
1 Introduction

This paper considers estimating a structural equation using quantile regression with

endogeneity problems. Since the seminal work by Koenker and Bassett (1978), the

literature on quantile regressions has grown rapidly. There are two trends in the lit-

erature about quantile regression with endogeneity problems. The �rst one, denoted

the �structural approach�, corresponds to models speci�ed in terms of the conditional

quantile of the structural equation. The second one, denoted the ��tted-value ap-

proach�, is based on the conditional quantile of the reduced-from equation. In this

latter approach, the analysts substitute the endogenous regressors with their �tted

values obtained from ancillary equations that are based on other exogenous vari-

ables.1 In this paper, we show how to integrate these two approaches, while covering

in particular the non-constant e¤ect case fo quantile regressions.

The literature on the structural approach for quantile regressions is abundant. See

for example: Kemp (1999), MaCurdy and Timmins (2000), Sakata (2001), Abadie et

al. (2002), Chen et al. (2003), Chesher (2003), Hong and Tamer (2003), Honore and

Hu (2003), Chernozhukov and Hansen (2005, 2006, 2008), Imbens and Newey (2006),

Ma and Koenker (2006), Chernozhukov, Imbens and Newey (2007), Lee (2007).

The �tted-value approach, which we follow in this paper, is anchored on con-

ditional quantile restrictions applied to the reduced-form equation. It leads to a

simple two-step quantile regression analogous to the well-known 2SLS method. Such

regression has been employed by empirical researchers, even though all theoretical

results were not available2. Though, partial theoretical results had been explored

by Amemiya (1982) and Powell (1983) who analyse the two-stage least-absolute-

1For 2SLS, an equivalent approach is the IV estimator based on the GMM principle.
2Arias et al. (2001), Garcia et al. (2001) and Chortareas et al. (2012).
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deviations estimators in simple settings. Chen (1988) and Chen and Portnoy (1996)

investigate two-stage quantile regressions in which the trimmed least squares (TLS)

and LAD estimators are employed as the �rst-stage estimators, under an assumption

of symmetric iid errors. TLS are found especially attractive because they are ro-

bust estimators (thanks to preliminary quantile regressions which trim outliers) that

often preserve most of the e¢ ciency of OLS. Kim and Muller (2004) use a similar

approach with quantile regressions in the �rst stage. For linear equations estimated

with quantile regressions under endogeneity, Chernozhukov and Hansen (2005) ex-

ploit the reduced-form for an inference procedure on structural conditional quantiles

when the instruments are weak.

In this paper, we make several contributions. First, we derive the asymptotic dis-

tribution and the variance-covariance matrix of two-stage quantile estimators under

very general conditions on both error terms and exogenous variables. These results

were missing in the �tted-value approach literature. Second, we exhibit a �bias trans-

mission property�from the asymptotic representation of our estimator. We use this

property to facilitate the analyses of the link of reduced-form and structural model,

and to con�ne estimation bias on the intercept for some models. Third, we show

how structural and �tted-values approaches can be integrated, providing some nat-

ural independence hypothesis for instruments. Fourth, we elicit the possibility of

non-constant e¤ects models with the �tted-value approach, a situation sometimes

believed to be ruled out with this approach. Fifth, when the above independence hy-

pothesis is met, the �tted-value approach allows the estimation of models that cannot

be identi�ed in the structural approach. We describe the role of relaxing the inde-

pendence assumption on separating structural and �tted-value approaches. Sixth, we

propose a new technique to improve the e¢ ciency of two-stage quantile regressions.
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This technique is based on an idea originally proposed by Amemiya (1982), where

the composite dependent variable is a weighted combination of the original dependent

variable and its �tted value.

A well-known method of reducing the variance of an estimator is to replace it by

a weighted average of it with another estimator. In that case, the optimal weight

is usually determined by minimising the (asymptotic) variance of the combined es-

timators3. This approach if often hard to apply to two-stage estimators because it

generally requires the estimation of the joint distribution of the two estimators. In

contrast, our approach of using instead a composite dependent variable yields an es-

timator such that: (i) consistency does not depend on the combination weight, and

(ii) the asymptotic variance depends on the weight. In this setting, optimal weights

can be obtained by minimising the asymptotic variance without perturbing the as-

ymptotic properties of the estimator. Finally, Monte Carlo simulations are reported

that exhibit a variety of small sample properties of our estimator, with and without

variance reduction, and show considerable e¢ ciency gains, in particular as compared

to typical structural equation estimators.

The paper is organized as follows. Section 2 discusses the model and the as-

sumptions. In Section 3, we derive the asymptotic representation of the two-stage

quantile regression estimators. We characterise the asymptotic bias for general two-

stage estimators in Section 4, where we also discuss the integration of structural and

�tted-value approaches. We analyse in Section 5 the asymptotic normality and the

asymptotic covariance matrix of two-stage quantile regressions based on LS or TLS

predictions. We also investigate the optimal weights that minimize the asymptotic

variance of the two-stage quantile regression estimators. In Section 6, we present

Monte Carlo simulation results. Finally, Section 7 concludes. All the proofs are

3e.g., in James and Stein (1960), Sen and Saleh (1987), Kim and White (2001).
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collected in Appendix A.

2 The Model

We are interested in the parameter (�0�) in the following equation for T observations

and an arbitrary quantile index � 2 (0; 1):

yt = x01t�0� + Y 0
t 
0� + ut� (1)

= z0t�0� + ut�;

where [yt; Y 0
t ] is a (G+ 1) row vector of endogenous variables, x

0
1t is a K1 row vector

of exogenous variables, zt = [x01t; Y
0
t ]
0, �0� = [�

0
0�; 


0
0�]

0 and ut� is an error term. We

emphasize that the coe¢ cients �0�; 
0� and the errors in this speci�cation may vary

with the considered quantile � in order to allow for non-constant e¤ects in quantile

regressions introduced later on. We denote by x02t the row vector of the K2 exogenous

variables excluded from (1). We further assume that Yt can be linearly predicted from

the exogenous variables;

Y 0
t = x0t�0 + V 0

t (2)

where x0t = [x
0
1t; x

0
2t] is a K row vector with K = K1 +K2, �0 is a K � G matrix of

unknown parameters and V 0
t is a G row vector of unknown error terms.

By assumption, the �rst element of x1t is 1 and the corresponding coe¢ cient in

�0� is non-zero
4. This is a crucial assumption that will allow us in particular: (1)

to specify non-constant e¤ects under the �tted-value approach, and (2) to con�ne

a bias to an intercept parameter, often less interesting for analysts than the slope

coe¢ cients. Besides, Jureckova (1984) shows that the absence of an intercept in the

4Using another coe¢ cient of secondary interest is possible for our argument, while it is esier to

present it by focusing on the intercept.
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model would a¤ect the asymptotic properties of quantile regressions, which suggests

including an intercept. Using (1) and (2), yt can also be expressed as:

yt = x0t�0� + vt�; (3)

where

�0� = H(�0)�0� with H(�0) =

240@ IK1

0

1A ;�0

35 ; (4)

vt� = ut� + V 0
t 
0�.

Moreover, we assume that the intercept coe¢ cient in (3), denoted �00, is non-zero.

Equations (2) and (3) are the basis of the �rst-stage estimation that yields estimators

�̂ and �̂ respectively of �0 and �0. So far, we did not mention any restriction on

errors. The precise error restrictions will be introduced below in Assumptions 3, 4(ii)

and 40(ii) when dealing with examples of �rst-stage estimators. This is because we

wish to keep the framework as general as possible until we deal with these examples.

However, to set ideas, the reader may wish to consider conditional quantile restrictions

on vt in the �tted-value approach or on ut in the structural approach.

A convenient way to generate randomness in a quantile regression model is to avail

of the Skorohod representation of random variables, as in Chernozhukov and Hansen

(2005). This would yield an equation of the type y = q(x; U), where U s U(0;1) and

q(x; �) denotes the �-quantile conditional on x of variable y. Specialising this method

to our setting, we obtain by analogy with eq. (1): yt = �00(U)+ ~x
0
1t�01(U)+Y

0
t 
0(U),

in which the intercept term has been isolated and ~x01t regroups all the variables of

x01t except the intercept. The intercept term can itself been additively separated into

a central tendency and a remainder: �00(U) = ��00 +
~�00(U). Then, the component

~�00(U) can be considered as an additive error term in this model. The remaining
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(non intercept) parameters can be seen as random parameters since they depend

on random U . Alternatively, they can be seen as part of the speci�cation of non-

constant e¤ects for quantile regressions. A similar construction can be adopted for

the reduced-form with yt = ��00+~�00(U)+x0t�01(U), again with an intercept term and

possibly non-constant e¤ects. In such setting, ~�00(U) (respectively ~�00(U)) is akin

to our additive error term ut� (respectively vt�). Of course, restrictions on ut�, for

example, would yield corresponding restrictions on U , through a change in variable

and given speci�c distribution assumptions. The question of the correspondence

between these respective speci�cations of the structural and the reduced-form models

will be discussed in Section 4.

From now, we generally drop the dependence subscript of parameters and error

terms with respect to �, in order to alleviate notations. However, we keep in mind

that these parameters and errors are still dependent on �. We now specify the data

generating process.

Assumption 1 The sequence f(x0t; ut; vt)g is ��mixing with mixing numbers f�(s)g

of size �2 (4K + 1) (K + 1).5

Studying quantile regressions with �-mixing processes is unusual. One step in this

direction was made by Portnoy (1991), who derived asymptotic results of quantile

estimators in dependent and even non-stationary cases, using m(n)-decomposability

of random variables.
5The sequence fWtg of random variables is ��mixing if �(s) decreases towards 0 as s ! 1,

where

�(s) = sup
t

sup
A2F t

�1;B2F1
t+s

jP (A \B)� P (A)P (B)j

for s � 1 and F ts denote the �-�eld generated by (Ws; : : : ;Wt) for �1 � s � t � 1. The sequence

is called ��mixing of size �a if �(s) = O(s�a�") for some " > 0.
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It is generally possible to employ unbiased estimators in the �rst stage. How-

ever, in order to exploit later on a trade-o¤ between bias and e¢ ciency, we allow

in Assumption 2 for inconsistent �rst-stage estimation with bounded bias terms. It

is done in a form convenient for including the contribution of �rst-stage estimators

in the asymptotic distribution of our �nal estimator, instead of just specifying the

stochastic limits of �̂ and �̂. The precise restrictions on vt and Vt corresponding to

�0 and �0 will be brought up later on.

Assumption 2 There exist �nite bias vectors B� and B� such that T 1=2(�̂ � �0 �

B�) = Op(1) and T 1=2(�̂� �0 �B�) = Op(1).

Let us now say more about two-stage quantile regressions in our setting. We use

two-stage estimators to deal with endogeneity problems in quantile regressions. For

any quantile � 2 (0; 1), we de�ne ��(z) = z �(z); where  �(z) = ��1[z�0] and 1[:] is the

indicator function. If the orthogonality conditions, E(zt �(ut)) = 0; were satis�ed,

then the simple quantile regression estimator (QR) would be consistent. However,

when ut and Yt (a sub-vector of zt) are statistically linked under weak endogeneity

of Yt, these conditionsmay not be satis�ed. In that case, the QR of �0 is generally

not consistent, which is the endogeneity problem that prevents us from using simple

quantile regressions.

As an extension of Amemiya (1982), Powell (1983) and Chen and Portnoy (1996)

to broader DGPs, we de�ne, for any quantile �, the Two-Stage Quantile Regression

(2SQR(�; q)) estimator �̂ of �0 as a solution to the following program:

min
�

ST (�; �̂; �̂; q; �) =

TX
t=1

��(qyt + (1� q)ŷt � x0tH(�̂)�); (5)

where ŷt = x0t�̂ and q is a positive scalar constant. In the quantile regression in (5),

the dependent variable qyt + (1� q)ŷt is a weighted average of yt and its �tted-value
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ŷt obtained from the reduced form equation in (3). The combination weight q is

restricted to be positive for a technical reason discussed in the proof of Proposition

1 below. Alternatively, as in Powell (1983), the case q negative is also possible by

imposing � = 0:5, i.e. with the LAD estimator. The reformulation of the dependent

variable as qyt + (1 � q)ŷt was originally suggested by Amemiya (1982) to improve

e¢ ciency in two-stage estimation with 0 < q < 1. The case q = 1 corresponds to the

usual two-stage quantile regression estimator, while q = 0 corresponds to the inverse

regression estimator under exact identi�cation. Thus, the new dependent variable

introduces a trade-o¤ between two estimation methods. Our analysis is based on the

asymptotic representation of the 2SQR(�; q) under the following su¢ cient conditions.

Assumption 3 (i) H(�0 +B�) is of full column rank.

(ii) Let Ft(:jx) be the conditional cdf and ft(:jx) be the conditional pdf of vt. The

conditional pdf ft(�jx) is assumed to be Lipschitz continuous for all x, strictly positive

and bounded by a constant f0 ( ft(�jx) < f0, for all x).

(iii) The matrices Q = lim
T!1

E

�
1
T

TP
t=1

xtx
0
t

�
and Q0 = lim

T!1
E

�
1
T

TP
t=1

ft(0jxt)xtx0t
�
are

�nite and positive de�nite.

(iv) E( �(vt)jxt) = 0, for any arbitrary �.

(v) 9 C > 0; 8 t; E(kxtk3) < C <1.

Assumption 3(i) is analogous to the usual identi�cation condition for simultane-

ous equations models. The bias B� appears in the condition because the �rst-stage

estimator converges towards �0 + B�. In the case when OLS is used for estimating

�0, Assumption 3(i) ensures that E [xtYt] 6= 0. It also implies similar conditions when

other estimators are used. Assumption 3(ii) simpli�es the demonstration of conver-

gence of remainder terms to zero for the calculation of the asymptotic representation.
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The second part of Assumption 3(iii) is the counterpart of the usual condition for OLS

that the sample second moment matrix of the regressor vectors converges towards a

�nite positive de�nite matrix, which corresponds to the �rst part. The last condition

is akin to the one in the conventional IV approach in that this condition is necessary

for consistency and for the inversion of the relevant empirical process to establish the

asymptotic normality.

Assumption 3(iv) is the assumption that zero is the given �th-quantile of the

conditional distribution of vt.6 It identi�es the coe¢ cients of the model. Assumption

3(v), the moment condition on the exogenous variables, is necessary for the stochastic

equicontinuity of our empirical process in the dependent case, which is used for the

asymptotic representation. We also use it to bound the asymptotic covariance matrix

of the parameter estimators. The conditions on the exogenous regressors are weaker

than what is employed in most two-stage estimation papers.

Assumption 3(iv) is central to our �tted-value approach in which the conditional

quantile restriction is placed on the reduced-form error vt and the information set used

for the conditional restriction exclusively consists of exogenous variables xt. It has

been used in simpler settings in Amemiya (1982), Powell (1981), Chen and Portnoy

(1998) and Kim and Muller (2004). On the other hand, a typical conditional quantile

restriction employed in the structural approach would be that the conditional quantile

restriction is on the structural error term ut and the information set includes the set

of endogenous variables Yt. Although some researchers may �nd it more intuitive

to put the conditional quantile restriction directly on the structural error term, the

�tted value approach provides an alternative and convenient way of exploring the

6In the iid case, the term f(F�1(�))�1 typically appears in the variance formula of a quantile

estimator (Koenker and Bassett, 1978). However, due to Assumption 3(iv), F�1(�) is now zero so

that we have f(0)�1 instead, in this case.
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conditional distribution of the dependent variable yt through the reduced-form error:

that is, indirectly. The structural e¤ect, which is the main interest, is then recovered

through the second stage of the estimation. In that sense, the �tted-value approach

is somewhat akin to that of the indirect inference literature where inference about

a model raising estimation di¢ culties is done through its link with another model

easier to handle.

The �tted-value approach has several advantages on approaches based on condi-

tional quantiles of ut. First, the 2SQR can be characterised by an explicit asymptotic

representation that is liable to tractable analyses, as we shall demonstrate. This alone

much facilitates the understanding of the properties of the estimator. Second, meth-

ods based on conditional quantiles of ut may lead to computational complications

such as: simulation techniques (Chernozhukov and Hansen, 2006), preliminary non-

parametric estimation (Abadie et al., 2002, Chen et al., 2003, Lee, 2007), grid search

(Chernozhukov and Hansen, 2005). As a matter of fact, it seems currently impossible

to use these methods with large data sets when more than very few conditioning vari-

ables occur in the model, due to excessive computation burden. This is not the case

with the straightforward �tted-value approach. Third, and this is a major point of

this paper, considering 2SQR allows us to discuss a new powerful method of variance

reduction.

However, the �tted-value approach has a major shortcoming: It does not seem

to allow intuitive interpretation of the implied restrictions in the structural model.

In particular, considering together structural and reduced-form equations raises the

question of the coordinating the speci�cations of the respective quantile regressions.

We shall show that, provided an independence assumption, the quantile restrictions

on structural and reduced-form equations are actually equivalent, as soon as a proper
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de�nition of error terms is adopted. We now study the asymptotic properties of the

2SQR(�; q).

3 The Asymptotic Representation

To derive the asymptotic representation of the 2SQR(�; q); we de�ne an empirical

process given by

MT (�) = T�1=2
TX
t=1

xt �(qvt � T�1=2x0t�)

where � is a K � 1 vector.

Applying Theorem II.8 in Andrews (1990) yields the following lemma. The lemma

is proven only for the quantile regression case, while similar derivations can be done

for other two-stage M-estimators.

Lemma 1 Suppose that Assumptions 1 and 3 hold. Then, we have for any L > 0,

sup
jj�jj�L

jjMT (�)�MT (0) + q�1Q0�jj = op(1):

Combining Lemma 1 and Assumption 2 allows us to obtain the asymptotic repre-

sentation for the 2SQR(�; q) with a possible bias term B�. The consistency of �̂ to

�0 +B� is a by-product of the following proposition.

Proposition 1 Under Assumptions 1-3,

T 1=2(�̂� �0 �B�) = RT�1=2
TX
t=1

xtq �(vt)

+(1� q)RQ0T
1=2(�̂ � �0 �B�)

�RQ0T 1=2(�̂� �0 �B�)
0 + op(1);

where B� = RQ0f(1 � q)B� � B�
0g; R = Q��1zz H(��0)
0; Q�zz = H(��0)

0Q0H(�
�
0) and

��0 = �0 +B�:
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The asymptotic representation of the 2SQR(�; q) is composed of four additive right-

hand-side terms7. The �rst term does not perturb consistency under Assumption

3(iv) and corresponds to the contribution of the second stage to the uncertainty of

the estimator. The second and third terms correspond to the respective contributions

of �̂ and �̂ to the uncertainty of the estimator. Then, if �̂ and �̂ are consistent, it is

straightforward to show that the 2SQR(�; q) is consistent. If q = 1, the in�uence of

�̂ vanishes. The presence of the contribution of �̂ may imply contradictions between

some chosen restrictions on errors in the �rst and second stages and cause biases,

which will be explained in detail in the next section. The formula of B� is obtained

as the value allowing T 1=2(�̂� �0 � B�) = Op(1), and is derived from the �rst-order

conditions of the second-stage estimation.

4 The Asymptotic Bias

We now show that asymptotic biases on the coe¢ cients of the �rst-stage estimators

corresponding to the exogenous variables in the structural equation are transmitted

to the estimated two-stage coe¢ cients of the same variables exclusively and integrally.

This is useful because, as we shall show, interesting cases exist that correspond to

�rst-stage biases only on the intercept. In particular, we shall exploit this property to

handle a trade-o¤ between e¢ ciency and an often little damaging bias. The su¢ cient

stochastic assumptions to obtain this characterisation of the bias transmission are

very general, including general serial correlations and heteroskedasticity.

7Other derivations of asymptotic representations of quantile regression estimators have been

developed (Phillips, 1991, Pollard, 1991), which involve slightly di¤erent assumptions. Other possible

approaches to the asymptotic representation of 2SQR are in Chen et al. (2003) and Chernozhukov

and Hansen (2005).
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Proposition 2 Assume that the bias B� and B� are restricted to be possibly non-zero

only for their �rst K1 components, then we have B� =

24 (1� q)B� �B�
0

0G

35,
where 0G is a G vector of zeros.

Situations where the asymptotic bias of the �rst-stage estimators exclusively af-

fects the intercept term are interesting in that empirical researchers may often pay

little attention to this term and rather base their analyses on the estimates of the

slope coe¢ cients that carry more explanatory meaning. Then, we focus on the case

where the asymptotic bias is only present in the �rst-stage intercept estimator. In

that case, Proposition 2 implies that the only coordinate of �̂ with a possible asymp-

totic bias is the intercept. Moreover, this asymptotic bias is equal to (1 � q) times

the asymptotic bias in the intercept in �̂ minus the asymptotic bias in the intercept

in �̂
0. In these conditions, there is no di¢ culty in achieving the consistency and

asymptotic normality for the slope estimators of interest using Proposition 1.

In situations where �̂ is not asymptotically biased, choosing q = 1 guarantees

that there is no bias. The �rst-stage estimation methods can be chosen to eliminate

the biases on �̂ and �̂ (e.g., by using the same quantile regressions in the two stages

as in Kim and Muller, 2004). However, the researcher may also choose the �rst-stage

estimation methods for her own reasons, for example because there already exists

some available estimation results. In this paper, we propose choosing q 6= 1 and

selecting �rst-stage estimators so as to improve the �nal slope estimator e¢ ciency,

while allowing for an asymptotic bias on the intercept.

Proposition 1 can also be used to generate some valid insight about the relationship

between structural and reduced-form models. Let us start again with equations (1)

with possible non-constant e¤ects and (2) under the conditional quantile restriction

E( �(ut�)jxt) = 0, akin to the structural quantile restriction in Chernozhukov and
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Hansen (2005) and E(Vtjxt) = 0 to set ideas with OLS estimates of the prediction

equation. Then, the reduced-form equation is (3) with (4) holding. The corresponding

restriction for vt� is E( �(vt� � V 0
t 
0)jxt) = 0, little liable to interpretation, and this

does not yield any obvious characterisation of E( �(vt�)jxt).

However, we can separate some centred intercept term in the reduced-form by

denoting

yt = x0t�0�+vt� = �00+F
�1
vt�jxt(�)+ ~x

0
t�01�+v

�
t�, where ~xt regroups all non-constant

variables in xt, with the corresponding parameter vector denoted �01�, �00 is a �xed-

intercept parameter not depending on �, and v�t� = vt� � F�1vt�jxt(�). Let us now look

at the conditional quantile restriction characterising v�t�. We have E( �(v
�
t�)jxt) =

� � P [v�t� � 0jxt] = � � P
h
vt� � F�1vt�jxt

(�)jxt
i
= � � � = 0. As a consequence,

we obtain the reduced-form quantile regression restriction, provided we accept the

introduction of a possible nuisance bias term F�1vt�jxt
(�) that may a¤ect all coe¢ cients

of the model when it is linear in xt, or even be nonlinear in xt.

Let us now assume that ut� and Vt are independent of ~xt, that is, of xt except

constant variables. Although such characterisation of instrumental variables may be

deemed to be strong by some authors, it is usually the way instrumental variables

are intuitively found by empiricists: variables that are not connected at all with the

model errors seen as a remainder of the explanation of the dependent variable given

the e¤ects of explanatory variables. Weaker orthogonality conditions, for example

used for 2SLS, are often just a consequence of such intuitive selection of plausible

instruments. Note that U independent of xt in Chernozhukov and Hansen�s setting

would naturally imply ut� independent of ~xt in our setting since ut� can be seen as a

simple transformation of U .

14



Under this assumption of independence, we have F�1vt�jxt = F�1vt� and the perturba-

tion caused by this term is con�ned to the intercept. We obtain: yt = �00+F
�1
vt�
(�)+

~x0t�01� + v�t�. What is remarkable here is that the shift in the reduced-form parame-

ters, when estimating a reduced-form quantile regression based on E( �(v
�
t�)jxt) = 0

instead of E( �(vt�)jxt) = 0, is con�ned to the intercept to which the di¤erence be-

tween v�t� and vt� amounts. Then, according to Proposition 2, a bias is generated

exclusively on the intercept term of the structural model.

Reciprocally, it is easy to see that starting from E( �(vt�)jxt) = 0 and assuming

the independence of vt and Vt with respect to ~xt, we can obtain the structural re-

striction E( �(ut�)jxt) = 0 for a structural model with the right value of parameters,

except perhaps for a bias on the intercept.

However, the above independence condition also implies that vt� is independent of

~xt. This independence delivers a reduced-form quantile regression that is restricted

to have constant e¤ects, that is with the same coe¢ cients (except the intercept) for

any quantile �. Because of the linear relationship between structural and reduced-

form parameters that is embedded in (4), the structural quantile regression is also

characterised by constant-e¤ects. As a matter of fact, there is a tension between

the need of linking structural and reduced-form models and the wish of having non-

constant e¤ects.

We now deal with this matter by relaxing the link between models through allow-

ing possible biases on some other coe¢ cients. Speci�cally, we now only assume that

F�1vt�jxt(�) = F�1vt�jx1t(�), which is satis�ed for any � as long as vt� is independent on

x2t. This latter condition implies that there are constant e¤ects in the reduced-form

equation for the coe¢ cients of the x2t, but not necessarily for the coe¢ cients of the

x1t. It is also equivalent with ut� and Vt independent on x2t. It is appropriate that
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it corresponds to a natural �instrumental variable�condition for the structural model

and x2t. In this setting, the bias can now be con�ned to the �rst K1 variables in the

reduced-form model instead of the intercept only. Indeed,

yt = x01t�0K1�+x
0
2t�0K2�+ vt� = x01t�0K1�+x

0
2t�0K2�+F

�1
vt�jx1t(�)+ v

�
t� = x01t�

�
0K1�

+

x02t�0K2� + v�t�,

where �0K1� and �0K2� denote the parameter vectors respectively associated with

x1t and x2t in the reduced-form, v�t� = vt� + F�1vt�jx1t, �
�
0K1�

denotes the unbiased

parmeter vector associated with x1t. Then, a routine quantile regression estimation

of the reduced-form, based on E( �(vt�)jxt) = 0, would yield unbiased estimates for

the K2 last coe¢ cients, as it is explicit by rewriting the restriction as E( �(yt �

x01t�
�
0K1�

� x02t�0K2� � F�1vt�jx1t(�))jxt) = 0.

Allowing a bias on the parameters �0K1� enables us to introduce non-constant

e¤ects on the vector �0�, even though these parameters are biased due to the bias

transmission result. This alone would be a generalisation of the stricto sensu constant

e¤ect structural quantile regression, which may be useful if the researcher�s interest

is concentrated on vector 
0 that can be estimated consistently. However, solving the

system of linear equations between parameters in (4) implies that there is in general

an in�uence of the estimation of �0K1� on that of 
0, and this without involving

the bias on �0K1�, due to Proposition 2. Therefore, specifying non-constant e¤ects

for ��0K1�
(e.g., with a given functional form of �) implies in general non-constant

e¤ects for 
0. As a matter of fact, only allowing for biases on the intercept plus on

another component of �0K1� would be enough to obtain this result. There is therefore

a variety of independence conditions that could be used to generate non-constant

structural e¤ects without giving up too many consistency results for the estimation

of the exogenous variables parameters in the structural model. Note that the same
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approach is not possible by allowing only a bias on the intercept as in our setting

the original intercept has been used to generate the additive error term vt� and the

remaining �xed intercept term cannot vary with �.

These results have considerable consequences for the interpretation of the �tted-

value approach. Namely, under the independence hypothesis, the estimates based on

the conditional quantile of the reduced-form can be used to recover at least the slope

estimates of the conditional quantile of the structural form. Assumption A3(iv) can

therefore, under these conditions, be considered as a useful characterisation of the

structural conditional quantile distribution.

There is more. Referring to Proposition 2, providing the independence assump-

tion, any property of the slope coe¢ cients that is invariant to linear transformations

is preserved when moving from the reduced-form model to the structural form model

and vice versa. In particular, constant (respectively, non-constant) e¤ects speci�ca-

tions are equivalent for both models. That is: if there are constant (respectively,

non-constant) e¤ects for the reduced-form, they are also constant (non-constant) for

the structural form, and vice versa, all this under the independence condition.

A related question is: what is the weakest �independence�condition to impose in

order to obtain these convenient properties of speci�cation coordination for structural

and reduced-form models. As above we have E( �(v
�
t�)jxt) = 0, even without any

independence condition. However, without some kind of independence condition,

parameter �0 cannot be recovered because what is estimated is x0t�0� + F�1vt�jxt(�)

and the contribution of the two additive terms cannot be distinguished. In contrast,

researchers could accept that �00� could not be recovered as it is after all only a little

interesting intercept. That is what we have under the independence assumption using

the bias transmission property, since what is estimated is �00�+F�1vt� (�) instead of the
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intercept.

Then, the minimal condition to identify the slope coe¢ cients �10� is: F�1vt�j~xt(�) is

known (or can be consistently estimated). This condition is for example satis�ed when

vt� is independent of ~xt. Another favourable possibility is F�1vt�j~xt(�) = F�1vt� (�) + x0t�,

where � is known.

In all these cases, the slope coe¢ cients in �01� are estimated consistently in the

reduced-form quantile regression. Then, the bias transmission property yields con-

sistent estimators of �0, except perhaps for the intercept. Similar properties can be

derived by con�ning the bias to the �rst K1 components of xt instead.

Finally, it may be interesting to deal with cases where no useful weak or strong

independence hypothesis is satis�ed. In that cases, the reduced-form quantile restric-

tions may not correspond to any structural quantile restriction. However, even if

their interpretation in terms of the structural model is less obvious, they may still

be interesting to explore. In particular, they may correspond to situations where no

condition for identifying the structural quantile model are known (e.g., Chernozhukov

and Hansen independence condition is not satis�ed either). In these situations, in-

vestigating the reduced-form model may still remain of interest, as well as examining

the corresponding pseudo-estimates for the structural model.

Let us now compare more precisely Chernozhukov and Hansen (2005) approach

and ours. An identi�cation restriction of a structural quantile regression under endo-

geneity of Yt is E( �(ut�)jxt) = 0. This condition can be rewritten as

P
�
yt � ��00 + ~x01t�10(�) + Y 0

t 
(�)jxt
�
= �. As a comparison benchmark, the condi-

tion by Chernozhukov and Hansen with our notations would be P [yt � �00(�) + ~x
0
1t�10(�) + Y 0

t 
(�)jxt] =

�, where �00(�) = ��00 + ut. The respective terms at the right-hand side of the in-

equality in the probability bracket represent two distinct models of quantiles of yt
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conditional on x1t and Yt. Linking with Chernozhukov and Hansen�s notations, we

have ut = F�1Utjxt(�).

The main di¤erence between these two models is that we do not allow for models

without intercept or models with intercept terms varying with quantiles. We also em-

ploy an explicit additive error term ut, extracted from the intercept, so as to imposes

restrictions on this error term only and leave the random parameters �10(U) and


(U) a priori unrestricted with respect to instruments. However, imposing our above

independence assumption may be used to complete the restrictions and implying the

independence of both �10(U) and 
(U) with respect to xt. The latter assumption

allows for some coordination of the quantile restrictions on ut with the speci�cation

of random parameters �10(U) and 
(U):

We make one further step in distinguing us from Chernozhukov and Hansen.

Namely, under endogeneity we consider P [yt � ��00 + x0t�10(�) j xt] = � instead of

their condition. In that case, we have with obvious notations: �0� = H(�0)�0� with26664
��00

�110(�)

�120(�)

37775 =
240@ IK1

0

1A ;�0

35
26664

��00

�10(�)


(�)

37775.
Then, we obtain P

�
yt � ��00 + ~x01t�10(�) + x0t�0
(�) j xt

�
= �, which expresses the

content of the �tted-value method since Yt has been replaced by its true �tted value.

This restriction corresponds to what we estimate, and allows the identi�cation of the

structural slope parameters as we explained before. Our restrictions are �rst imposed

on vt and Vt only, which then generates coordinated restrictions on random parameters

�10(�) and 
(�) through the assumed independence of both vt and Vt with respect

to xt and the bias transmission property. We now turn to the asymptotic covariance

matrix for 2SQR(�; q) with some speci�c �rst-stage estimators.
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5 Asymptotic Normality and Covariance Matrix

with LS and Trimmed-LS Predictions

In this section, we examine the use of (non-robust) LS estimation and (robust)

Trimmed-Least-Squares (TLS) estimation of �0 and �0 in the �rst step of 2SQR(�; q).

There are several reasons to consider LS estimators. First, LS estimators are popu-

lar and available LS estimation results for the �rst-stage equations may be ready to

be used. Second, the researcher may wish to use quantile regressions not for their

robustness but rather for focusing on a given location of the conditional distribution

of the dependent variable. Then, using LS estimators as a �rst stage may improve

the e¢ ciency of the estimation procedure. Finally, that is an approach that empirical

researchers have been using in practice8. Alternatively, using TLS in the �rst stage

guarantees the robustness of this estimation stage, while some e¢ ciency may be lost.

Using twice the same quantile regression in both stages has been examined in Kim

and Muller (2004). In that case, there is no consistency issue, but no opportunity for

asymptotic variance reduction either.

An issue here is that the bias term E(vt) is not necessarily zero because it con�icts

with the restriction E( �(vt)) = 0, which is implied by Assumption 3(iv); that is, the

�th quantile and the mean of vt cannot be zero at the same time. To be able to use the

usual Bahadur representation of OLS on the intercept, we de�ne the centered errors

v�t = vt � E(vtjxt); u�t = ut � E(utjxt) and V �
t = Vt � E(Vtjxt). By construction,

E(v�t jxt) = E(u�t jxt) = E(V �
t jxt) = 0:Moreover, we have u�t = v�t�V �0

t 
0. Restrictions

on univariate errors u�t and v
�
t are su¢ cient, instead of restrictions on u

�
t and all the

components of V �
t . We impose the following orthogonality conditions on vt and Vt.

8Arias et al. (2001), Garcia et al. (2001).
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This is more restrictive than what is necessary for Assumption 2 or for Proposition

2, because we now want to con�ne the possible bias to the intercept exclusively.

Assumption 30 (i) E(vtjx(j)t) = E(vt); j = 2; :::; K, where x(j)t denotes the jth

component of xt.

(ii) E(utjx(j)t) = E(ut); j = 2; :::; K:

Under Assumption 30, the reduced form equations for Yt and yt in (2) and (3) can

be expressed by reallocating the bias to the intercept coe¢ cient as follows:

Y 0
t = x0t�

�
0 + V 0�

t (6)

where ��0 = �0+ B� with B� = [E(Vt)0; 00; :::; 00]0, which is a (K �G) matrix, and

yt = x0t�
�
0 + v�t (7)

where ��0 = �0 +B� with B� = [E(vt); 0; :::; 0]
0, which is a (K � 1) matrix.

Assumption 30(i) (respectively (ii)) imposes the orthogonality of the reduced-form

(respectively structural) errors with all non-constant exogenous variables. It slightly

strengthens the exogeneity requirement in Assumption 3(iv) so that the bias can be

con�ned to the intercept.

These assumptions impose only light restrictions on Vt when they are several

endogenous variables. Indeed, our results for the estimates of the structural equation

will be valid under any restrictions on Vt compatible with the restrictions that are

imposed on ut or vt. The bias B� is generally non-zero for q 6= 1. In contrast, B�

can be non-zero or not, even with q = 1; depending on the restrictions imposed on

Vt. In the case q = 1, a natural speci�cation suggests E(Vtjxt) = 0 while using OLS

to estimate (2) and no bias at all. In other cases, B� and B� may have to be taken

into account.

21



Let ~� and ~� be the �rst-stage LS estimators based on (6) and (7) respectively and

let ~� be the corresponding 2SQR(�; q). The asymptotic representations of ~� and ~�

are obtained and plugged into the formula in Proposition 1 to obtain the asymptotic

representation for ~�:

T 1=2(~�� �0 �B�) = RT�1=2
TX
t=1

xtq �(vt)

�RQ0Q�1T�1=2
TX
t=1

xt(qv
�
t � u�t ) + op(1):

Owing to the characterisation of B� and B� and Propositions 1 and 2, we have B� =

((1 � q)E(vt) � E(V 0
t )
0; 0; : : : ; 0)

0. The intercept estimator may be asymptotically

biased, while the slope estimators are not. Meanwhile, the asymptotic normality of

~�� �0 �B� can be derived under the following assumptions.

Assumption 4 (i) There exist �nite constants �u and �v such that Ejxtiu�t j3 < �u

and Ejxtiv�t j3 < �v; for all i and t.

(ii) The covariance matrix VT = var
�
T�1=2

PT
t=1 St

�
is positive de�nite for T su¢ -

ciently large, where St = (q �(vt); qv
�
t � u�t )

0 
 xt and 
 is the Kronecker product.

Assumption 4(i) is used to apply a CLT appropriate for the �-mixing case. It can

be much relaxed in the iid case. Assumption 4(ii) ensures the positive de�niteness of

the variance in the CLT.

Proposition 3 Suppose that Assumptions 1,3, 30 and 4 hold. Then,

D
�1=2
T T 1=2(~�� �0 �B�)

d! N(0; I);

where DT =MVTM
0 and M = R[I;�Q0Q�1].

These asymptotic properties of the 2SQR(�; q) have been established for a given

22



value of q. To improve e¢ ciency, q can be replaced with its optimal value (q�) ob-

tained by minimising the asymptotic covariance matrix that is shown in Proposition

3. However, there are many ways of minimising a multi-dimensional covariance ma-

trix. For example, one may wish to minimise some norm of the matrix (e.g. the

mean square error). One may also wish to minimise the standard error for a given

coe¢ cient of interest in the structural model. For all these procedures, in the iid

case where the e¤ect of q is concentrated in a scalar function, a unique and explicit

solution q� can be obtained. In the general case, q� can also be made explicit when

the MSE is minimised. Consistent preliminary estimators of q� do not perturb the

asymptotic properties of the 2SQR, which can be characterised as a MINPIN estima-

tor (Andrews, 1994, p. 2263), as long as a stochastic equicontinuity condition of the

global empirical process is valid.

In the case of least-squares plus quantile regression estimation, choosing values for

q di¤erent from 1 introduces an asymptotic bias con�ned to the intercept term, while

it allows the values for q to be selected so as to reduce the asymptotic variance of the

consistent slope estimators. Since the bias can be easily corrected as its formula is

known, our approach may improve e¢ ciency in two-stage estimation.

We now exhibit a case with an explicit formula for q�. Assume f(x0t; ut; vt)g is iid

and ft(0jxt) = f(0); for any t. Then, the asymptotic covariance matrix in Proposition

3 simpli�es into �20(q)Q
�1
zz ; where �

2
0(q) = E(�2t ); �t = qf(0)�1 �(vt) + u�t � qv�t and

Qzz = H(��0)
0QH(��0). In this case, an optimal q minimising �

2
0(q) is (calculus shown

in the Appendix):

q� =
E(v�t u

�
t )� f(0)�1E( �(vt)u

�
t )

f(0)�2�(1� �) + E(v�2t )� 2f(0)�1E( �(vt)v�t )
: (8)

A consistent estimator for q� is obtained by substituting a consistent kernel-estimator
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f̂(0) for f(0), and residuals for error terms;

q̂ =

PT
t=1 v̂

�
t û
�
t � f̂(0)�1

PT
t=1  �(v̂t)û

�
t

T f̂(0)�2�(1� �) +
PT

t=1 v̂
�2
t � 2f̂(0)�1

PT
t=1  �(v̂t)v̂

�
t

; (9)

where û�t = v̂�t � V̂ �0
t 
̂; v̂

�
t = yt � x0t~�; V̂

�0
t = Y 0

t � x0t
~�; v̂t = yt � x0t�̂� and �̂� =

argmin
�

PT
t=1 ��(yt � x0t�). The omitted proof for the consistency of q̂ is straightfor-

ward.

To address robustness concerns, we now propose an estimator based on a robust

�rst-stage estimator: the symmetrically trimmed-LS estimator (TLS). The TLS of �

in the model y = X�+v is �̂TLS = (X 0AX)�XAy, where A = (aij); i; j = 1; :::; p and

aij = I[i=j and X0
i�̂(�)<yi<X

0
i�̂(1��)]

, �̂(�) is the quantile regression estimator centered on

a given quantile � to be chosen a priori. Chen and Portnoy (1996) provide the TLS

Bahadur representation. Let �� be the estimator built from the TLS in the �rst stage

and the quantile regression in the second stage. We adjust Assumptions 30 and 4 as

follows, with analogous interpretations of the di¤erent conditions.

Assumption 300 (i) E(vtjx(j)t)� �
h
F�1vjx(j)t(�) + F�1vjx(j)t(1� �)

i
= 0.

(ii) E(utjx(j)t)� �
h
F�1ujx(j)t(�) + F�1ujx(j)t(1� �)

i
= 0.

Assumption 40 (i) There exist �nite constants �~u and �~v such that Ejxti~u�t j3 < �~u

and Ejxti~v�t j3 < �~v , for all i and t, where ~v�t = vt��
h
F�1vjxt(�) + F�1vjxt(1� �)

i
; ~V �

jt =

Vjt � �
h
F�1Vj jxt(�) + F�1Vj jxt(1� �)

i
.

(ii) The covariance matrix ~VT = var
�
T�1=2

PT
t=1

~St

�
is positive de�nite for T su¢ -

ciently large, where ~St = (q �(vt); q~v
�
t � ~u�t )0 
 xt .

The Bahadur representation, obtained from Proposition 1, and the representation

for TLS (Ruppert and Carroll, 1980) can be used to obtain the following asymptotic

representation of ��:
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T 1=2(��� �0 � ~B�) = RT�1=2
TX
t=1

xtq �(vt)

�RQ0Q�1T�1=2
TX
t=1

xt(q~v
�
t � ~u�t ) + op(1);

where ~B� =
h
(1� q) ~B� � ~B�


i0
, ~B� = (E(vt) � � [F�1v (�) + F�1v (1� �)] ; 0; : : : ; 0)0,

~B
�j
= (E(Vjt)��

h
F�1Vj (�) + F�1Vj (1� �)

i
; 0; : : : ; 0)0, ~B� =

�
~B
�j

�
; j = 1; :::; K1. The

asymptotic representation together with Assumptions 300 and 40 delivers the following

asymptotic normality of ��.

Proposition 4 Under Assumptions 1,3, 300 and 40 :

~D
�1=2
T T 1=2(��� �0 � ~B�)

d! N(0; I);

where ~DT =M ~VTM
0 and M = R[I;�Q0Q�1].

As before, if f(x0t; ut; vt)g is iid and ft(0jxt) = f(0) for any t, then the asymptotic

matrix of �� is ~�20(q) ~Q
�1
zz , where ~�

2
0(q) = E(~�

2

t );
~�t = qf(0)�1 �(vt) + ~u

�
t � q~v�t and

~Qzz = H(~��0)
0Q0H(~�

�
0), and ~�

�
0 = �0 + ~B�. In this case, a value of q minimising

~�20(q) is :

q� =
E(~v�t ~u

�
t )� f(0)�1E( �(vt)~u

�
t )

f(0)�2�(1� �) + E(~v�2t )� 2f(0)�1E( �(vt)~v�t )
: (10)

A consistent estimator for q� is

q̂ =

PT
t=1 �v

�
t �u
�
t � f̂(0)�1

PT
t=1  �(v̂t)�u

�
t

T f̂(0)�2�(1� �) +
PT

t=1 �v
�2
t � 2f̂(0)�1

PT
t=1  �(v̂t)�v

�
t

(11)

where �u�t = �v
�
t � �V �0

t �
, �v
�
t = yt � x0t�̂TLS, �V �0

t = Y 0
t � x0t�̂TLS, v̂t = yt � x0t�̂� and �̂� =

argmin
�

PT
t=1 ��(yt � x0t�). In the next section, we present Monte Carlo simulation
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results showing how much variance reduction can be realized in �nite samples with

our method.9

6 Monte Carlo Simulations

6.1 Simulation Set-up

The data generating process used in the simulations is described in Appendix B.

We study the �nite sample properties of our two proposed two-stage estimators: (1)

the OLS plus quantile regression estimator (2SQR1), and (2) the TLS plus quantile

regression estimator (2SQR2). We impose E ( �(vt)jxt) = 0 for a given �. That is:

for each �, we re-generate the error terms such that E ( �(vt)jxt) = 0 is satis�ed,

which means that we consider di¤erent models associated with the di¤erent chosen

quantiles � for Assumption 3(iv). The equation of interest is assumed to be over-

identi�ed and the parameter values are set to �0 = (�0;1; �0;2) = (1; 0:2) and 
 = 0:5.

We generate the error terms by using three alternative distributions: the standard

normal N(0,1), the Student-t with 3 degrees of freedom t(3) and the Lognormal

LN(0,1). The exogenous variables xt are drawn independently from the errors from a

normal distribution. The total number of replications is 1,000. For each replication,

we estimate the parameter values � and 
 using 2SQR1 and 2SQR2, and we calculate

the deviations of the estimates from the true values. Then, we display the sample

mean and sample standard deviation of these deviations over the 1,000 replications.

In the iid case, the optimal value q� is obtained by simulating the formula in (8) or

(10), while q̂ is estimated through (9) or (11).

9The case where the �rst stage is a quantile regression with the same quantile as in the second

stage is reported in Kim and Muller (2004), with directly comparable tables.
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6.2 Results

We �rst discuss the results for the 2SQR1(�; q) with N(0,1), t(3) and LN(0,1) errors,

shown in Tables 1-3 for the case of iid errors.10 In all cases, as expected, the intercept

estimate exhibits biases that do not vanish as the sample size increases. On the other

hand, the 2SQR1(�; q) estimates for the slope parameters (�1 and 
) are unbiased for

all speci�cations, all evaluations of q and all �0s and even with as small a sample size as

50. Using the optimal value q� dramatically improves the accuracy of the 2SQR1(�; q)

as compared to the case q = 1. The gain is larger for the extreme quantiles (� = 0:05

and 0.95) than for the middle quantiles (� = 0:25; 0:5 and 0.75). Even with T = 50,

using q̂ can substantially improve e¢ ciency as compared to q = 1. The estimation

accuracy of q̂ and the e¢ ciency gain improve as the sample size increases. With

T = 300, using q̂ or q� is almost indi¤erent for estimating �0, albeit the estimated

values of q̂ are not always very close to q�.

As expected, with fat tails t(3) errors the standard deviations of the sampling

distributions of the 2SQR1(�; q) are much larger than with normal errors. Here, the

variance reductions from using q� are small for middle quantiles, while substantial

reductions can be achieved for extreme quantiles. The standard deviations are the

largest for the lognormal case, where using q� always yields outstanding e¢ ciency

gains. For right-skewed distributions, quantile regressions are typically inaccurate

for large quantiles. In this case, our method generates large e¢ ciency gains. For

example, considering the case with T = 300; the standard error for 
̂ with q = 1 is

0.91 while it is reduced to 0.25 with q = q̂; an impressive e¢ ciency gain. However,

there is virtually no e¢ ciency gain with small values of � less than around 0.5.

10We have conducted the same set of simulations for the case of heteroscedastic errors and have

found that the results are qualitatively the same as in the iid case.
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Given the generally substantial e¢ ciency gains, it is natural to ask how close the

reduced variance is to the Cramer-Rao lower bound. We have calculated the CR

bound numerically for each distribution in Tables 4-5. Table 4 shows the simulated

asymptotic standard deviations for 2SLS, 2SQR1(�; q̂) with � = 0:25; 0:50; 0:95, along

with the simulated CR bounds. We only discuss the slope coe¢ cients as the intercept

coe¢ cient may be biased. In the normal case, the 2SLS is very close to the simulated

CR bound for T = 300. With T = 50, the 2SLS e¢ ciency loss is no longer negligible.

The 2SQR1(�; q̂) is almost as accurate as the 2SLS for T = 300, for any considered

quantile. Moreover, for T = 50, the 2SQR1(�; q̂) remains close to the CR bound. This

is a nicely surprising result given the usual ine¢ ciency of quantile regressions. Here,

reformulating the dependent variable allows us to reach almost optimal e¢ ciency,

while applying a typically ine¢ cient second-stage estimator.

With Student errors, the 2SLS yields large e¢ ciency loss. For all T and � = 0:5 and

0:25, using our method instead yields large accuracy gain, while still relatively far from

the bound, especially for � = 0:95. Finally, under lognormality, 2SLS performance

is always poor. This is less so for the 2SQR1(�; q̂). Here again, choosing � = 0:25

considerably improves e¢ ciency. This is not surprising since asymmetric distributions

are typically di¢ cult to deal with. A logarithmic transformation of the dependent

variable could be an alternative strategy in this situation. When this is not possible,

our method alleviates the e¢ ciency loss for quantiles close to the mode of the error

distribution and for central quantiles.

Let us now turn to 2SQR2 based on the TLS at the �rst stage (results in Tables

4(b) and 5(b)). We have also tried the LAD-2SQR(�) (i.e. LAD in the �rst-stage

as in Chen and Portnoy, 1996). However, the results are almost identical to that

of the 2SQR2 to which we limit our comments. What seems to matter here is the
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robustness of the �rst stage more than the chosen estimator. Trimming the 2SQR2

at quantile ' = 0:25 yields more accurate results than trimming at 0:05 or 0:1011 and

for T = 300, trimming at 0:05; 0:10 or 0:25 is almost indi¤erent. Hence, we focus on

the case ' = 0:25.

While our above improved estimator 2SQR1(�; q̂) generally performs better than

the previously considered alternative estimators, it is often outperformed by the es-

timators introduced by Chen and Portnoy (2SQR2 with q = 1). However, these

estimators can be further improved by rede�ning the dependent variable as we pro-

pose. The obtained estimator 2SQR2(�; q̂) dominates or is almost equivalent to all

the considered competitors in the studied cases.

The 2SQR2(�; q̂) appears to perform uniformly better than the 2SQR2(�; q = 1)

except for T = 50 at the median for t(3) and at a few low quantiles for LN(0,1),

probably because of sampling errors since this irregularity vanishes when T = 300.

The improvement from moving from q = 1 to q = q̂ is sizeable at quantile 0.95 for

symmetric errors (up to 60% reduction in standard deviation) and at large quantiles

for asymmetric errors (up to 80% reduction). The 2SQR2(�; q̂) clearly improves on

the 2SQR1(�; q̂) for both t(3) and LN(0,1), while the reverse is true for normal errors.

Under normal errors, the 2SQR1(�; q̂) and the 2SQR2(�; q̂) both almost reach

the CR bound, whatever the considered quantile. Here, reformulating the dependent

variable is fruitful, especially for upper quantiles for which it allows massive e¢ ciency

gains. The 2SQR2(�; q = 1) is slightly outperformed by the 2SQR1(�; q̂), perhaps be-

cause trimming here only discards information. With Student errors, the 2SQR2(�; q̂)

is often the more accurate estimator, yielding results fairly close to the bound in the

constant-e¤ects case. Nevertheless, the 2SQR2(�; 1) remains an equivalent solution

for middle quantiles.

11Except for normal errors and T = 50 in which case trimming at 0:25 is only slightly inferior.
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Under lognormality, no studied estimator approaches the CR bound in the constant-

e¤ect case. However, using the 2SQR2(�; q̂) generally yields the best accuracy. For

upper quantiles, reformulating the dependent variables delivers huge e¢ ciency gains.

It is interesting to re�ect on the proximity of the results of the 2SQR1(�; q̂) and the

2SQR2(�; 1) in the light of the non-robustness of the OLS and the robustness of the

TLS. Rede�ning the dependent variable may improve the robustness of the two-stage

estimator through the reduction of the in�uence of outliers for the errors vt, even

when the �rst-stage estimator is non-robust. This e¤ect, apparent in the asymptotic

representation, is con�rmed in the small sample simulations. Thus, speci�c estimators

of q could be chosen to enhance robustness, although this is not the approach of this

paper.

7 Conclusion

In this paper, we propose a new technique of variance reduction for two-stage esti-

mation procedures based on the reduced-form errors in systems of linear equations.

In this setting, we show that an asymptotic bias that would occur in the �rst-stage

reduced-form estimates of the coe¢ cients of the exogenous variables in the structural

equation is integrally and exclusively transmitted to the coe¢ cients of the same vari-

ables in the second-stage. We apply our analyses to the case of two-stage quantile

regressions, for which we show that the structural approach and the �tted-value ap-

proach amount to estimating the same slope coe¢ cients, under a natural instrumental

variable assumption.

Our leading cases are the two-stage quantile regressions with random regressors,

��mixing and non identically distributed error terms, where the �rst stage is imple-

mented with least-squares or trimmed-least-squares estimators. Our reformulation
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of the dependent variable introduces a trade-o¤ between an asymptotic bias on the

intercept of the equation of interest on the one hand, and the variance reduction of

the slope estimator on the other hand. The reformulated variable is a weighed mean

of the initial dependent variable and of its �tted-value obntained from a reduced-form

estimate.

We derive the asymptotic normality and the asymptotic variance-covariance ma-

trix of the estimator. Then, we propose to perform variance reduction for the slope

coe¢ cients of interest by estimating variance-minimising reformulation weights. Our

simulation results show massive e¢ ciency gains. In particular, our new technique

alleviates the sometimes poor e¢ ciency of quantile regressions.

Let us now discuss a practical procedure for two-stage quantile regressions. There

are two basic principles. First, the �rst-stage estimators should be carefully selected

so as to preserve e¢ ciency, robustness or other desired properties. Our simulation

results suggest that OLS should perform well under normality, while trimmed least-

square should be more accurate and more robust for heavy tails or asymmetric error

distributions. Second, one should reformulate the dependent variable as proposed, in

such a way that the selected variance criterion is minimised.

For example, the computation steps for trimmed least-squares plus quantile regres-

sions are: (1) trimmed least-squares for the reduced-form equation and the ancillary

equations, (2) calculus of the �tted-values for the endogenous regressors of the struc-

tural equation, (3) preliminary quantile regression of the structural equation where

the endogenous regressors are substituted with �tted values, (4) estimation the den-

sity of the reduced-form error at the quantile of interest, (5) estimation of the optimal

weight for the reformulation, using residuals and density estimates from the previous

stages, (6) reformulation of the dependent variable of the structural equation incor-
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porating the �tted-value of the endogenous regressors, (7) �nal quantile regression of

the structural equation.

As a word of conclusion, let us mention that our approach could be generalised

to other �rst-stage and second-stage estimators, and di¤erent reformulations of the

dependent variable, thus suggesting diverse variance reduction techniques. However,

it is not as obvious to generalise as one may think. For our method to work, some

invariance properties must be satis�ed that allow for the coordination of the reformu-

lation of the dependent variable with the error restrictions. With quantile regressions

convenient invariance properties to monotone transformations can be mobilised. For

other methods complications may occur.

References

[1] Abadie, A., J. Angrist and G. Imbens (2002), �Instrumental Variables Estimates

of the E¤ect of Subsidized Training on the Quantiles of Trainee Earnings,�Econo-

metrica, 70, 91-117.

[2] Amemiya, T. (1982), �Two Stage Least Absolute Deviations Estimators,�Econo-

metrica, 50, 689-711.

[3] Andrews, D.W.K. (1990), �Asymptotics for Semiparametric Econometric Mod-

els: II. Stochastic Equicontinuity and Nonparametric Kernel Estimation,�

Cowles Foundation for Research in Economics, Yale University, July.

[4] Andrews, D.W.K. (1994). Empirical Process Methods in Econometrics. Handbook

of Econometrics, Volume IV, eds. R.F. Engle and D.L. McFadden, New York:

North-Holland, pp. 2247-94.

32



[5] Arias, O., K.F. Hallock and W. Sosa-Escudero (2001), �Individual Heterogeneity

in the Returns to Schooling: Instrumental Variables Quantile Regression Using

Twins Data,�Empirical Economics, 26, 7-40.

[6] Chen, L.-A. (1988), �Regression Quantiles and Trimmed Least-Squares Estima-

tors for Structural Equations and Non-Linear Regression Models,�Unpublished

Ph.D. dissertation, University of Illinois at Urbana-Champaign.

[7] Chen, L.-A. and S. Portnoy (1996), �Two-Stage Regression Quantiles and Two-

Stage Trimmed Least Squares Estimators for Structural Equation Models,�Com-

mun. Statist.-Theory Meth., 25, 1005-1032.

[8] Chen, X., O. Linton and I. Van Keilegem (2003), �Estimation of Semi-Parametric

Models When the Criterion Function is not Smooth,�Econometrica, 71, 1591-

1608.

[9] Chernozhukov, V. and C. Hansen (2005), �An IV Model of Quantile Treatment

E¤ects,�Econometrica, 73, 245-261.

[10] Chernozhukov, V. and C. Hansen (2006), �Instrumental Quantile Regression

Inference for Structural and Treatment E¤ect Models,�Journal of Econometrics,

132, 491-525.

[11] Chernozhukov, V. and C. Hansen (2008), �Instrumental Variable Quantile Re-

gression: A Robust Inference Approach,�Journal of Econometrics, 142, 379-398.

[12] Chernozhukov, V. and C. Hansen (2008), �The Reduced Form: A Simple Ap-

proach to Inference with Weak Instruments,�Economics Letters, 100, 68-71.

[13] Chernozhukov, V., G.W. Imbens and W.K. Newey (2007), �Instrumental Vari-

able Estimation of Nonseparable Models,�Journal of Econometrics, 139, 4-14.

33



[14] Chesher, A. (2003), �Identi�cation in Nonseparable Models,�Econometrica, 71,

1405-1441.

[15] Garcia, J., P.J. Hernandez and A. Lopez (2001), �How Wide is the Gap? An

Investigation of Gender Wage Di¤erences Using Quantile Regression,�Empirical

Economics, 26, 149-167.

[16] Hjort, N.L. and D. Pollard (1999), �Asymptotics for Minimisers of Convex

Processes,�mimeo Yale University.

[17] Hong, H. and E. Tamer (2003), �Inference in Censored Models with Endogenous

Regressors,�Econometrica, 71, 905-932.

[18] Honore, B.E. and L. Hu (2004), �On the Performance of Some Robust Instru-

mental Variables Estimators,�Journal of Business and Economic Statistics, 22,

30-39.

[19] Imbens, G.W. and W.K. Newey (2006), �Identi�cation and Estimation of Trian-

gular Simultaneous Equations Models without Additivity,�mimeo MIT Depart-

ment of Economics.

[20] James, W. and C. Stein (1960), �Estimation with Quadratic Loss,�Proceedings

of the Fourth Berkeley Symposium on Mathematical Statistics and Probability

(vol. 1), Berkeley, CA: University of California Press, 361-379.

[21] Jureckova, J. (1977), �Asymptotic Relations of M-Estimates and R-Estimates in

Linear Regression Model,�The Annals of Statistics, 5, 464-472.

[22] Jureckova, J. (1984), �Regression Quantiles and Trimmed Least Squares Esti-

mator under a General Design,�Kibernetica, 20, 345-357.

34



[23] Kemp, G.C.R. (1999), �Least Absolute Error Di¤erence Estimation of a Single

Equation from a Simultaneous Equations System,�mimeo University of Essex,

December.

[24] Kim, T. and C. Muller (2004), �Two-Stage Quantile Regressions when the First

Stage is Based on Quantile Regressions,�The Econometrics Journal, 18-46.

[25] Kim, T. and C. Muller (2006), �Bias Transmission and Variance Reduction in

Two-Stage Estimation,�Working Paper IVIE.

[26] Kim, T. and H. White (2001), �James-Stein-Type Estimators in Large Samples

with Application to the Least Absolute Deviations Estimator,� Journal of the

American Statistical Association, 96, 697-705.

[27] Koenker, R. (2005), �Quantile Regression,� Cambridge University Press, New

York.

[28] Koenker, R. and G. Bassett (1978), �Regression Quantiles,�Econometrica, 46,

33-50.

[29] Koenker, R. and Q. Zhao (1996), �Conditional Quantile Estimation and Inference

for ARCH models,�Econometric Theory, 12, 793-813.

[30] Lee, S. (2007), �Endogeneity in Quantile Regression Models: A Control Function

Approach,�Journal of Econometrics, 141, 1131-1158.

[31] Ma, L. and R. Koenker (2006), �Quantile Regression Methods for Recursive

Structural Equation Models,�Journal of Econometrics, 134, 471-506.

[32] MaCurdy, T. and C. Timmins (2000), �Bounding the In�uence of Attrition on

Intertemporal Wage Variation in the NLSY,�mimeo Stanford University, May.

35



[33] Phillips, P.C.B. (1991), �A Shortcut to LAD Estimator Asymptotics,�Econo-

metric Theory, 7, 450-463.

[34] Pollard, D. (1991), �Asymptotic for Least Absolute Deviation Regression Esti-

mators,�Econometric Theory, 7, 186-199.

[35] Portnoy, S. (1991), �Asymptotic Behaviour of Regression Quantiles in Non-

Stationary, Dependent Cases,�Journal of Multivariate Analysis, 38, 100-113.

[36] Powell, J. (1983), �The Asymptotic Normality of Two-Stage Least Absolute

Deviations Estimators,�Econometrica, 51, 1569-1575.

[37] Ruppert, D. and R.J. Carroll (1980), �Trimmed Least Squares Estimation in the

Linear Model,�Journal of the American Statistical Association, 75, 828-838.

[38] Sakata, S. (2007), �Instrumental Variable Estimation Based on Conditional Me-

dian Restriction,�Journal of Econometrics, 141, 350-382.

[39] Sen, P.K. and A.K.M.E. Saleh (1987), �On Preliminary Test and Shrinkage M-

estimation in Linear Models,�The Annals of Statistics, 15, 1580-1592.

[40] Weiss, A.A. (1990), �Least Absolute Error Estimation in the Presence of Serial

Correlation,�Journal of Econometrics, 44, 127-158.

[41] White, H. (2001), Asymptotic Theory for Econometricians, Academic Press, San

Diego.

[42] White, H., T.H. Kim, and S. Manganelli (2009), �Modeling Autoregressive Con-

ditional Skewness and Kurtosis with Multi-Quantile CAViaR,� forthcoming in

�Volatility and Time Series Econometrics: Essays in Honour of Robert F. En-

gle.�

36



Appendix A: Proofs

Proof of Lemma 1: Let M�
Ti(�) = T�1=2

PT
t=1m

�
i (wt; �) where � is a K � 1 vector,

wt = (vt; x
0
t)
0, m�

i (wt; �) = xti �(qvt � x0t�) and xti is the i
th element in xt. We de�ne

V �
Ti(�) =M�

Ti(�)�E(M�
Ti(�)):We wish to show that {V

�
Ti(�) : T � 1g is stochastically

equicontinuous. To do so, we will use Theorem II.8 in Andrews (1990) for which the

following two conditions must be veri�ed; (a) m�
i (wt; �) is a type IV class function

with index p � 2; that is, for all bounded � in RK and for all L1 > 0 in a neighborhood

of zero,

sup
t�T;T>1

"
E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
p

!#1=p
� CL 1 (12)

for some positive constants C and  and (b) {wt} is ��mixing of size � (2K+ )(K+2 )

 2
.

We �rst verify (a) for p = 2. Consider a constant L1 close to zero and a �nite

value of � in RK . Note that

jm�
i (wt; �1)�m�

i (wt; �)j = jxtijj1[qvt�x0t��0] � 1[qvt�x0t�1�0]j

� jxtijj1[A�0] � 1[B�0]j � jxtijj1[jAj�jA�Bj]j � jxtijj1[jqvt�x0t�j�jjxtjj�jj�1��jj]j;

where A = qvt � x0t� and B = qvt � x0t�1: Hence, we have

sup
�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

� x2ti sup
�1:k�1��k<L1

1[jqvt�x0t�j�jjxtjj�jj�1��jj] � x2ti1[jqvt�x0t�j�jjxtjjL1];
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which implies

E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

!

� E
�
x2tiPxt [jqvt � x0t�j � jjxtjjL1]

�
= E

�
x2ti

Z U0

L0

fvjx(�jxt)d�
�

( * q > 0)

� E

�
x2ti

Z U0

L0

f0d�

�
(* Assumption 3(ii))

=
2f0
q
E
�
x2tijjxtjj

�
L1:

where Pxt is the conditional probability function given xt, U0 = q�1(x0t� + jjxtjjL1)

and L0 � q�1(x0t� � jjxtjjL1). Hence,

sup
t�T;T>1

"
E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

!#1=2
� CL

1=2
1

for some constant C because of Assumption 3(v). Hence, condition (a) is satis�ed

with  = 1=2.

Now, we turn to condition (b). Since  = 1=2,

�(2K +  )(K + 2 )

 2
= �

(2K + 1
2
)(K + 1)
1
4

= �2 (4K + 1) (K + 1) :

Hence, condition (b) is a consequence of Assumption 1. Therefore, by Theorem II.8

in Andrews (1990), {V �
Ti(�) : T � 1g is stochastically equicontinuous, which implies

that V �
T (�) is also stochastically equicontinuous. Then, for any constant sequence L

�
T

that converges to zero, we have

sup
jj�1��2jj�L�T

jjV �
T (�1)� V �

T (�2)jj = op(1): (13)

We now introduce a factor T�1=2 that weighs the contribution of the �rst stage

estimator in the kernel of the empirical process. For this, we choose L�T = T 1=2L
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for a �xed positive number L. Let VT (�) = MT (�) � E(MT (�)); where MT (�) =

T�1=2
PT

t=1m(wt;�), m(wt;�) = xt �(qvt � T�1=2x0t�), and � is a K � 1 vector.

Since V �
T (�) = VT (T

1=2�); by de�ning �1 = T 1=2�1 and �2 = T 1=2�2, the result in

(13) becomes

sup
jj�1��2jj�L

jjVT (�1)� VT (�2)jj = op(1): (14)

Setting �1 = � and �2 = 0 in (14), yields

sup
k�k<L

kMT (�)�MT (0)� fEMT (�)� EMT (0)gk = op(1): (15)

Next, we show thatE(MT (�))�E(MT (0))! �q�1Q0� as follows. SinceE(MT (�)) =

E
n
T�1=2

PT
t=1

h
xt� � xt

R q�1x0tT�1=2�
�1 ft(vjxt)dv

io
, we have

E(MT (�))� E(MT (0)) = �E
(
T�1=2

TX
t=1

"
xt

Z q�1x0tT
�1=2�

0

ft(vjxt)dv
#)

= �E
(
q�1T�1

TX
t=1

xtx
0
t�
Ft(q

�1x0tT
�1=2�jxt)� Ft(0jxt)
q�1x0tT

�1=2�

)
;

where Ft(�jxt) is the conditional cdf of vt. Let G(�) = q�1T�1
PT

t=1 Ft(�jxt)xtx0t�.

Then, by the Mean-Value Theorem and the continuity in Assumption 3(ii), there ex-

ists �T;t between 0 and q
�1x0tT

�1=2� such thatE(MT (�))�E(MT (0)) = �EfG0(�T;t)g =

�q�1EfT�1
PT

t=1 ft(�T;tjxt)xtx0tg�. We now examine the convergence of this term:

Let QT = E

�
T�1

TP
t=1

ft(�T;tjxt)xtx0t
�
; Q0T = E

�
T�1

TP
t=1

ft(0jxt)xtx0t
�
and con-

sider the (i; j)th element of jQT �Q0T j, which is given by

jT�1
TX
t=1

E
�
fft(�T;tjxt)� ft(0jxt)gxtixtj

�
j

� T�1
TX
t=1

E
�
jft(�T;tjxt)� ft(0jxt)j jxtij jxtjj

�
� L0T

�1
TX
t=1

E
�
j�T;tj jxtij jxtjj

�
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for some constant L0; where the �rst result is due to Minkowski�s inequality and

Jensen�s inequality and the second result is obtained by the Lipschitz continuity in

Assumption 3(ii). Next, we note that

T�1
TX
t=1

E
�
j�T;tj jxtij jxtjj

�
� q�1T�3=2

TX
t=1

E ( jx0t�j jxtij jxtjj)

� q�1 k�kT�3=2
TX
t=1

E
�
kxtk3

�
� q�1 k�kT�1=2C ! 0

for a constant C; where the last inequality is obtained by Assumption 3(v). Since

Q0 = lim
T!1

Q0T , we have E(MT (�))� E(MT (0))! �q�1Q0�. QED.

Proof of Proposition 1: (a) Preliminaries with �rst-stage estimators: We de�ne

�̂0 = (q� 1)T 1=2(�̂� �0�B�)+T
1=2(�̂��0�B�)
0. We have �̂0 = Op(1) because

of Assumption 2. Then, Lemma 1 implies

MT (�̂0) =MT (0)� q�1Q0�̂0 + op(1) (16)

where MT is de�ned in the proof of Lemma 1. The term q�1Q0�̂0 is bounded in

probability because �̂0 = Op(1):Also,MT (0) = T�1=2
PT

t=1 xt �(qvt) = T�1=2
PT

t=1 xt �(vt)

because q > 0. Therefore, under Assumptions 1, 3(iv)-(v) and 4(i), T�1=2
PT

t=1 xt �(qvt)

converges in distribution to a normal random variable by the CLT in Theorem 5.20

of White (2001).

For q < 0, we have  �(qvt) = � 1��(vt). Therefore, E( �(vt)jxt) = 0 does not

implyE( �(qvt)jxt) = 0 in general, except for LAD estimators (� = 1=2) or symmetric

distributions12. In these speci�c cases, the reminder of the proof is as in the leading

case we study, which justi�es the (b) part of the proposition.

12This might be one reason why authors imposed symmetry of error terms, as in Chen (1988) and

Chen and Portnoy (1996).
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Therefore, we have

MT (�̂0) = Op(1): (17)

These preliminary results will be used to substitute MT (�̂0) in (19) below with

standardised �rst-stage estimators and yield simplications. We now deal with the

second stage empirical process.

(b) Linearization of the emprical process of the second stage: For this, we de�ne

�̂1(�) = H(�̂)� + �̂0 = H(�̂)� � (1 � q)T 1=2(�̂ � �0 � B�) + T 1=2(�̂ � �0 � B�)
0

for jj�jj � L, where � 2 RG+K1 for some L > 0. Later, � will be replace by the

second-stage standardised estimator, T 1=2(�̂ � �0 � B�). Using Assumption 2 and

Lemma 1, it is straightforward to show that

sup
jj�jj�L

jjMT (�̂1(�))�MT (0) + q�1Q0�̂1(�)jj = op(1) (18)

In order to regroup the �rst-stage and second-stage estimators, we need one more

result of stochastic equicontinuity. For this, we de�ne ~MT (�) = H(�̂)0MT (�̂1(�)) and

jjH(�̂)jj2 = tr(H(�̂)H(�̂)0); which is Op(1) since �̂ converges to �0 + B� that is

�nite.

We now use the argument between (A.7) and (A.8) in Powell (1983) to show that

(17) and (18) imply that for some �nite L2 > 0:

sup
jj�jj�L2

jj ~MT (�)�H(��0)
0MT (�̂0) + q�1Q�zz�jj = op(1) (19)

where Q�zz = H(��0)
0Q0H(�

�
0). Powell�s argument is the following. Since jjH(�̂)jj2 =

Op(1) and jjH(�̂)�H(��0)jj = op(1), we have

jj ~MT (�)�H(��0)
0MT (�̂0) +Q�zz�jj

� jjH(�̂)jj jjMT (�̂1)�MT (0) +Q�̂1jj+ jjH(�̂)�H(��0)jj jjMT (0)jj

+jjH(�̂)�H(��0)jj
n
jjH(�̂)jj + jjH(��0)jj

o
jjQjjjj�jj;
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which delivers the result by applying the sup-operator to both sides of the inequality

above.

(c) Characterization of B�: Next, we de�ne �̂ = T 1=2(�̂ � �0 � B�) in which B�

is a constant vector de�ned such as to achieve the correspondance of the FOCs of

the second stage T 1=2 ~MT (�̂) in order to obtain

~MT (�̂) = op(1): (20)

Moreover, if we can show �̂ = Op(1); we shall be able to plug �̂ into (19) in place

of � and, by using (20), and cancelling the term ~MT (0) by using the second-stage

FOCs, we would obtain �H(��0)0MT (�̂0) + q�1Q�zz�̂ = op(1): This will deliver the

asymptotic representation of T 1=2(�̂� �0 �B�) in the proposition.

First we search for the formula of B� that would identify T 1=2 ~MT (�̂) and the

second-stage FOCs. Note that

~MT (�̂) = H(�̂)0MT (�̂1(�̂))

= T�1=2
TX
t=1

H(�̂)0xt �(qvt � T�1=2x0t�̂1(�̂))

= T�1=2
TX
t=1

H(�̂)0xt �(qyt + (1� q)x0t�̂ � x0tH(�̂)�̂+ Ât + B̂t);

where

Ât = �qx0t�0 + x0tH(�̂)�0 � (1� q)x0t�0 � x0t�̂
0 + x0t�0
0

= x0tH(�̂)�0 � x0tH(�0)�0 + x0t�0
0 � x0t�̂
0;

because �0 = H(�0)�0: Regrouping the terms involving the di¤erence between �0

and �̂ and

B̂t = x0t[H(�̂)B� � (1� q)B� +B�
0]
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isolates the bias terms. Ât = 0 because x0tH(�̂)�0 = x01t�0+x
0
t�̂
0 and x

0
tH(�0)�0 =

x01t�0 + x0t�0
0: Furthermore, if we de�ne B� such as to impose B̂t = 0, then one

can show that T 1=2 ~MT (�̂) =
�
@ST
@�

��
�=�̂

�
�, which is the vector of left-hand-side par-

tial derivatives of the objective function in (5) evaluated at the solution �̂. Since

the second-order FOC term
�
@ST
@�

��
�=�̂

�
� is at most op(1), we obtain (20) if B̂t = 0.

Meanwhile, B̂t = 0 implies that B� is the solution to the following equation system.

H(�̂)B� � (1� q)B� +B�
0 = 0;

which can be rewritten as

H(�̂)B� = b; (21)

where b = (1 � q)B� � B�
0: Moreover, due to Assumptions 2 and 3(i), the rank

of H(�̂) for a su¢ ciently large T is K1 + G, which is equal to the dimension of B�.

This implies that there is no other solution asymptotically. The unique solution can

be obtained by multiplying both sides of (21) by H(�̂)0Q0 and inverting the matrix

Q̂zz = H(�̂)0Q0H(�̂) :

B� = Q̂�1zz H(�̂)
0Q0f(1� q)B� �B�
0g:

Q̂zz is invertible for T large enough because of Assumptions 3(i) and 3(iii).

Let us show that �̂ = T 1=2(�̂� �0 �B�) = Op(1). This will prove that B� is the

asymptotic bias of �̂. We can obtain �̂ = Op(1) by using the argument in Lemma

A.4 in Koenker and Zhao (1996). Similar arguments are in Jureckova (1977) and

Hjort and Pollard (1999). To use Lemma A.4 in Koenker and Zhao (1996) and obtain

�̂ = Op(1) we need to check the following conditions:

(i) ��0 ~MT (��) � ��0 ~MT (�) for � � 1 and jj�jj � L3 for some L3 > 0:

(ii) jjH(��0)0MT (�̂0)jj = Op(1);

(iii) ~MT (�̂) = op(1).
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(iv) Q�zz is positive de�nite.

Condition (i) is obtained by noticing that function h(�) =
PT

t=1 ��(qvt�T�1=2x0tH(�̂)���

T�1=2x0t�̂0) is convex in �, and therefore that its gradient,��0 ~MT (��) is non-decreasing

in �. Condition (ii) stems from (17). Condition (iii) results from the �rst-order con-

ditions of the second stage, as we discussed above. Finally, condition (iv) is ensured

by Assumptions 3(i) and 3(iii). Hence, by Lemma A.4 in Koenker and Zhao (1996),

we have

�̂ = T 1=2(�̂� �0 �B�) = Op(1): (22)

(d) Inversion: Therefore, we can plug �̂ into (19) in place of �; and using the result

in (20) gives

q�1Q�zz�̂ = H(��0)
0MT (�̂0) + op(1); (23)

= H(��0)
0MT (0)�H(��0)

0q�1Q0�̂0 + op(1) (24)

where the second equality comes from (16). By plugging the de�nition of �̂0 and

inverting q�1Q�zz, we obtain

T 1=2(�̂� �0 �B�) = Q��1zz H(��0)
0fT�1=2

TX
t=1

xtq �(vt)

+(1� q)Q0T
1=2(�̂ � �0 �B�)

�Q0T 1=2(�̂� �0 �B�)
0g+ op(1).

QED.

Proof of Proposition 2:

Let A = RQ0; a (G + K1) � K matrix. Since RQ1 is the �rst column of A,

which we denote a0, we just need to show that a0 is composed of a one at the �rst

line and zeros elsewhere. We have AH(��0) = RQ0H(�
�
0) = I(G+K1) by de�nition

of R. It follows that the �rst column of AH(��0) is a
0, owing to the arrangement
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of elements in H(��0). Indeed, the �rst column of AH(��0) can be calculated by

matrix multiplying successively the lines of A by the �rst column of H(��0), which

is (1; 00K�1)
0. So, only the �rst element of each line of A is kept and stored in the

column. Consequently, since the �rst column of I(G+K1) is (1; 0; : : : ; 0)
0, we have

RQ1 =

24 1
0K1+G�1

35. The proof can be similarly extended to other columns with
Q0 = [Qj; Q�j], where Qj corresponds to the �rst j columns f Q0 and Q�j to the

other columns of Q0; 1 � j � K1. In that case, we obtain RQj =

24 Ij

0K1+G�j

35.
Therefore, in the situations where the bias term (1� q)B��B�
0 is restricted to the

�rst K1 components, we obtain the result of the Proposition. QED.

Proof of Proposition 3: Replacing the asymptotic representation of the �rst stage

and collecting terms in the asymptotic representation for the 2SQR(�; q) with LS

�rst-stage estimators gives

T 1=2(~�� �0 �B�) =MT�1=2
TX
t=1

St + op(1)

Since x0t; ut; vt are �-mixing by assumption, and St is a measurable function of x
0
t; ut; vt,

it follows that St is also �-mixing. Next, E(St) = 0 by Assumptions 3(iv) and

4(ii). Finally, Assumption 4(i) provides all the moment conditions necessary to invoke

Theorem 5.20 of White (2001). Hence, we have:

V
�1=2
T T�1=2

TX
t=1

St
d! N(0; I)

which implies the result. QED.

Calculus of q*:

With OLS �rst-stage estimators, we have �20(q) = aq2 + 2bq + c, where a =

E [f(0)�1 �(vt)� v�t ]
2
; b = E [(f(0)�1 �(vt)� v�t )u

�
t ] and c = E(u�2t ), which corre-

sponds to a convex parabolic curve that attains its minimum at
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q� = � b
a
=

E(v�t u
�
t )�f(0)�1E( �(vt)u�t )

f(0)�2�(1��)+E(v�2t )�2f(0)�1E( �(vt)v�t )
: The calculus for the TLS case is

similar.

Appendix B: Simulation Design

We base our simulations on the simplest possible model: a simultaneous equa-

tion system with two simple equations. The �rst equation, which is the equation of

interest, contains two endogenous variables and two exogenous variables including a

constant. Four exogenous variables are present in the whole system. The structural

simultaneous equation system can be written B

24 yt

Yt

35+ �xt = Ut; where

24 yt

Yt

35 is
a 2 � 1 vector of endogenous variables, xt is a 4 � 1 vector of exogenous variables

with the �rst element equal to one. The error term Ut is a 2 � 1 vector of error

terms. We specify the structural parameters as follows: B =

24 1 �0:5

�0:7 1

35 and
� =

24 �1 �0:2 0 0

�1 0 �0:4 0:2

35 : The system is over-identi�ed by the exclusion re-

strictions �13 = �14 = �22 = 0. Moreover, [ v V ] = U (B0)�1. Hence, 
 = 0:5 and

�0 = (�0; �1) = (1; 0:2).

The choice of the parameter values is led by the following considerations. Only

attenuated e¤ects are chosen for the cross e¤ects of the two endogenous variables

so that the endogeneity be interesting but not extreme. Identi�cation restrictions

and the degree of over-identi�cation drive the occurrence of exogenous variables in

the equations. Moderate, while non-negligible and comparable e¤ects are allowed for

these variables.

The error v in the reduced-form equations is generated so as to satisfy Assump-

tion 3(iv): v = ve � F�1ve (�) where ve = �(x5t)wt, wt is generated by using al-
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ternatively the distributions N(0; 1); t(3) and LN(0,1) with correlation coe¢ cient

�0:1 and x5t is generated from a distribution N(0; 1) independently of other random

variables and errors. Because we assume that x5t is independent of wt and wt is

iid, F�1ve (�) = �(x5t)F
�1
w (�); where F�1w (�) is the inverse cumulative function of wt

evaluated at �: The scale factor is �(x5t) = 1 + �x5t. We choose � = 0:05 under

heteroscedasticity and � = 0 under iid. The errors Vj are generated in the same way,

albeit without heteroscedasticity. Then, we draw the second to fourth columns in

X from the normal distribution with mean (0:5; 1;�0:1)0, variances normalised to 1,

cov(x2; x3) = 0:3; cov(x2; x4) = 0:1 and cov(x3; x4) = 0:2, where x2; x3 and x4 are

respectively the second, third and fourth components of xt. The correlations between

the exogenous variables are neither extreme nor negligible. Given X; [ v V ] and

[ �0 �0 ] = ��0(B0)�1, we generate the endogenous variables [ y Y ] by using the

reduced-form equation: [ y Y ] = X[ �0 �0 ] + [ v V ]
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