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Abstract:

• In 1985 Hosking et al. estimated with the so-called Probability-Weighted Moments
(PWM) method the parameters of the Generalized Extreme Value (GEV) distribution,
the latter being classically fitted to maxima of sequences of independent and identi-
cally distributed random variables. Their approach is still very popular in hydrology
and climatology because of its conceptual simplicity, its easy implementation and its
good performance for most distributions encountered in geosciences. Its main draw-
back resides in its limitations when applied to strong heavy-tailed densities. Whenever
the GEV shape parameter is larger than 0.5, the asymptotic properties of the PWMs
cannot be derived and consequently, asymptotic confidence intervals cannot be ob-
tained. To broaden the validity domain of the PWM approach, we take advantage of
a recent extension of PWM to a larger class of moments, called Generalized PWM
(GPWM). This allows us to derive the asymptotic properties of our estimators for
larger values of the shape parameter. The performance of our approach is illustrated
by studying simulations of small, medium and large GEV samples. Comparisons with
other GEV estimation techniques used in hydrology and climatology are performed.
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1. INTRODUCTION

In climatology and hydrology, maxima of temperatures, precipitation and

river discharges have been recorded for many decades. The block maxima size

(hourly, daily, weekly, monthly or yearly) varies according to instrumental con-

straints, seasonalities and the application at hand. Extreme Value Theory (EVT)

provides a theoretical framework to model the distribution of such block max-

ima (e.g. Embrechts et al., 1997; Beirlant et al., 2004; de Haan and Ferreira,

2006). Since the work of Fisher and Tippett in 1928, it is known that the only

possible limiting form of a normalized maximum of a random sample (when a

non-degenerate limit exists) is captured by the Generalized Extreme Value dis-

tribution (GEV)

G(x; σ, γ, µ) =






exp

(
−
{

1 + γ
x−µ

σ

}−1/γ
)

, if 1 + γ
x−µ

σ
> 0, γ 6= 0 ,

exp

(
− exp

{
− x−µ

σ

})
, if x ∈ R, γ = 0 ,

with µ ∈ R, σ > 0 and γ are called the location, scale and shape parameters,

respectively.

Whenever all observations from a given sample are available, it is statisti-

cally more efficient to disregard the block maxima modeling approach and instead

to analyze exceedances above a high fixed threshold. The exceedances amplitudes

can be asymptotically modeled by the Generalized Pareto Distribution (GPD)

(e.g., Pickands, 1975; Davison, 1984). In the last four decades, a wide range of

methods have been proposed to estimate the GPD scale and shape parameters

(e.g. Embrechts et al., 1997; Beirlant et al., 2004; de Haan and Ferreira, 2006).

But, for some specific cases, a GEV based approach may still be preferred to

a GPD one for at least three reasons. Firstly, block maxima may be the only

measurements available to the practitioner (this is specially true for long histor-

ical records). Secondly, climatologists frequently face a computational problem.

A very high number time series have to be analyzed. For example, General Cir-

culation Models, complex computer codes simulating the atmospheric circulation

through resolving the equations representing the Earths atmospheric dynamics

provide synthetic temperature time series on a spherical grid. The number of

points on such a grid can easily be greater than the hundreds. Consequently, it

is computationally easier to only focus on block maxima. This strategy bypasses

the difficult problem of choosing a high threshold for each grid point (Kharin,

2007). The latter task is already difficult for a single time series. The third

reason to work with blocks of a given size centers on the interpretability of the

estimated parameters. For example, a block size of one year makes sense for the

Earth scientist because inter-annual physical processes are often very different

than decadal ones. For these three reasons, modeling block maxima with a GEV

distribution remains a very frequent procedure in hydrology and climatology.
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To estimate the GEV parameters in the independent and identically dis-

tributed (iid) setting, there exists a wide variety of approaches. In this paper we

focus on the two most popular ones used in hydrology and climatology: method-

of-moments types (e.g. Hosking et al., 1985) and likelihood based procedures (e.g.

Coles and Dixon, 1999; Katz et al., 2002). For the former, hydrologists frequently

analyze their maxima with the so-called Probability Weighted Moments (PWM)

method introduced by Landwehr et al. (1979) and Greenwood et al. (1979).

The main idea of this approach is to match the moments

E

[
Xp
(
F (X)

)r (
1−F (X)

)s]
, with p, r and s real numbers ,

with their empirical functionals, similarly to the classical method-of-moments.

For the GEVdistribution, it is easy to show (Hosking et al., 1985) that E
[
X(F (X))r

]

can be written as

βr =
1

r+1

{
µ − σ

γ

[
1 − (r+1)γ Γ(1− γ)

]}
, γ < 1 and γ 6= 0 .(1.1)

Consequently, the PWM estimators (σ̂, γ̂, µ̂) of the GEV parameters (σ, γ, µ) are

simply the solution of the following system of equations






β0 = µ − σ

γ

(
1 − Γ(1− γ)

)

2β1 − β0 =
σ

γ
Γ(1− γ) (2γ − 1)

3β2 − β0

2β1 − β0
=

3γ − 1

2γ − 1

in which βr has to be replaced by the unbiased estimator proposed by Landwehr

et al. (1979)

β̂r =
1

n

n∑

j=1

(
r∏

ℓ=1

j − ℓ

n − ℓ

)
Xj,n

where (X1,n, ..., Xn,n) represents the ordered GEV distributed sample. The prop-

erties and performances of (β̂0, β̂1, β̂2) and (σ̂, γ̂, µ̂) were studied in details by

Hosking et al. (1985) who showed the asymptotic normality of these estimators

for γ < 0.5. Hoskings and his co-workers also asserted that PWMs estimators per-

formed better than a classical maximum likelihood estimation (MLE) for small

samples (see also Hosking and Wallis, 1987). Its conceptual simplicity, its practi-

cability and its good properties for small samples can explain the success of the

PWM approach in geosciences (e.g. Katz et al., 2002). Furrer and Naveau (2007)

derived some PWMs properties for small GPD distributed samples.

Despite its qualities, the PWM approach has been criticized by Coles and

Dixon (1999). In particular, these authors first argued that the PWM estimator

assumes a priori that the GEV shape parameter is smaller than one, equivalent
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to specifying that the studied distribution has finite mean. Then they deduced

that, if this prior information is available, then a penalized likelihood approach

with the constraint γ < 1 should be preferred. In this case, a simulation study in-

dicated that the penalized MLE outperformed the PWM estimators. But one has

to be careful with such a reasoning because PWM estimators are still computable

even when γ > 1 (like the sample mean X can be calculated even when the mean

is not finite). A penalized MLE with the constraint γ < 1 will never be able to

provide a shape estimator greater than one. In addition, the classical and pe-

nalized MLE approaches impose a restriction on the lower values of γ. We need

γ > −0.5 to have regularity of the MLE based estimators and the numerical

solutions of the MLE equations are erratic for γ close to −0.5. Although it is

rare to work with bounded upper tails, they can be encountered in geophysics.

For example, atmospheric scientists can be interested in relative humidity max-

ima, a bounded random variable. In this context, we argue that it is always

better to try removing restrictions on γ than adding ones because we never know

in practice the true value of the shape parameter. Hence one of our goals is to

extend the validity of method-of-moments based procedures. Still, we agree with

Coles and Dixon (1999) on the inherent flexibility of the maximum likelihood

and that the conditions on moments existence have to be carefully examined and

discussed to understand the limits of the PWMs approach. Our main point is not

to sell one estimator in favor of another, but rather to know how to improve a

simple approach frequently used in geosciences. With this objective in mind, we

recall that Diebolt et al. (2007) have recently proposed a wider class of PWMs

(called Generalized PWMs) for the GPD. In this paper, our aims are threefold.

Firstly, we propose GPWM estimators for the GEV parameters. Secondly, we

establish the asymptotic properties of our new estimators under general condi-

tions ensuring the validity of the method for a large range of values of γ. Thirdly,

we compare their performances with MLE and classical PWMs.

2. ASYMPTOTIC PROPERTIES OF THE GENERALIZED PWM

ESTIMATORS

The generalized probability-weighted moments (GPWM) recently intro-

duced by Diebolt et al. (2007) can be described in the following way

νω = E
(
X ω(G)

)
=

∫ ∞

−∞
x ω
(
G(x)

)
dG(x) ,

where ω is a suitable continuous function. By changing variables, this moment

can be rewritten as

νω =

∫ 1

0
G−1(u)ω(u) du .
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Let W be the primitive of ω, null at 0, i.e. W (t) =

∫ t

0
ω(u) du. We propose to

estimate νω by

ν̂ω,n =

∫ 1

0
F
−1
n (u)ω(u) du(2.1)

where Fn denotes the classical empirical distribution function based on a sample

(X1, ..., Xn). We are interested in the asymptotic properties of ν̂ω,n for the GEV

distribution. To reach this goal, we select a function ω such that

ω(t) = O
(
(1− t)b

)
for t close to 1, b ≥ 0(2.2)

and

ω(t) = O(ta
′

) for t close to 0, a′ > 0 .(2.3)

These assumptions tie down the functions G−1(t) and F
−1
n (t) at t = 0 and t = 1.

An example of such a function is ω(t) = ta(− log t)b, a > a′. In this case, the

GPWM for the GEV distribution can be rewritten (see Appendix) as

(2.4) νω =
σ

γ

1

(a+1)b−γ+1
Γ
(
b − γ +1

)
−
(σ

γ
−µ
) 1

(a+1)b+1
Γ
(
b +1

)
.

Compared to Equality (1.1) derived by Hosking et al. (1985), we have a more

general expression, Equation (1.1) can be obtained by taking b = 0 in (2.4).

As for the PWMs method, a system of three equations for three different val-

ues of a and/or b has to be solved in order to obtain estimators for σ, γ, µ.

Under the conditions (2.2) and (2.3), the GPWM νω exists as soon as

γ < b +1. This means that the domain of validity for the asymptotic normality

of the GPWM estimators has been extended from the set (γ < 1/2) to the larger

set γ < 1
2 + b. More precisely, the following theorem summarizes our findings.

Theorem 2.1. Let (X1, ..., Xn) be a sample of maxima whose marginal

follows a GEV distribution. Let ω1, ω2 and ω3 be any three continuous functions

satisfying (2.2) and (2.3). If γ < 1
2 + min(b1, b2, b3) for some bi ≥ 0, then the

rescaled trivariate GPWM estimator vector defined by (2.1) and denoted by

√
n





ν̂ω1,n − νω1

ν̂ω2,n − νω2

ν̂ω3,n − νω3





converges in distribution towards the trivariate vector




σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω1(t) dt

σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω2(t) dt

σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω3(t) dt





(2.5)
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where B denotes a Brownian bridge and n →∞. The elements of the variance-

covariance matrix, Γ, of this limiting vector are given by

∫ 1

0

1

t

(
− log t

)−γ−1
ωi(t)

∫ t

0

(
− log s

)−γ−1
ωj(s) ds dt +(2.6)

+

∫ 1

0

(
− log t

)−γ−1
ωi(t)

∫ t

0

1

s

(
− log s

)−γ−1
ωj(s) ds dt

−
∫ 1

0

(
− log t

)−γ−1
ωi(t) dt

∫ 1

0

(
− log t

)−γ−1
ωj(t) dt ,

where i = 1, 2, 3 and j = 1, 2, 3.

The proof of this theorem is postponed to the appendix and is based on

empirical process arguments. From this result, we can deduce estimators for the

three parameters σ, γ, µ of the GEV distribution by applying the delta-method.

In order to assess the performance of our approach, we analyze simulated and

real data in the next section.

3. ANALYSIS OF SIMULATED AND REAL DATA

Theorem 2.1 is a general result. In practice, we have to select the three

function ω1, ω2 and ω3. In this section, we opt for ω(t) = ta(− log t)b with the

three pairs (a, b) = (1, 1), (1, 2), (2, 1). This choice is justified by the fact that

an estimator of γ can be deduced for these functions by solving the following

equation

γ̂

1−
(

3
2

)bγ =
2
[
ω̂11 − ω̂12

]

ω̂11− 9
4 ω̂21

,

where

ω̂ab =

∫ 1

0
F
−1
n (u)ua(− log u)b du .

Two estimators of σ and µ can be obtained from the relations

σ̂ = 23−bγ ω̂11− ω̂12

Γ(2 − γ̂)
and µ̂ =

σ̂

γ̂
− σ̂

γ̂
2bγ Γ(2− γ̂) + 4 ω̂11 .

From Theorem 2.1, the asymptotic normality of these three estimators of the GEV

parameters can be derived. It is possible to show the existence of a C1-diffeo-

morphism T which transforms the GPWMs (ω11, ω12, ω21) into (σ, γ, µ). Direct

but lengthy computations lead to the following Jacobian matrix, M , associated
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to this diffeomorphism




2γ−2

γ
Γ(2−γ)−

1

4γ

σ

γ
2γ−2

��
log 2−

1

γ

�
Γ(2−γ) −Γ′(2−γ)

�
+

σ

4γ2

1

4� 2

γ
−1
�

2γ−3 Γ(2−γ)−
1

4γ

σ

γ
2γ−3

��
−

2

γ
+log 2(2−γ)

�
Γ(2−γ)−(2−γ)Γ′(2−γ)

�
+

σ

4γ2

1

4

3γ−2

γ
Γ(2−γ)−

1

9γ

σ

γ
3γ−2

��
log 3−

1

γ

�
Γ(2−γ)−Γ′(2−γ)

�
+

σ

9γ2

1

9





.

Under the same assumptions stated in Theorem 2.1, we can deduce that the

limiting variance-covariance matrix of the trivariate vector
√

n




σ̂−σ
γ̂−γ
µ̂−µ



 can be

written as M−1Γ(M−1)′. This matrix will be useful for computing asymptotic

confidence intervals for our GPWM estimators for our application.

3.1. A simulation study

The aim of this simulation study is to show that our method performs

adequately for a wide range of values of γ (we will test γ =−0.2, 0, 0.2 and 1.2)

and for small and medium samples sizes (n = 15, 25, 50 and 100). The quality

of our estimators will be compared to the two most common approaches used in

hydrology (MLE and PWM). These three estimation methods (MLE, PWM and

GPWM) are invariant under linear transformations of the data, so without loss of

generality the location and scale parameters are set to µ = 0 and σ = 1 in all the

simulations. For each combination of values of n and γ, 10 000 random samples

are generated from the GEV distribution, and for each sample of parameters,

µ, σ and γ were estimated by each of the three methods.

We also implemented the penalized likelihood procedure proposed by Coles

and Dixon (1999) but it did not produced valuable results for γ = −0.2 and 1.2

for all sample sizes. Consequently, we will not show figures about the penalized

likelihood procedure (they are available upon request).

Figure 1 shows the estimation results for four different shape parameters γ.

Each vertical panel corresponds to the estimations obtained from γ =−0.2, 0, 0.2

and 1.2 (from bottom to top). The gray, yellow and white boxplots derived

from 10 000 GEV samples represent the performance of the MLE, PWM and

GPWM estimators, respectively. The x-axis corresponds to different sample sizes

n = 15, 25, 50 and 100. This graph indicates at least three things for the estima-

tion of the shape parameter. For γ =−0.2, 0, 0.2, the GPWM and MLE behave

fairly similarly for all sample sizes, while the PWM method tends to a smaller

interquartile but a larger bias. For strong heavy tail (γ = 1.2), PWM does not

perform well. The MLE provides a very large interquartile (even for n = 100),
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Figure 1: Estimation of γ: The gray, yellow and white boxplots from 10 000 GEV sam-
ples represent the performance of the MLE, PWM and GPWM estimators,
respectively. The x-axis corresponds to different sample sizes n = 15, 25,
50 and 100. Each vertical panel represents the estimations obtained from
a different value of γ =−0.2, 0, 0.2 and 1.2 (from bottom to top).

while the GPWM gives reasonable results for medium sample sizes n = 50 and

n = 100. But this may not be the whole story because one also has to look at

the two other GEV parameters. Figure 2 displays the estimation results for µ = 0

(left panels) and σ = 1 (right panels). As in Figure 1, each vertical panel repre-

sents the estimations obtained from γ =−0.2, 0, 0.2 and 1.2 (from bottom to top).
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Figure 2 confirms the remarks raised from Figure 1. The GPWM estimators seem

to outperform the PWM ones in all cases. That means that our generalization

of the PWM has widened the domain of validity without deteriorating the es-

timation of the parameters. The MLE approach works adequately but not for

γ = 1.2. For this latter case, the estimation of σ even for n = 100 does not seem

to provide reasonable estimates.
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Figure 2: Estimation of µ = 0 (left panels) and σ = 1 (right panels): The gray, yellow
and white boxplots from 10 000 GEV samples represent the performance
of the MLE, PWM and GPWM estimators, respectively. The x-axis corre-
sponds to different sample sizes n = 15, 25, 50 and 100. Each vertical panel
represents the estimations obtained from a different value of γ =−0.2, 0, 0.2
and 1.2 (from bottom to top).
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3.2. A real data set

One weather station in the city of Fort-Collins (Colorado, USA) recorded

annual daily precipitation maxima (in mm) from 1948 to 2001. Figure 3 displays

these precipitation maxima. The year 1997 stands up because a storm caused

extensive flood damage to this city on July 28th 1997. In order to fit a GEV dis-

tribution to this series of yearly maxima, we apply the three estimation methods

1950 1960 1970 1980 1990 2000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

1997

x-axis = Years

Figure 3: Annual daily precipitation maxima (in mm) recorded in
Fort Collins (Colorado, USA) from 1948 to 2001.

(MLE, PWM and GPWM) to our data. For each method and for each parame-

ter, 95% asymptotic confidence intervals were obtained. Table 1 summarizes our

findings. The three estimation methods (PWM, MLE and GPWM) give similar

value for the shape parameter γ, around 0.3. For this type of value and type of

sample size (around 50), we know from our simulation study that the three meth-

ods should provide similar results in terms of estimation and confidence intervals.

The results presented in Table 1 tends to confirm this fact.

Table 1: GEV parameters fitted to the annual daily precipitation maxima in Fort-
Collins, Colorado, USA. For each estimation method and parameters,
the 95% asymptotic confidence intervals are shown into brackets.

µ̂ σ̂ γ̂

PWM 112.47 [96.61, 128.33] 50.57 [36.43, 64.71] 0.27 [−0.01, 0.55]

MLE 111.31 [96.45, 126.17] 47.39 [34.43, 60.35] 0.35 [0.07, 0.63]

GPWM 112.01 [106.40, 117.62] 50.24 [38.12, 62.36] 0.32 [−0.08, 0.73]
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4. CONCLUDING REMARKS

In this paper, we extend the PWM method of Hosking et al. (1985) for

the GEV distribution. As observed in the simulation part, the validity domain

is not only broadened but also the performance of our new method is improved

over the classical PWM, especially for large values of the shape parameter. The

latter situation is not favorable to the ML approach for small and medium sample

sizes. Still, while it is clear that GPWM should be favored to classical PWM,

it is difficult to disregard the MLE because it can bring a powerful flexibility in

the presence of covariates and/or non-stationarity. In the iid case, the hydrolo-

gist and the climatologist may prefer to estimate their GEV parameters with

GPWMs because the latter are based on the same method-of-moment approach

as the PWM. PWM has been used in their communities for decades and is well

understood. The GPWM conserves the PWM conceptual simplicity and its easy

implementation. Consequently, it could be quickly integrated in the toolbox of

the hydrologist. One remaining challenge for the statistician is to extend such

method-of-moment procedures to non-stationary situations.

APPENDIX

Proof of equality (2.4)

νω =

∫ ∞

−∞
x
(
G(x)

)a(− log G(x)
)b

dG(x)

=

∫ 1

0
G−1(u)ua

(
− log u

)b
du

=

∫ 1

0

{
σ

γ

[(
− log u

)−γ − 1
]
+ µ

}
ua
(
− log u

)b
du

=

∫ ∞

0

{
σ

γ

[
x−γ − 1

]
+ µ

}
e−(a+1)xxb dx

=
σ

γ

∫ ∞

0
xb−γ e−(a+1)x dx −

(
σ

γ
− µ

)∫ ∞

0
xbe−(a+1)x dx

=
σ

γ

1

(a +1)b−γ+1
Γ
(
b − γ + 1

)
−
(

σ

γ
− µ

)
1

(a +1)b+1
Γ
(
b +1

)
.
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Proof of our Theorem 2.1

We consider the difference

ν̂ω,n− νω
d
=

∫ 1

0

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

=

∫ an
n

0

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

+

∫ 1−an
n

an
n

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

+

∫ 1

1−an
n

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

=: T1,n + T2,n + T3,n ,

where (an)n is defined by an = ([9 log log n] +1)2 and G
−1
n denotes the empirical

quantile function of independent uniform random variables on (0, 1). We study

the different terms separately. We can easily prove that, if γ 6= 0, we have

G−1(t) =
σ

γ

[(
− log t

)−γ − 1
]

+ µ .

The case γ = 0 can be viewed as the limiting case, letting γ → 0.

Term T1,n

T1,n =

∫ an
n

0

σ

γ

[(
− log G

−1
n (t)

)−γ −
(
− log t

)−γ
]
ω(t) dt

=
σ

γ

∫ an
n

0

(
− log G

−1
n (t)

)−γ
ω(t) dt − σ

γ

∫ an
n

0

(
− log t

)−γ
ω(t) dt

=: T
(1)
1,n + T

(2)
1,n .

By changing variables, it is clear that

T
(2)
1,n = −σ

γ

∫ ∞

log n
an

x−γ e−x ω(e−x) dx .

Consequently

∣∣∣T (2)
1,n

∣∣∣ ≤ σ

γ

an

n

∫ ∞

log n
an

x−γ
∣∣ω(e−x)

∣∣ dx .

Therefore, we have, under the assumption

∫ ∞

0
x−γ

∣∣ω(e−x)
∣∣ dx < ∞ ,(A.1)
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that

√
n
∣∣∣T (2)

1,n

∣∣∣ = O

(
an√
n

)
−→ 0 .

Of course, (A.1) is satisfied since we have (2.2) and (2.3). Now, concerning the

term T
(1)
1,n , we use the following decomposition

T
(1)
1,n =

σ

γ

[∫ 1/n

0

(
− log G

−1
n (t)

)−γ
ω(t) dt + · · · +

∫ an/n

(an−1)/n

(
− log G

−1
n (t)

)−γ
ω(t) dt

]

=
σ

γ

an∑

i=1

∫ i
n

i−1
n

(
− log G

−1
n (t)

)−γ
ω(t) dt

=
σ

γ

an∑

i=1

(
− log Ui,n

)−γ
[
W
( i

n

)
− W

( i −1

n

)]

=
σ

γ

1

n

an∑

i=1

(
− log Ui,n

)−γ
ω

(
ξi,n

n

)

with i −1 ≤ ξi,n ≤ i and U1,n ≤ ... ≤ Un,n the order statistics of a sample of

n independent random variables from a uniform distribution on (0, 1). Since

|ω(t)| ≤ C ta
′

for t close to 0, we have

∣∣∣T (1)
1,n

∣∣∣ ≤ σ

γ

C

na′+1

{
(
− log U1,n

)−γ
+

an∑

i=2

(
− log Ui,n

)−γ
ia

′

}
.

Using the following bounds (see Shorack and Wellner, 1986, p. 408 & 420), we

have, for n large enough:

• for U1,n:

1

n(log n)1+ε
≤ U1,n ≤ (1+ ε′)

log log n

n
a.s.

• for Ui,n:

max
1≤i≤n

i

n Ui,n
≤
(
log n

)1+ε
a.s. ,

max
1≤i≤n

n Ui+1,n

i
≤ (1+ ε′) log log n a.s. .

Therefore, it is clear that

√
n
∣∣∣T (1)

1,n

∣∣∣ = O

(
(log n)−γ

na′+1/2

)
+ O

(
aa′+1

n

na′+1/2

(
log n

)−γ
)

−→ 0 ,

by definition of an.



Improving PWM Methods for the GEV Distribution 15

Term T2,n

√
n T2,n =

√
n

σ

γ

∫ 1−an
n

an
n

[(
− log

(
t +

βn(t)√
n

))−γ

−
(
− log t

)−γ

]
ω(t) dt

= σ

∫ 1−an
n

an
n

βn(t)

t

(
− log t

)−γ−1
ω(t) dt

+
σ

2
√

n

∫ 1−an
n

an
n

β2
n(t)

ξ2
t,n

(
− log ξt,n

)−γ−2 (
log ξt,n + γ +1

)
ω(t) dt ,

where βn is the uniform empirical quantile process and ξt,n ∈
[
min

(
t, t + βn(t)√

n

)
,

max
(
t, t + βn(t)√

n

)]
. Our aim now is to use a result due to Csörgő et al. (1983)

(see e.g. Shorack and Wellner, 1986, p. 500). There exists a sequence of Brownian

bridges Bn such that, for ν ∈ [0, 1
2 [ :

√
n T2,n = σ n−ν

∫ 1−an
n

an
n

nν βn(t)−Bn(t)
[
t(1− t)

] 1
2
−ν

1

t

(
− log t

)−γ−1 [
t(1− t)

] 1
2
−ν

ω(t) dt

+ σ

∫ 1−an
n

an
n

Bn(t)

t

(
− log t

)−γ−1
ω(t) dt

+
σ

2
√

n

∫ 1−an
n

an
n

β2
n(t)

ξ2
t,n

(
− log ξt,n

)−γ−2 (
log ξt,n + γ +1

)
ω(t) dt

=: T
(1)
2,n + T

(2)
2,n + T

(3)
2,n ,

with

∣∣∣T (1)
2,n

∣∣∣ ≤ OP(n−ν)

∫ 1−an
n

an
n

1

t

(
− log t

)−γ−1 [
t(1− t)

] 1
2
−ν

ω(t) dt .

Therefore, under the conditions (2.2) and (2.3), T
(1)
2,n tends to 0 as soon as

γ < b + 1
2 . Now, we consider T

(2)
2,n . We can use the fact that

∫ 1−an
n

an
n

Bn(t)

t

(
− log t

)−γ−1
ω(t) dt

d
=

∫ 1−an
n

an
n

B(t)

t

(
− log t

)−γ−1
ω(t) dt

with

|B(t)| ≤ C

√
[
t(1− t)

]
log log

1[
t(1− t)

] a.s., for t close to 0 and 1 .

Here and in all the paper, C represents a generic constant.

Therefore, we have

∫ 1−an
n

an
n

Bn(t)

t

(
− log t

)−γ−1
ω(t) dt

d−→
∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω(t) dt , n→∞ .
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Now, we have to study T
(3)
2,n . According to Shorack and Wellner (1986, p. 616),

we have

∣∣βn(t)
∣∣ ≤ C

√
t(1− t)

√
log log n a.s., uniformly on

[
9

log log n

n
, 1− 9

log log n

n

]
.

Therefore

∣∣∣T (3)
2,n

∣∣∣ ≤ C
log log n√

n

∫ 1−an
n

an
n

t(1− t)

ξ2
t,n

(
− log ξt,n

)−γ−2 (
log ξt,n + γ +1

)
ω(t) dt .

This integral can be divided into three parts: from an

n to ε, from ε to 1− ε and

from 1− ε to 1− an

n , where ε is fixed. We denote these integrals by T
(3,1)
2,n , T

(3,2)
2,n

and T
(3,3)
2,n respectively. We start with T

(3,1)
2,n . Note that for t ∈ [an

n , ε], we have

∣∣βn(t)
∣∣

t
√

n
≤ C

√
1− t

t

√
log log n

n
(A.2)

≤ C√
log log n

.(A.3)

Therefore

ξt,n

t
= 1 + o(1) and log ξt,n =

(
1 + o(1)

)
log t ,(A.4)

where the o(1)-terms are uniform in t. Consequently,

∣∣∣T (3,1)
2,n

∣∣∣ ≤ − C
log log n√

n

∫ ε

an
n

1− t

t

(
− log t

)−γ−1
ω(t) dt

(
1 + o(1)

)

+ C (1+ γ)
log log n√

n

∫ ε

an
n

1− t

t

(
− log t

)−γ−2
ω(t) dt

(
1 + o(1)

)
.

Using (2.3), T
(3,1)
2,n tends clearly to 0. Similarly, since (A.2) and (A.4) are true for

t ∈
[
1− ε, 1− an

n

]
, we have

∣∣∣T (3,3)
2,n

∣∣∣ = O

(
log log n√

n

){∫ 1−an
n

1−ε
(1− t)b−γ dt +

∫ 1−an
n

1−ε
(1− t)b−γ−1 dt

}
,

by (2.2). The right-hand side of the last equality tends to 0 as soon as γ < b+ 1
2 .

For the central part, T
(3,2)
2,n , similar arguments lead to its negligibility.

Term T3,n

√
n T3,n =

σ

γ

√
n

∫ 1

1−an
n

(
− log G

−1
n (t)

)−γ
ω(t) dt − σ

γ

√
n

∫ 1

1−an
n

(
− log t

)−γ
ω(t) dt

=: T
(1)
3,n + T

(2)
3,n .
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The term T
(2)
3,n is of order

√
n

∫ 1

1−an
n

(1− t)−γ+b dt

which tends to 0 as soon as γ < b+ 1
2 . For T

(1)
3,n , we decompose again the integral

as follows, with j−1 ≤ ξj ≤ j:

T
(1)
3,n =

σ

γ

√
n

1

n

n∑

j=n−an+1

(
− log Uj,n

)−γ
ω

(
ξj

n

)

=
σ

γ

√
n

1

n

an∑

j=1

(
1 − Un−j+1,n

)−γ
(
1 + OP

( j

n

))
ω

(
ξn−j+1

n

)

d
=

σ

γ

√
n

1

n

an∑

j=1

(
Uj,n

)−γ
(
1 + OP

( j

n

))
ω

(
ξn−j+1

n

)

= O
((

log n
)|γ| (1+ε)

nγ−b− 1
2 ab−γ+1

n

)
= o(1) ,

as soon as γ < b + 1
2 .

From all the above convergences, using Serfling (1980, page 18), we deduce (2.5),

and therefore the expression of the generic term at position (i, j), 1≤ i, j ≤ 3,

of the limiting variance-covariance matrix given in (2.6).

Combining these results, Theorem 2.1 follows.
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[7] Embrechts, P.; Klüppelberg, C. and Mikosch, T. (1997). Modelling Extre-

mal Events for Insurance and Finance, Vol. 33 of “Applications of Mathematics”,
Springer-Verlag, Berlin.

[8] Fisher, R.A. and Tippett, L.H.C. (1928). Limiting forms of the frequency
distribution in the largest particle size and smallest member of a sample, Proc.

Camb. Phil. Soc., 24, 180–190.

[9] Furrer, R. and Naveau, P. (2007). Probability weighted moments properties
for small samples, Stat. Probab. Letters, 70, 190–195.

[10] Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C. and Wallis, J.R.

(1979). Probability-weighted moments: definition and relation to parameters of
several distributions expressable in inverse form, Water Resources Research, 15,
1049–1054.

[11] Hosking, J.R.M.; Wallis, J.R. and Wood, E.F. (1985). Estimation of the
generalized extreme-value distribution by the method of probability-weighted mo-
ments, Technometrics, 27, 251–261.

[12] Hosking, J.R.M. and Wallis, J.R. (1987). Parameter and quantile estimation
for the generalized Pareto distribution, Technometrics, 29, 339–349.

[13] Katz, R.; Parlange, M. and Naveau, P. (2002). Extremes in hydrology,
Advances in Water Resour., 25, 1287–1304.

[14] Kharin, V.V.; Zwiers, F.W.; Zhang, X. and Hegerl, G.C. (2007). Changes
in temperature and precipitation extremes in the IPCC ensemble of global coupled
model simulations, Journal of Climate, 20, 1419–1444.

[15] Landwehr, J.; Matalas, N. and Wallis, J. (1979). Probability weighted
moments compared with some traditional techniques in estimating Gumbel pa-
rameters and quantiles, Water Resour. Res., 15, 1055–1064.

[16] Pickands, J. (1975). Statistical inference using extreme order statistics, Ann.

Statist., 3, 119–131.

[17] Serfling, R.J. 1980. Approximation Theorems of Mathematical Statistics,
Wiley & Son.

[18] Shorack, G.R. and Wellner, J.A. 1986. Empirical Processes with Applica-

tions to Statistics, Wiley, New York.

[19] Zhang J. (2007). Likelihood Moment Estimation for the Generalized Pareto
Distribution, Aust. N. Z. J. Stat., 49, 69–77.


