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Abstract

We develop a dynamic model of new store openings and closings with spatial competition and an entry

regulator in a continuous-time framework. In the model, opportunities to open a new store or to close an

existing store arrive randomly. If a firm receives the opportunity, it decides whether to send an application

for opening a store in that location, taking into account both the rivals’ future responses as well as the

adverse cannibalization effects on own neighboring stores. The regulator either approves or rejects the

application, based on the potential effects of the opening on consumer surplus and profits of rival firms.

We estimate the model by a two-step method, using data from the U.K. supermarket industry on exact

locations and dates of store openings/closings, applications for store opening, and approval decisions by the

regulator, together with rich data of consumer choices and consumer locations. In counter-factual analysis,

we evaluate the effect of the change in the government planning regulation that took place in 1996 in the

U.K.
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1 Introduction

Supermarket stores vary widely in the range of products they offer. The “big-box” format– located in large

stores outside of town centres– is attractive for its wide product range. Other formats offer smaller stores

and attract consumers in alternative ways: some have strengths in specific product categories such as fresh or

frozen produce, others offer low prices on a limited product range, and others offer a convenient geographic

location. Many of these alternative formats are located in town centres. The emergence of these distinct

formats has led to several public policy questions. One is whether big-box retailing has an adverse impact on

small stores and consequently the environmental quality of town centres.1 Another is whether tight restrictions

on development of big box retailers– resulting in a high level of concentration within the big box format– is

enough to confer market power in some locations regardless of the presence of outlets from other formats.

In the U.K., environmental and competition policy authorities have taken distinct positions with regard to

store format. Environmental planning authorities have a policy of protecting town centres, through restrictions

on the development of big box stores. Competition authorities, on the other hand, have claimed that these

restrictions can reduce competition within the big-box format, given that shoppers on large trips regard smaller-

format stores as poor substitutes for large stores.2 Until recently these two areas of policy have developed

independently and currently there is a debate over how much planning policy should respond to competition as

well as environmental policy issues. Competition and environmental policy have —taken together —inhibited

the ability of some firms to build more large stores, and these firms have instead developed many small format

stores in recent years.

The aim of this paper is to analyze the welfare effects of the current environmental planning policy and

evaluate the potential impact on market structure of alternative policies, including a “competition test”

proposed by the Competition Commission (CC). Specifically, we will answer the following three questions.

The first question is if the current policy ended up suppressing competition between stores by allowing existing

stores to exercise higher market power. Second, we will investigate if the current policy induced the preemption

incentives to block the opening of big-box stores, resulting in ineffi cient entry. Finally, we will ask what would

happen to the market structure if alternative policies are implemented. In particular, we study the relevance

of the competition test based on the idea that the current criterion allows not only preemption but also

entry deterrence by incumbents. The competition test suggested by the CC will block proposals that would

raise concentration in the neighborhood. In addition, since the local authority myopically decides upon each

application under the current policy guideline, we also analyze the implication of introducing a “dynamic

regulator”which not only considers the static effects of new store entry but also has dynamic consideration

like preemption motives.3

To answer these policy questions, we develop a dynamic industry model with multi-stop shopping con-

sumers, multi-store firms, and an entry regulator. Our demand model, based on Schiraldi, Seiler, and Smith

(2012), aims to capture the consumers’multi-store shopping behavior which depends on their private shop-

ping costs and the opportunities for shopping benefits in the their local choice set. Specifically, we model

1We do not comment on whether protection of town centre stores, and town centre vitality, are worthwhile public policy

objectives.
2As a consequence, mergers between firms in different formats are treated more leniently than mergers in the largest formats.

The most dominant big box retailers Tesco, ASDA and Sainsbury were prohibited from merging with Safeway, which also operated

big box stores. Inter-format policy in the U.K.: the merger of ASDA and Netto was permitted, while Tesco and Sainsbury have

been allowed to expand market share by acquisition (and new openings) of small-format stores.
3The guidelines of the planning policy and the CC Report imply that local authorities do not have dynamic considerations in

approval decisions.
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consumer demand using a continuos discrete framework where consumers choose the stores to visit and how to

allocate expenditure across different categories. The possibility of combining different categories of products

across stores gives the extra incentive to consumers to engage in multi-store shopping. Multi-stop shopping

consumers can, in principle, substitute demand between the stores they visit depending on price and quality

differences. This provides an extra constraint (on top of that which is implied by one stop shopping alone) on

the market power of stores.

In the supply side, multi-store firms engage in a dynamic game of new store openings and closings with

spatial competition and the regulator in continuous time. In the model, opportunities to open a new store (a

large parcel of land suitable for use as a supermarket) or to close an existing store arrive randomly. Once a

parcel of land becomes available, the firm which is called upon to move decides whether to file an application

for opening a store at that location, taking into account both the rivals’future responses as well as the adverse

cannibalization effects on own neighboring stores. The regulator either approves or rejects the application,

based on the potential effects of the opening on consumer surplus and profits of rival firms. Similarly, the

firm that receives an opportunity to close one of its existing stores decides whether to do so. A Markov

Perfect Equilibrium generates sequential openings and closings as well as certain patterns of store dynamics

in geographically connected locations.

To estimate the model, we use the exact dates and locations of submission of applications for store openings,

data on approve/reject decisions by the regulator, and opening dates in case of approval, together with rich

data of consumer choices and consumer locations. Using a “static-dynamic”breakdown, we first estimate the

demand model separately from the dynamic game, and recover per-period payoffs from the product market

competition. The dynamic game is estimated using a two-step method. In the first stage, exogenous arrival

rates, approval probabilities, and conditional choice probabilities are estimated. In the second step, using

a forward simulation by Hotz, Miller, Sanders, and Smith (1994), we compute value functions. Finally,

we estimate a set of structural parameters, including parameters in the regulator’s choice (approve/reject)

equation as well as entry costs and application costs, by maximizing the pseudo likelihood function.

In counter-factual analysis, we evaluate the effect of the government regulation policy. Specifically, we

separately measure the policy’s effects on consumer surplus, profits of superstore rivals, and profits of small-

sized stores. The policy is intended to protect profits of stores in town centres, and we can look to see the effect

on such stores. We will also simulate the effect of alternative regulatory frameworks on those components and

compare its implication on the market structure and consumer surplus.

This paper is the first to recover the objective function of the regulator in the context of competition

policy. Timmins (2002) identifies the objective function of water utility regulators in the U.S., and measures

effi ciency gains obtained from alternative pricing policies. Unlike Timmins (2002), the regulated agents in

our application have strategic interactions, and therefore we will explicitly evaluate if (and how) the planning

regulation achieved the goal of controlling the market structure in favor of small stores, located in town centres.

Another important contribution is that we incorporate the spatial nature of competition in a dynamic

oligopoly, which is an important feature in the U.K. supermarket industry. To deal with the curse of di-

mensionality problem, as in Aguirregabiria and Ho (2012) and Sweeting (2011), we reduce the state space

by aggregating information on the market structure of neighboring locations into a small number of variables

(changes in own and rival firms’profits associated with a store opening), which we recover from a rich demand

model. This allows us to estimate a dynamic model with spatial competition allowing for firm heterogene-

ity. In addition, we exploit properties of continuous time, which have been recently studied by Arcidiacono,
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Bayer, Blevins, and Ellickson (2010) and Doraszelski and Judd (2010) in estimating dynamic games.4 In

their framework, no more than one firm moves simultaneously, which reduces the cost of computing equilibria

significantly. Our continuous-time framework, based on Arcidiacono et. al (2010), not only alleviates the curse

of dimensionality associated with estimating a dynamic game, but also captures the fact that land availability

arrives randomly and continuously. Furthermore, this framework can best exploit the high frequency nature

of our data (openings, closings, and application submissions).

This work also relates to several papers that analyze a retail industry. Beresteanu, Ellickson, and Misra

(2010) estimate a dynamic game between supermarkets in the U.S. In their model, geographic markets are

independent and there is no distinction regarding locations of stores within each market. On the other

hand, in our application, locations of stores within the market are important choice and state variables.

Aguirregabiria and Vicentini (2012) propose a dynamic model of oligopoly with spatial competition between

multi-store retailers. While the structure of spatial competition in our model is similar to theirs, we focus

on an application and analyze the role played by the entry regulator. Sadun (2011) analyzes the effect of

the planning regulation in the U.K. She uses exogenous variation in local political control across the U.K. to

evaluate the causal impact of planning regulation on independent retailers. We can answer related questions

by counterfactual analyses.

The rest of the paper is organized as follows. Section 2 briefly summarizes the planning regulation in the

U.K. and provides simple statistics on application decisions and store openings/closings. We present the full

model of dynamic oligopoly with spatial competition in Section 3 and the estimation procedure in Section 4.

A simplified version of the model and estimation results are shown in Section 5.

2 Industry Background

2.1 Planning Regulation

There was a major planning policy change dating from the mid 1990s. From 1996 planning policy was changed

resulting in a much more restrictive attitude to the entry of new big box retailing outlets, with the primary

aim of protecting town centres, where small (competitor) stores are typically located. To open a store requires

planning consent, and the criteria in the new planning guidelines are: (a) a sequential test that asks (for big-

box out-of-centre applications) if development at a town centre location was possible instead; (b) a need test

that asks if there is a “need”for the extra floorspace conditional on existing floorspace and town population;

and (c) a test for whether the development will adversely affect business in the town centre.5 The planning

policy is intended to be much less restrictive for small stores in town centres than for big box outlets out of

town. Since the introduction of tighter planning criteria new store formats have changed with a much higher

proportion (than previously) of new stores being of small-store format in town centre locations, and a much

smaller proportion being big-box format. For the detail of the regulation, see Sadun (2011).

2.2 Data

The data comprises of several datasets. The first dataset is a survey of consumer choices covering the period

Oct 2002-Sept 2005. The consumer survey contains information on stores that each consumer visited. For the

most important six firms we know the exact store that the consumer visited, and for the other firms, we know

4Takahashi (2011) is also one of a few studies that apply a continuous-time framework for estimating a dynamic game.
5The criteria for (b) are relatively observable, and (c) can be obtained using our demand model. The criteria for (a) may

depend on unobservable factors to do with available sites in the centre.

4



the firm (but not exact store). Demographic information on the consumers is also recorded, including location,

social class, and household size. We aggregate spending into 4 broad product categories detailed in Schiraldi

et al. (2012). For each of these categories we compute a price index for each firm. (Firms with heterogeneous

store size have more than one price index, depending on store size, to reflect the general pricing practice of

setting prices nationally for given size formats). The prices are constructed for each bi-week period using the

product-level prices and revenue weights observed in the consumer data. These price indices are computed

separately for each of 8 demographic groups (by household size and social class) to reflect their different tastes

(see Schiraldi et al. 2012 for a detailed discussion).

The second dataset contains store information in Great Britain, which is provided by Institute for Grocery

Distributors (IGD). We have information on all incumbent stores in 2001 as well as new store openings and

closings of existing stores during the period 2002-2006. For each observation of stores, we can observe the date

of opening/closing, firm identity, store size (floor space), store location (by postcode, which yields an exact

grid reference), and the type of location (town centre, out of town centre, etc). For any consumer location in

the consumer survey, we can use store locations in the IGD data to compute choice sets of nearby stores.

The third dataset, provided by Glenigan, contains information on planning applications to open a new

store. For each application, we have the planning details (firm identity, floor space, and site address) as well

as the approval decision (approve/reject) and the exact date of the decision.

Table 1 shows the number of stores in 2005 by firm and store format (size) and market shares for 10 selected

firms. As we discuss later, store size is firm’s choice variable. There is significant heterogeneity among firms

in terms of store sizes and the number of stores they own. For example, the share of ASDA’s stores that are

large is about 70%. Meanwhile, Co-op has almost 1,600 stores, but in the small format.

There were a large number of openings and closings in the U.K. during the sample period. These figures

also differ widely across firms. Table 2 shows the decomposition by firm. Tesco opened new stores most

actively. Table 3 shows the regional distributions of openings and closings.

Table 4 summarizes frequencies of approval and rejection during the period 2001-2006. The frequency

of rejection is non-negligible. This implies that firms face uncertainty about the regulator’s decision when

deciding whether to submit an application or not. The number of rejections for the group of firms we call

“Discounter”– which are always small– implies that openings of small store are often rejected, too.

For the purposes of defining locations, described in the model in the next section, we use postal sectors,

which are small neighborhoods of a few thousand households each. There are around 11,000 of these in Great

Britain.

3 Model

This section describes a model of dynamic oligopoly with spatial competition, where firms open and close

stores in multiple locations to maximize the discounted expected sum of intertemporal profits. The demand

side of the model closely follows that of Schiraldi et al. (2012). We assume that a consumer’s problem is static

and outcomes in the product market competition do not affect firms’dynamic decisions. Therefore, profits

from product market are simply a function of the current state, and can be taken as primitives in estimating

the dynamic game of store openings and closures.
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3.1 Demand

Consumer i in period t selects shopping choice c comprising either a single store j, or a store pair (j, j′) from

the nearest J stores to the consumer, which implies a choice set Ci containing (J+1
2 ) distinct choices. The

consumer buys qjtk units of category k at individual store j ∈ c for k = 1, ...,K. The price indices paid per

unit of these demands depend on the consumer’s demographic group g(i): pijtk = pg(i)jtk. The consumer’s

demands and prices at the store(s) in choice c are:

qctk ≡ [qjtk]j∈c ≡
{

(qjtk, qj′tk) if c = (j, j′)

(qjtk) if c = j

pictk ≡ [pijtk]j∈c ≡
{

(pijtk, pij′tk) if c = (j, j′)

(pijtk) if c = j

for k = 1, ..,K. The consumer’s overall bundle of demands and prices at shopping choice c are qct ≡ [qctk]
K
k=1 ≡

(qct1, ..., qctK) and pict ≡ [pictk]
K
k=1 ≡ (pict1, ..., pictK) .

The indirect utility function of consumer i with income yi who chooses c at time t is given by

Uict(pict, yi, wict, xict, vict, εict) = αaict(yi, pict, wict, vict, γ) + β′xict + εict, (1)

where wict is a set of observable store and consumer variables, vict = (vict1, ..., victK) are unobserved category-

specific tastes, εict is unobserved taste specific to choice c, and (α, β, γ) are parameters to be estimated. xict
is a list of observed attributes that influence the consumer’s utility from shopping choice c, but which do not

otherwise affect the quantity chosen (conditional on shopping choice c): it includes the transport and shopping

costs of choice c and store attributes that affect the consumer’s overall valuation of the shopping experience

(e.g., whether the store is in a town centre or not). The portion aict() is the maximum utility available at

choice c given the price list pict:

aict(yi, pict, wict, vict, γ) = max
qct≥0

[∑K

k=1
uictk(qctk, wict, victk, γ) + (yi − p′ictqct)

]
(2)

where uictk(qctk, wict, victk, γ) is the direct utility for category k. The assumption of category-level direct

utilities is not essential but simplifies the econometric model and is of limited cost given the broad nature of

the category definitions. Conditional on choice c the utility maximizing bundle qctk that solves the problem

in (2) is implied by Kuhn-Tucker complementary slackness conditions:(
∂uictk
∂qjtk

− pijtk
)
≤ 0

qjtk ≥ 0

qjtk

[
∂uictk
∂qjtk

− pijtk
]

= 0

 =⇒ q̃jtk(pictk, wict, victk) for j ∈ c and k = 1, ..,K. (3)

The choice of c satisfies the condition

i chooses c ⇐⇒ Uict(pict, yi, wict,xict, vict, εict)

≥ Uic′t(pic′t, yi, wic′t,xic′t, vic′t, εic′t) for all c′ ∈ Ci.

Combining discrete and continuous decisions, consumer i’s (unconditional) demand in store j for category k

at time t is given by:

qjtk(pit, yi) =
∑

c∈ci(j)

q̃jtck(pictk, wict, victk)× 1

[
Uict(pict, yit, wict, xict, vict, εict)

> Uic′t(pic′t, yit, wic′t,xic′t, vic′t, εic′t)

]
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where 1[] is an indicator function and ci(j) is the set of choices c in Ci that contain store j.
The direct utility uictk(qctk, wict, victk, γ) for category k is assumed to be quadratic in the quantities qctk

bought in the store(s) in choice c:

uictk(qctk, wict, victk, γ) =
1

γ2k

∑
j∈c

γ1ijt (wijt, vijtk) qjtk −
1

2

∑
j∈c

∑
j′∈c

[(
γ2k1[j′=j] + γ3k1[j′ 6=j]

)
qjtkqj′tk

] (4)

where 1[.] is an indicator function. The marginal utility of category k at store j depends positively on first

order term γ1ijt, which is assumed to be a function of wijt and vijtk, and declines with the quantities of k

bought at store(s) in c:

∂uictk
∂qjkt

=
1

γ2k

γ1ijt (wijt, vijtk)−
∑
j′∈c

[
γ2k1[j′=j]qj′kt + γ3k1[j′ 6=j]qj′kt

] (5)

The parameter γ3k governs the rate at which the marginal utility of k at store j declines in the other store’s

quantity qj′tk (when there are two stores in c). For interior solutions– where qjtk > 0– the Kuhn Tucker

conditions (3) imply that marginal utility is equated to the marginal value of expenditure on other goods:

γ1ijt (wijt, vijtk)−
∑
j′∈c

(1[j′=j]qjtk + 1[j′ 6=j]γ3kqj′tk) = γ2kpijtk. (6)

When i buys positive k from only one store j then (6) implies

qjtk = γ1ijt (wijt, vijtk)− γ2kpijtk

and when i buys positive k from two stores (j, j′) then (6) implies

qjtk =
1

1− γ3kγ3k

[
γ1ijt (wijt, vijtk)− γ2kpijtk − γ3k(γ1ij′t(wij′t, vij′tk)− γ2kpij′tk)

]
(7)

which shows that as γ3 ∈ [0, 1] increases from zero there is an increase in the size of the cross price effects

between the two stores in c.

We assume that γ1ijt is a linear function of observable store and consumer variables wijt and a random

taste draw vijtk

γ1ijt = γ′10wijt + vijtk (8)

where the term vijtk is specified as follows:

vijtk =

{
vitk + εijctk if c = (j, j′)

vitk if c = (j)
(9)

where vitk is the consumer’s taste for category k and if the consumer visits two stores then εijctk is an extra

disturbance that determines the consumer’s split of category demand between the two stores in c; to simplify

the estimation of the model this is assumed equal and opposite for j and j′: εijctk = −εij′ctk.
The conditions (3) imply for consumer i at time t non-negative conditional demand functions6 q̃jctk(pictk, wict, victk, γ)

for each j ∈ c and each k = 1, ...,K, which are written as follows: q̃ctk(pictk, wict, victk, γ) ≡ [q̃jctk(pictk, wict, victk, γ)]j∈c
and q̃ct(pict, wict, vict, γ) ≡ [q̃ctk(pictk, wict, victk, γ)]

K
k=1 .

Substituting these into (2) we have the first portion of (1):

aict(vict, γ) =

[∑K

k=1
uick(q̃ctk(pickt, wict, vickt, γ), victk, γ) + (yi − p′ictq̃ct(pict, wict, vict, γ))

]
,

6We assume that standard regularity (coherency) conditions are satisfied by γ2 and γ3 (see Amemiya (1974)).
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where we make deterministic observable variables (yi, pict, wict) implicit in aict() because that can be captured

by subscripts of a.

Overall, consumer i visiting store combination c at time t obtains utility (again, making observable variables

implicit)

Uict(vict, εict) = αaict(vict, γ) + β′xict + εict,

The scaling term on εict is set to unity and parameter α determines the trade off between aict and the other

influences on store choice given by xict. εict is distributed Type-1 Extreme Value so that conditional on a

particular draw vict the parameters θD = (α, β, γ) imply the probability of consumer i making the choice c at

time t is given by:

Pict(θD|vit) = Pr(Uict(vict, εict) > Uic′t(vic′t, εic′t) ∀c′ ∈ Ci | vit)

=
exp

(
αaict(vict, γ)− β′xct

)∑
c′∈Ci exp

(
αaic′t(vic′t, γ)− β′xc′t

)
The unconditional probability Pict(θD) is given by integrating over the distribution F (vit):

Pict(θD) = Pr (Uict(vict, εict) > Uic′t(vict, εic′t) ∀c′) (10)

=

∫
exp

(
αaict(vict, γ)− β′xict

)∑
c′∈Ci exp

(
αaic′t(vic′t, γ)− β′xic′t

)dF (vit)

Consumer i’s (unconditional) expected demand in j for k is given by summing over shopping choices c in the

set ci(j) ⊂ Ci that contain the store j

E (qijtk | θD) =
∑

c∈ci(j)

{∫
[q̃ijctk(pict, victk)Pict(θD | vit)] dF (vit)

}
.

3.2 Dynamic Model of Retail Oligopoly

3.2.1 Environment

N firms and an entry regulator are playing a dynamic game in a spatial environment. There are L locations

in the game and consumers are non-uniformly distributed across locations. Firms sequentially open a new

store or close an existing store in one of the L locations. The entry regulator can regulate new store openings.

There is spatial competition in the sense that firms compete for consumers not only within the boundary of

the location, but also across locations. Firms are forward looking and maximize intertemporal profit in an

infinite time horizon, accounting for current and future stores configuration. Time is continuous.

For a firm to take any action (both opening and closing), an “opportunity”that is specific to each action

must arrive. For example, for a firm to open a new store at a particular location, a parcel of land must be

available for the firm in that location, that is of a suitable size and location for a supermarket; such as when

a factory or school closes down and becomes available for other uses. Similarly, the opportunity for closing

must arrive at a firm in a specific location so that the firm decides if to close a given store or not (this reflects

the idea that firms should find a counterpart who buys the site, perhaps the store building too). Following

Arcidiacono, Bayer, Blevins, and Ellickson (2010), we assume that these opportunities arrive randomly and

follow a Poisson process with exogenous rates.

There are two types of store formats; big and small. We assume that there are two types of firms; B and

S, where B can potentially open either a big store or a small store, while S is allowed to open a small store
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only (This is motivated by the fact that some firms such as ASDA are observed to have the ability to stock a

large store, but other firms such as Discounters operate a policy of a narrow product range in all stores). We

assume that there are two types of land, small or big. The store size of a firm is automatically determined

by the size of the land that the firm acquires. Let NB and NS be the numbers of firms of type B and firms

of type S in this game, respectively. Note that NB + NS = N. To open a store, firms are required (by law)

to costly file an application to the regulator (social planner). Only if the application is approved, can the

applying firm open a store. Thus, when a firm receives an opportunity to open a store, it decides whether to

file an application or not. Then, if the application is submitted, the regulator either approves or rejects the

application based on the social welfare function that we define later. Once the application is approved, the

firm will open a store. On the other hand, stores can be closed without the regulator’s approval if a firm has

an opportunity to do so.

For expositional simplicity, we introduce the following notation. A triple of variables, denoted by x, fully

characterize a parcel of land for store opening and closing:

x = (l, f, tc) ,

where l represents location, f ∈ {S,B} denotes the size of the land, and tc is a binary variable that equals one
if the land is in town center and zero otherwise. Thus, for example, if the land is for a big store and located

in the town center of location l0, then x = (l0, B, 1) . X denotes the set of x. We sometimes speak of “store

x”to denote an opportunity to open (or close) a store at the site characterized by x.

Let ω denote a set of all payoff-relevant and information-relevant state variables in the game. That is, ω

completely characterizes the current state of the game.7 Let Ω be the set of all possible states.

Arrival Process We assume that a land opportunity arrives at rate of λix (ω) and an opportunity of closing

a store arrives at rate of λcix (ω) . These rates potentially differ across firms, types of land, locations, and states.

Since arrivals of opportunities are not observed by the researcher, we will state conditions for identification of

these rates below. For later analysis, we define Λω =
∑
i

∑
x (λix (ω) + λcix (ω)) .

In our analysis, we use several convenient properties of the Poisson process. First, the waiting time until

each event follows the exponential distribution with the arrival rate of the corresponding event. Second, the

waiting time until any event follows the exponential distribution with rate Λω. Third, conditional on arrival

of any event, the probability that the event is a particular event is given by λ/Λω, where λ is the arrival rate

of the particular event.

Firms The instantaneous profit that firm i’s stores earn out of sales in location l depends on the payoff

relevant variables in both location l and l’s neighboring locations. Payoff relevant variables include store

configurations and location specific demand conditions. For example, if there are more rival stores in the same

location, everything else being equal, a firm’s revenue from the location will be smaller (business stealing). If

there are more stores owned by the same firm, per-store revenues of the firm will be smaller (cannibalization).

On the other hand, if there is more demand in the location, with store configurations being equal, a firm’s

revenue will be higher. Furthermore, if there are more stores in neighboring locations, everything else being

equal, a firm’s revenue will be less because some consumers may choose to shop at stores in neighboring

locations. Thus, we allow business stealing and cannibalization effects to operate not only within the boundary

of the location, but also across locations. This is the source of spatial competition.

7At this point, we do not specify if the state space is discrete or continuous. In application, we discretize the state space.
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Let πil (ω) denote the instantaneous payoff that firm i earns from location l when the current state is given

by ω8 . We also define Πi (ω) =
∑

l
πil (ω) . Assuming that r is a common discount factor, the expected net

present value that a firm maximizes is written as

Eω,T

[∫ ∞
0

Πi (ωt) e
−rtdt+

∞∑
n=1

e−rTnΨi (Tn)

]
,

where Tn is the random time of the n-th event and Ψi (Tn) is firm i’s one-shot payoff associated with the event

that takes place at Tn. We will specify the ingredients in Ψi (Tn) later.

There are two types of decisions (actions) for firms. When an opportunity for store opening arrives to a

firm, the firm decides whether to send an application or not. We assume that if the application is approved,

the firm will open a new store immediately. There is a one-shot payoff associated with each decision. If the

firm decides to apply, it receives a one-shot payoff of ψix (ω) + εi1, where ψix (ω) is a commonly observed

deterministic payoff and εi1 is a random shock. If the firm decides not to apply, it receives a random shock

εi0. We assume that εi1 and εi0 follow the iid type 1 extreme value distribution and are privately observed by

firm i upon arrival of the opportunity.

ψix (ω) is given by

ψix (ω) = −C − Pix (ω)κx,

where C is the deterministic application cost, Pix (ω) is i’s belief about the probability that the application

is accepted, and κx is a deterministic start-up cost for the new store, including building a store, establishing

a distribution channel, and so on. Note that κx is multiplied by Pix (ω) because κx is incurred only after the

application is approved.

Thus, for store x, firm i’s decision to send an application is

χix : Ω× E → R+,

where E is the support of (εi1, εi0) . We use δix (ω) to denote the ex-ante probability (i.e., before (εi1, εi0)

realize) that firm i sends an application when an opportunity to do so arrives.

The second type of firms’decision is a closing decision. When an opportunity to close an existing store

arrives, the firm who owns the store decides whether to close it or not. If the firm decides to close an existing

store, it receives a one-shot additive payoff of ηx + εi1, where ηx is a deterministic scrap value that depends

on x and εi1 is a privately observed shock. If the firm decides not to close the store, it receives a private shock

εi0. We assume that εi1 and εi0 follow the iid type 1 extreme value distribution and are observed upon arrival

of the opportunity. Thus, firm i’s decision on store closing when a store in x is allowed to be closed and when

the state is given by ω is written as

χcix : Ω× Ẽ → {0, 1}

where Ẽ is the support of (εi1, εi0) . We use µix (ω) to denote the ex-ante probability (i.e., before (εi1, εi0)

realize) that firm i closes the store.

Finally, we summarize firm i’s one-shot payoff associated with each event as follows:

8This is the total profit earned from all the stores owned by firm i in location l, not a per-store profit in the location.
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Ψi (Tn) =



−C − κx + εi apply and approved

−C + εi apply but rejected

εi0 do not apply

ηx + εi1 close a store

εi0 decide not to close a store

0 other firm makes a decision

where Tn specifies which of the six events takes place.

Regulator In the current paper, the regulator is one of the players in the game. The regulator approves

firms’applications according to its objective function. Let CS (ω) be the total consumer surplus when the

state is ω. PSTC (ω) and PSOTC (ω) denote the producer surplus earned in town center and out of town

center, respectively. Note that producer surplus include one-shot payoffs Ψi associated with store openings

and closings. The general form of the regulator’s objective function is

Eω,T

[
α1

∫ ∞
0

CS (ωt) e
−rtdt+ α2

∫ ∞
0

PSTC (ωt) e
−rtdt+ α3

∫ ∞
0

PSOTC (ωt) e
−rtdt+

∞∑
n=1

e−rTnΨR (Tn)

]
(11)

where ΨR (Tn) is the regulator’s instantaneous payoff of making decisions, which is given by

ΨR (Tn) =

{
εR1 accept

εR0 reject
.

We assume that εR1 and εR0 follow the iid type 1 extreme value distribution and that they are privately

observed by the regulator upon application. The assumption that the regulator privately observes (εR1, εR0) is

justified by the observation in the data that a significant proportion of applications was rejected. With a strictly

positive application cost, firms would not apply if there are not stochastic elements in the approval/rejection

decision and if they know that their application would be rejected.

It is important to emphasize that the regulator may put different weights on each competitor’s profit by

the type of the competitor, instead of simply summing up their profits. For example, the regulator puts more

emphasis on the change in profits of firms of type S more than that of firms of type B in order to protect

small stores in town centres. As we discuss later, this is an empirical question and we estimate (α1, α2, α3) .

Note that if we set α1 = α2 = α3 = 1, the objective function is simply the expected discounted sum of social

welfare. We define a mapping ϕix from the state and shocks to a binary variable:

ϕix : Ω× Ẽ → {0, 1}

to denote the regulator’s decision when firm i applies for opening store x. We use Pix (ω) to denote the ex-ante

probability (i.e., before (εR1, εR0) realize) that the regulator accepts firm i’s application for opening store x.

Expectation Remember that δix (ω) denotes the ex-ante probability that firm i applies for opening store

x, that µix (ω) is the ex-ante probability that firm i closes store x, and that Pix (ω) is the ex-ante probability

that the regulator approves firm i’s application for x. We use σi to denote a collection of players’ choice

probabilities including the regulator:

σi =

{
{δix (ω) , µix (ω)}x∈X,ω∈Ω if i = 1, ..., N

{Pix (ω)}x∈X,ω∈Ω if i = R
,

where R stands for the regulator. Let σ = (σ1, ..., σN , σR) .
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3.2.2 Value Function and Best Responses

We restrict ourselves to a stationary environment. Thus, we drop the time subscript in what follows.

Firms Payoffs stay constant as long as the state is unchanged. The ex-ante (integrated) value function is

then:

Vi (ω) = Eτ

[∫ τ

0

e−ρtΠi (ω) dt

+e−ρτ


N∑
j=1

∑
x

λjx (ω)

Λω

[
δjx (ω) [Pjx (ω)Vi (ω + [j, x]) + (1− Pjx (ω))Vi (ω)]

+ (1− δjx (ω))Vi (ω) + 1(j=i)

(
δjx (ω)

[
−C − Pjx (ω)κx + εδj1

]
+ (1− δjx (ω)) εδj0

)]
+

N∑
j=1

∑
x

λcjx (ω)

Λω

[
µjx (ω)Vi (ω − [j, x]) +

(
1− µjx (ω)

)
Vi (ω)

+1(j=i)

(
µjx (ω)

[
ηx + εµj1

]
+
(
1− µjx (ω)

)
εµj0
)]}]

where ω + [j, x] (ω − [j, x]) represents the state which is reached when firm j opens (closes) store x, and εδi1
(εµi1) is the expected value of the random shock conditional on firm i applying for opening store x (firm i

closing the store). εδi0 and ε
µ
i0 are defined analogously.

The second and third lines describe the possible change in value due to the arrival of a parcel of land.

Specifically, with probability λjx(ω)
Λω

a site becomes available to firm j. With probability 1− δjx (ω) , the firm

decides not to apply and there is no change in states. With probability δjx (ω) , firm j submits an application.

Upon submitting an application, the application is approved with probability Pjx (ω) and a new store is

opened, and with probability 1 − Pjx (ω) , the application is rejected. We also add the expected value of the

one-shot payoff if firm i is called upon to move. The forth and fifth lines describe the change in value if the

possibility of closing a store arises.

By the distributional assumption on ε, the probability that firm i applies can be written as

δ̃ix (ω;σ) =
exp (Pix (ω) [Vi (ω + [i, x])− Vi (ω)− κx]− C)

1 + exp (Pix (ω) [Vi (ω + [i, x])− Vi (ω)− κx]− C)
. (12)

Similarly if there is a closing, under the assumption that (εi1, εi0) follow the iid type 1 extreme value distrib-

ution, the best response probabilities are given by

µ̃ix (ω;σ) =
exp (Vi (ω − [i, x]) + ηx)

exp (Vi (ω − [i, x]) + ηx) + exp (Vi (ω))
. (13)

Regulator Even though we define the regulator’s objective function in a general way in equation (11), we

assume that the regulator is a “static regulator”in the sense that it does not consider any further state change

in the future after the change in state associated with the current application in question. That is, the static

regulator does not consider other firms’ future responses resulting from his approval decision. In addition,

the static regulator does not take any future instantaneous payoff into account. He ignores instantaneous

payoffs that he may receive associated with his approval decisions in the future. The static regulator is close

to the actual Local Government Authority, as they do not base their decisions on dynamic aspects.9 In our

9As we discussed in Section 2, the criteria in the central planning guidelines almost exclusively talk about direct change in

consumer surplus and producer surplus in town center, not about future developments of the market.
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counter-factual analysis, however, we explicitly consider a “dynamic regulator”that maximizes the objective

function in (11) with α1 = α2 = α3 = 1 to discuss an optimal regulation.

Under the assumption of static regulator,

VR (ω) = Eω
[
α1

∫ ∞
0

CS (ωt) e
−rtdt+ α2

∫ ∞
0

PSTC (ωt) e
−rtdt+ α3

∫ ∞
0

PSOTC (ωt) e
−rtdt

]
= α1

∫ ∞
0

CS (ω) e−rtdt+ α2

∫ ∞
0

PSTC (ω) e−rtdt+ α3

∫ ∞
0

PSOTC (ω) e−rtdt

= K [α1CS (ω) + α2PSTC (ω) + α3PSOTC (ω)] ,

where we normalize K = 1. Since it considers the current instantaneous payoff by assumption, the regulator

approves an application if and only if

α1CS (ω + [i, x])+α2PSTC (ω + [i, x])+α3PSOTC (ω + [i, x])+εR1 > α1CS (ω)+α2PSTC (ω)+α3PSOTC (ω)+εR0.

Thus, the best response approval probability is given by

P̃ix (ω,σ) = Pr (α1∆CS (ω) + α2∆PSTC (ω) + α3∆PSOTC (ω) + εR1 − εR0 > 0)

=
exp (VR (ω + [i, x]))

exp (VR (ω + [i, x])) + exp (VR (ω))
, (14)

where ∆CS (ω) = CS (ω + [i, x])−CS (ω) , and ∆PSTC (ω) and ∆PSOTC (ω) are defined analogously. In the

estimation stage, we estimate (α1, α2, α3) .10

3.2.3 Equilibrium

We consider Markov Perfect Equilibria. Let V σi,σ−ii (ω) be the value of firm i in state ω if he follows strategy

σi and all other players follow strategy σ−i. A Markov Perfect Equilibrium is a Markovian strategy profile σ∗

such that, for all i ∈ {1, 2, ..., N,R} ,
V
σ∗i ,σ

∗
−i

i (ω) ≥ V σ
′
i,σ
∗
−i

i (ω)

for all ω and σ′i. We will focus on symmetric equilibria. The standard argument applies for the existence of

equilibria; see Doraszelski and Satterthwaite (2010) and Doraszelski and Judd (2010).

3.2.4 Solving the Model

Since there are many locations in the U.K., the state space (store configurations and demand conditions for

all the locations) is extremely large. To solve the model, we impose a series of simplifying assumptions. First,

we assume that the firm’s decision is decentralized:

Assumption 1 Each firm has a local manager in each location. The manager decides whether to take an

action, when an opportunity arrives in his own location.

If we assume that each local manager maximizes its profit earned in that location only, we would not be

able to capture cannibalization effects, which are one of the most important elements of the industry. Thus, we

assume that business stealing effects and cannibalization effects exist only within a certain distance and that

the local manager takes into account the profits earned by the same firm within that distance. To state the

next assumption formally, we define R (l) to denote the set of l’s neighboring locations, whose payoff relevant

variables affect firm’s profits in location l. Use m for a typical element of the set; i.e., m ∈ R (l). Then, we

have the following assumption:
10This is achieved under an appropriate normalization. Since only a relative size matters, we normalize α1 + α2 + α3 = 1.
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Assumption 2 The local manager of firm i in location l takes into account the profits of other stores owned

by the same firm in locations in R (l), as well as in location l. Let Πil (ω) = πil (ω) +
∑

m∈R(l)
πim (ω) .

The local manager of firm i in location l maximizes

Eω,T

[∫ ∞
0

Πil (ω) e−rtdt+

∞∑
n=1

e−rTnΨil (Tn)

]
, (15)

where the expectation operator is in terms of the evolution of the state and arrivals of opportunities,

and Ψil is defined as before.

Aguirregabiria and Ho (2012) and Sweeting (2011) impose a similar assumption as Assumption 1 to break

the dimensionality problem (though in a discrete time setting unlike here). Assumption 2 can be fairly general

since we have not yet specified R (l) . We believe that how far from location l this set should extend is an

empirical question.

Solving the model is still a daunting task, as the set of locations in R (l) could be very large and so is

the state space that each local manager faces. Thus, we discuss how to aggregate the information regarding

other payoff relevant variables and market structure in the neighboring locations. For any given l, we have

many locations m ∈ R (l) and stores in these locations could all affect the profit of a store in l. Let Nown
il be

the number of stores that firm i has in l. Let NB,rival
il (NS,rival

il ) denote the number of big (small) stores in l

owned by i’s rivals. Let Xl be the K dimensional vector of variables that characterize profitability of location

l (e.g., number of households, demographics, etc). For the sake of argument, let

Nown
iR(l) =

∑
m∈R(l)

Nown
im

NB,rival
iR(l) =

∑
m∈R(l)

NB,rival
im

NS,rival
iR(l) =

∑
m∈R(l)

NS,rival
im

to denote the total numbers of own stores, big rival stores, and small rival stores, respectively, in the neighboring

locations. Also let

XR(l)
(K×1)

=
∑

m∈R(l)
Xm,

where we sum up Xl element by element over locations in R (l). If we impose symmetry and anonymity in

terms of locations in R (l) , then (Nown
iR(l), N

B,rival
iR(l) , NS,rival

iR(l) , XR(l)) are suffi cient statistic for {Nown
im , NB,rival

im ,

NS,rival
im , Xm}m∈R(l). However, the state space still consists of(

Nown
il , NB,rival

il , NS,rival
il , Xl, N

own
iR(l), N

B,rival
iR(l) , NS,rival

iR(l) , XR(l)

)
which is a (2K + 6) dimensional vector. This is an object with a large number of dimensions.

Therefore, to further reduce the size of the state space, we construct the following variables using the

demand model:

∆Πil (ω) = Πil (ω + [i, x])−Πil (ω)

∆Πrival
il (ω) =

∑
j 6=i

[Πjl (ω + [i, x])−Πjl (ω)] /(N − 1)

∆Πown
il (ω) =

∑
j 6=i

[Πil (ω + [j, x])−Πil (ω)] /(N − 1)

In words, ∆Πil (ω) measures the change in the total profit earned by all own stores in l and m ∈ R (l) if a new

small store of firm i opens in location l. In a similar way, ∆Πrival
il (ω) is defined to measure the change in the
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total profit earned by rival firms (all j 6= i) in l and m ∈ R (l) if a new small store of firm i opens in location

l. Finally, ∆Πown
il (ω) measures the average change in profit induced by rival firms in R (l) on the total profit

of firm i. Using these variables, derived from the demand model, we impose the following assumption.

Assumption 3
(

∆Πil (ω) ,∆Πrival
il (ω) ,∆Πown

il (ω)
)
∈ R3 is the suffi cient statistic forXl and {Nown

im , NB,rival
im ,

NS,rival
im , Xm}m∈R(l).

This assumption says that the change in own and rival profits can effectively summarize the market

structure in the neighboring locations by aggregating incentives and disincentives of opening a new store in a

given location. For example, if the firm has a large number of own stores in R (l) , this would be reflected in

a large (potentially negative) value of ∆Πil (ω) . Similarly, the importance of the local market structure and

local firm network would be reflected in ∆Πrival
il (ω) and ∆Πown

il (ω) .

Thus, the state space we use is

ω̃ =
(
Nown
il , NB,rival

il , NS,rival
il ,∆Πil (ω) ,∆Πrival

il (ω) ,∆Πown
il (ω) , l

)
where we keep location index l as the sixth variable in the state to allow λ to be different across locations in

a way that cannot be captured by
(

∆Πil (ω) ,∆Πrival
il (ω) ,∆Πown

il (ω)
)
. Remember that factual and counter-

factual profits to construct
(

∆Πil (ω) ,∆Πrival
il (ω) ,∆Πown

il (ω)
)
are calculated from the demand estimates.

4 Estimation

4.1 Demand Side

Parameters θD = (α, β, γ) are estimated in two steps. In the first stage, γ are obtained using moments based

on first order conditions for continuous choice of quantities qijkt. We use instrumental variables as suggested

in Dubin and McFadden (1984) to control for the fact that the regressors include (characteristics of) stores

that are chosen by i. In the second step we estimate remaining parameters (α, β) using moments based on the

model’s predictions for discrete choice c = (j, j′), using simulated method of moments (McFadden (1989)).

The second step uses estimates of (γ, vitk) that come from the first step.

First step. The first step uses moments based on the error terms in the portion a() of the consumer’s

utility. We assume at the true parameters γ0 that the following conditions hold for each k:

E(vitk(γ0) | z1itk) = 0 (16)

E(εitk(γ0) | z2itk) = 0 (17)

vitk and εitk are defined in (9) and [z1itk, z2itk] are exogenous instruments.

Let ck ⊆ c denote the set of stores in c at which the consumer has positive demand for category k and let
n(ck) denote the number of such stores. Empirically our time period length and our category definitions are

such that n(c) ≥ n(ck) ≥ 1 for all but a negligible number of observations (i.e. consumers always buy positive

quantities of each of the categories in at least one store but do not always buy positive quantities from both

stores when c has two stores).

The moment condition (16) uses store averages, for the store(s) in ck, as follows

q̄itk =
1

n(ck)

∑
j∈ck

qijtk w̄itk =
1

n(ck)

∑
j∈ck

wijtk p̄itk =
1

n(ck)

∑
j∈ck

pijtk.
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Substituting these, (8), and (9), into (6) we obtain the expression:

vitk(γ) = q̄itk
(
1 + γ3k1[n(ck)=2]

)
− (γ′1kw̄itk − γ2kp̄itk)

where εitk disappears (by its symmetry property).

The vector w̄ict contains some exogenous variables that do not need separate instruments– a constant,

household characteristics (number of adults and children), and time dummies (year and quarter)– and to

identify the parameters on these variables we use the variable as its own instrument. The vector w̄ict also

contains some variables that do need instruments– store characteristics (floorspace and firm dummies), price,

and the two-store dummy 1[n(ck)=2]. These are endogenous in the sense that they are determined by the

consumer’s shopping choice c so it is possible that vitk is not independent of these; for example a consumer

with a large positive draw for vitk may prefer to choose a large store, or a store that has a low price for category

k. We follow Dubin and McFadden (1984) and use instruments based on the expected values of the variables(
w̄itk, p̄itk, 1[n(ck)=2]

)
. To construct these expectations we use probabilities estimated for each ck using a flexible

model of the discrete choice of ck from the set Ci. We write these probabilities ρ̂ick(wi, xi)– where wi and

xi are the observables that enter the utility function (1) through a(.) and directly, respectively– to illustrate

that we exploit a kind of “exclusion restriction” implicit in the model: the variables xi that enter directly

determine the shopping choice ck but have no (direct) effect on the quantities qictk that are chosen. The

variables that enter Uict directly, most notably distance, generate exogenous variation in the characteristics(
w̄itk, p̄itk, 1[n(ck)=2]

)
of the shopping choice c. In other words we use the variation between consumers in store

choice sets Ci.
The moment condition (17) uses between-store differences for stores in ck when n(ck) = 2:

∆qitk = qijtk − qij′tk. ∆witk = wijtk − wij′tk ∆pitk = pijtk − pij′tk

Substituting (8), and (9), into (6) and taking differences, we obtain:

εitk(γ) =
1

2
[γ′1k∆witk −∆qitk(1− γ3k)− γ2k∆pijkt] .

Again the differences depend on the choice c that is chosen by the consumer. We use as instruments z2itk

the expected values of the variables (∆wict,∆pijkt) using the same probabilities ρ̂ick(wi, xi) used in the con-

struction of z1itk. (To implement the differencing, each store is allocated a random number and differenc-

ing is such that the larger of these is the first store in the difference). Note that the difference equation

is only estimated on the subset of observations for which two stop shopping is observed (i.e. for which

n(ck) = 2). To ensure that there is no selection bias that arises from this, the following condition must hold

E(εitk|z2itk) = E(εitk|z2itk, 1[n(ck)=2]) = 0. This implies that εitk is independent of 1[n(c)=2] conditional on

z2ikt, which we consider reasonable given that the errors here are in differences rather than levels and the

differencing is based on random ordering. The moment conditions in (17) complement those in (16) by adding

information on how consumers allocate demand between stores in ck when n(ck) = 2.

Second step. With (γ̂, v̂it) = (γ̂k, v̂itk)Kk=1 for each k in hand from the first step we now estimate remaining

parameters using moments based on the discrete choice c. We use the residuals:

dict − Pict(α, β, γ̂|v̂it) for all i and t, and all c ∈ Cit

where

dict =

{
1 if consumer i chooses c at time t

0 otherwise.
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and the discrete probability Pict() is written to make explicit the dependence on the estimates (γ̂, v̂it) from the

first step. Note that while the category-specific unobserved taste terms v̂it are estimated in the first step, the

observed store-split residuals ε̂it are specific to the chosen shopping choice c and not estimated generally for

all stores. We therefore treat the εjictk terms as unknown in the second step). The expression Pict(α, β, γ̂|v̂it)
is as defined in (10), except that we now condition on v̂it, so that we have

Pict(α, β, γ̂|v̂it) =

∫
exp

(
αaict(v̂ict, γ̂, εict)− β′xict

)∑
c′∈Ci exp

(
αaic′t(v̂ict, γ̂, εict)− β′xic′t

)dF (εit) .

We assume that at true parameters
(
α0, β0

)
the following population moments hold:

E
[
dict − Pict(α0, β0, γ̂|v̂it)

∣∣ z3ict

]
= 0

where z3ict is a vector of instruments based on the variables xict. We simulate the choice probability using R

draws to yield PRict(θD) which, for any R ≥ 1, by construction has the property of being an unbiased estimate.

Thus we have sample moment conditions as follows:∑
i

∑
t

∑
c∈Cit

[
dict − PRict(θD)

]
z3ict. (18)

To control for unobserved quality that may be correlated with the price variable, we include firm dummies

in both the variables w entering the continuous demand the variables x entering discrete choices; we also

include time dummies in w.

4.2 Supply Side

We assume that the length of the time period goes to infinity for the asymptotics of our estimator, while the

number of firms N and the number of locations L are fixed. Since all locations are connected indirectly, we can

say that one big game was played in the whole U.K. Although there may be multiple equilibria in the model,

the Markovian assumption implies that data on a single time series has been generated by one equilibrium

(for a discussion, see Pesendorfer and Schmidt-Dengler (2008)). Thus, we can employ a two-step method to

estimate parameters of the model.11

4.2.1 First Stage

We take estimates of πil (ω) from the demand side in the previous subsection as primitives in the estimation of

the dynamic game. Our goal in the first stage is to consistently estimate (δix (ω) , µix (ω) , Pix (ω) , λix (ω) , λcix (ω))

from data on store opening/closing, approval decisions, and time duration between any observed events. Since

we do not observe cases in which a firm has an opportunity to take an action but decides not to do so, ar-

rival rates and choice probabilities are not separately identified in the first stage. That is, only the products

λix (ω)× δix (ω) and λcix (ω)× µix (ω) are identified for each i, x, and ω. For a discussion, see Arcidiacono et.

al (2010). Therefore, in the first stage, we consistently estimate (λix (ω) δix (ω) , λcix (ω)µix (ω) , Pix (ω)) by

maximum likelihood.

Let T be the length of the sample period and there are N (T ) moves in the data (moves include any

observed actions of firms). We use n ∈ {1, ...,N (T )} to index moves. We consider N (T ) → ∞ as T → ∞.
Let tn be the time of the n-th move in the entire game. Let ωn be the state between tn and tn+1. Note

that the observed applications are also included in the moves. Let f (t;λ) denote the PDF of exponential

11See also Aguirregabiria and Mira (2007) and Bajari, Benkard, and Levin (2007).
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distribution with arrival rate λ evaluated at t. F (t;λ) is its CDF. We first consider the contribution of firm i

to the likelihood. For any move n, if the move was firm i’s applying for opening store x and the application

was approved, its contribution to the likelihood is

f (tn − tn−1;λix (ω) δix (ω))Pix (ω)
∏

x′∈X\x
(1− F (tn − tn−1;λix′ (ω) δix′ (ω)))

×
∏

x∈X
(1− F (tn − tn−1;λcix (ω)µix (ω))) .

Next, if the move was a rejection of application that leads to no actual action, then the contribution is

f (tn − tn−1;λix (ω) δix (ω)) (1− Pix (ω))
∏

x′∈X\x
(1− F (tn − tn−1;λix′ (ω) δix′ (ω)))

×
∏

x∈X
(1− F (tn − tn−1;λcix (ω)µix (ω))) .

If the move was firm i’s closing store x, the contribution is

f (tn − tn−1;λcix (ω)µix (ω))
∏

x′∈X\x
(1− F (tn − tn−1;λcix′ (ω)µix′ (ω)))

×
∏

x∈X
(1− F (tn − tn−1;λix (ω) δix (ω))) .

Finally, if the move was by some other firm, then the contribution is∏
x∈X

(1− F (tn − tn−1;λix (ω) δix (ω)))
∏

x∈X
(1− F (tn − tn−1;λcix (ω)µix (ω))) .

Then, Ln(γ|data) is the product of all these contributions over N players. The likelihood is the product of

these contributions over all n:

L(γ|data) =

N (T )∏
n=1

Ln(γ|data),

where γ = {λix (ω) δix (ω) , λcix (ω)µix (ω) , Pix (ω)}i,x,ω. Let γ̂ be the MLE.

4.2.2 Second Stage

The set of parameters estimated in this stage include opening costs κx, closing values ηx, application costs C,

and parameters in the regulator’s choice equation α = (α1, α2, α3) . Let θ = (κx, ηx, C,α) . In this stage, we

calculate the value functions using γ̂ from the first stage and forward simulation. To simulate value functions,

we need to separate arrival rates from choice probabilities, and there are two ways to achieve the goal. First,

we use other data source to estimate arrival rates. Second, we arbitrarily pick λix (ω) and λcix (ω) in order to

perform forward simulation and maximize the objective function in the outer loop over λix (ω) and λcix (ω) as

well as over θ. That is, the structure of the model and data tell us what combination of (λix (ω) , λcix (ω) ,θ)

is most likely.12 Arcidiacono et. al (2010) adopt the second approach. For the sake of argument, assume that

we also take the second approach and re-define θ = (κx, ηx, C,α,λix (ω) , λcix (ω)).

The algorithm is as follows:

1. Pick θ.

2. Compute value functions using forward simulation and γ̂.

3. Calculate the implied probability of application δix (ω;θ) , closing probability µix (ω;θ) and approval

probabilities Pix (ω;θ).

12Even for this approach, we still need to impose at least one normalization on arrival rates; e.g., there exists (x, ω) such that

λx (ω) = λ̄ where λ̄ is a known positive real value.
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4. Calculate the pseudo likelihood

L(θ|data) ≡
N (T )∑
n=1

lnLn(θ,γ|data).

where Ln(θ, γ̂|data) is calculated using best response probabilities given in (12), (13), and (14). Go back

to step 1 until we find the maximizer of L(θ|data).

Let γ̂ be a consistent estimator for γ0 and
√
L(γ̂ − γ0)→d N (0,Σ) . Under the regularity conditions,√

L(θ̂ − θ0)→d N (0, V ) as T → ∞.

where

V = Ω−1
θθ + Ω−1

θθ ΩθγΣΩ′θγΩ−1
θθ

and Ωθθ = E
(
{5θsn} {5θsn}′

)
and Ωθγ = E({5θsn} {5γsn})′ with sn = lnLn(θ0, γ̂0|data).

5 Results

5.1 Demand Estimation

The data used for stage 1 is summarized in Table 5. In stage 1 we estimate the data on 12,555 consumers and

for each of these consumers we draw 12 two-week time periods in Oct 2002 - Oct 2005. The large number of

consumers helps in terms of obtaining reasonably precise estimates. The demographic variables in w include

the number of adults, the number of children, and an indicator for whether the household is from an “upper”

social class. We include quarterly and yearly dummies. The results for stage 1 are summarized in Table 6.

The results are done separately for each of the four categories of demand and these are presented by column

in the table. The price parameter γ2 is negative as expected, and the magnitude generates category level

price elasticities conditional on choice of store of around -1. As expected the substitution parameter γ3 falls

somewhere in the range between 0 We present a range of other estimates that enter into the deterministic

portion of the first order term in quadratic utility (γ1). The firm dummies, demographic effects, quarterly

and year dummies are reported in the lower part of the table.

The parameters from the discrete part of the model are presented in Table 7. The parameters are of the

expected sign, distance is negative, distance interacted with employment suggests fully employed people are

more sensitive to distance. Sales area is positive, suggesting it is worth going further for, and the parameter on

two stores indicates a shopping cost from visiting more than one store. The town centre variable is negative,

suggesting perhaps that on average there is some inconvenience associated with a town centre location, such as

parking costs. Same quadrant which is positive (suggesting that people prefer to combine stores in the same

quadrant). The parameter α0 is large and positive, showing the role of the utility portion a(), and implying

negative price effects.

The implications for elasticities, and markups, are reported in Table 8. We report elasticities separately

for each category of demand. These elasticities allow for two components: an effect on quantity demanded

through the continuous demand functions, holding store choice constant, and an effect through store choice.

The elasticities are generally in the range -1.5 to -3.5. The high elasticity for M&S and lower elasticity

for lower price stores such as ASDA reflects a number of factors. First, a store that is typically part of a

two-store shopping pattern, as is true for M&S, tends to have higher elasticities, because people can switch

shopping between stores without changing their discrete shopping choice c. This may explain why M&S has a
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relatively high– and ASDA has a relatively low– own price elasticity. Second, the higher price firms may have

higher elasticities because they have higher prices and lower quantities– which in many demand specifications

leads to higher elasticities. The markups implied by the demand model– combined with an assumption of

multi-product Nash price setting– are also shown in this table. Markups in the range 15%-50% are found.

5.2 Supply Side: An Example

We estimate a simplified version of the model to demonstrate computational feasibility and also to serve as

a first step to estimating the full model. First, we drop store sizes and town center status from the analysis.

Second, we treat exits as exogenous and exit shocks arrive at a uniform rate λc. In addition, assume that

the scrap value and application costs are zero. Thus, two endogenous choices are (i) whether a firm sends

an application for opening a uniformly-sized store or not, when an opportunity arrives; and (ii) whether the

regulator accepts firm’s application or not.

The unit of location is postal sector. There are 11,445 postal sectors in the whole U.K. These are small

geographic locations of a few thousand households each– a local “village” size of location. We excluded

locations where we did not observe any incumbents nor entry during the sample period. As a result, we end

up with 5,060 locations. For a given location, we define center as the centroid of the location. Any postal

sectors within a circle with radius of 10km from the center of l are defined as neighboring locations of l.

While the arrival rate for opportunities of store opening could be different across all locations and across

firms, estimating 5,060 arrival rates for each firm is not realistic. Thus, we define 11 regions in the U.K. and

assume arrival rates are constant within each region and across firms but different across regions (in principle

we can make arrival rates a function of location specific observable covariates). That is, letting λl denote the

arrival rate of store opening opportunities, we assume λl = λl′ if l and l′ belong to the same region.13

There are 9 firms in the game. ASDA, Tesco, Sainsbury’s, and Morrisons are firms that often open a big

size store, so we call them “type B”, while Co-op, Discounter, Somerfield, Waitrose, and Others are called

“type S”. That is, although we do not distinguish store formats for the current specification, we keep firm

types so that one type may affect a firm’s profit in a different way than another type does.

In this example, we consider nine state variables:

ω =
(
Nown
il , NB,rival

il , NS,rival
il , Nown

iR(l), N
B,rival
iR(l) , NS,rival

iR(l) , Xl, XR(l), region
)
∈ Ω

where Xl is a scalar variable that captures the potential number of consumers in location l and XR(l) captures

the potential number of consumers in R (l) . Other variables are defined as in the previous section. To reduce

the state space, we discretize the first eight variables as follows:

Nown
il =

{
1 if there is no own store in l

2 if there is one or more own store in l

NB,rival
il =


1 if the number of rival stores of type B in l is 0

2 if the number of rival stores of type B in l is 1

3 if the number of rival stores of type B in l is 2

4 if the number of rival stores of type B in l is 3 or more

1311 regions are North East, North West and Merseyside, Yorkshire and the Humber, East Midlands, West Midlands, Eastern,

London, South East, South West, Wales, and Scotland.
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NS,rival
il =


1 if the number of rival stores of type S in l is 0

2 if the number of rival stores of type S in l is 1

3 if the number of rival stores of type S in l is 2

Nown
iR(l) =


1 if the number of own stores in R (l) is smaller than 6

2 if the number of own stores in R (l) is between 6 and 10

3 if the number of own stores in R (l) is greater than 10

NB,rival
iR(l) =


1 if the number of rival stores of type B in R (l) is smaller than 11

2 if the number of rival stores of type B in R (l) is between 11 and 50

3 if the number of rival stores of type B in R (l) is greater than 50

NS,rival
iR(l) =


1 if the number of rival stores of type S in R (l) is smaller than 11

2 if the number of rival stores of type S in R (l) is between 11 and 50

3 if the number of rival stores of type S in R (l) is greater than 50

Xl =


1 if popl is smaller than 2,001

2 if popl is between 2,001 and 4,000

3 if popl is greater than 4,000

XR(l) =


1 if popl,R is smaller than 25th percentile

2 if popl,R is between 25th and 75th percentiles

3 if popl,R is greater than 75th percentile

,

where popl represents the total number of households in l and popl,R =
∑
m∈R(l) popm. Note that the 25th

and 75th percentiles of popl,R are 26, 857 and 137, 497, respectively. As a result, the size of the state space is

2× 4× 3× 3× 3× 3× 3× 3 = 5, 832 for each of 11 regions.

We use a reduced form payoff function. The profit for each store is given by

πil (ω) = 1 (Nown
il = 2)

(
θown +

4∑
k=2

1
(
NB,rival
il = k

)
θB,rivalk +

3∑
k=2

1
(
NS,rival
il = k

)
θS,rivalk

+

3∑
k=2

1
(
Nown
iR(l) = k

)
θown,Rk +

3∑
k=2

1
(
NB,rival
iR(l) = k

)
θB,rival,Rk

+

3∑
k=2

1
(
NS,rival
iR(l) = k

)
θS,rival,Rk + θpop log (popl) + θpop,R log (popl,R)

)
.

We assume that the profit function is different between big firms and small firms, so estimate it separately for

each type. In addition, we assume that the cost of store opening also differs across different types of firm.

We assume that the regulator’s objective function is such that his choice probability is given by

Pix (ω) = Pr
(
α0 + α1popl + α2N

B
l + α3N

S
l + εR1 − εR0 > 0

)
.

NB
l and NS

l represent the numbers of affected stores owned by big firms and small firms, respectively. Thus,

if the existence of more incumbent firms makes an approval less likely, then α2 and α3 are expected to be

negative. In addition, if the regulator puts different weights on each competitor’s profit by the type of the

competitor, α2 and α3 are expected to be different from each other.

So the set of structural parameters is

θ =

{(
θowni , {θB,rivalki }4k=2, {θ

S,rival
ki , θown,Rki , θB,rival,Rki , θS,rival,Rki }3k=2, θpop,i, θpop,R,i, κi

)
i=B,S

, α0, α1, α2, α3

}
.
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5.2.1 First Stage

In the first stage, we recover the conditional choice probabilities of firms and the regulator as a flexible function

of observable states. Specifically, the conditional choice probability of firm i, δi (ω;γ) , is modeled as logit:

δi (ω;γ) = F

(
1 (Nown

il = 2) γown +

4∑
k=2

1
(
NB,rival
il = k

)
γB,rivalk +

3∑
k=2

1
(
NS,rival
il = k

)
γS,rivalk

+

3∑
k=2

1
(
Nown
iR(l) = k

)
γown,Rk +

3∑
k=2

1
(
NB,rival
iR(l) = k

)
γB,rival,Rk +

3∑
k=2

1
(
NS,rival
iR(l) = k

)
γS,rival,Rk

+

3∑
k=2

1 (Xl = k) γpopk +

3∑
k=2

1
(
XR(l) = k

)
γpop,Rk + 1 (i is big firm) γbig

)

and the approval probability of the regulator when firm i is applying, Pi (ω;γ) , is also modeled as logit:

Pi (ω;γ) = F

(
γ̃const + 1 (Nown

il = 2) γ̃own +

4∑
k=2

1
(
NB,rival
il = k

)
γ̃B,rivalk +

3∑
k=2

1
(
NS,rival
il = k

)
γ̃S,rivalk

+

3∑
k=2

1
(
Nown
iR(l) = k

)
γ̃own,Rk +

3∑
k=2

1
(
NB,rival
iR(l) = k

)
γ̃B,rival,Rk +

3∑
k=2

1
(
NS,rival
iR(l) = k

)
γ̃S,rival,Rk

+

3∑
k=2

1 (Xl = k) γ̃popk +

3∑
k=2

1
(
XR(l) = k

)
γ̃pop,Rk + 1 (i is big firm) γ̃big

)

where F is the CDF of the difference between two extreme value shocks and we let γ be the set of λl, λ
cl, and

all γ.

The total number of observed moves during the sample period is 1949. Let tn be the time of the n-th

move in the entire game. Let M be the set of locations. For any move n, if the move was firm i’s applying for

opening a store in l and the application was approved, its contribution to the likelihood is

f (tn − tn−1;λlδi (ω))Pi (ω)
∏

l′∈M\l
(1− F (tn − tn−1;λl′δi (ω)))

∏
l∈M

(1− F (tn − tn−1;λc)) .

Next, if the move was a rejection of application that leads to no actual action, then the contribution is

f (tn − tn−1;λlδi (ω)) (1− Pi (ω))
∏

l′∈M\l
(1− F (tn − tn−1;λl′δi (ω)))

∏
l∈M

(1− F (tn − tn−1;λc)) .

If the move was firm i’s closing store x, the contribution is

f (tn − tn−1;λc)
∏

l′∈M\l
(1− F (tn − tn−1;λc))

∏
x∈X

(1− F (tn − tn−1;λlδi (ω))) .

Finally, if the move was by some other firm, then the contribution is∏
l∈M

(1− F (tn − tn−1;λlδi (ω)))
∏

l∈M
(1− F (tn − tn−1;λc)) .

Then, Ln(γ|data) is the product of all these contributions over N players. The likelihood is the product of

these contributions over all n:

L(γ|data) =

1949∏
n=1

Ln(γ|data),

where γ = { {δi (ω) , Pi (ω)}i,ω , {λl}l , λ
c}. Let γ̂ be the MLE.
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5.2.2 Second Stage

We use a forward simulation to approximate the value functions. For any region and initial state ω, we

simulate the value functions using δi (ω; γ̂) , Pi (ω; γ̂) , λ̂l, and λ̂
cl
. The details of this procedure is given in the

Appendix.

Next, we calculate the implied choice probabilities of firms:

δ̃i (ω;θ) =
exp (Vi (ω + [i, l])− κi)

exp (Vi (ω + [i, l])− κi) + exp (Vi (ω))
,

where ω+[i, l] is the state that is reached if firm i opens a new store at l, and the implied acceptance probability

is

P̃ix (ω;θ) =
exp

(
α0 + α1popl + α2N

B
l + α3N

S
l

)
1 + exp

(
α0 + α1popl + α2NB

l + α3NS
l

) .
Following Arcidiacono et al. (2010), we calculate this choice probability only for states that are relevant for

estimation. Note that we made the dependence of δ and P on θ explicit to emphasize that the implied choice

probability is a function of structural parameters.

Finally, we form the pseudo likelihood using data and the likelihood function above with δi (ω;θ) and

Pi (ω;θ) replaced by δ̃i (ω;θ) and P̃i (ω;θ) , respectively. Our estimator θ̂ maximizes the pseudo likelihood

function.

5.2.3 Results

Table 9 shows the estimate of arrival rates for 11 regions. The arrival rates are around 0.018. This corresponds

to an average waiting time of 55 years. This seems long, but remember that we have 5,060 locations and 9

firms. Thus, there are 0.018 × 5, 060 × 9 = 819.7 arrivals of an opportunity per year in the whole U.K. The

sample period is 5 years, so this means that about 4,100 opportunities arrived during the sample period. We

also report the estimate of other parameters in γ in Table 10.

Table 11 summarizes the estimate of θ. The first specification is our baseline result, while in the second

specification we allow the constant in the regulator’s acceptance probability to differ depending on the size

of the applying firm. Since all θs in this example are reduced form parameters, it is not straightforward

to interpret parameters in the payoff functions. To interpret the magnitude of the entry cost, however, we

can think of the following example. Take an average location with 3,156 households in the own location and

108,107 households in the neighboring locations in total (these numbers are sample averages of Xl and XR(l),

respectively). Consider one open store owned by a big firm and assume that there are no other stores open

(both own and rival stores) in l and R (l) . Then, using the first specification, the annual profit earned by the

single store in location l is calculated as∫ 1

0

π̂ile
−rsds =

∫ 1

0

[
θ̂
own

+ θ̂pop log (popl) + θ̂pop,R log (popl,R)
]
e−rsds = 0.2478.

Our estimate for κ for big firms is 1.145, so calculate 1.145/0.248 = 4.617. Thus, the entry cost is roughly

equal to 4.6 years of the total operating profit that the average store earns.

The parameters in the regulator’s objective function are also worth mentioning. As we expected, the

coeffi cients on the number of stores owned by big rival firms and small rival firms are both negative. After

controlling for the size of population, if more rival firms are affected, the application in question is more likely

to be rejected. In addition, the weight placed on the number of big stores is different from that for small

stores. The first specification implies that the regulator places more weight on protecting small rivals. This
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difference in weight, however, disappears once we allow the constant to differ depending on the size of the

applying firm in the second specification.

The example has demonstrated the computational feasibility of the approach; we aim to develop the

example by incorporating the other features of the model.
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6 Appendix

For simplicity, we assume that big firms have the common value functions and that small firms have the

common value functions. Thus, we compute the value of a big firm from the viewpoint of ASDA, and the

value of a small firm from the viewpoint of Discounter. Since arrival rates differ across locations, the state

space should contain the information for regions; ω̄ = (ω, region) . Note that in the current specification, the

state is completely characterized by ω̄. Thus, locations are anonymous once we control for population size

and region. The problem of this simplification is that each location has a different number of neighboring

locations. For each ω̄, we chose one location whose number of neighboring locations is median in the region.

Define a mapping Γ : ω̄ → {1, ..., 5060} that reflects our choice of location. We set r = 0.05.

1. Fix ω̄. Set the corresponding store configuration. For locations that are not neighbors of Γ (ω̄) , randomly

assign the store configuration.

2. We generate a sequence of events. Let q denote an iteration number.

(a) Given the store configuration, fill in δi (ω̄, γ̂) and Pi (ω̄, γ̂) for all i and l.

(b) For each pair of (i, l), we generate a random draw ui,l from the uniform distribution. Calculate

τ i,l = − log(1−ui,l)
λ̂lδi(ω,γ̂)

, which is the inverse of the exponential distribution. Pick τen = min {τ i,l}∀i,l,
ien = arg mini {τ i,l}∀i,l , and len = arg minl {τ i,l}∀i,l . Also, draw a random number from the

uniform distribution uexi,l for each of all the existing stores in the U.K., calculate τ
ex
i,l = − log(1−uexi,l)

λ̂
cl ,

and let τex = min τexi,l . Let τ̃ q = min {τen, τex} . That is, τ̃ q is the q-th event time (the time elapsed
since the start of the game). ĩq and l̃q are firm and location identities, respectively, that correspond

to τ̃ q. Let firm ĩq in location l̃q choose his action based on δi (ω̄, γ̂). If firm ĩq applies, draw a

random number again from the uniform distribution uappi,l and opens a store if uappi,l ≤ Pi (ω, γ̂) . If

this event is a closure of a store, then the store is closed with probability one.

(c) Based on the move made in step 2.b, update the state. Go back to step 2.a. Continue until∑
q τ̃ q > Tmax where Tmax is predetermined. Let Nq be the number of moves observed during

[0, Tmax] .

3. Use {τ̃1, ..., τ̃Nτ } to calculate

V nsil (ω̄) ≈
Nq∑
q=1

[∫ τ̃q

τ̃q−1

e−ρtΠil (ω̄) dt+ e−ρτ̃qΨω

]

where

Ψω̄ = I
(̃
iq = i, l̃q = l, u < δi (ω̄, γ̂)

)
(ε1 − κi) + I

(̃
iq = i, l̃q = l, u ≥ δi (ω̄, γ̂)

)
ε0

and

Vil (ω̄) =
1

NS

NS∑
ns=1

V nsil (ω̄) .

We use Tmax = 5 and NS = 40.
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Fascia Store Size Stores Store Size Market Share Market Share Spending Range price

Class # Avg.(Sq. Ft) Trips Expenditure Per Customer #Lines

ASDA 263 45,411 12.49 18.10 25.28

L 82 32,020 3.08 4.23 23.96 34,405 1.01

XL 181 51,477 9.41 13.87 25.71 39,794 1.01

MORRISONS 294 30,661 6.32 8.65 23.93

L 261 29,038 5.06 6.81 23.51 36,014 1.04

XL 33 43,498 1.26 1.84 25.60 28,608 1.03

SAINSBURY’S 502 29,431 11.65 15.44 23.16

M 106 6,999 1.00 0.75 13.15 24,405 1.18

L 145 22,985 3.51 3.78 18.82 36,470 1.19

XL 251 42,628 7.14 10.91 26.69 42,574 1.20

TESCO 975 23,579 21.28 28.58 23.44

M 446 4,391 4.02 3.57 15.52 38,078 1.11

L 310 26,742 8.64 11.51 23.25 42,759 1.12

XL 219 58,180 8.62 13.50 27.34 44,956 1.12

DISCOUNTER 484 7,842 6.56 4.52 12.03 18,183 0.82

ICELAND 621 4,863 3.90 2.20 9.83 11,560 1.17

CO-OP 1,599 4,247 7.72 3.49 7.90 24,512 1.26

SOMERFIELD 793 8,608 5.35 3.33 10.88 31,680 1.22

OTHERS 886 9,813 19.26 11.69 10.59 30,453 1.12

M&S 284 8,655 3.35 1.96 10.20 9,749 1.92

WAITROSE 165 19,203 2.14 2.03 16.56 23,493 1.48

Table 1: Descriptive Statistics: Store & Shopping Characteristics. For each type of store the number of

stores, average store size, market shares and average expenditure is reported. For the four biggest supermarket

chains the stores are split into different size bands (see text for more detail). Market shares are calculated

based on the total number of trips and alternatively on the consumers’overall expenditure. Market shares

and average expenditure are calculated over the sample period 2002-2005.
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Firm Open Close Total

ASDA 40 10 50

MORRISONS 94 181 275

SAINSBURY’S 118 20 138

TESCO 581 28 609

DISCOUNTER 24 0 24

WAITROSE 29 5 34

CO-OP 78 1 79

SOMERFIELD 373 64 437

OTHERS 59 150 209

Total 1,396 459 1,855

Table 2: New Openings and Closings by Firm, 2002-2006.

Region Opening Closing Sum

North East 47 7 54

North West and Merseyside 165 46 211

Yorkshire and the Humber 99 21 120

East Midlands 37 21 58

West Midlands 159 57 216

Eastern 114 54 168

London 125 33 158

South East 131 56 187

South West 216 66 282

Wales 69 19 88

Scotland 234 79 313

Total 1,396 459 1,855

Table 3: Frequency of Openings and Closings by Regions, Data and Simulation.
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A: Application Decisions

Accepted Super store 269

Non super store 528

Rejected Super store 30

Non super store 128

Total 955

B: Application Decisions by Firm

Firm Accept Reject Total

ASDA 53 19 72

MORRISONS 45 1 46

SAINSBURY’S 40 4 44

TESCO 148 17 165

DISCOUNTER 206 66 272

WAITROSE 12 0 12

CO-OP 15 3 18

SOMERFIELD 12 3 15

Table 4: Application Decisions, 2002-2006. Firm identity is sometimes missing, so the total number in

this panel does not match the total number in panel A.
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Variable Category Mean Std Dev Variable Category Mean Std Dev

A: Two Store Dummy

1[n(ck)=2] 1 0.51 0.50 1[n(ck)=2] 2 0.56 0.50

1[n(ck)=2] 3 0.30 0.46 1[n(ck)=2] 4 0.45 0.49

B: Quantity Means and Absolute Differences

q̄itk 1 15.08 13.54 ∆q̄itk 1 -0.20 18.57

q̄itk 2 14.70 11.14 ∆q̄itk 2 -0.33 16.49

qitk 3 9.81 9.00 ∆qitk 3 -0.29 11.21

qitk 4 13.27 11.25 ∆qitk 4 -0.27 14.72

C: Price Means and Absolute Differences

pitk 1 1.08 0.12 ∆pitk 1 0.00 0.17

pitk 2 1.18 0.14 pitk 2 0.00 0.19

pitk 3 1.00 0.11 ∆pitk 3 0.00 0.12

pitk 4 1.08 0.15 ∆pitk 4 0.00 0.19

D: Store and Demographic Variables (wj , h)

sales area — .864 .709 ∆sales area — 1.00 .77

adults — 2.02 .834 child — .66 1.01

upper — 0.58 0.49 lower — 0.42 0.49

#obs: 144,215 ; #hh 12,555; #obs/hh: 12

Table 5: Descriptive Statistics for First and Second Order Quadratic Parameters. The statistics

in Panel A are dummies for two stop shopping as defined in the paper. Means in Panels A and B are

computed for all consumer-time observations in whcih consumers visit either one or two stores. Differences

are computed for consumer-time observations where consumers visit two stores. The statistics in panel D are

for all consumer-time-category observations.
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Category: Grocery Fresh Household Meat and Prepared

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

γ3 (Substitution) 0.454 0.034 0.429 0.025 0.406 0.040 0.499 0.032

γ1 (Constant) 22.053 2.565 19.270 1.939 14.014 1.605 18.381 1.921

γ2 (Price) -12.696 2.059 -9.436 1.404 -7.844 1.386 -11.377 1.526

γ1 (Floorspace) 0.523 0.181 0.499 0.156 0.569 0.132 0.906 0.159

Firm Effects:

SAINSBURY 0.590 0.613 3.181 0.438 0.953 0.469 2.282 0.493

MORRISONS 0.064 0.646 1.270 0.585 -0.361 0.465 0.150 0.625

TESCO 1.084 0.679 3.121 0.516 0.992 0.505 1.171 0.589

ASDA 0.402 0.761 1.174 0.620 -0.175 0.514 0.522 0.652

M&S 5.397 1.551 5.563 0.854 2.549 1.240 10.056 1.144

ICELAND -5.779 0.804 -3.722 0.585 -1.542 1.151 1.270 0.625

WAITROSE 3.773 0.791 5.466 0.600 1.506 0.588 5.418 0.694

DISCOUNTER -2.829 0.820 -4.974 0.666 -3.064 0.630 -2.957 0.688

SOMERFIELD -0.780 0.585 -0.622 0.443 -1.445 0.482 -0.004 0.493

CO-OP -0.186 0.560 -0.175 0.455 0.263 0.508 0.322 0.515

Demographic and Time:

#Adults 3.612 0.063 3.492 0.051 1.743 0.036 3.648 0.058

#Children 1.986 0.045 2.237 0.037 1.027 0.029 1.573 0.036

Lower Social Class -0.899 0.073 -1.229 0.062 -0.629 0.055 -0.946 0.081

Quarter 2 -0.282 0.096 -0.835 0.082 -0.148 0.076 0.173 0.085

Quarter 3 1.345 0.099 -1.283 0.086 0.025 0.075 0.072 0.085

Quarter 4 -0.726 0.088 -0.107 0.075 -0.007 0.073 -0.495 0.079

Year 2 0.088 0.080 -0.431 0.078 -0.156 0.077 -0.403 0.072

Year 3 0.353 0.077 0.558 0.067 0.014 0.068 0.058 0.070

#Observations 139,845

GMM criterion Q(b) = 0.005 0.006 0.003 0.003

Table 6: Parameters in Quadratic Utility. The table reports the parameters estimated using Dubin

McFadden instruments for each of four grocery categories. .
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Parameter Variable Coef Std. Err

α0 a(,) 94.84 24.69

β Distance 1.22 0.04

Sales area 1.15 0.00

Two stores 5.39 0.51

Town centre -0.57 0.00

Distance * Employed -1.60 0.15

Same Quadrant 0.20 0.00

TESCO -0.35 0.02

SAINSBURY -0.31 0.01

ASDA 0.41 0.01

MORRISONS .42 0.00

DISCOUNTER ICELAND .57 0.00

M&S .69 0.00

CO-OP -1.32 0.01

WAITROSE -0.61 0.01

#obs 3,200

GMM Objective Value:

Table 7: Parameters from the Second Step. The table reports the parameters estimated in the second

stage using Simulated GMM.

Elasticities Markups

Category: 1 2 3 4 1 2 3 4

Discounter -1.75 -1.52 -1.10 -1.64 0.36 0.35 0.51 0.31

ASDA -1.69 -1.56 -1.30 -1.59 0.31 0.35 0.31 0.28

CO-OP -1.98 -1.78 -1.65 -1.85 0.33 0.37 0.35 0.31

ICELAND -1.74 -1.84 -1.50 -1.75 0.39 0.37 0.43 0.40

MORRISONS -2.01 -1.76 -1.48 -1.72 0.24 0.32 0.29 0.27

M&S -3.58 -3.08 -2.98 -3.48 0.18 0.22 0.19 0.19

OTHER -2.36 -2.13 -1.66 -2.01 0.23 0.26 0.31 0.26

SAINSBURY -2.02 -2.10 -1.43 -1.96 0.24 0.25 0.31 0.24

SOMERFIELD -2.09 -1.98 -1.63 -1.95 0.29 0.30 0.33 0.29

TESCO -1.69 -1.55 -1.15 -1.46 0.30 0.35 0.36 0.31

WAITROSE -2.52 -2.39 -1.66 -2.46 0.20 0.24 0.27 0.19

Table 8: Own Price Elasticities and Mark Ups. The table reports the own price elasticites of each of

the category firm combinations. The right hand side panel gives Nash Equilibrium markups implied by the

system of demands assuming that firms internalise cross elasticites between categories.
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Region Estimate Std. Err

North East 0.0187 0.0009

North West and Merseyside 0.0151 0.0006

Yorkshire and the Humber 0.0167 0.0007

East Midlands 0.0151 0.0007

West Midlands 0.0187 0.0006

Eastern 0.0185 0.0005

London 0.0196 0.0006

South East 0.0192 0.0005

South West 0.0204 0.0005

Wales 0.0153 0.0009

Scotland 0.0185 0.0005

Closing rate 0.0061 0.0005

Table 9: Arrival Rate by Regions and Closing Rate. Standard errors to be added.

Parameter Estimate Std. Err Estimate Std. Err

constant − − 2.6926 0.0810

γown -1.3094 0.0479 -1.4405 0.2162

γB,rival2 0.8779 0.0784 0.2165 0.2871

γB,rival3 0.8667 0.0693 -0.3346 0.2645

γB,rival4 -0.9500 0.0685 -0.5901 0.2016

γS,rival2 -0.9094 0.1630 0.0358 0.6878

γS,rival3 0.0632 0.4083 -0.0460 0.9382

γown,R2 -0.8017 0.0761 -0.0491 0.3143

γown,R3 -1.1239 0.1499 0.6876 0.2811

γB,rival,R2 -1.7265 0.0353 -0.1012 0.2924

γB,rival,R3 -0.9334 0.0827 -0.4839 0.2236

γS,rival,R2 0.1090 0.1021 0.2242 0.2348

γS,rival,R3 0.0943 0.1424 -0.3824 0.2595

γpop2 -0.0186 0.1579 0.4692 0.2078

γpop3 0.3011 0.1058 0.0596 0.3118

γpop,R2 -0.5266 0.0769 -0.5789 0.1891

γpop,R3 -0.2329 0.1080 -0.4845 0.2418

Big firm dummy 0.4455 0.0456 2.1950 0.1434

Table 10: Parameters in Conditional Choice Probability.
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Parameter Estimate

Specification 1 Specification 2

Big firm Small firm Big firm Small firm

κ (opening cost) 1.1450 1.8312 1.1420 1.8308

Parameters in regulator’s choice equation

α0 (constant) 2.9817 4.4155 2.3838

α1 (population) 0.0340 -0.0114

α2 (# of big stores) -0.2830 -0.3463

α3 (# of small stores) -0.5020 -0.3528

Parameters in payoff function

θown -0.1573 0.0482 -0.1585 0.0490

θB,rival2 0.0961 0.0010 0.0962 0.0011

θB,rival3 0.1289 -0.0039 0.1297 -0.0040

θB,rival4 -0.0281 0.0007 -0.0278 0.0001

θS,rival2 0.0028 0.0143 0.0028 0.0142

θS,rival3 -0.0879 -0.0006 -0.0875 -0.0009

θown,R2 -0.1285 0.0165 -0.1286 0.0170

θown,R3 -0.2172 0.0029 -0.2182 0.0037

θB,rival,R2 -0.0523 -0.0145 -0.0523 -0.0147

θB,rival,R3 -0.0365 -0.0194 -0.0371 -0.0195

θS,rival,R2 0.0592 0.0034 0.0591 0.0034

θS,rival,R3 0.0436 0.0228 0.0438 0.0231

θpop 0.0079 0.0111 0.0080 0.0110

θpop,R 0.0300 -0.0144 0.0301 -0.0146

Table 11: Opening Cost and Parameters in Payoff Function. Standard errors to be added.

34


