
1

Gene regulatory network reconstruction using Bayesian
networks, the Dantzig selector, the Lasso and their
meta-analysis
Matthieu Vignes1∗, Jimmy Vandel1, David Allouche1, Nidal Ramadan-Alban1, Christine
Cierco-Ayrolles1, Thomas Schiex1, Brigitte Mangin1, Simon de Givry1

1 SaAB Team/BIA Unit, INRA Toulouse, Castanet-Tolosan, France
∗ E-mail: matthieu.vignes@toulouse.inra.fr

Abstract

Modern technologies and especially next generation sequencing facilities are giving a cheaper access to
genotype and genomic data measured on the same sample at once. This creates an ideal situation for
multifactorial experiments designed to infer gene regulatory networks. The fifth “Dialogue for Reverse
Engineering Assessments and Methods” (DREAM5) challenges are aimed at assessing methods and as-
sociated algorithms devoted to the inference of biological networks. Challenge 3 on “Systems Genetics”
proposed to infer causal gene regulatory networks from different genetical genomics data sets. We in-
vestigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to
analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference
methods. We present results of the Challenge as well as more in-depth analysis of predicted networks
in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams
participating in Challenge 3A. It paves the way for future extensions of our inference method and more
accurate gene network estimates in the context of genetical genomics.

Introduction

Inferring gene regulatory networks. Gene regulatory networks (GRN) are simplified representa-
tions of mechanisms that make up the functioning of an organism under given conditions. A node in
such a network stands for a gene i.e. a DNA fragment that encodes a functional agent of the cell such
as a protein. Proteins are among the most well-studied acting protagonists in living organisms. In large
part, their synthesis is effectively regulated by other interacting proteins. In a GRN, edges depict causal
relationships between sources and targets for gene activities. Hence a convenient representation for GRNs
are directed graphs. The objective of the third DREAM5 challenge was to infer causal relationships in
artificial complex networks.

More generally, a biological network is defined by constituents at different levels, such as DNA se-
quences, RNAs (messengers, but also small RNAs), proteins, metabolites. Discounting epigenetic effects,
genes barely interact directly. They are rather activated or repressed through the action of specific
components acting at other scales [1]. The work presented in this paper is focused on gene regulatory
interactions. This representation maps the action of all cellular components onto gene space. Potential
applications still benefit from this simplified interpretation of the complex system. For example, the
search of candidate genes that target changes in a phenotype of interest [2], the study of evolutionary
aspects of biological networks [3, 4] so as to link their structure to functional properties [5, 6] all use the
representation of gene regulatory networks.

Initially, specific attention has been devoted to understanding the dynamics [7] and principles gov-
erning gene regulation, using either the first rules in logic to capture the absence or presence of cycles
in a Boolean formalisation of a GRN [8]. Later, [3, 9] also studied the successive refinements on gene
network topology and their functional consequences. In the past ten years, motivated by the abundance
of micro-arrays, a huge effort has been devoted to GRN inference. The methods that were proposed and
developed include analyses based on correlations in the data [10], systems of ordinary or partial differen-
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tial equations that give a plausible physico-chemical modelling [11], systems of linear equations [12] and
Bayesian networks (BN, [13]) to cite only a few. Additional improvements were proposed depending on
the exact nature of the data at hand (e.g. time series, [14–16]) and biological a priori knowledge [17].

Genetical genomics paradigm for gene network inference. In order to decipher causal links,
the above-cited methods rely on expensive and still technically challenging time series data or on many
experiments perturbing the systems from a steady state (e.g. by studying the effect of knocking out
a gene). “An ideal experimental design for causal inference is randomised, multifactorial perturbation”
recalls the website of the third challenge of the Dialogue for Reverse Engineering Assessments and Methods
(DREAM5, [18]) giving a makeover to Fisher’s work on experimental design [19] in molecular biology
data analysis. Genetic polymorphisms in a segregating population are ideal settings for multifactorial
perturbations of a living system: each allele is a potential source of perturbation for network behaviour.
Recombination and segregation events that occur during genetic crosses, randomise the distribution of
these alleles among the lines derived from two genetically known and diverse parents. Systems genetics, or
more precisely “genetical genomics” [20,21], is the study of how such randomised genetic perturbations can
directly or indirectly affect numerous complex traits. These traits can be either qualitative phenotypes of
interest or quantitative measurements reflecting the activity of cells like transcriptomics data. The variety
of patterns in trait responses on genotyped individuals in the segregating population are used to draw
causal inference. The added value of having both genetic and perturbed phenotypic (expression) data
has already been demonstrated, in particular to infer causality [22]. Existing works that elucidate GRN
structure based on genetical genomics data have been using Bayesian networks (BN) using genetic data
as prior information [23] or multivariate regression in a structural equation modelling (SEM) framework
with multiple testing and greedy search steps [24]. Their efficiency and accuracy in dealing with high
dimensional data set is still very limited.

In this paper, we consider complementary approaches that could potentially improve over state-of-
the-art methodologies to perform GRN inference from systems genetics data sets, namely (i) penalised
regressions: Lasso [25]) and the Dantzig Selector [26] which seek linear interpretable dependencies with a
controlled level of parsimony and (ii) BN with an appropriate scoring function and an integrated treatment
of genetic and genomic data. These approaches are used as inputs to feed a consensus statistical meta-
analysis approach that combines the best of other learning algorithm results, and which emerged as the
best performer for the DREAM5 Challenge 3A on GRN inference in systems genetics. Since there is still
no large experimental data set for which a reliably known large size gene network exists, the challenge
offered simulated data based on differential equation simulation, defining Gold Standard data sets.

The first section of the paper is devoted to the results we obtained. A discussion on the relative
merits and limitations of the proposed methods follows. The “Material and Methods” section precisely
describes the data and the different methods used, including specific adaptation to the data sets and
post-processing used to produce network estimates.

Results

In this section, we present our results and the prediction performance achieved according to the DREAM5
challenge criteria and we then give a more in-depth analysis in order to gain more insight on learnt GRNs.
The data sets provided by the challenge organisers, which are described in more detail in the “Material
and Methods” section, contained simulated genotypes in recombinant inbred line (RIL) populations of
variable size (100, 300 or 999 individuals) and their associated expression levels, which were governed by
inductive or repressive effects of genes on each other according to the topology of plausible networks to
recover. For each RIL population size, five networks with an increasing number of edges were simulated,
so a total of 15 data sets were provided.
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Since the meta-analysis that we used was the best performer of the challenge, we focus on the results
obtained using this consensus method. To illustrate the complementarity of the different methods (BN,
Lasso and Dantzig-based regressions) that supplied input edges to the meta-analysis, we also present
several aspects of their predictions. According to DREAM5 specifications, a predicted network topology
is defined by a list of directed edges ranked according to a non-increasing order of confidence score.

General results

Edge lists were compared both to (i) Gold Standard files, namely the correct list of edges used in simulated
models and to (ii) the pool of all edges that were submitted by other participating teams.

Receiver Operating Curves (ROC i.e. True positive vs. False positive rates – FPR) and precision
vs. recall (PR) curves were produced for each network. The false positive rate assesses the trend of
the method to produce incorrect edges. The recall is equal to the true positive rate and measures the
power of a method to recover the complete set of true edges. The precision (the rate of correctly made
predictions) is an indicator of the reliability of the predictions. Curves obtained by the meta-analysis,
BN, Lasso and Dantzig approaches on the sparsest network, with 999 individuals (Network1-A999), are
shown in Figure 1.

In ROC curves, the point FPR= 0, recall= 1 corresponds to an ideal situation where all and only
correct edges would be predicted. This ideal point was not reached by the meta-analysis, however an
interesting trade-off value of (FPR= 0.05, recall= 0.8) was reached. The excellent FPR value was not
surprising given that the simulated networks were rather sparse. The steep slope at the beginning of the
ROC curve is a good indicator that the edge ranking produced by the methods was reliable.

The PR curve plots the ability of the methods to produce both reliable and comprehensive predictions.
For example, with the 1, 000 first edges obtained by the meta-analysis, a precision value of 75% means
that three out of four inferred edges were correct, whilst the recall value of 25% means that one out of
four original edges was recovered.

It should be noted that since the Lasso and Dantzig approaches produced up to 100, 000 edges, so
did the meta-analysis. The BN method produced sparser edge lists: between 2, 900 and 5, 800 edges per
network. This makes the reliability of the score assigned to edges a key point: no one is really interested
in predicting a true edge that is ranked 50, 000th. In the next section, detailed features about our results
are presented, and the emphasis is put on how these features can serve GRN inference when a Gold
Standard network is unknown.

Table 1. AUC of the DREAM5 Challenge 3A for the meta-analysis of the SAaB team
(source: [18]).

DREAM Area Under the Curve (AUC)
challenge Network ’1’ Network ’2’ Network ’3’ Network ’4’ Network ’5’
A999 PR 0.358a / 0.482b 0.258 / 0.364 0.195 / 0.292 0.183 / 0.260 0.178 / 0.244

ROC 0.933 / 0.902 0.885 / 0.845 0.844 / 0.808 0.821 / 0.784 0.813 / 0.768
A300 PR 0.211 / 0.248 0.144 / 0.175 0.141 / 0.159 0.132 / 0.141 0.113 / 0.131

ROC 0.855 / 0.845 0.793 / 0.779 0.786 / 0.774 0.759 / 0.739 0.737 / 0.719
A100 PR 0.085 / 0.074 0.060 / 0.054 0.053 / 0.045 0.054 / 0.046 0.054 / 0.044

ROC 0.754 / 0.750 0.718 / 0.713 0.696 / 0.694 0.676 / 0.671 0.670 / 0.666

a AUC official values issued by the DREAM organisers b AUC after minor corrections in our
implementations

Table 1 presents the area under the ROC and PR curves (AUC) of the 15 inferred networks for the
meta-analysis approach. Results clearly showed that reducing the size of the sample made the problem
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Figure 1. Accuracy results for the GRN inference methods: ROC curves (upper panel)
and PR curves (lower panel) for Network1-A999. Meta-analysis: green, BN: dashed red, Lasso:
purple and Dantzig: blue. Points for inferred networks of 500, 1, 000 and 2, 000 edges are indicated.

much harder. At the same time, it also appeared that increasing the edge density of the simulated network
(from Network ’1’ with ∼ 2, 000 edges to Network ’5’ with ∼ 5, 000 edges) also made the challenge of
GRN inference slightly more difficult, since prediction performances decreased.

Since the publication of the official results of the DREAM5 challenges, we have slightly improved the
post-processing of our approaches. For example, the handling of edge direction is now identically dealt
with by the two penalised regression approaches. Consequently, the meta-analysis AUC also changed.
PR trade-offs were noticeably improved, whilst ROC slightly decreased.

The prediction of every method against the pool of all the predictions submitted by the teams that
entered the challenge was also assessed. It was used to produce empirical p-value derived scores [27] that
reflect how good each method performed in comparison to others and was eventually used to rank teams.
Our meta-analysis method achieved first place in the three sub-challenges 3A (999, 300, 100 individuals)
with respective overall scores of 140.6, 89.4 and 81.9. In sub-challenge 3A999, our scores were the best
for both ROC and PR scores. In sub-challenge 3A300, two different teams provided better results: one
for the ROC curve and one for the PR score, although none of them achieved a better overall score than
our meta-analysis.
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Detailed results

In this section, we present a detailed analysis of the results obtained on the most favourable case, which
is Network 1 with 999 individuals (Network1-A999). This choice is naturally arguable, since a common
situation in a systems genetics context is to infer relationships between genes when sample size is limited.
It however gives an upper bound on the performances achieved on all networks and defines an ideal
situation where the most reliable observations and conclusions can be drawn.

Correct edges come first. Since predicted edge lists can be as long as 100, 000 edges and since we are
interested in obtaining reliable and interpretable predictions only, we focus on the first 500, 1, 000, 2, 000
and sometimes 5, 000 edges. The ’Results’ section established that such short-list of predicted interac-
tions simultaneously gave reasonably good coverages and acceptable precision levels (see corresponding
precision and recall values in Figure 1). Moreover, they represent sets of edges whose sizes are reasonably
manageable in the context of a 1, 000 gene regulatory network that must be deciphered without any prior
knowledge.

We tried to infer the directed network topology from the 500 first edges of the meta-analysis. 434 of
them (86.8%) were correct, but 1, 614 edges among the 2, 048 edges of the true network were missing.
So the recall was only 21.2%. When we used the 1, 000 or 2, 000 first edges, the recall increased to
respectively 36.4% and 51.1% but the price to pay was a drop in precision to respectively 74.6% and
52.4%. So inferring half of the true network led to an inference noise of nearly 50%.

For denser networks, the precision remained the same, but the recall decreased since the total number
of edges to predict was greater. As an example, in Network 5 (5, 545 regulatory relationships), the 2, 000
first edges produced by the meta-analysis had a precision rate of 54.2% but the total network coverage
was only 20%. In this case, raising the total number of edges to keep for inference purpose was not a good
option since using the 5, 000 first edges indeed slightly increased the recall to 31.3%, but the precision
then went down to 34.7% (data not shown).

In/Out-degree distributions. If initially the only knowledge that was available on the simulated
networks was that they had a modular structure, the organisers later revealed how they were generated,
including simulated in/out degree distributions. It is therefore informative to compare Gold Standard
networks to predicted networks in terms of node degree distributions. Figures 2 and 3 compare plots
of respectively in- and out-degree distributions for the true Network1-A999 and for networks inferred
from the first 500, 1, 000 and 2, 000 edges predicted by the meta-analysis. The first result was that the
larger the set of edges, the more accurate the predicted network topology: inferred degree distributions
got closer to the correct ones when the edge list was increased. This would obviously not be true if we
had considered much longer edge lists (which have poorer precision levels): a list of tens of thousands of
edges would give too high a network connectivity, and degree distributions would be skewed. With the
number of edges that we considered, distributions were skewed towards 0 and some nodes were isolated
even when 2, 000 edges were kept (see the paragraph on largest connected components, below).

The in- and out-degree distributions of the true network and its modularity are global essential features
of its topology. This modular structure appeared with as few as the first 500 edges and was clearly visible
with the first 2, 000 edges, as it is illustrated in Figure 4. However, the method had difficulties in
locally capturing relationships for a node that had many incoming links: it was quite difficult to unmask
regulatory hubs. For example, the true network had a dozen genes with more than 7 incoming edges and
our predictions among the first 2, 000 edges revealed only one node with 5 incoming links. Moreover,
the true network had one 57-outgoing relationship hub and using the 2, 000 first meta-analysis edges, we
predicted only 30 such links for this hub . A consequence of this difficulty in predicting highly connected
nodes was that our predictions overestimated the number of nodes with few regulatory connections.

Despite this, the meta-analysis performed relatively well at inferring networks with relatively accurate
in- and especially out-degree distributions. In real biological data sets applications, if one had some prior
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Figure 2. In-degree distribution of Network1-A999. The distribution is plotted on the log scale
on the y-axis since the in-degree distribution was assumed to be exponential in the true network (black
crosses). Coloured symbols stand for the first 500 (light green diamond shape), 1, 000 (middle green
triangles) and 2, 000 (dark green circles) edges inferred by the meta-analysis.

knowledge about the true degree distributions (e.g. from another well-studied organism) plotting inferred
node degree distributions would probably be a good tool for assessing network overall quality.

Largest connected component. In the considered Gold Standard 1, 000 gene networks, all nodes
were connected. Moreover, in real biological data sets, it is often acknowledged that a GRN has a giant
connected component [28] e.g. for robustness reasons. So being able to predict such a structure is a
positive point for an inference method, even if all interactions are not simultaneously active [29]. The
previous analysis on in-/out-degree also suggested to look at the size of the largest connected component
when the number of considered edges increased. Figure 5 shows how this size evolves with the number of
considered edges for the 15 different networks of the challenge. Clearly, three trends appear in our results,
depending on sample size. In the 999 individuals case, the largest connected component captured almost
all nodes when more than 1, 500 − 2, 000 edges were considered, whatever the true graph connectivity.
In the 100 individuals case, no large connected component appeared, even when considering 3, 000 edges
(with very low precision levels near 10%). For 300 individuals, it was a middle-of-the-road case. A large
connected component appeared reasonably quickly with additional edges, but the behaviour changed with
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Figure 3. Out-degree distribution of Network1-A999. The distribution is plotted on a log-log
scale since it was expected to be a power-law distribution in the true network (black crosses). Coloured
symbols stand for the first 500 (light green diamond shape), 1, 000 (middle green triangles) and 2, 000
(dark green circles) edges inferred by the meta-analysis. Points having ’0’ out-degree were transformed
to 0.5.

the true network connectivity.
Up to this point, we only presented global measures on the networks. In the next paragraph, we

present results that show that prediction accuracy may also be influenced by local factors such as the
type of mutation that occurred, either in the promoter region or in the coding sequence of the gene.

Edge inference accuracy depends on mutations that impact gene activity. We analysed the
quality of inferred gene regulations depending on the type of mutation that occurred for the source
(regulator) gene and the target (regulated) gene. We inferred the type of mutation of a gene: we labelled
the gene ’cis’ if the mutation is in its promoter region (hence the mutation shows a cis-regulatory effect),
and ’trans’ if it lies in its coding region. A trans-mutation modifies the sequence of the gene which, as
a regulator, affects the expression of target genes in the GRN. This leads to a trans-regulatory effect.
Some authors (e.g. [24]) call such regulation a ’cis-trans’ effect, but we used ’trans’ for simplicity.

For each gene, we tested the cis-regulatory effect of its marker using an analysis of variance, as
described in the “Materials and Methods” section (Bayesian networks subsection). Genes not detected
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Figure 4. Network1-A999 visualisation: (A) to (C) are networks inferred by the meta-analysis
using the first 500 (A), 1, 000 (B) and 2, 000 (C) edges. (D) to (F) represent the same predicted
networks showing only correctly inferred edges. (G) is the true network. For clarity, vertices have been
removed.

as cis-regulated were labelled ’trans’. This gave a predicted number of trans-acting genes consistent with
the announced frequency of 75% when the sample size was large enough to precisely infer this rate. When
sample size was smaller, we underestimated cis-acting regulation frequency.
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Figure 5. Size of the largest connected component inferred by the meta-analysis for the 15
DREAM5 Challenge 3A networks vs. number of edges. Colours encode sample sizes: blue for
100 individuals, red for 300 and green for 999. Line style and symbols on curves represent networks:
solid line squares for Networks ’1’, short dashed line with circles for Networks ’2’, dotted line with
triangles for Networks ’3’, alternate dashed and dotted line with plus for Networks ’4’ and long dashed
line with crosses for Networks ’5’.

Figure 6 shows that ’cis’ → ’trans’ links were predicted more reliably than other types of relationships.
This may be explained by the fact that the regulator of the target gene had a large variation due to the
strong effect of its cis mutation, and that its regulatory effect was not obfuscated by a cis-regulation on
the target gene. The ’cis’ → ’cis’ framework was the worst from the prediction accuracy point of view.
It may correspond to strong correlations due to genetic linkage but not to direct causal regulations.

Complementarity of the inference methods combined in the meta-analysis. The meta-analysis
took as input the inferred networks of three different methods: the Bayesian networks (BN), the Lasso
regression, and the Dantzig selector-based regression. These methods ranked the edges differently and
this was what allowed the meta-analysis to perform well.

Figure 7 displays a Venn diagram that presents specificity and overlaps between the sets of the
first 1, 000 edges predicted by the BN, Lasso, and Dantzig approaches, respectively. Similar figures
were obtained with the first 500 or 2, 000 edges instead (data not shown). It appeared that the edges
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Figure 6. Analysis of precision/recall of the meta-analysis approach for DREAM5
Challenge 3A with 999 individuals/Network1 data. Predicted gene regulations are classified into
four groups depending on the label of the regulator and the target gene. A gene is labelled ’cis’ if its
marker has a cis-regulated effect on its expression level. Otherwise, gene is labelled ’trans’. An edge
between two ’cis’ labelled genes is classified ’cis → cis’, between two ’trans’ labelled genes: ’trans →
trans’ and so on.

simultaneously predicted by all three approaches were very reliable: 90% of them were correct. So were
edges shared by the BN and Dantzig approaches. Edges predicted by just one method were less precise
(less than 50% precision), and pure Lasso predictions were even poorer.

The most interesting observation was that there was a clear complementarity between the three con-
sidered approaches. They shared a core prediction set, but each of them provided a specific contribution
to the meta-analysis output.

Computing times. Table 2 presents computing times for the different approaches. These computation
times were averaged over the five different networks in each of the three different sub-challenges. Compu-
tation times were very similar for the different networks, although the number of edges in the network to
infer varied from less than 2, 000 to more than 5, 000. The CPU-times for the BN and Lasso methods had
a nearly linear dependency upon sample size and should scale-up easily to larger data-sets. This seemed
less obvious for the Dantzig selector approach but this was mostly because this recent method has been
directly and bluntly implemented using a general linear programming solver. The use of a dedicated
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Figure 7. Venn diagram between the three sets made up of the first 1, 000 edges inferred
from one of the three approaches: BN (red circle), Lasso (blue circle) and Dantzig (green circle).
Within each region of the diagram, the number of correctly inferred edges (over the bar) and the total
number of edges (under the bar) are given. 1, 134 (top right) is the number of missing edges for the
union of the three approaches.



12

algorithm such as DASSO [30] would likely lead to an approach that scales as smoothly as the Lasso
approach.

Table 2. Computation times for the different approaches (per network)

Method DREAM5 sub-challenge
A100 A300 A999

BN 20’ 70’ 180’
Lasso 5’ 12’ 30’
Dantzig 300’ 1300’ 6600’
Meta less than a couple of seconds

CPU times are given for a 2,96 Ghz Intel(TM) processor with 4 GB memory installed.

The meta-analysis is almost instantaneous as it only needs to parse edges lists for BN, Dantzig and
Lasso to produce its own network and edge scores. However, it can not be run independently of other
methods.

Discussion

We have proposed a GRN reconstruction method that relies on a meta-analysis of the output of three
different reconstruction methods (namely BN, Lasso and Dantzig). As best performers of the DREAM5
Challenge 3A, we have shown that the presented methodology can adequately deal with large size gene
network inference in a systems genetics (or genetical genomics) framework, i.e. when both marker data,
that reflects mutations occurring in a segregating population, and gene expression data are available.

As expected, network reconstruction clearly improves when sample size increases. This is a decisive
argument for planning genetical genomics experiments with enough individuals in the segregating popu-
lation. Our results suggest that a sample of size 300 is at least needed to infer a first list of 500 reliable
edges (at a precision level of nearly 65%) for a 1, 000 gene network using the meta-analysis approach.

These good results could only be achieved thanks to the integration of three different complementary
statistical inference techniques. This is certainly a key explanation for the results obtained. First of all,
these predictions were produced by two different classes of methods, each capable of exploiting specific
different features.

• structure learning of a Bayesian network: in this probabilistic framework, a directed acyclic graph is
used to represent probabilistic relationships between discrete variables. The directed acyclic graph
structure restricts the class of predicted GRN to structures that do not contain feedback loops.
However, the use of directed graphs allows for predicting causal relationships between variables, as
expected in the DREAM5 challenge.

Discrete Bayesian networks are also inherently limited by the usual encoding of probabilistic rela-
tionships between causes (parents) and effects using a conditional probability table for each node
in the network. Such a table includes a number of parameters that grows exponentially with the
number of causes. Since sample size is limited, only a limited number of parameters can be re-
liably estimated, and the approach is therefore inherently limited to graphs where every variable
is explained only through a limited number of parents. For the Bayesian Information Criterion
(BIC) a maximum number of 5 or 6 parents, depending on the choice of 3 or 4 classes for expres-
sion level variables, could be predicted with a sample size of 300 [31]. The BDeu score that we
used for the structure learning is known to allow more parents [32], however we never attained the
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hard constraint of 9 parents that we imposed in our algorithm. This restriction was necessary for
computational efficiency, as learning Bayesian network structure is NP-hard [33].

The positive part of this flexible encoding of probabilities distributions is that it enables the capture
of non-linear relationships between variables, an expected behaviour of true biological samples.

• penalised linear regressions (Lasso and Dantzig): as a mirror to Bayesian networks, these approaches
infer undirected graphs, with no causal relationships, but the predicted structures may contain
cycles. They are restricted to linear relationships between variables, but this restriction keeps the
number of parameters small. The number of neighbours of a variable is not a priori limited, and
predicting hubs is possible. Ultimately, these models are efficient in the sense that the associated
inference algorithms are polynomial time algorithms [30,34].

Unexpectedly, despite the relationships between the two penalised linear regression methods [35],
which should provide close estimates in a sparse setting, the Venn diagram in Figure 7 clearly shows
that each method predicts different sets of edges showing complementarity even in their own class.

The idea of combining results from different methods has already been tested by the DREAM organ-
isers themselves in a previous different DREAM challenge, in what they called “the community intelli-
gence” [36]. With the best performers among the competitive teams, the DREAM organisers computed a
a very simple and robust combined score based on rank sum. Their predictions outperformed individual
teams when results of best performers were complementary and not optimal. We based our meta-analysis
on a more sophisticated score that was accurate because our source methods had weighted edges with a
probability-like score. Clearly, combining linear (Lasso/Dantzig) and non-linear (BN) methods allowed
the meta-analysis we proposed to better detect causal relationships.

BN and penalised regressions also produced a very different total number of predicted edges. The
number of predicted edge has a tremendous impact on DREAM challenge scores. BN predictions hardly
reached a few thousand edges whilst Lasso and Dantzig approaches produced more than 100, 000 edges
each. To illustrate this, the area under the curve for true positive rate versus false positive rate in Figure 1
(top) was clearly smaller for BN predictions. Edge list of smaller length can be an explanation of poorer
scores. The meta-analysis used the entire list of scores produced by BN, Lasso and Dantzig approaches.
The edge ranking score (described in the “Material and Methods” section) we used gave better results
than any of the individual approaches, except for the very first predictions (recall below 7% on Figure 1
bottom) ; in this latter situation, the Dantzig approach obtained slightly better precision (less than 1%
improvement).

General features of the true network are ususally correctly recovered. For example, predicted networks
have good in- and out-degree distributions and the expected construction of a big connected was quickly
observed with only 1, 000 or 2, 000 predicted edges. In addition to individually ranking correct edges
first, the meta-analysis is also able to retrieve global structural attributes of the network.

One obviously has to be careful about conclusions drawn from simulated data, as provided in the
DREAM5 challenge. While experimental data on GRN slowly accumulates and expression measures
become increasingly easy and inexpensive using RNA-Seq, to the best of our knowledge, neither suf-
ficiently large experimental data sets that systematically combine gene expression and polymorphism
measures, nor experimentally confirmed large GRN are available yet. In the area of genetical genomics
data-sets, [37] exploited 160 RILs from a cross between two Arabidopsis thaliana accessions with 291
available markers and 24, 065 gene transcript levels. Similarly, [38] gathered 45, 000 gene expression lev-
els, 194 micro-satellite markers for 60 F2 mice and [39] recently analysed 110 RILs derived from a cross
between two rice accessions with 1, 655 markers and 16, 372 expression traits. The three former examples
were far from inferring a genome-scale GRN. These examples stress the gap between present research
results obtained on real data sets that give only local regulatory relationships and simulation settings
that indicate a potential for genome-scale GRN reconstruction on larger data sets. From our experience
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in analysing such data sets, several features can be quite different in real data sets and in simulated data
sets, such as those proposed in the Challenge 3 of DREAM5.

One such feature is the unrealistic one marker per gene assumption: in practice, the total number
of markers is unrelated to the number of genes and may be either quite low, or very high (see [40] for
figures on plants and references therein with over a million SNPs for humans). A solution to the former
case would be to infer pseudo-markers but still less comprehensive information would result from it. On
the other hand, Next Generation Sequencing data sets are promising in that they would propose several
markers per gene. Our modelling need be extended to use haplotypic markers instead of marker data to
fully use the available multi-allelic information at different genotyped loci.

It should be pointed out that our prediction relies on probabilistic models, which are in no way related
to the mechanistic ODE-based model used for generating the data set. In essence, none of our models is
therefore using the “true model”, which is the usual case when handling real data sets.

A potentially more challenging question lies in the number of genes in the network. As we have just
pointed out, the analysis of a large number of genes requires large sample sizes, at higher costs. When
dealing with GRN with thousands of genes and only a few hundreds of individuals in the population, the
ultra-high dimension limit linking the sample size, the number of genes and the network sparsity is hit so
that even sparse models can not be faithfully recovered anymore [41]. In the three formerly cited papers
( [37–39]), if the number of parents/regressors associated to each gene was to exceed 4, the estimation
would theoretically be impossible. Bootstrap techniques might help in providing sparse robust estimates
in such settings [42–44]. A prior selection of relevant genes, using genes that are differentially expressed
or selecting genes known to play a role in the biological process under study, could considerably improve
GRN inference. The risk here is that if an important variable (e.g. integrative hub) is missing in the data
set, confounding effects will likely lead to false positive edge predictions even when combining several
methods into a powerful meta-analysis. The use of hidden variables, that could account for unmeasured
gene expressions, has shown limited performances when the number of genes in the network is high (over
a few tens of genes) ; interesting preliminary results can be found in [45,46]. There is a substantial need
for methodological developments in this direction.

Following the added value of integrating several inference methods, a natural way to improve predic-
tions would be to include additional inference methods which would complement the methods we used in
the present study. Causality inference is probably the area where our current combination of inference
tools could benefit from additional contributors. Indeed, the linear regression inferences essentially ignore
causality, while Bayesian networks are able to predict causality when no Markov equivalence ambiguity
appears. One should ideally be able to actively exploit the fact that the seed for causality from polymor-
phism to expression is known a priori. Before this, different existing inference techniques, such as kernel
methods [47] and Random Forests [48], which have already been used in similar contexts [49, 50], would
be excellent candidates.

Material and Methods

Notations and data simulation The data sets provided by the DREAM5 Challenge 3 organisers are
available at http://wiki.c2b2.columbia.edu/dream/index.php/D5c3.

Directed networks of p = 1, 000 genes were generated according to a “modular scale-free topology” [18].
After the challenge, the organisers gave additional information on the generation process: networks were
simulated with a power law (scale free) out-degree distribution, but an exponential in-degree distribution.
Moreover, simulated networks were modular. Fifteen such networks were generated and the distribution
parameters were chosen so that the total number of edges range from 2, 000 (Network ’1’ category) to
5, 000 (Network ’5’ category). Each network was associated to a specific population size n of either
n = 100 (sub-challenge A100), n = 300 (sub-challenge A300) and n = 999 (sub-challenge A999). In all
cases, the sample size n was smaller than the total number of genes p and the n

p ratio, which is important
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for estimation, varied from 1
10 for sub-challenge A100 to 999

1000 for sub-challenge A999.
For each network and each population size, genotypes for n RILs with 1, 000 bi-allelic markers evenly

distributed on 50 chromosomes were simulated using linkage information. Each RIL was an homozygous
mosaic of paternal and maternal alleles. Parental alleles were different all along the genome. Each marker
polymorphism was assumed to be associated with a single gene mutation located either in the promoter
region (probability 25%) or in the coding region (probability 75%). A polymorphism in the promoter
region of a gene affects its basal transcription rate, leading to a ’cis-like’ regulatory effect on the gene
activity, while a polymorphism in the coding region affects the strength of the effect of the gene on its
targets in the network, leading to a ’trans-like’ effect. The marker data for RIL i ∈ {1, . . . , n} and gene
j ∈ {1, . . . , p} is denoted Mij and has value 0 or 1. The genotype matrix M is hence a n× p matrix with
0/1 entries.

Gene expression levels were simulated at steady state of a dynamical system represented by a set of
ODEs (see exact formula in [18] and details in [51]). These ODEs account, via different parametrisations,
for different intensities in activation or repression effects, genetic variant influences and additional noise.
The expression data matrix G consists in a n× p matrix.

Polymorphisms between RIL individuals define multifactorial perturbations. Each allelic combination
defines a different parametrisation in the ODE model, with the same network skeleton. In addition to
random term effects that represent technical or biological variability, this provokes changes in the observed
gene expression patterns from one individual to another that in turn influence each other according to
the causal network. The observed values G were those obtained at steady-state of the complex system.
Figure 8 depicts such observed patterns for four individuals (1 to 4) of the population for Network1-A999
of the challenge.

The goal of the challenge was to reconstruct the network that gave birth to the observed measures
as a list of edges sorted according to a relative “confidence” score. This score was only used for ranking
edges.

We now present our strategy to reconstruct the networks namely the preprocessing of the data, the
probabilistic graphical models that we implemented, their post-processing and the meta-analysis that
was carried out to make the best out of the different modelling approaches.

Bayesian networks

Our first statistical modelling of the data relies on a directed graphical model known as Bayesian networks.
Our model captures expression levels and genetic data in discrete variables, related through conditional
probability tables capturing regulating and polymorphism effects, including possibly non-linear effects.
The structure and parameters of the underlying graph were estimated using a score-based structure
learning algorithm similarly to what was done in [13] in the context of pure expression data analysis. The
precise score, discretisation policy, and algorithm used are described below.

Bayesian networks and structure learning with the Dirichlet score. A Bayesian network de-
noted by B = (G, PG) is defined by a directed acyclic graph G = (V,E) with nodes representing p random
discrete variables V = {V1, . . . , Vp}, linked by a set of directed edges E, and a set of conditional prob-
ability distributions PG = {P1, . . . , Pp}. The variables involved in each conditional probability table Pi

are defined by the directed acyclic graph: Pi = P(Vi|Pa(Vi)), where Pa(Vi) = {Vj ∈ V | (Vj , Vi) ∈ E} is
the set of parent nodes of Vi in G. A Bayesian network B represents a joint probability distribution on
V such that:

P(V ) =

p∏
i=1

P(Vi|Pa(Vi)) (1)
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Figure 8. Graphical representation of expression data on a subpart of Network1-A999 for
four individuals. Node colour represents simulated gene expression level (in green scale, light for
small values and dark for high values) for individuals 1 (upper left), 2 (upper right), 3 (bottom left) and
4 (bottom right). Red circles highlight two spots in the network that vary due to different underlying
marker polymorphisms.

Learning the structure of a Bayesian network consists in finding a directed acyclic graph G maximising
P(G|D) where D represents the observed data. We have:

P(G|D) =
P(D|G)P(G)

P(D)
∝ P(D|G)P(G) (2)

The first term P(D|G) of Equation 2, is called the marginal likelihood. The Bayesian Dirichlet score
(BDeu, where ’eu’ stands for Equivalent Uniform) gives the same score for Markov equivalent Bayesian
networks and assumes a uniform prior on the conditional probability parameters. It is defined by the
following expression:
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BDeu(G) = P(D|G) =
p∏

i=1

qi∏
j=1

Γ(αij)

Γ(nij + αij)

ri∏
k=1

Γ(nijk + αijk)

Γ(αijk)

with nijk, the number of occurrences of the configuration (Vi = k, Pa(Vi) = j) in the n samples, nij =∑ri
k=1 nijk, αij = α

qi
, and αijk = α

riqi
, where ri is the domain size of variable Vi and qi is the size of the

Cartesian product of the i parent domains (qi =
∏

Vj∈Pa(Vi)
rj). The BDeu score requires a specific value

for α, called the equivalent sample size, which, in practice, is often arbitrarily set to one. However, [52,53]
established the sensitivity of the BDeu score with respect to this parameter: the connectivity of the
inferred DAG increases with a growing α. [53] suggested a way to compute an optimal α value, making
the assumption that α is smaller than the sample size. Following this idea, we defined a range of α values
starting from its maximum value, set to the largest sample size (i.e. α = 103), and decreasing it on a
logarithmic scale. In our experiments, we varied α in the range {10−16, 10−15, . . . , 103} in order to get
20 networks, from a very sparse to a denser structure. This defined the α-grid for the Bayesian network
approach. We defined the score of an edge using majority voting on these graphs (see below). Without
any additional information, a uniform probability over all possible DAGs was assumed in Equation 2 .

Bayesian network modelling and discretisation policy. The set of discrete random variables V
was composed of one variable per gene-activity, denoted Gi, and one variable for each genetic marker,
denoted Mi, for all i ∈ {1, . . . , p} with p the number of genes (p = 1000). Following challenge 3A
assumption, each gene, with expression Gi, was associated with a single genetic marker Mi. Since we
used discrete BN, we had to discretise Gi. As shown in [54], for the same score-based structure learning
algorithm, the choice of a discretisation method can dramatically modify the quality of the inferred
network. Instead of choosing a single discretisation method, we chose an adaptive method depending on
the type of gene-activity distribution for each gene. Observing complex distributions in the data sets,
we distinguished two types of distributions. If we detected a unimodal (normal-like) distribution, we
used an adapted k-means algorithm to obtain a three-class discretisation, which also ensured a minimum
class size (5% sample size) and a maximum size for extreme classes (30%). In the case of a multimodal
distribution, we used the more general framework of Gaussian mixture models to find a maximum of four
classes. Since the BDeu score depends on domain sizes, we tuned the parameters of our discretisation
method to favour a four-class discretisation so that most of the Gi variables had the same domain size.

Structure learning and restricted search space. Learning Bayesian network is an NP-hard problem
with a super-exponential search space of potential DAG structures [33] and even a greedy search heuristic
method can be very time consuming when the number of variables p is large. In order to get reasonable
computation times and also take into account biological knowledge, we reduced the search space by several
assumptions.

A preliminary analysis of variance was used to predict cis-regulatory markers: detected positive
markers (Bonferroni corrected p-value < 0.001) were those giving the most significant signal in a 7
marker-width window, centred on the gene, to avoid false marker influence due to genetic linkage.

We used this cis-effect information to constrain structure search: since each cis-marker Mi had an
effect on its associated gene activity Gi only, we constrained our model to use an Mi → Gi edge and
forbade other edges outgoing from Mi. In the opposite case, when the marker Mi was not detected as
cis-regulatory marker we only forbade the Mi 6→ Gi edge.

Following the approach of [55], for each gene expression Gi, we selected a list of candidate parents
composed of genes Gj (resp. markers Mj) with a contribution to BDeu P(Gi|Gj) (resp. P(Gi|Mj))
assuming a single parent Gj (resp. Mj) greater than P(Gi) assuming no parents. Moreover, due to the
fact that markers in the same chromosome region had a tendency to be selected together because of
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linkage correlations, we chose the best marker in a 50 cMorgan sliding window. We did not try to learn
edges between marker variables since it is useless for our purpose.

We used the structure learning algorithm ’greedy hill-climbing’ of Banjo [56]. We started from an
empty DAG and fixed a maximum number of parents to 9 to avoid overwhelming computational costs,
in order to find the best DAG locally maximising Equation 2 for each value in the α-grid.

The directed edges from the resulting 20 DAGs learnt for the 20 different values of α were directly
mapped onto genes to define a network relating the p genes: an edge from Mi to Gj in the learnt structure
created an edge from Gi to Gj in the network. So, despite the fact that the underlying graphical model
can only represent an acyclic directed structure, the final network may contain cycles. We computed
the frequency of every directed edge in the inferred gene networks obtained by different values of the
equivalent sample size α. This allowed us to perform a simple majority vote; directed edges were sorted
based on their frequency, breaking ties by using average influence scores as defined in [57].

Structural equation modelling

This section first presents the structural equation model used to describe relationships among variables
and the penalisation techniques that allowed for simultaneous parameter estimation and variable selection.
We then explain how we implemented them in practice.

In the framework of Structural Equation Models (SEM), one response (or dependent) variable Y is
assumed to depend upon m regressors X’s with linear dependency in the parameters:

E [Y | X] = f(X) (3)

=
m∑
j=1

Xjθj

Equation 3 is linear in parameters θ that are unknown and need to be estimated. Explanatory
variables X can be quantitative or qualitative.

Having observed X and Y for a sample of size n, the usual estimation procedure is the ordinary least
square (OLS) method which minimises the residual sum of squares (RSS):

RSS(θ) =

n∑
i=1

(yi −
m∑
j=1

xijθj)
2

=
n∑

i=1

>(Y −Xθ)(Y −Xθ) (4)

= || Y −Xθ ||2`2

where yi and xij are the observed values of Y and Xj for the ith individual.
Differentiating Equation (4) with respect to θ leads to the unique least square estimate

θ̂rss = (>XX)−1 >XY (5)

On data sets where n < m, as in our case, X may be not full rank. >XX is then singular and the
estimate in Equation (5) can be replaced by: θ̂ = X†Y where X† is the Moore-Penrose pseudo inverse
of X. Beyond intensive computation, another difficulty arises when eigenvalues of X close to 0 cannot
be estimated precisely enough because of numerical instability, inducing large uncertainty about X† and
consequently θ̂. Ultimately, the unbiased estimate θ̂ is not worth the effort because of the induced variance
in coefficient estimates or predictions.
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Since our goal was to obtain an interpretable (i.e. reasonable number of significant explanatory
variables) and stable (i.e. small changes in data should have low impact on analysis results) model that
leads to as accurate as possible predictions, we allowed some bias-variance trade-off using regularization.
One approach to regularization is to introduce a constraint on regression coefficients. For example ridge
regression minimises the RSS in Equation 4 imposing that || θ ||`2≤ t for some t > 0. The smaller
t, the greater the level of shrinkage of regression coefficients. Conversely, larger values of t allow more
complex models that are penalised if they do not bring enough gain into the RSS. The model selection
problems therefore come down to choosing appropriate values for t. However, ridge regression does not
select variables: every regression coefficient is shrunk but not set to 0 so the model is not really simpler.
Direct variable selection procedures, such as “best subset” tackle the issue of a huge number of regressors
included in the model but as a discrete process they can be subject to a high variance in the produced
estimates.

Among the many possible techniques to achieve variable selection in a stable model, we chose to focus
on the Lasso [25] and on the Dantzig Selector [26]. Other penalization techniques (for example see [43,
58,59]) are known to be more suitable for high dimensional data that have inherent inner collinearity, but
need additional parameter tuning. Our goal was first to focus on simple, efficient but powerful techniques
in order to assess their merits on this problem.

Lasso penalised regression. The Lasso is very similar to ridge regression. It also minimises the RSS
but allows for deviation up to a penalty term controlled by a constraint on the `1 norm of parameters θ
(instead of the `2-norm for ridge regression). The Lasso automatically selects variables and continuously
shrinks their associated regression coefficients. Depending on the penalization strength, it enforces an
increasing number of parameters to be 0. Lasso estimates are defined as follows:

θ̂Lasso = argmin
θ

|| Y −Xθ ||`2 , subject to || θ ||`1≤ t (6)

or equivalently (Lagrangian transform):

θ̂Lasso = argmin
θ

|| Y −Xθ ||2`2 +λ || θ ||`1 (7)

While Equation (6) explicits the constraint on the parameters norm, Equation (7) introduces the
penalty parameter λ: the larger λ, the greater the amount of shrinkage, and the simpler the selected
model will be. More precisely, λ is an upper bound on the correlation between regressors not included
in the model and the regression residual. Interpreting t of Equation (6) is also possible by considering

t0 =|| θ̂rss ||`1 . Hence setting t to t0/2 roughly shrinks active coefficients in the regression by 50% [44]. The
Lasso solutions do not vary equally upon input scales. Standardisation of the inputs settles this problem.
For the Lasso (and for the Dantzig selector below), we therefore standardised the input regressors.

Solving Equation (7) is a quadratic programming problem but efficient algorithms exist for computing
the entire solution path as λ varies. We used the the Least Angle Regression (LAR, [34]) algorithm
available in the glmnet package version 1.4 [60] and implemented in R (version 2.11.0, http://www.r-
project.org/).

In the challenge, confidence scores had to be assigned to inferred edges, so we did not use a model
selection criterion but instead created a score reflecting the importance of the explanatory variable. This
score was the frequency for this variable to be included in the model for different values of the penalization
parameter. This could be done along the entire LAR solution path. We used a fixed grid of λ values. For
comparability with the Dantzig selector and BN approaches, we used a grid of 20 evenly spaced values
for λ, ranging from 0 (no penalization) to λmax, the smallest value of λ that prevents any regressor to be
included in any regression.
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Dantzig selector. The Dantzig selector [26] is a recent regression method which, as the Lasso approach,
relies on the `1 norm of the parameters to capture model complexity. In its standard description, the
Dantzig selector minimises the `1 norm of the parameters subject to constraints bounding the absolute
value of the correlation between residuals and explanatory variables. Similarly to the definition of the
Lasso given in Equations (6) and (7), the Dantzig Selector is:

θ̂Dantzig = argmin
θ

{
|| θ ||`1 : || >X(Y −Xθ) ||`∞≤ δ

}
(8)

where δ is a bound on the correlation between the residual vector and each explanatory variable. With no
bound (δ → ∞), the Dantzig selector estimates all coefficients to zero, because of the minimised `1 norm.
With the strongest bound (δ = 0), Dantzig enforces a zero correlation between residuals and explanatory
variables, a condition which is also satisfied by ordinary least square estimates (as it is equivalent to
enforcing a zero derivative of the squared error term minimised in OLS regression). Equation (8) can be
written in its dual form:

θ̂Dantzig = argmin
θ

{
|| >X(Y −Xθ) ||`∞ : || θ ||`1≤ t

}
(9)

This writing is similar to the Lasso of Equation (6), replacing the RSS by the maximum varying
component of its gradient.

As initially shown in [26], the Dantzig selector is able to produce an accurate estimate in the n � p
context with a bounded error term, provided that the model is actually sparse. The Dantzig selector also
has the property that it reduces regression to linear programming, a polynomial optimisation problem [61]
for which efficient dedicated solvers exist. Recently, [35] showed that the Lasso and the Dantzig selector
share similar properties: the Lasso estimate automatically satisfies Dantzig correlation constraints, and
similar error boundaries can be obtained in both cases (although with larger constant terms for the
Lasso). For this reason, the Dantzig selector tends to be considered as extremely similar to the Lasso.
However [44] noticed that coefficient regularization paths are quite smooth along Lasso solution while
they can become irregular with the Dantzig selector.

To solve each regression problem, we generated a linear program (LP) as described in [26]. The
generated LP was far from optimised. Beyond the p variables for vector θ, it included n variables for
the residual vector and p variables to encode boundaries on correlations. 2p boundaries were used to
effectively limit correlations and an extra set of n linear equalities encoding residual definition. The size
of this encoding depended on p and n but could easily depend just on p (by symbolic precomputation of
the scalar product between residuals and explanatory variables).

By setting all parameters θ to 0 while minimising δ, it is simple to compute the minimum value of δ
such that all regression coefficients are set to 0 (denoted as δmax). We then solved the Dantzig selector
problem using the GPL linear programming solver glpk for 20 evenly spaced values of δ in [0, δmax] (for
comparability reasons with the BN and Lasso approaches), providing a set of 19 non-trivial estimates for
the parameters in θ.

Application of structural equation models to systems genetics data. We now show how we
used penalised regressions to infer a GRN from the DREAM5 Challenge 3A data sets.

We regressed each gene expression level Gi for i ∈ {1 . . . p} using as regressors every other gene
expression level and every gene marker. This gene-by-gene approach ignores correlations and therefore
corresponds to the minimisation of a specific penalised pseudo-likelihood [62]. Its main advantage is to
reduce the whole penalised likelihood minimisation to p univariate penalised linear regressions.

Let G denotes the n × p observed matrix of the gene expression levels and M the n × p matrix of
marker genotypes; the linear regression model for gene i is:
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Gi = Gβi +Mαi + εi (10)

=

p∑
g=1
g 6=i

βigGg +

p∑
g=1

αigMg + εi

where βi is the p-vector of linear effects of other expression levels on Gi (forcing βii = 0 to avoid trivial
self-regression), αi is the p-vector of linear effects of markers on Gi and εi is the Gaussian residual error
term.

To make the link with previous notations in this section, Y now iteratively becomes one of the Gi

variables, X becomes the n× 2p matrix (G,M) and the regression coefficients θ now become (β, α). The
network is then encoded in non-zero entries of estimated matrices β := [β1, · · · , βp] and α := [α1, · · · , αp].
The only consistency condition is that βii = 0 for all i.

From the estimated β and α matrices, the gene-to-gene network was inferred. More precisely, when
αij 6= 0 for some i and j ∈ {1 . . . p}, we inferred edge i → j in the gene network and assigned it a count
of 1. If both αij and αji are equal to zero, then the β matrix was explored. If βij 6= 0 or βji 6= 0, we
inferred both edges i → j and j → i and assigned them a count of 1/2. Finally we computed for each
edge, the count mean in the chosen λ-grid for Lasso or on the δ-grid for Dantzig. This means that we
put a high confidence level in directed edges inferred from marker to a gene expression level and that we
inferred edges between gene expression data by symmetrising and halving their strength. This choice is
somewhat arbitrary and can certainly be improved, as we commented in the discussion.

Meta-analysis: integrating several network inference methods

We used a Fisher’s Inverse Chi-Square meta-test [63] to combine the BN, Lasso and Dantzig predicted
networks. This meta-test was initially introduced to combine the test values obtained from independent
experiments. It consists of summing the opposite of the logarithm of the corresponding p-values.

In the output data for the DREAM challenge, we considered the “reliability” parameter as 1 minus
p-value since it is a measure of uncertainty in the [0; 1] range. We denoted M = {BN,Lasso,Dantzig}
and

(
rmij

)
the edge reliability parameters associated to the method m ∈ M. We then computed the sum

Sij =
∑

m∈M
log(1− rmij )

The meta-analysis picks up edges from the different approaches and computes a consensus ranking scheme
that depends on individual scores of the methods and agreement between them.

Finally the meta-analysis edge reliability parameters are defined as rij = 1− exp(Sij) and were used
to produce a ranked list a edges for each inferred network. Since the organisers limited the edge list
length that could be submitted to 100, 000 among the 999, 000 possible edges in each network (no self
loops were considered), we arbitrarily cut the list according to the ranking when necessary. In practice,
we never predicted more than 107, 000 edges.

Accuracy assessment: scoring methods

Once submitted to the DREAM5 challenge organisers, edge lists were compared both to (i) Gold Standard
files, namely the correct list of edges used in simulated models and to (ii) the pool of all edges that were
submitted by other participating teams.

The Gold Standard comparison allows to assess prediction accuracy based on two measures, namely the
“area under the curve” (AUC) score for the Receiver Operating Curve (ROC i.e. true positive versus false
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positive rates) and the precision versus recall (PR) curve. The second comparison evaluates predictions
on the basis of their intrinsic merit and on their ability to bring in specific predictions compared with
the pool of all predicted edges.

Let TP, FP, FN and TN denote respectively the true positives (correctly inferred edges), false positives
(edges inferred by mistake), false negatives (missed edges) and true negatives (correctly non-predicted
edges), then (i) False positive Rate ( = FP

FP+TN , (ii) Precision = TP
TP+FP and (iii) Recall = True positive

rate = TP
TP+FN . Notice that the orientation of edges is significant in the comparison so that an edge

g1 → g2 is not considered as correct if the true edge is g2 → g1.
The second comparison assesses the prediction of every method against the pool of all the predictions

submitted by competing teams. It was used to produce p-values that reflect how well each method
performed in comparison to others. More precisely, the lower the p-value for a team prediction AUC, the
higher the probability that it could not be reached by a random network built by picking up edges (at the
same rank) from the pool of all submitted networks. The p-values for all 15 different networks were then
log-transformed and summed in absolute value. The higher the resulting score, the better the method
performed over the challenge. A detailed description of the scoring scheme for the DREAM5 challenges
can be found in [27].
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