SDC(x;D(ω))].

Since sSDC(x;D(ω)) is a standard debt contract and Ef [s(x)] = Ef [s
SDC(x;D(ω))], it holds that

∃x̂ ∈ I s.t. sSDC(x;D(ω)) ≥ s(x) if x < x̂

sSDC(x;D(ω)) ≤ s(x) if x > x̂. (28)

There exists a point x̂ such that sSDC(x;D(ω)) lies weakly above s when x < x̂, with the roles reversed for x > x̂.

Furthermore,

∫ x̂

xL
(sSDC(x;D(ω))− s(x))dF (x) =

∫ xH
x̂

(s(x)− sSDC(x;D(ω)))dF (x) (29)

⇔ λ
∫ x̂

xL
(sSDC(x;D(ω))− s(x))dF1(x) + (1− λ)

∫ x̂

xL
(sSDC(x;D(ω))− s(x))dF2(x)

= λ
∫ xH
x̂

(s(x)− sSDC(x;D(ω)))dF1(x) + (1− λ)
∫ xH
x̂

(s(x)− sSDC(x;D(ω)))dF2(x). (30)

Let f1(x̂)
f2(x̂)

≡ k and recall that f1(·)
f2(·)

is weakly decreasing. It follows that

∀ξ ∈ I, ξ ≤ x̂ : f1(ξ)
f2(ξ)

≥ k

⇔ f1(ξ) ≥ kf2(ξ)

⇒ [sSDC(ξ;D(ω))− s(ξ)]f1(ξ) ≥ k[sSDC(ξ;D(ω))− s(ξ)]f2(ξ). (31)

Hence,

∫ x̂

xL

[sSDC(x;D(ω))− s(x)]dF1(x) ≥ k

∫ x̂

xL

[sSDC(x;D(ω))− s(x)]dF2(x). (32)

By the same argument,

∫ xH

x̂

[s(x)− sSDC(x;D(ω))]dF1(x) ≤ k

∫ xH

x̂

[s(x)− sSDC(x;D(ω))]dF2(x). (33)

By Lemma 3, it thus holds that

∫ xH

xL

sSDC(x;D(ω))dF1(x) ≥

∫ xH

xL

s(x)dF1(x). (34)

This implies that sSDC(x;D(ω)) is indeed a solution to (P1) if f1(·)
f2(·)

is nonincreasing.

The proof for unique optimality of sSDC(x;D(ω)) whenever f1(·)
f2(·)

is strictly decreasing follows the same approach.

It needs to be noted that if s 6= sSDC(x;D(ω)) in the above sense, there exists ǫ > 0 such that, letting A ≡ {x ∈

I\Uǫ(x̂) such that s(x) 6= sSDC(x;D(ω))},

∫

A

1dF (x) > 0. (35)
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s and sSDC(x;D(ω)) need to be different with positive measure outside of an ǫ-neighborhood around x̂. If this were

not the case, s would be equal to ŝ almost everywhere.19 Now the same construction as in the previous approach can

be utilized, but with

k1 ≡
f1(x̂+ ǫ)

f2(x̂+ ǫ)
> k =

f1(x̂)

f2(x̂
>
f1(x̂− ǫ)

f2(x̂− ǫ)
≡ k2 (36)

as reference points. This, coupled with
∫

A
1dF (x) > 0, allows to establish that

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF2(x) ≤
1

λk2 + (1− λ)

∫ x̂−ǫ

xL

(sSDC(x;D(ω))− s(x))dF (x)

+
1

λk + (1− λ)

∫ x̂

x̂−ǫ

(sSDC(x;D(ω))− s(x))dF (x)

≤
1

λk + (1− λ)

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF (x) (37)

and

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF2(x) ≥
1

λk + (1− λ)

∫ x̂+ǫ

x̂

(s(x)− sSDC(x;D(ω)))dF (x)

+
1

λk1 + (1− λ)

∫ xH

x̂+ǫ

(s(x)− sSDC(x;D(ω)))dF (x)

≥
1

λk + (1− λ)

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF (x) (38)

need to hold. Finally, by (35),

∫ xH

x̂+ǫ

(s(x)− sSDC(x;D(ω)))dF (x) > 0 ∨

∫ x̂−ǫ

xL

(sSDC(x;D(ω))− s(x))dF (x) > 0. (39)

Hence, (37) or (38) needs to hold strictly, i.e.

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF2(x) <
1

λk + (1− λ)

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF (x)

∧

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF2(x) ≥
1

λk + (1− λ)

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF (x)

∨ (40)

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF2(x) ≤
1

λk + (1− λ)

∫ x̂

xL

(sSDC(x;D(ω))− s(x))dF (x)

∧

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF2(x) >
1

λk + (1− λ)

∫ xH

x̂

(s(x)− sSDC(x;D(ω)))dF (x) (41)

Thus, by Lemma 3,

Ef2 [s
SDC(x;D(ω))] < Ef2 [s(x)] ⇔ Ef1 [s

SDC(x;D(ω))] > Ef1 [s(x)] (42)

needs to hold whenever f1(·)
f2(·)

is strictly decreasing. sSDC(x;D(ω)) is therefore the unique solution to (P1) up to

pointwise deviations.

19This follows from a simple proof by contradiction.
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Lemma 5 Let f1(x)
f2(x)

be weakly increasing in x on I. Then one security solving (P1) is the leveraged equity contract

sLE(x, L(ω)) = x · Ix≥L(ω).

If f1(x)
f2(x)

is strictly increasing, then the leveraged equity contract sLE(x, L(ω)) is the (up to pointwise deviations) unique

security solving (P1).

Proof:

This proof is almost identical to the one of Lemma 4. L(ω) is uniquely determined by Lemma 1. Take any security

s 6= sLE(x;L(ω)), in the sense that they are different on a subset of I with positive measure, with E[s(x)] = ω =

E[sLE(x;L(ω))]. Note that by construction of sLE(x;L(ω)),

∃x̂ ∈ I s.t. sLE(x;L(ω)) ≤ s(x) if x ≤ x̂

sLE(x;L(ω)) ≥ s(x) if x ≥ x̂. (43)

Now by repeating the previous analysis, but with an increasing likelihood ratio, it holds that for k ≡ f1(x̂)
f2(x̂)

:

∫ x̂

xL

[s(x)− sLE(x;L(ω))]dF1(x) ≤ k

∫ x̂

xL

[s(x)− sLE(x;L(ω))]dF2(x) (44)

∫ xH

x̂

[sLE(x;L(ω))− s(x)]dF1(x) ≥ k

∫ xH

x̂

[sLE(x;L(ω))− s(x)]dF1(x). (45)

Recalling Ef [s(x)] = Ef [s
LE(x;L(ω))], applying Lemma 3 yields

∫ xH

xL

s(x)dF1(x) ≤

∫ xH

xL

sLE(x;L(ω))dF1(x). (46)

This yields the desired result that sLE(x;L(ω)) solves (P1). Furthermore, as in Proposition 2, this inequality can be

established to hold strictly whenever f1(·)
f2(·)

is strictly increasing. Thus, sLE(x;L(ω)) is the unique solution to (P1)

(up to pointwise deviations). The corollary follows because the observation about the intermediate point x̂ extends

to sLD in the modified problem (P1*).

∃x̂ ∈ I s.t. sDE(x) ≤ s(x) if x ≤ x̂

sDE(x) ≥ s(x) if x ≥ x̂. (47)

Repeating the same steps as in the proof of the Proposition yields the corollary; ω ≤
∫

I
min[x, u]dF (x) ensures that a

security subject to the restrictions exists.

Lemma 6 Suppose that f1(x)
f2(x)

is weakly decreasing in x on (x, x) ⊂ I with x < x ≤ xH . Let s be an optimal security

solving (P1) on (xL, xH) ≡ I. Denote e ≡
∫ x

x
s(x)dF (x).

Define

s∗(x) =

{

s(x) if x /∈ (x, x)

ŝ(x) if x ∈ (x, x)

with

ŝ(x;D(e)) = min{x,D(e)}
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where D(e) is the by Lemma 1 unique solution to

∫ x

x

ŝ(x)dF (x) = e.

s∗ is then also a solution to (P1). Furthermore, s∗ is globally (i.e. on (xL, xH)) nondecreasing and satisfies the

tranched debt property on (x, x).

Proof:

First, global nondecreasingness is established. Since D(e) solves

∫ x

x

ŝ(x)dF (x) = e, (48)

D(e) ≥ infξ∈(x,x) s(ξ) has to hold as otherwise

∫ x

x

ŝ(x)dF (x) <

∫ x

x

s(x)dF (x) = e. (49)

However, by nondecreasingness of s this implies D(e) ≥ s(x). Likewise, D(e) ≤ supξ∈(x,x) s(ξ) has to hold as otherwise

∫ x

x

ŝ(x)dF (x) >

∫ x

x

s(x)dF (x) = e. (50)

Thus, D(e) ≤ s(x), which with D(e) ≥ s(x) and the nondecreasingness of ŝ by construction yields global nondecreas-

ingness of s∗. Next, it needs to be shown that s∗ solves (P1) on I.

First note that s and s∗ have the same expected value outside of (x, x), i.e.

∫

ξ/∈(x,x)

s(ξ)dF1(ξ) =

∫

ξ/∈(x,x)

s∗(ξ)dF1(ξ), (51)

since s∗ and s are equal at all those points. Consider now the following modified problem on (x, x):

(P1mod) max
t∈S(x,x)

Eg1 [t(x)] s.t. λEg1 [t(x)] + (1− λ)Eg2 [t(x)] = e

0 ≤ t(x) ≤ x for all x

where

g1(x) = f1(x) ·
1

F1(x)− F1(x)
(52)

g2(x) = f2(x) ·
1

F2(x)− F2(x)
(53)

with associated cdf on (x, x):

G1(x) = [F1(x)− F1(x)] ·
1

F1(x)− F1(x)
(54)

G2(x) = [F2(x)− F2(x)] ·
1

F2(x)− F2(x)
. (55)

In this formulation, since f1(·)
f2(·)

is weakly decreasing on (x, x), so is g1(·)
g2(·)

= f1(·)
f2(·)

· F2(x)−F2(x)
F1(x)−F1(x)

. This implies that

(P1mod) corresponds to a problem where Lemma 4 applies. Hence, ŝ solves (P1mod). This in turn implies that
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∫ x

x
ŝ(x)dG1(x) ≥

∫ x

x

s(x)dG1(x)

⇒ 1
F1(x)−F1(x)

∫ x

x
ŝ(x)dG1(x) ≥

1

F1(x)− F1(x)

∫ x

x

s(x)dG1(x)

⇒
∫ x

x
ŝ(x)dF1(x) ≥

∫ x

x

s(x)dF1(x). (56)

Thus, if s is a solution to (P1) on I, ŝ has to be a solution as well. With (51) it follows that

∫ xH

xL

s∗(x)dF1(x) ≥

∫ xH

xL

s(x)dF1(x). (57)

Lemma 7 Suppose that f1(x)
f2(x)

is weakly increasing in x on (x, x) ⊂ I with x < x ≤ xH . Let s be an optimal security

solving (P1) on (xL, xH) ≡ I. Denote e ≡
∫ x

x
s(x)dF (x).

Define

s∗(x) =

{

s(x) if x /∈ (x, x)

ŝ(x) if x ∈ (x, x)

with

ŝ(x) =

{

s(x) if x < L

min{x,D} if x ≥ L

where

D = sup
ξ∈(x,x)

s(ξ)

and L(e) is the by Lemma 1 unique solution to

∫ x

x

ŝ(x)dF (x) = e.

s∗ is then also a solution to (P1). Furthermore, s∗ is globally nondecreasing (i.e. on (xL, xH)) and satisfies the

tranched debt property on (x, x).

Proof:

First, nondecreasingness of s∗ on (xL, xH) is established. On (xL, x] and [x, xH), s∗ is nondecreasing by virtue of

being equal to the nondecreasing s. On (x, x), ŝ is nondecreasing by construction. Finally s(x) ≤ s(x) ≤ s(x) for all

x ∈ (x, x) as D = supξ∈(x,x) s(ξ) ≤ s(x).

Hence, s∗ is globally nondecreasing. Since

∫

ξ/∈(x,x)

s(ξ)dF1(ξ) =

∫

ξ/∈(x,x)

s∗(ξ)dF1(ξ) (58)

as s∗ and s coincide at all those points, it is sufficient to show

∫

ξ∈(x,x)

s(ξ)dF1(ξ) ≤

∫

ξ∈(x,x)

s∗(ξ)dF1(ξ) (59)

to establish s∗ as a solution to (P1). This follows from the corollary to Lemma 5. Note that e ≡
∫ x

x
s(x)dF (x) ≤

∫

(x,x)
min{x,D} by construction of D. The corollary thus establishes that ŝ solves (P1mod*) on (x, x), where
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(P1mod*) max
t∈S(x,x)

Eg1 [t(x)] s.t. λEg1 [t(x)] + (1− λ)Eg2 [t(x)] = e

t(x) ≤ D for all x ∈ (x, x),

and

g1(x) = f1(x) ·
1

F1(x)− F1(x)
(60)

g2(x) = f2(x) ·
1

F2(x)− F2(x)
. (61)

Thus, s∗ solves (P1) on I and is indeed nondecreasing, as well as compliant with the limited liability constraint.

Proposition 4 Let s be a security solving (P1) on (xL, xH) ≡ I. Then the following statements hold:

(i) There exists a valid security s∗ which is also a solution to (P1) on (xL, xH) ≡ I and satisfies the tranched debt

property.

(ii) If f1(x) and f2(x) are continuous and never proportional, i.e. if

∀(ξ1, ξ2) ⊆ I : ∀k ∈ R+∃x ∈ (ξ1, ξ2) : f1 6= kf2

then s satisfies the tranched debt property.

Proof:

Before turning to the proofs of 4(i) and 4(ii), introduce the following notation: Let TD be the set of largest disjoint

intervals where s is consistent with the tranched debt property. Further, let NTD be the set of largest disjoint inter-

vals where s is inconsistent with the property. Denote NTDi the set of largest disjoint intervals in NTD where f1(·)
f2(·)

is weakly increasing and let NTDd be the set of largest disjoint intervals where f1(·)
f2(·)

is weakly decreasing within the

complementary set to NTDi with respect to NTD. Lastly, let P denote the set of points not in TD and NTD, but in I.

Formally,
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TD ≡ {(ξ1, ξ2) ⊂ I|s satisfies the tranched debt property on (ξ1, ξ2)

∧∀ǫ > 0 : s does not satisfy the tranched debt property on (ξ1 − ǫ, ξ1) or (ξ2, ξ2 + ǫ)}

NTD ≡ {(ξ1, ξ2) ⊂ I|s does not satisfy the tranched debt property on (ξ1, ξ2)

∧∀ǫ > 0 : s satisfies the tranched debt property on (ξ1 − ǫ, ξ1) or (ξ2, ξ2 + ǫ)}

NTDi ≡ {(ξ1, ξ2) ⊂ NTD| f1(·)
f2(·)

is weakly increasing in ξ on (ξ1, ξ2)

∧∀ǫ > 0 : f1(·)
f2(·)

is not weakly increasing in ξ on (ξ1 − ǫ, ξ2) and (ξ1, ξ2 + ǫ)}

(62)

NTDd ≡ {(ξ1, ξ2) ⊂ NTD\NTDi|
f1(·)
f2(·)

is weakly decreasing in ξ on (ξ1, ξ2)

∧∀ǫ > 0 : f1(·)
f2(·)

is not weakly decreasing in ξ on (ξ1 − ǫ, ξ2) and (ξ1, ξ2 + ǫ)}

NTDp ≡ NTD\ (NTDi ∪NTDd)

P ≡ I\ (TD ∪NTD) .

By construction,

TD ∪NTDi ∪NTDd ∪NTDp ∪ P = I (63)

and

∫

P

1dF (x) = 0 =

∫

NTDp

1dF (x). (64)

Now consider 4(i). Take any interval (ξ1, ξ2) ∈ NTDi. Consider the security

ŝ(x) =







s(x) if x /∈ (ξ1, ξ2)

s(ξ1) if x ∈ (ξ1, L]

min{x, supξ∈(ξ1,ξ2)
s(ξ)} if x ∈ (L, ξ2)

(65)

where L solves

∫ ξ2

ξ1

s(ξ)dF (ξ) =

∫ ξ2

ξ1

ŝ(ξ)dF (ξ). (66)

By Lemma 7, ŝ(x) is consistent with the tranched debt property on (ξ1, ξ2) and s∗ = s(x) + (ŝ(x) − s(x))Ix∈(ξ1,ξ2)

also solves (P1). Likewise, for any (ψ1, ψ2) ∈ NTDd, the security

ŝ(x) =

{

s(x) if x /∈ (ψ1, ψ2)

min{x,D} otherwise
(67)

where D solves

∫ ψ2

ψ1

s(ψ)dF (ψ) =

∫ ψ2

ψ1

ŝ(ψ)dF (ψ) (68)

is consistent with the tranched debt property on (ψ1, ψ2) and s
∗ = s(x) + (ŝ(x)− s(x))Ix∈(ξ1,ξ2) also solves (P1) by

Lemma 6. Since the above statements hold for any (ξ1, ξ2) ∈ NTDi and for any (ψ1, ψ2) ∈ NTDd, repeated use of

the above local modification on all intervals in NTDi and NTDd yields a security s∗ which is consistent with the

tranched debt property on

NTDi ∪NTDd ∪ TD.

With (63) and (64) this implies that s∗ is consistent with the tranched debt property on I and solves (P1). This

concludes the proof for 4(i).
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For 4(ii), suppose that s is not consistent with the tranched debt property on I. This implies that

∫

NTDi∪NTDd

1dF (x) > 0. (69)

Suppose for the remainder of the proof that
∫

NTDi
1dF (x) > 0.20 By the continuity of f1, f2 and local nonproportion-

ality, i.e.

∀(ξ1, ξ2) ⊆ I : ∀k ∈ R+∃x ∈ (ξ1, ξ2) : f1 6= kf2, (70)

it follows that f1(·)
f2(·)

is strictly increasing on any (ξ1, ξ2) ∈ NTDi.
21 Now take any (ξ1, ξ2) ∈ NTDi. Consider the

following modified problem on (ξ1, ξ2):
22

(Pmod) max
t∈S(ξ1,ξ2)

Eg1 [t(x)] s.t. λEg1 [t(x)] + (1− λ)Eg2 [t(x)] =

∫ ξ2

ξ1

s(x)dG(x)

t(x) ≤ sup
ξ∈(ξ1,ξ2)

s(ξ)

where

g1(x) = f1(x) ·
1

F1(x)− F1(x)
(71)

g2(x) = f2(x) ·
1

F2(x)− F2(x)
. (72)

By Corollary 2 to Lemma 5, the leveraged debt security

sLD(x) = min{x, sup
ξ∈(ξ1,ξ2)

s(ξ)} · Ix∈[L,ξ2) (73)

with L chosen such that

∫ ξ2
ξ1
sLD(x)dG(x) =

∫ ξ2
ξ1
s(x)dG(x) (74)

⇔
∫ ξ2
ξ1
sLD(x)dF (x) =

∫ ξ2
ξ1
s(x)dF (x) (75)

is the unique (up to pointwise deviations) solution to (Pmod) on (ξ1, ξ2). Hence, since s is not consistent with the

tranched debt property on (ξ1, ξ2) and can thus not be leveraged debt there,

Eg1 [s
LD(x)] =

∫ ξ2

ξ1

sLD(x)dG1(x) >

∫ ξ2

ξ1

s(x)dG1(x) = Eg1 [s(x)]. (76)

Therefore,

∫ ξ2

ξ1

sLD(x)dF1(x) >

∫ ξ2

ξ1

s(x)dF1(x) (77)

and thus

∫

I

ŝ(x)dF1(x) >

∫

I

s(x)dF1(x) (78)

where

ŝ(x) =

{

s(x) if x /∈ (ξ1, ξ2)

sLD(x) otherwise.
(79)

20The proof for
∫
NTDd

1dF (x) > 0 is similar and utilizes a contradiction built with the use of Lemma 4.
21Weakly increasing and not strictly is ruled out by the nonproportionality, which would be necessary for a locally constant

f1(·)
f2(·)

.
22On (ξ1, ξ2) refers to g1(x) = g2(x) = 0 for x /∈ (ξ1, ξ2).
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However, by Lemma 7 this ŝ(x) is a valid security, i.e. ŝ satisfies limited liability and nondecreasingness.By construction

∫

I

ŝ(x)dF (x) =

∫

I

s(x)dF (x) = ω. (80)

Hence, optimality of s is violated. Thus, the assumption that s is not consistent with the tranched debt property has

to be false. This concludes the proof by contradiction.

Proposition 5 Suppose that for all x ∈ I it holds that F1(x) > F2(x). Let local nonproportionality and continuity of

densities by satisfied. The any solution s to (P1) satisfies

∀x ∈ I : s(x) > xL.

Thus, s includes a standard debt tranche.

Proof:

The proof is a proof by contradiction. Note first that since local nonproportionality holds, any solution to (P1) will

have to satisfy the tranched debt property. Consider some security s with Ef [s(x)] = ω which is consistent with the

tranched debt property, but does not satisfy ∀x ∈ I : s(x) > xL. As such,

∃x̂ ∈ (xL, xH) : s(x) > xL ⇔ x ≥ x̂. (81)

We need to show that s cannot be a solution to (P1).

First note that for s to be a solution to (P1), s(x) ≥ xL for all x ∈ (xL, xH) is necessary. This corresponds to

Lemma 4 of [4]. To see this, suppose otherwise. Increasing the payoff to xL at all values x increases the payoff in

both states by the same value (x ≥ xL with probability 1). Furthermore, any security s with Ef [s(x)] = ω > xL has

Ef1 [s(x)] < Ef2 [s(x)] by F1(x) > F2(x) for all x ∈ (xL, xH). Hence, increasing the payoff at all ξ ∈ (xL, xH) where

s(x) < xL and decreasing the payoff proportionally at all other points such that the expected payoff Ef remains

unchanged increases the expected payoff under bad information. Thus, s cannot solve (P1).

Having established that s(x) ≥ xL for all x, denote {x1, D1} the pair characterizing starting point and face value

of the first tranche with a face value larger than xL, D1 > xL. Since s specifies a payoff larger than xL whenever

x ≥ x̂ > xL for some x̂ > xL, it has to be the case that x1 > xL. Suppose that s consists of a finite number N of

tranches and denote xN , DN the starting point and face value of the last debt tranche. Denote

1− F1(xN )

1− F2(xN )
≡ k < 1 (82)

F1(x1)− F2(x1) ≡ c > 0 (83)

DN −DN−1 ≡ d > 0 (84)

Since F1(xL) = F2(xL) = 0, it has to hold that

∃ǫ > xL such that ∀xL < δ < ǫ :

∫ xH
xL

min{x, δ}dF1(x)
∫ xH
xL

min{x, δ}dF2(x)
> k, (85)

i.e. that for all sufficiently small face values δ the corresponding standard debt tranche pays out at least k times as

much (in expectation) after bad information as after good information. Existence of ǫ > xL is due to the fact that

the k is bounded away from 1, whereas the initial tranche can be constructed with a ratio arbitrarily close to 1 due

to strict positivity of densities and F1(xL) = F2(xL) = 0. Take some such ǫ and consider D1 > γ > xL where γ < ǫ

and κ ≡
∫ x1
xL

min{x, γ}dF (x) < d[1− F (xN )]. The contract s∗ with
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s∗(x) =







min{x, γ} for x < x1
min{x,DN} − κ

1−F (xN )
for x ∈ (xN , xH)

s(x) otherwise

(86)

can be shown to be nondecreasing, to satisfy limited liability, to have an expected value Ef [s
∗(x)] = ω and to satisfy

Ef1 [s
∗(x)] > Ef1 [s(x)], thus violating the supposed optimality of s. First, Ef [s

∗(x)] = ω follows from the definition

of s∗ and κ ≡
∫ x1
xL

min{x, γ}dF (x). Next, nondecreasingness stems from κ < d[1− F (xN )] and γ < D1. Finally,

∫ xH
xL

min{x, γ}dF1(x)
∫ xH
xL

min{x, γ}dF2(x)
> k (87)

⇒

∫ xH
xL

min{x, γ}dF1(x)− γ[1− F2(x1)− c]
∫ xH
xL

min{x, γ}dF2(x)− γ[1− F2(x1)]
> k =

1− F1(xN )

1− F2(xN )
(88)

⇒

∫ xH

xL

min{x, γ}dF1(x)− γ[1− F2(x1)− c]−
κ

1− F (xN )
[1− F1(xN )] > 0 (89)

⇒

∫ xH

xL

s∗(x)dF1(x) >

∫ xH

xL

s(x)dF1(x). (90)

To illustrate this construction, consider the following graph:

return x

payoff

xL

γ

D1

DN−1

DN −
κ

1−F (xN )

DN

xL x1 xN xH

s(x)

s∗(x)

κ
1−F (xN )

γ

Illustration: Inclusion of Standard Debt Tranche

s∗ is different from s in that it includes a standard debt tranche with face value γ and correspondingly decreases

the payoff of the last tranche by κ
1−F (xN )

, thus ensuring that the expected values Ef [s
∗(x)] = Ef [s(x)] = ω remain

unchanged. The decrease of the face value of the most junior tranche characterized by {xN , DN} affects the expected

values of the security in the bad and good state with ratio k. By construction, the inclusion of the standard debt

tranche with face value γ increases the expected values in the good and bad state with a larger proportion. Since

the unconditional expected values of s and s∗ are identical, this implies that Ef1 [s
∗(x)] > Ef1 [s(x)] and thus that s

cannot have been optimal.

If s consists of an infinite number of debt tranches, there has to exist at least one tranche where the ratio is bounded

away from 1, i.e. where (letting j denote the tranche)
F1(xj+1)−F1(xj)

F2(xj+1)−F2(xj)
≤ k < 1. If no such tranche existed, first

order stochastic dominance would be violated. The remaining construction is then as above for the last tranche. This

concludes the proof for (81). Coupled with the observation that any solution to (P1) has to be tranched debt, the

only securities satisfying the requirement are tranched debt contracts including a standard debt tranche.

Proposition 6 Denote D(ω) the face value of the standard debt contract sSDC(x;D(ω)) with Ef [s
SDC(x;D(ω))] = ω.

Let G(x) ≡ 1−F1(x)
1−F2(x)

. Suppose that f1, f2 are continuous.
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If

(i) ∃ξ ∈ (D(ω), xH) : G(ξ) > inf
x∈(xL,D(ω)]

f1(x)

f2(x)

then sSDC(x;D(ω)) is not a solution to (P1). Hence, the optimal contract necessarily involves leverage.

Proof:

It can be established that a contract s with Ef [s(x)] = Ef [s
SDC(x;D(ω))] = ω and Ef1 [s(x)] > Ef1 [s

SDC(x;D(ω))]

exists whenever (i) holds. Consider some such ξ. By continuity of f1, f2, if G(ξ) > infx∈(xL,D(ω)]
f1(x)
f2(x)

, there has to

exist an ǫ-neighborhood around some x̂ ∈ (xL, D(ω)) such that

∀x ∈ Uǫ(x̂) :
f1(x)

f2(x)
< G(ξ) (91)

where xL < x̂− ǫ < x̂ < x̂+ ǫ < D(ω).

Consider the following security:

s(x) =















x for x ∈ (xL, x̂− ǫ)

x̂− ǫ for x ∈ [x̂− ǫ, x̂+ ǫ]

min{x,D(ω)} for x ∈ (x̂+ ǫ, ξ)

D(ω) + κ for x ∈ (ξ, xH)

(92)

where κ(1− F (ξ)) =
∫

Uǫ(x̂)
[x− (x̂− ǫ)]dF (x) and ǫ is chosen sufficiently small such that κ ≤ ξ −D.

return x

payoff

x̂

x̂ − ǫ x̂ + ǫ

x̂ − ǫ

x̂ + ǫ

D

D + κ

ξ

sSDC (x)

s(x)

κ

Illustration: Inclusion of Junior Debt Tranche

By construction, it holds that Ef [s(x)] = Ef [s
SDC(x;D(ω))]. Thus, since f1(x)

f2(x)
< G(ξ) for all x ∈ Uǫ(x̂),

∫

Uǫ(x)
(sSDC(x;D(ω))− s(x))dF1(x)

∫

Uǫ(x)
(sSDC(x;D(ω))− s(x))dF2(x)

< κG(ξ) = κ
1− F1(ξ)

1− F2(ξ)
(93)

⇒

∫

Uǫ(x)
(sSDC(x;D(ω))− s(x))dF1(x)

∫

Uǫ(x)
(sSDC(x;D(ω))− s(x))dF2(x)

<

∫ xH
ξ

(s(x)− sSDC(x;D(ω))))dF1(x)
∫ xH
ξ

(s(x)− sSDC(x;D(ω)))dF2(x)
(94)

⇒

∫ xH

xL

sSDC(x;D(ω))dF1(x) <

∫ xH

xL

s(x)dF1(x) (95)

where the last implication follows from Lemma 3 and the fact that s and sSDC(x;D(ω)) are identical outside of Uǫ(x̂)

and (ξ, xH). sSDC(x;D(ω)) cannot be optimal. Intuitively, the above construction does not affect the unconditional

expected value. However, the decrease at all points in Uǫ(x̂) yields a decrease in both the expected value under bad

and good information. Of the overall change in expected value, less is attributed to the expected value under bad

information (as compared to that under good information) than in the increase of the payoff by κ at all points in

(ξ, xH). Thus, since the unconditional expected value changes exactly offset each other, s has a higher expected value

under bad information than sSDC(x;D(ω)). Hence, sSDC(x;D(ω)) cannot solve (P1).
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