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Abstract

Many applied problems require an estimate of a covariance matrix and/or its inverse.

When the matrix dimension is large compared to the sample size, which happens fre-

quently, the sample covariance matrix is known to perform poorly and may suffer from

ill-conditioning. There already exists an extensive literature concerning improved estima-

tors in such situations. In the absence of further knowledge about the structure of the

true covariance matrix, the most successful approach so far, arguably, has been shrinkage

estimation. Shrinking the sample covariance matrix to a multiple of the identity, by taking

a weighted average of the two, turns out to be equivalent to linearly shrinking the sam-

ple eigenvalues to their grand mean, while retaining the sample eigenvectors. Our paper

extends this approach by considering nonlinear transformations of the sample eigenvalues.

We show how to construct an estimator which is asymptotically equivalent to an oracle

estimator suggested in previous work. As demonstrated in extensive Monte Carlo simula-

tions, the resulting bona fide estimator can result in sizeable improvements over the sample

covariance matrix and also over linear shrinkage.

KEY WORDS: Large-dimensional asymptotics, nonlinear shrinkage, rotation equivariance.
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1 Introduction

Many statistical applications require an estimate of a covariance matrix and/or of its inverse

when the matrix dimension, p, is large compared to the sample size, n. It is well-known that

in such situations, the usual estimator — the sample covariance matrix — performs poorly.

It tends to be far from the population covariance matrix and ill-conditioned. The goal then

becomes to find estimators which outperform the sample covariance matrix, both in finite

samples and asymptotically. For the purposes of asymptotic analyses, to reflect the fact that p

is large compared to n, one has to employ large-dimensional asymptotics where p is allowed to

go to infinity together with n. In contrast, standard asymptotics would assume that p remains

fixed while n tends to infinity.

One way to come up with improved estimators is to incorporate additional knowledge in

the estimation process, such as sparseness, a graph model, or a factor model; for example, see

Bickel and Levina (2008), Rajaratnam et al. (2008), Khare and Rajaratnam (2010), Fan et al.

(2008), and the references therein.

However, not always is such additional knowledge available or trustworthy. In this general

case, it is reasonable to require that covariance matrix estimators be rotation-equivariant.

This means that rotating the data by some orthogonal matrix rotates the estimator in exactly

the same way. In terms of the well-known decomposition of a matrix into eigenvectors and

eigenvalues, an estimator is rotation-equivariant if and only if it has the same eigenvectors as

the sample covariance matrix. Therefore, it can only differentiate itself by its eigenvalues.

Ledoit and Wolf (2004) demonstrate that the largest sample eigenvalues are systematically

biased upwards, and the smallest ones downwards. It is advantageous to correct this bias

by pulling down the largest eigenvalues and pushing up the smallest ones, towards the grand

mean of all sample eigenvalues. This is an application of the general shrinkage principle, going

back to Stein (1955). Working under large-dimensional asymptotics, Ledoit and Wolf (2004)

derive the optimal linear shrinkage formula (when the loss is defined as the Frobenius norm

of the difference between the estimator and the true covariance matrix). The same shrinkage

intensity is applied to all sample eigenvalues, regardless of their positions. For example, if

the linear shrinkage intensity is 0.5, then every sample eigenvalue is moved half-way towards

the grand mean of all sample eigenvalues. Ledoit and Wolf (2004) both derive asymptotic

optimality properties of the resulting estimator of the covariance matrix and demonstrate that

it has desirable finite-sample properties via simulation studies.

A cursory glance at the Marčenko and Pastur (1967) equation, which governs the relation-

ship between sample and population eigenvalues under large-dimensional asymptotics, shows

that linear shrinkage is the first-order approximation to a fundamentally nonlinear problem.

How good is this approximation? Ledoit and Wolf (2004) are very clear about this. Depending

on the situation at hand, the improvement over the sample covariance matrix can either be
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gigantic or minuscule. When p/n is large and/or the population eigenvalues are close to one

another, linear shrinkage captures most of the potential improvement over the sample covari-

ance matrix. In the opposite case, that is, when p/n is small and/or the population eigenvalues

are dispersed, linear shrinkage hardly improves at all over the sample covariance matrix.

The intuition behind the present paper is that the first-order approximation does not deliver

a sufficient improvement when higher-order effects are too pronounced. The cure is to upgrade

to nonlinear shrinkage estimation of the covariance matrix. We get away from the one-size-

fits-all approach by applying an individualized shrinkage intensity to every sample eigenvalue.

This is more challenging mathematically than linear shrinkage because many more parameters

need to be estimated, but it is worth the extra effort. Such an estimator has the potential

to at least match the linear shrinkage estimator of Ledoit and Wolf (2004) and often do a

lot better, especially when linear shrinkage does not deliver a sufficient improvement over the

sample covariance matrix. As will be shown later in the paper, this is indeed what we achieve

here. By providing substantial improvement over the sample covariance matrix throughout the

entire parameter space, instead of just part of it, the nonlinear shrinkage estimator is as much

of a step forward relative to linear shrinkage as linear shrinkage was relative to the sample

covariance matrix.

A formula for nonlinear shrinkage intensities has recently been proposed by Ledoit and

Péché (2011). It is motivated by a large-dimensional asymptotic approximation to the optimal

finite-sample rotation-equivariant shrinkage formula under the Frobenius norm. The advantage

of the formula of Ledoit and Péché (2011) is that it does not depend on the unobservable

population covariance matrix: it only depends on the distribution of sample eigenvalues. The

disadvantage is that the resulting covariance matrix estimator is an oracle estimator in that

it depends on the ‘limiting’ distribution of sample eigenvalues, not the observed one. These

two objects are very different. Most critically, the limiting empirical cumulative distribution

function (c.d.f.) of sample eigenvalues is continuously differentiable, whereas the observed one

is, by construction, a step function.

The main contribution of the present paper is to obtain a bona fide estimator of the co-

variance matrix which is asymptotically as good as the oracle estimator. This is done by

consistently estimating the oracle nonlinear shrinkage intensities of Ledoit and Péché (2011),

in a uniform sense. As a by-product, we also derive a new estimator of the limiting empirical

c.d.f. of population eigenvalues. A previous such estimator was proposed by El Karoui (2008).

Extensive Monte-Carlo simulations indicate that our covariance matrix estimator improves

substantially over the sample covariance matrix, even for matrix dimensions as low as p = 30.

As expected, in some situations the nonlinear shrinkage estimator performs as well as Ledoit

and Wolf’s (2004) linear shrinkage estimator, while in others, where higher-order effects are

more pronounced, it does substantially better. Since the magnitude of higher-order effects

depends on the population covariance matrix, which is unobservable, it is always safer a priori
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to use nonlinear shrinkage.

Many applied problems require an estimate of the precision matrix, which is the inverse of

the covariance matrix, instead of (or in addition to) an estimate of the covariance matrix itself.

Of course, one possibility is to simply take the inverse of the nonlinear shrinkage estimate

of the covariance matrix itself. However, this would be ad hoc. The superior approach is to

estimate the inverse covariance matrix directly by nonlinearly shrinking the inverses of the

sample eigenvalues. This gives quite different and — according to both theory and Monte-

Carlo simulations — better results. We provide a detailed, in-depth resolution of this important

question as well.

The remainder of the paper is organized as follows. Section 2 defines our framework for

large-dimensional asymptotics and reviews some fundamental results from the corresponding

literature. Section 3 presents the oracle shrinkage estimator which motivates our bona fide

nonlinear shrinkage estimator. Sections 4 and 5 show that the bona fide estimator is consis-

tent for the oracle estimator. Section 6 examines finite-sample behavior. Finally, Section 7

concludes. All mathematical proofs are collected in the appendix.

2 Large-Dimensional Asymptotics

2.1 Basic Framework

Let n denote the sample size and p ≡ p(n) the number of variables, with p/n → c ∈ (0, 1) as

n → ∞. This framework is known as large-dimensional asymptotics. The restriction to the

case c < 1 which we make here somewhat simplifies certain mathematical results as well as

the implementation of our routines in software. The case c > 1, where the sample covariance

matrix is singular, could be handled by similar methods, but is left to future research.

The following set of assumptions will be maintained throughout the paper.

(A1) The population covariance matrix Σn is a nonrandom p-dimensional positive definite

matrix.

(A2) Let Xn be an n × p matrix of real independent and identically distributed (i.i.d.) ran-

dom variables with zero mean and unit variance. One only observes Yn ≡ XnΣ
1/2
n , so

neither Xn nor Σn are observed on their own.

(A3) Let ((τn,1, . . . , τn,p); (vn,1, . . . , vn,p)) denote a system of eigenvalues and eigenvectors of Σn.

The empirical distribution function (e.d.f.) of the population eigenvalues is defined as:

∀t ∈ R, Hn(t) ≡ p−1
∑p

i=1 1[τn,i,+∞)(t), where 1 denotes the indicator function of a set.

We assume Hn(t) converges to some limit H(t) at all points of continuity of H.

(A4) Supp(H), the support of H, is the union of a finite number of closed intervals, bounded

away from zero and infinity. Furthermore, there exists a compact interval in (0,+∞)
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that contains Supp(Hn) for all n large enough.

Let ((λn,1, . . . , λn,p); (un,1, . . . , un,p)) denote a system of eigenvalues and eigenvectors of the

sample covariance matrix Sn ≡ n−1Y ′
nYn = n−1Σ

1/2
n X ′

nXnΣ
1/2
n . We can assume that eigenval-

ues are sorted in increasing order without loss of generality (w.l.o.g.). The first subscript, n,

will be omitted when no confusion is possible. The e.d.f. of the sample eigenvalues is defined

as: ∀λ ∈ R, Fn(λ) ≡ p−1
∑p

i=1 1[λi,+∞)(λ).

In the remainder of the paper, we shall use the notations Re(z) and Im(z) for the real and

imaginary parts, respectively, of a complex number z, so that:

∀z ∈ C z = Re(z) + i · Im(z) .

The Stieltjes transform of a nondecreasing function G is defined by

∀z ∈ C
+ mG(z) ≡

∫ +∞

−∞

1

λ − z
dG(λ) ,

where C
+ is the half-plane of complex numbers with strictly positive imaginary part. The

Stieltjes transform has a well-known inversion formula:

G(b) − G(a) = lim
η→0+

1

π

∫ b

a
Im

[
mG(ξ + iη)

]
dξ ,

which holds if G is continuous at a and b. Thus, the Stieltjes transform of the e.d.f. of sample

eigenvalues is:

∀z ∈ C
+ mFn(z) =

1

p

p∑

i=1

1

λi − z
=

1

p
Tr

[
(Sn − zI)−1

]
,

where I denotes a conformable identity matrix.

2.2 Marčenko-Pastur Equation and Reformulations

Marčenko and Pastur (1967) and others have proven that Fn(λ) converges almost surely (a.s.) to

some nonrandom limit F (λ) at all points of continuity of F under certain sets of assumptions.

Furthermore, Marčenko and Pastur discovered the equation that relates mF to H. The most

convenient expression of the Marčenko-Pastur equation is the one found in Silverstein (1995,

Equation (1.4)):

∀z ∈ C
+ mF (z) =

∫ +∞

−∞

1

τ
[
1 − c − c z mF (z)

]
− z

dH(τ) . (2.1)

This version of the Marčenko-Pastur equation is the one that we start out with. In addition,

Silverstein and Choi (1995) showed that: ∀λ ∈ R − {0}, limz∈C+→λ mF (z) ≡ m̆F (λ) exists,

and that F has a continuous derivative F ′ = π−1Im [m̆F ] on all of R with F ′ ≡ 0 on (−∞, 0].

5



For purposes that will become apparent later, it is useful to reformulate the Marčenko-Pastur

equation.

The limiting e.d.f. of the eigenvalues of n−1Y ′
nYn = n−1Σ

1/2
n X ′

nXnΣ
1/2
n was defined as F .

In addition, define the limiting e.d.f. of the eigenvalues of n−1YnY ′
n = n−1XnΣnX ′

n as F . It

then holds:

∀x ∈ R F (x) = (1 − c)1[0,+∞)(x) + cF (x)

∀x ∈ R F (x) =
c − 1

c
1[0,+∞)(x) +

1

c
F (x)

∀z ∈ C
+ mF (z) =

c − 1

z
+ cmF (z)

∀z ∈ C
+ mF (z) =

1 − c

c z
+

1

c
mF (z).

With this notation, Equation (1.3) of Silverstein and Choi (1995) rewrites the Marčenko-Pastur

equation as: for each z ∈ C
+, mF (z) is the unique solution in C

+ to the equation:

mF (z) = −

[
z − c

∫ +∞

−∞

τ

1 + τ mF (z)
dH(τ)

]−1

. (2.2)

Now introduce uF (z) ≡ −1/mF (z). Notice that: uF (z) ∈ C
+ ⇐⇒ mF (z) ∈ C

+. The

mapping from uF (z) to mF (z) is one-to-one on C
+.

With this change of variable, Equation (2.2) is equivalent to saying that: for each z ∈ C
+,

uF (z) is the unique solution in C
+ to the equation:

uF (z) = z + c uF (z)

∫ +∞

−∞

τ

τ − uF (z)
dH(τ). (2.3)

Let the linear operator L transform any c.d.f. G into:

LG(x) ≡

∫ x

−∞
τdG(τ).

Combining L with the Stieltjes transform, we get the following:

mLG(z) =

∫ +∞

−∞

τ

τ − z
dG(τ) = 1 + z mG(z).

Thus, we can rewrite Equation (2.3) more concisely as:

uF (z) = z + c uF (z)mLH

(
uF (z)

)
. (2.4)

As Silverstein and Choi (1995, Equation (1.4)) explain, the function defined in Equation (2.2)

is invertible. Thus, we can define the inverse function:

zF (m) ≡ −
1

m
+ c

∫ +∞

−∞

τ

1 + τ m
dH(τ). (2.5)
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We can do the same thing for Equation (2.4) and define the inverse function:

z̃F (u) ≡ u − c umLH(u). (2.6)

Equations (2.1), (2.2), (2.4), (2.5), and (2.6) are all completely equivalent to one another:

solving any one of them means having solved them all. They are all just reformulations of the

Marčenko-Pastur equation.

As will be detailed in Section 3, the oracle nonlinear shrinkage estimator of Σn involves the

quantity m̆F (λ), for various inputs λ. The following section describes how this quantity can be

found in the hypothetical case that F and H are actually known. This will then allow us later

to discuss consistent estimation of m̆F (λ) in the realistic case when F and H are unknown.

2.3 Solving the Marčenko-Pastur Equation

Silverstein and Choi (1995) explain how the support of F , denoted by Supp(F ) is determined.

Let B ≡
{
u ∈ R : u 6= 0, u ∈ Supp∁(H)

}
. Then plot the function z̃F (u) of (2.6) on the set B.

Find the extreme values on each interval. Delete these points and everything in between on

the real line. Do this for all increasing intervals. What is left is just Supp(F ); see Figure 1 of

Bai and Silverstein (1998) for an illustration.

To simplify, we will assume from here on that Supp(F ) is a single compact interval, bounded

away from zero, with F ′ > 0 in the interior of this interval. But if Supp(F ) is the union of

a finite number of such intervals, the arguments presented in this section as well as in the

remainder of the paper apply separately to each interval. In particular, our consistency results

presented in subsequent sections can be easily extended to this more general case. On the other

hand, the even more general case of Supp(F ) being the union of an infinite number of such

intervals or being a non-compact interval is ruled out by Assumption (A4). By our assumption

then, Supp(F ) is given by the compact interval [z̃F (u1), z̃F (u2)] for some u1 < u2. To keep the

notation shorter in what follows, let z̃1 ≡ z̃F (u1) and z̃2 ≡ z̃F (u2).

We know that for every λ in the interior of Supp(F ), there exists a unique v ∈ C
+, denoted

by vλ, such that:

vλ − c vλ mLH(vλ) = λ . (2.7)

We further know that:

F ′(λ) =
1

c
F ′(λ) =

1

cπ
Im[m̆F (λ)] =

1

cπ
Im

[
−

1

vλ

]
.

The converse is also true. Since Supp(F ) = [z̃F (u1), z̃F (u2)], for every x ∈ (u1, u2), there

exists a unique y > 0, denoted by yx, such that:

(x + iyx) − c (x + iyx)mLH(x + iyx) ∈ R .
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In other words, yx is the unique value of y > 0 for which Im
[
(x+iy)−c(x+iy)mLH(x+iy)

]
= 0.

Also, if λx denotes the value of λ for which we have (x + iyx) − c (x + iyx)mLH(x + iyx) = λ,

then, by definition, zλx
= x + iyx.

Once we find a way to consistently estimate yx for any x ∈ [u1, u2], then we have an estimate

of the (asymptotic) solution to the Marčenko-Pastur equation. For example: Im
[
−1/(x +

iyx)
]
/(cπ) is the value of the density F ′ evaluated at Re

[
(x+ iyx)−c (x+ iyx)mLH(x+ iyx)

]
=

(x + iyx) − c (x + iyx)mLH(x + iyx).

From the above arguments, it follows that:

∀λ ∈ (z̃1, z̃2) m̆F (λ) = −
1

vλ
and so m̆F (λ) =

1 − c

c λ
−

1

c

1

vλ
. (2.8)

3 Oracle Estimator

3.1 Covariance Matrix

In the absence of specific information about the true covariance matrix Σn, it appears rea-

sonable to restrict attention to the class of estimators which are equivariant with respect to

rotations of the observed data. To be more specific, let W be an arbitrary p-dimensional or-

thogonal matrix. Let Σ̂n ≡ Σ̂n(Yn) be an estimator of Σn. Then the estimator is said to be

rotation-equivariant if it satisfies Σ̂n(YnW ) = Σ̂n(Yn)W . In other words, the estimate based

on the rotated data equals the rotation of the estimate based on the original data. The class of

rotation-equivariant estimators of the covariance matrix is constituted of all the estimators that

have the same eigenvectors as the sample covariance matrix; see Perlman (2007, Section 5.4).

Every rotation-equivariant estimator is thus of the form:

UnDnU ′
n where Dn ≡ Diag(d1, . . . , dp) is diagonal,

and where Un is the matrix whose ith column is the sample eigenvector ui ≡ un,i. This is the

class we consider.

The starting objective is to find the matrix in this class that is closest to Σn. In order to

measure distance, we choose the Frobenius norm defined as:

||A|| ≡
√

Tr(AA′)/r for any matrix A of dimension r × m .

(Dividing by the dimension of the square matrix AA′ inside the root is not standard, but we

do this for asymptotic purposes so that the Frobenius norm remains constant equal to one for

the identity matrix regardless of the dimension; see Ledoit and Wolf (2004).) As a result, we

end up with the following minimization problem:

min
Dn

||UnDnU ′
n − Σn|| .
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Elementary matrix algebra shows that its solution is:

D∗
n ≡ Diag(d∗1, . . . , d

∗
p) where d∗i ≡ u′

iΣnui for i = 1, . . . , p . (3.1)

The interpretation of d∗i is that it captures how the ith sample eigenvector ui relates to the

population covariance matrix Σn as a whole. As a result, the finite-sample optimal estimator

is given by:

S∗
n ≡ UnD∗

nU ′
n where D∗

n is defined as in (3.1) . (3.2)

By generalizing the Marčenko-Pastur equation (2.1), Ledoit and Péché (2011) show that d∗i

can be approximated by the quantity:

dor
i ≡

λi∣∣1 − c − c λi m̆F (λi)
∣∣2 for i = 1, . . . , p, (3.3)

from which they deduce their oracle estimator:

Sor
n ≡ UnDor

n U ′
n where Dor

n ≡ Diag(dor
1 , . . . , dor

p ). (3.4)

The key difference between D∗
n and Dor

n is that the former depends on the unobservable pop-

ulation covariance matrix, whereas the latter depends on the limiting distribution of sample

eigenvalues, which makes it amenable to estimation, as explained below.

Note that Sor
n constitutes a nonlinear shrinkage estimator: since the value of the denomi-

nator of dor
i varies with λi, the shrunken eigenvalues dor

i are obtained by applying a nonlinear

transformation to the sample eigenvalues λi; see Figure 2 for an illustration. Ledoit and Péché

(2011) also illustrate in some (limited) simulations that this oracle estimator can provide a

magnitude of improvement over the linear shrinkage estimator of Ledoit and Wolf (2004).

Of course, the estimator (3.4) is not available in practice, since m̆F (λ) is an unknown

population quantity. However, being able to consistently estimate m̆F (λ), uniformly in λ, will

allow us to construct a bona fide estimator which converges to the oracle estimator almost

surely (in the sense that the Frobenius norm of the difference between the two estimators

converges to zero almost surely). This is the topic of Sections 4 and 5. Needless to say, the

constant c is also not known in practice, but a trivial consistent estimator is given by ĉn ≡ p/n.

3.2 Precision Matrix

Often times an estimator of the inverse of the covariance matrix, or the precision matrix, Σ−1
n

is required. A reasonable strategy would be to first estimate Σn and to then simply take the

inverse of the resulting estimate. However, such a strategy will generally not be optimal.

By arguments analogous to those leading up to (3.2), among the class of rotation-equivariant

estimators, the finite-sample optimal estimator of Σ−1
n with respect to the Frobenius norm is

given by:

P ∗
n ≡ UnA∗

nU ′
n where a∗i ≡ u′

iΣ
−1
n ui for i = 1, . . . , p . (3.5)
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In particular, note that P ∗
n 6= (S∗

n)−1 in general.

Studying the asymptotic behavior of the diagonal matrix A∗
n led Ledoit and Péché (2011)

to the following oracle estimator:

P or
n ≡ UnAor

n U ′
n where aor

i ≡ λ−1
i

(
1 − c − 2 cλi Re[m̆F (λi)]

)
for i = 1, . . . , p . (3.6)

In particular, note that P or
n 6= (Sor

n )−1 in general.

It is seen that both oracle estimators Sor
n and P or

n involve the unknown quantities m̆F (λi),

for i = 1, . . . , p. The next section explains how to construct a uniformly consistent estimator

of m̆F (λ), for arbitrary λ, based on a consistent estimator of H, the limiting spectral distribu-

tion of the population eigenvalues. In the section thereafter, we will discuss how to construct

a consistent estimator of H from the observed data.

4 Estimation of m̆F (λ)

Fix x ∈ [u1 + η, u2 − η], where η > 0 is some small number. From the previous discussion in

Section 2, it follows that the equation

Im
[
x + iy − c (x + iy)mLH(x + iy)

]
= 0

has a unique solution y ∈ (0,+∞), called yx. Since u1 < x < u2, it follows that yx > 0; for

x = u1 or x = u2, we would have yx = 0 instead. The goal is to consistently estimate yx,

uniformly in x ∈ [u1 + η, u2 − η].

Define for any c.d.f. G and for any d > 0, the real function

gG,d(y, x) ≡
∣∣∣Im

[
x + iy − d (x + iy)mLG(x + iy)

]∣∣∣ .

With this notation, yx is the unique minimizer in (0,+∞) of gH,c(y, x) then. In particular,

gH,c(yx, x) = 0.

In the remainder of the paper, the symbol ⇒ denotes weak convergence (or convergence in

distribution).

Proposition 4.1.

(i) Let {Ĥn} be a sequence of probability measures with Ĥn ⇒ H. Let {ĉn} be a sequence of

positive real numbers with ĉn → c. Let K ⊆ (0,∞) be a compact interval satisfying
{
yx :

x ∈ [u1 +η, u2−η]
}
⊆ K. For a given x ∈ [u1 +η, u2−η], let ŷn,x ≡ miny∈K g bHn,bcn

(y, x).

It then holds that ŷn,x → yx uniformly in x ∈ [u1 + η, u2 − η].

(ii) In case of Ĥn ⇒ H a.s., it holds that ŷn,x → yx a.s. uniformly in x ∈ [u1 + η, u2 − η].

It should be pointed out that the assumption
{
yx : x ∈ [u1 + η, u2 − η]

}
⊆ K is not really

restrictive, since one can choose K ≡ [ε, 1/ε] for ε arbitrarily small.
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We also need to solve the ‘inverse’ estimation problem, namely starting with λ and recov-

ering the corresponding vλ. Fix λ ∈ [z̃1 + δ̃, z̃2 − δ̃], where δ̃ > 0 is some small number. From

the previous discussion, it follows that the equation

v − c v mLH(v) = λ

has a unique solution v ∈ C
+, called vλ. The goal is to consistently estimate vλ, uniformly in

λ ∈ [z̃1 + δ̃, z̃2 − δ̃].

Define for any c.d.f. G and for any d > 0, the real function

hG,d(v, λ) ≡
∣∣v − d v mLG(v) − λ

∣∣ .

With this notation, vλ is the unique minimizer in C
+ of hH,c(v, λ) then. In particular,

hH,c(vλ, λ) = 0.

Proposition 4.2.

(i) Let {Ĥn} be a sequence of probability measures with Ĥn ⇒ H. Let {ĉn} be a sequence

of positive real numbers with ĉn → c. Let K ⊆ C
+ be a compact set satisfying

{
vλ : λ ∈

[z̃1 + δ̃, z̃2 − δ̃]
}
⊆ K. For a given λ ∈ [z̃1 + δ̃, z̃2 − δ̃], let v̂n,λ ≡ minv∈K h bHn,bcn

(v, λ). It

then holds that v̂n,λ → vλ uniformly in λ ∈ [z̃1 + δ̃, z2 − δ̃].

(ii) In case of Ĥn ⇒ H a.s., it holds that v̂n,λ → vλ a.s. uniformly in λ ∈ [z̃1 + δ̃, z2 − δ̃].

Being able to find consistent estimators of vλ, uniformly in λ, now allows us to find con-

sistent estimators of m̆F (λ), uniformly in λ, based on (2.8). Our estimator of m̆F (λ) is given

by:

m̆F bHn,bcn
(λ) ≡

1 − ĉn

ĉn λ
−

1

ĉn

1

v̂n,λ
. (4.1)

This, in return, provides us with a consistent estimator of Sor
n , the oracle nonlinear shrinkage

estimator of Σn. Define:

Ŝn ≡ UnD̂nU ′
n where d̂i ≡

λi∣∣1 − ĉn − ĉn λi m̆F bHn,bcn
(λi)

∣∣2 for i = 1, . . . , p . (4.2)

It also provides us with a consistent estimator of P or
n , the oracle nonlinear shrinkage esti-

mator of Σ−1
n . Define:

P̂n ≡ UnÂnU ′
n where âi ≡ λ−1

i

(
1 − ĉn − 2 ĉnλi Re[m̆F bHn,bcn

(λi)]
)

for i = 1, . . . , p . (4.3)

In particular, note that P̂n 6= Ŝ−1
n in general.

Proposition 4.3.

(i) Let {Ĥn} be a sequence of probability measures with Ĥn ⇒ H. Let {ĉn} be a sequence of

positive real numbers with ĉn → c. It then holds that:
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(a) m̆F bHn,bcn
(λ) → m̆F (λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃]

(b) ||Ŝn − Sor
n || → 0

(c) ||P̂n − P or
n || → 0

(ii) In case of Ĥn ⇒ H a.s., it holds that:

(a) m̆F bHn,bcn
(λ) → m̆F (λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] a.s.

(b) ||Ŝn − Sor
n || → 0 a.s.

(c) ||P̂n − P or
n || → 0 a.s.

5 Estimation of H

As described before, consistent estimation of the oracle estimators of Ledoit and Péché (2011)

requires (uniformly) consistent estimation of m̆F (λ). Since Im [m̆F (λ)] = πF ′(λ), one possible

approach could be to take an off-the-shelf density estimator for F ′, based on the observed

sample eigenvalues λi. There exists a large literature on density estimation; for example, see

Silverman (1986). The real part of m̆F (λi) could be estimated in a similar manner.

However, the sample eigenvalues do not satisfy any of the regularity conditions usually

invoked for the underlying data. It really is not clear at all whether an off-the-shelf density

estimator applied to the sample eigenvalues would result in consistent estimation of F ′.

Even if this issue was somehow resolved, using such a generic procedure would not exploit

the specific features of the problem. Namely: F is not just any distribution, it is a distribution

of sample eigenvalues. It is the solution to the Marčenko-Pastur equation for some H. This

is valuable information that narrows down considerably the set of possible distributions F .

Therefore an estimation procedure specifically designed to incorporate this a priori knowledge

would be better suited to the problem at hand. This is the approach we select.

In a nutshell: our estimator of F is the c.d.f. that is closest to Fn among the c.d.f.s that

are a solution to the Marčenko-Pastur equation for some H̃ and for c̃ ≡ p/n. The ‘underlying’

distribution H̃ which produces the thus obtained estimator of F is, in return, our estimator

of H. If we can show that this estimator of H is consistent, then the results of the previous

section demonstrate that the implied estimator of m̆F (λ) is uniformly consistent.

Section 5.1 derives theoretical properties of this approach, while Section 5.2 discusses var-

ious issues concerning the practical implementation.

5.1 Consistency Results

For a grid of real numbers Q ≡ {. . . , t−1, t0, t1, . . .} ⊆ R, with tk−1 < tk, define the correspond-

ing grid size γ as

γ ≡ sup
k

(tk − tk−1) .

12



A grid Q is said to cover a compact interval [a, b] ⊆ R if there exists at least one tk ∈ Q with

tk ≤ a and at least another tk′ ∈ Q with b ≤ tk′ . A sequence of grids {Qn} is said to eventually

cover a compact interval [a, b] if for every φ > 0 there exist N ≡ N(φ) such that Qn covers the

compact interval [a + φ, b − φ] for all n ≥ N .

For any probability measure H̃ on the real line and for any c̃ > 0, let F eH,ec denote the c.d.f.

on the real line induced by the corresponding solution of the Marčenko-Pastur equation. More

specifically, for each z ∈ C
+, mF eH,ec

(z) is the unique solution for m ∈ C
+ to the equation:

m =

∫ +∞

−∞

1

τ [1 − c̃ − c̃ z m] − z
dH̃(τ) .

In this notation, we then have F = FH,c.

It follows from Silverstein and Choi (1995) again that: ∀λ ∈ R−{0}, limz∈C+→λ mF eH,ec
(z) ≡

m̆F eH,ec
(λ) exists, and that F eH,ec has a continuous derivative F ′

eH,ec
= π−1Im

[
m̆F eH,ec

]
on (0,+∞).

In the case c̃ < 1, F eH,ec has a continuous derivative on all of R with F ′
eH,ec

≡ 0 on (−∞, 0].

For a grid Q on the real line and for two c.d.f.s G1 and G2, define:

||G1 − G2||Q ≡ sup
t∈Q

|G1(t) − G2(t)|

The following theorem shows that both F and H can be estimated consistently via an

idealized algorithm.

Theorem 5.1. Let {Qn} be a sequence of grids on the real line eventually covering the support

of F with corresponding grid sizes {γn} satisfying γn → 0. Let {ĉn} be a sequence of positive

real numbers with ĉn → c. Let Ĥn be defined as:

Ĥn ≡ argmin
eH

||F eH,bcn
− Fn||Qn , (5.1)

where H̃ is a probability measure.

Then we have: (i) F bHn,bcn
⇒ F a.s.; and (ii) Ĥn ⇒ H a.s.

The algorithm used in the theorem is not practical for two reasons. First, it is not possible

to optimize over all probability measures H̃. But similar to El Karoui (2008), we can show

that it is sufficient to optimize over all probability measures which are sums of atoms, the

location of which is restricted to a fixed-size grid, with the grid size vanishing asymptotically.

Corollary 5.1. Let {Qn} be a sequence of grids on the real line eventually covering the support

of F with corresponding grid sizes {γn} satisfying γn → 0. Let {ĉn} be a sequence of positive

real numbers with ĉn → c. Let Pn denote the set of all probability measures which are sums of

atoms belonging to the grid {Jn/Tn, (Jn+1)/Tn, . . . ,Kn/Tn} with Tn → ∞, Jn being the largest

integer satisfying Jn/Tn ≤ λ1, and Kn being the smallest integer satisfying Kn/Tn ≥ λp. Let

Ĥn be defined as:

Ĥn ≡ argmin
eH∈Pn

||F eH,bcn
− Fn||Qn , (5.2)
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Then we have: (i) F bHn,bcn
⇒ F a.s.; and (ii) Ĥn ⇒ H a.s.

But even restricting the optimization over a manageable set of probability measures is not

quite practical yet for a second reason. Namely, to compute F eH,bcn
exactly for a given H̃,

one would have to (numerically) solve the Marčenko-Pastur equation for an infinite number of

points. In practice, we can only afford to solve the equation for a finite number of points and

then approximate F eH,bcn
by trapezoidal integration. Fortunately, this approximation does not

negatively affect the consistency of our estimators.

Let G be a c.d.f. with continuous density g and compact support [a, b]. For a grid

Q ≡ {. . . , t−1, t0, t1, . . .} covering the support of G, the approximation to G via trapezoidal

integration over the grid Q, denoted by ĜQ, is obtained as follows. For t ∈ [a, b], let

Jlo ≡ max{k : tk ≤ a} and Jhi ≡ min{k : t < tk}. Then:

ĜQ(t) ≡

Jhi−1∑

k=Jlo

(tk+1 − tk)[g(tk) + g(tk+1)]

2
. (5.3)

Now turn to the special case G ≡ F eH,ec
and Q ≡ Qn. In this case, we denote the approxi-

mation to F eH,ec
via trapezoidal integration over the grid Qn by F̂ eH,ec;Qn

.

Corollary 5.2. Assume the same assumptions as in Corollary 5.1. Let Ĥn be defined as:

Ĥn ≡ argmin
eH∈Pn

||F̂ eH,bcn;Qn
− Fn||Qn , (5.4)

Let m̆F bHn,bcn
(λ), Ŝn, and P̂n be defined as in (4.1), (4.2), and (4.3), respectively. Then:

(i) F bHn,bcn
⇒ F a.s.

(ii) Ĥn ⇒ H a.s.

(iii) For any δ̃ > 0, m̆F bHn,bcn
(λ) → m̆F (λ) a.s. uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃].

(iv) ||Ŝn − Sor
n || → 0 a.s.

(v) ||P̂n − P or
n || → 0 a.s.

5.2 Implementation Details

Decomposition of the c.d.f. of Population Eigenvalues As discussed before, it is not

practical to search over the set of all possible c.d.f.s H̃. Following El Karoui (2008), we

project H onto a certain basis of c.d.f.s (Mk)k=1,...,K , where K goes to infinity along with n

and p. The projection of H onto this basis is given by the nonnegative weights w1, . . . , wK ,

where:

∀t ∈ R H(t) ≈ H̃(t) ≡
K∑

k=1

wkMk(t) and
K∑

k=1

wk = 1. (5.5)
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Thus, our estimator for F will be a solution to the Marčenko-Pastur equation for H̃ given by

Equation (5.5) for some (wk)k=1,...,K , and for c̃ ≡ p/n. It is just a matter of searching over all

sets of nonnegative weights summing up to one.

Choice of Basis We base the c.d.f.s (Mk)k=1,...,K on a grid of p equally spaced points on

the interval [λ1, λp]:

xi ≡ λ1 +
i − 1

p
(λp − λ1) for i = 1, . . . , p . (5.6)

Thus, x1 = λ1 and xp = λp. We then form the basis {M1, . . . ,Mk} as the union of three

families of c.d.f.s:

1. the indicator functions 1[xi,+∞) (i = 1, . . . , p);

2. the c.d.f.s whose derivatives are linearly increasing on the interval [xi−1, xi] and zero

everywhere else (i = 2, . . . , p);

3. the c.d.f.s whose derivatives are linearly decreasing on the interval [xi−1, xi] and zero

everywhere else (i = 2, . . . , p).

This list yields a basis (Mk)k=1,...,K of dimension K = 3p − 2. Notice that by the theoretical

results of Section 5.1, it would be sufficient to use the first family only. Including the second

and third families in addition cannot make the approximation to H any worse.

Trapezoidal Integration For a given H̃ ≡
∑K

k=1 wkMk, it is computationally too expensive

(in the context of an optimization procedure) to solve the Marčenko-Pastur equation for mF (z)

over all z ∈ C
+. It is more efficient to solve the Marčenko-Pastur equation only for m̆F (xi)

(i = 1, . . . , p), and to use the trapezoidal approximation formula to deduce from it F (xi)

(i = 1, . . . , p). The trapezoidal rule gives:

∀i = 1, . . . , p F (xi) =
i−1∑

j=1

xj+1 − xj−1

2
F ′(xj) +

xi − xi−1

2
F ′(xi)

=

i−1∑

j=1

(xj+1 − xj−1) Im [m̆F (xj)]

2π
+

(xi − xi−1) Im [m̆F (xi)]

2π
, (5.7)

with the convention x0 ≡ 0.

Objective Function The objective function measures the distance between Fn and the F

that solves the Marčenko-Pastur equation for H̃ ≡
∑K

k=1 wkMk and for c̃ ≡ p/n. Traditionally,

Fn is defined as càdlàg, that is : Fn(λ1) = 1/p and Fn(λp) = 1. However, there is a certain

degree of arbitrariness in this convention: why is Fn(λp) equal to one but Fn(λ1) not equal to

zero? By symmetry, there is no a priori justification for specifying that the largest eigenvalue
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is closer to the supremum of the support of F than the smallest to its infimum. Therefore, a

different convention might be more appropriate in this case, which leads us to the following

definition:

∀i = 1, . . . , p F̂n(λi) ≡
i

p
−

1

2p
. (5.8)

This choice restores a certain element of symmetry to the treatment of the smallest vs. the

largest eigenvalue. From Equation (5.8), we deduce F̂n(xi), for i = 2, . . . , p − 1, by linear

interpolation. With a sup-norm error penalty, this leads to the following objective function:

max
i=1,...,p

∣∣∣F (xi) − F̂n(xi)
∣∣∣ , (5.9)

where F (xi) is given by Equation (5.7) for i = 1, . . . , p. Using Equation (5.7), we can rewrite

this objective function as:

max
i=1,...,p

∣∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1) Im [m̆F (xj)]

2π
+

(xi − xi−1) Im [m̆F (xi)]

2π
− F̂n(xi)

∣∣∣∣∣∣
.

Optimization Program We now have all the ingredients needed to state the optimiza-

tion program that will extract the estimator of m̆F (x1), . . . , m̆F (xp) from the observations

λ1, . . . , λp. It is the following:

min
m1,...,mp
w1,...,wK

max
i=1,...,p

∣∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1) Im [mj ]

2π
+

(xi − xi−1) Im [mi]

2π
− F̂n(xi)

∣∣∣∣∣∣

subject to:

∀j = 1, . . . , p mj =
K∑

k=1

∫ +∞

−∞

wk

t [1 − (p/n) − (p/n)xj mj] − xj
dMk(t) (5.10)

K∑

k=1

wk = 1

∀j = 1, . . . , p mj ∈ C
+

∀k = 1, . . . ,K wk ≥ 0.

The key is to introduce the variables mj ≡ m̆F (xj), for j = 1, . . . , p. The constraint in

Equation (5.10) imposes that mj is the solution to the Marčenko-Pastur equation evaluated

as z ∈ C
+ → xj when H̃ =

∑K
k=1 wkMk.

Real Optimization Program In practice, most optimizers only accept real variables, there-

fore it is necessary to decompose mj into its real and imaginary parts: aj ≡ Re[mj] and

bj ≡ Im[mj ]. Then we can optimize separately over the two sets of real variables aj and bj for

j = 1, . . . , p. The Marčenko-Pastur constraint in Equation (5.10) splits into two constraints:
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one for the real part and the other for the imaginary part. The reformulated optimization

program is:

min
a1,...,ap
b1,...,bp

w1,...,wK

max
i=1,...,p

∣∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1) bj

2π
+

(xi − xi−1) bi

2π
− F̂n(xi)

∣∣∣∣∣∣
(5.11)

subject to:

∀j = 1, . . . , p aj =

K∑

k=1

∫ +∞

−∞
Re

{
wk

t [1 − (p/n) − (p/n)xj(aj + ibj)] − xj

}
dMk(t) (5.12)

∀j = 1, . . . , p bj =
K∑

k=1

∫ +∞

−∞
Im

{
wk

t [1 − (p/n) − (p/n)xj(aj + ibj)] − xj

}
dMk(t) (5.13)

K∑

k=1

wk = 1 (5.14)

∀j = 1, . . . , p bj ≥ 0 (5.15)

∀k = 1, . . . ,K wk ≥ 0. (5.16)

Remark 5.1. Since the theory of Sections 4 and 5.1 partly assumes that mj belongs to

a compact set in C
+ bounded away from the real line, we might want to add to the real

optimization program the constraints that −1/ε ≤ aj ≤ 1/ε and that ε ≤ bj ≤ 1/ε, for some

small ε > 0. Our simulations indicate that for a small value of ε such as ε = 10−6, this makes

no difference in practice.

Sequential Linear Programming While the optimization program defined in Equations

(5.11)–(5.16) may appear daunting at first sight, it is in fact solved quickly and efficiently by off-

the-shelf optimization software implementing Sequential Linear Programming (SLP). The key

is to linearize Equations (5.12)–(5.13), the two constraints that embody the Marčenko-Pastur

equation, around an approximate solution point. Once they are linearized, the optimization

program (5.11)–(5.16) becomes a standard Linear Programming (LP) problem, which can be

solved very quickly. Then we linearize again Equations (5.12)–(5.13) around the new point,

and this generates a new LP problem; hence the name: Sequential Linear Programming. The

software iterates until a satisfactory degree of convergence is achieved. All of this is handled

automatically by the SLP optimizer. The user only needs to specify the problem (5.11)–(5.16),

as well as an adequate starting point, and then launch the SLP optimizer. For our SLP

optimizer, we selected a standard off-the-shelf commercial software: SNOPT
TM

Version 7.2-5;

see Gill et al. (2002). While SNOPT
TM

was originally designed for Sequential Quadratic

Programming, it also handles SLP, since Linear Programming can be viewed as a particular

case of Quadratic Programming with no quadratic term. On average, it converges in only

about five seconds on a desktop Mac for a problem with p = 100 variables.
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Starting Point A neutral way to choose the starting point is to place equal weights on all

the c.d.f.s in our basis: wk = 1/K (k = 1, . . . ,K). Then it is necessary to solve the Marčenko-

Pastur equation numerically once before launching the SLP optimizer, in order to compute the

values of m̆F (xj) (j = 1, . . . , p) that correspond to this initial choice of H̃ =
∑K

k=1 Mk/K. The

initial values for aj are taken to be Re [m̆F (xj)], and Im [m̆F (xj)] for bj (j = 1, . . . , p). Any

good starting point should satisfy all the constraints, in particular those corresponding to the

Marčenko-Pastur equation.

Estimating the Covariance Matrix Once the SLP optimizer has converged, it generates

optimal values (a∗1, . . . , a
∗
p), (b∗1, . . . , b

∗
p), and (w∗

1, . . . , w
∗
K). The first two sets of variables

at the optimum are used to estimate the oracle shrinkage factors. From the reconstructed

m̆∗
F (xj) = a∗j + ib∗j , we deduce by linear interpolation m̆∗

F (λj) for j = 1, . . . , p. Our estimator

of the covariance matrix Ŝn is built by keeping the same eigenvectors as the sample covariance

matrix, and dividing each sample eigenvalue λj by the following correction factor:

∣∣∣1 −
p

n
−

p

n
λj m̆∗

F (λj)
∣∣∣
2
.

Corollary 5.2 assures us that the resulting bona fide nonlinear shrinkage estimator is asymp-

totically equivalent to the oracle estimator Sor
n . Also, we can see that, as the concentration

ĉn = p/n gets closer to zero, that is, as we get closer to fixed-dimension asymptotics, the mag-

nitude of the correction becomes smaller. This makes sense because under fixed-dimension

asymptotics the sample covariance matrix is a consistent estimator of the population covari-

ance matrix.

Estimating the Precision Matrix The output of the same optimization process can also

be used to estimate the oracle shrinkage factors for the precision matrix. Our estimator of

the precision matrix Σ−1
n is built by keeping the same eigenvectors as the sample covariance

matrix, and multiplying the inverse λ−1
j of each sample eigenvalue by the following correction

factor:

1 −
p

n
− 2

p

n
λj Re

[
m̆∗

F (λj)
]

.

Corollary 5.2 assures us that the resulting bona fide nonlinear shrinkage estimator is asymp-

totically equivalent to the oracle estimator P or
n .

Estimating H We point out that the optimal values (w∗
1, . . . , w

∗
K) generated from the SLP

optimizer yield a consistent estimate of H in the following fashion:

H∗ ≡

K∑

k=1

w∗
kMk .
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This estimator could be considered an alternative to the estimator introduced by El Karoui

(2008). The most salient difference between the two optimization algorithms is that our objec-

tive function tries to match Fn on R, whereas his objective function tries to match (a function

of) mFn on C
+. However, since the estimation of H is not of prime interest to us, we will not

pursue this topic further or investigate potential (dis)advantages of these two approaches.

6 Monte Carlo Simulations

In this section, we present the results of various sets of Monte Carlo simulations designed

to illustrate the finite-sample properties of the nonlinear shrinkage estimator of the covari-

ance matrix. As detailed in Section 3, the finite-sample optimal estimator in the class of

rotation-equivariant estimators is given by S∗
n as defined in (3.2). Thus, the improvement of

the shrinkage estimator Ŝn over the sample covariance matrix will be measured by how closely

this estimator approximates S∗
n relative to the sample covariance matrix. More specifically, we

report the Percentage Relative Improvement in Average Loss (PRIAL), which is defined as:

PRIAL ≡ PRIAL(Σ̂n) ≡ 100 ×



1 −

E

[∥∥Σ̂n − S∗
n

∥∥2
]

E

[∥∥Sn − S∗
n

∥∥2
]



 % , (6.1)

where Σ̂n is an arbitrary estimator of Σn. By definition, the PRIAL of Sn is 0% while the

PRIAL of S∗
n is 100%.

Most of the simulations will be designed around a population covariance matrix Σn that has

20% of its eigenvalues equal to 1, 40% equal to 3, and 40% equal to 10. This is a particularly

interesting and difficult example introduced and analyzed in great detail by Bai and Silverstein

(1998). For concentration values such as c = 1/3 and below, it displays ‘spectral separation’,

that is, the support of the distribution of sample eigenvalues is the union of three disjoint

intervals, each one corresponding to a Dirac of population eigenvalues. Detecting this pattern

and handling it correctly is a real challenge for any covariance matrix estimation method.

6.1 Convergence

The first set of Monte Carlo simulations shows how our nonlinear shrinkage estimator Ŝn

behaves as the matrix dimension p and the sample size n go to infinity together. We assume

that the concentration ratio ĉn = p/n remains constant and equal to 1/3. For every value of p

(and hence n), we run 1,000 simulations with normally distributed variables. The PRIAL is

plotted in Figure 1. For the sake of comparison, we also report the PRIALs of the oracle Sor
n ,

and of the optimal linear shrinkage estimator Sn developed by Ledoit and Wolf (2004).

We can see that the performance of the nonlinear shrinkage estimator Ŝn converges quickly

towards that of the oracle and of S∗
n. Even for relatively small matrices of dimension p = 30,

it realizes 88% of the possible gains over the sample covariance matrix. The optimal linear
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shrinkage estimator Sn performs also well relative to the sample covariance matrix, but the

improvement is limited: in general, it does not converge to 100% under large-dimensional

asymptotics. This is because there are strong nonlinear effects in the optimal shrinkage of

sample eigenvalues. These effects are clearly visible in Figure 2, which plots a typical simulation

result for p = 100.

We can see that the nonlinear shrinkage estimator Ŝn shrinks the eigenvalues of the sample

covariance matrix almost as if it ‘knew’ the correct shape of the distribution of population

eigenvalues. In particular, the various curves and gaps of the oracle nonlinear shrinkage formula

are well picked up and followed by this estimator. By contrast, the linear shrinkage estimator

can only use the best linear approximation to this highly nonlinear transformation. We also

plot the 45-degrees line as a visual reference to show what would happen if no shrinkage was

applied to the sample eigenvalues, that is, if we simply used Sn.

6.2 Concentration

The next set of Monte Carlo simulations shows how the PRIAL of the shrinkage estimators

varies as a function of the concentration ratio ĉn = p/n if we keep the product p × n constant

and equal to 9, 000. We keep the same population covariance matrix Σn as in Section 6.1.

For every value of p/n, we run 1, 000 simulations with normally distributed variables. The

respective PRIALs of Sor
n , Ŝn and Sn are plotted in Figure 3.

We can see that the nonlinear shrinkage estimator performs well across the board, closely

in line with the oracle, and always achieves at least 90% of the possible improvement over

the sample covariance matrix. By contrast, the linear shrinkage estimator achieves relatively

little improvement over the sample covariance matrix when the concentration is low. This is

because, when the sample size is large relative to the matrix dimension, there is a lot of precise

information about the optimal nonlinear way to shrink the sample eigenvalues that is waiting

to be extracted by a suitable nonlinear procedure. By contrast, when the sample size is not

so large, information about the population covariance matrix is relatively fuzzy, therefore a

simple linear approximation can achieve up to 93% of the potential gains.

6.3 Dispersion

The third set of Monte Carlo simulations shows how the PRIAL of the shrinkage estimators

varies as a function of the dispersion of population eigenvalues. We take a population covariance

matrix Σn with 20% of its eigenvalues equal to 1, 40% equal to 1 + 2d/9, and 40% equal to

1+d, where the dispersion parameter d varies from 0 to 20. Thus, for d = 0, Σn is the identity

matrix and, for d = 9, Σn is the same matrix as in Section 6.1. The sample size is n = 300 and

the matrix dimension is p = 100. For every value of d, we run 1, 000 simulations with normally

distributed variables. The respective PRIALs of Sor
n , Ŝn and Sn are plotted in Figure 4.
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We can see that the linear shrinkage estimator Sn beats the nonlinear shrinkage estimator

Ŝn for very low dispersion levels. For example, when d = 0, that is, when the population

covariance matrix is equal to the identity matrix, Sn realizes 99.9% of the possible improvement

over the sample covariance matrix, while Ŝn realizes ‘only’ 99.4% of the possible improvement.

This is because, in this case, linear shrinkage is optimal or (when d is strictly positive but still

small) nearly optimal, hence there is nothing to little to be gained by resorting to a nonlinear

shrinkage method. However, as dispersion increases, linear shrinkage delivers less and less

improvement over the sample covariance matrix, while nonlinear shrinkage retains a PRIAL

above 96% and close to that of the oracle.

6.4 Fat Tails

We also have some results on the effect of non-normality on the performance of the shrinkage

estimators. We take the same population covariance matrix as in Section 6.1, that is, Σn

has 20% of its eigenvalues equal to 1, 40% equal to 3, and 40% equal to 10. The sample

size is n = 300, and the matrix dimension is p = 100. We compare two types of random

variates: a Student t distribution with df = 3 degrees of freedom, and a Student t distribution

with df = ∞ degrees of freedom (which is the Gaussian distribution). For each number of

degrees of freedom df, we run 1, 000 simulations. The respective PRIALs of Sor
n , Ŝn and Sn

are summarized in Table 1.

Average Squared

Frobenius Loss
PRIAL

df = 3 df = ∞ df = 3 df = ∞

Sample Covariance Matrix 5.856 5.837 0% 0%

Linear Shrinkage Estimator 1.883 1.883 67.84% 67.74%

Nonlinear Shrinkage Estimator 0.128 0.133 97.81% 97.71%

Oracle 0.043 0.041 99.27% 99.30%

Table 1: Effect of Non-normality. 20% of population eigenvalues are equal to 1, 40% are equal

to 3, and 40% are equal to 10. 1, 000 Monte Carlo simulations with p = 100 and n = 300.

We can see from this table that departure from normality does not seem to have any

noticeable effect on performance.

6.5 Precision Matrix

The next set of Monte Carlo simulations focuses on estimating the precision matrix Σ−1
n . We

take the same population eigenvalues as in Section 6.1. The concentration ratio ĉn = p/n is
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set to the value 1/3. For various values of p between 30 and 200, we run 1,000 simulations

with normally distributed variables. The respective PRIALs of P or
n , P̂n, Ŝ−1

n and S
−1
n (with

respect to S−1
n and P ∗

n now instead of Sn and S∗
n) are plotted in Figure 5.

We observe that the nonlinear shrinkage method seems to be just as effective for the purpose

of estimating the precision matrix as it is for the purpose of estimating the covariance matrix

itself. Moreover, there is a clear benefit in directly estimating the precision matrix by means

of P̂n as opposed to the indirect estimation by means of Ŝ−1
n (which on its own significantly

outperforms S
−1
n ).

6.6 Shape

Next, we study how the nonlinear shrinkage estimator performs for a wide variety of shapes

of population spectral densities. This requires using a family of distributions with bounded

support and which, for various parameter values, can take on different shapes. The best-

suited family for this purpose is the beta distribution. The c.d.f. of the beta distribution with

parameters (α, β) is:

∀x ∈ [0, 1] F(α,β)(x) =
Γ(α + β)

Γ(α)Γ(β)

∫ x

0
tα−1(1 − t)β−1dt.

While the support of the beta distribution is [0, 1], we shift it to the interval [1, 10] by applying

a linear transformation. Thanks to the flexibility of the beta family of densities, selecting

different parameters (α, β) enables us to generate eight different shapes for the population

spectral density: rectangular (1, 1), linearly decreasing triangle (1, 2), linearly increasing tri-

angle (2, 1), circular (1.5, 1.5), U-shaped (0.5, 0.5), bell-shaped (5, 5), left-skewed (5, 2) and

right-skewed (2, 5); see Figure 6 for a graphical illustration.

For every one of these eight beta densities, we take the population eigenvalues to be equal

to:

1 + 9 F−1
(α,β)

(
i

p
−

1

2p

)
, i = 1, . . . , p.

The concentration ratio ĉn = p/n is equal to 1/3. For various values of p between 30 and 200,

we run 1, 000 simulations with normally distributed variables. The PRIAL of the nonlinear

shrinkage estimator Ŝn is plotted in Figure 7.

As in all the other simulations presented above, the PRIAL of the nonlinear shrinkage

estimator always exceeds 88%, and more often than not exceeds 95%. In order to preserve the

clarity of the picture, we do not report the PRIALs of the oracle and of the linear shrinkage

estimator, but as usual the nonlinear shrinkage estimator ranked between them.

6.7 Fixed-Dimension Asymptotics

Finally, we report a set of Monte-Carlo simulations that departs from the large-dimensional

asymptotics assumption under which the nonlinear shrinkage estimator Ŝn was derived. The
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goal is to compare it against the sample covariance matrix Sn in the setting where Sn is known

to have certain optimality properties (at least in the normal case): traditional asymptotics,

that is, when the number of variables p remains fixed while the sample size n goes to infinity.

This gives as much advantage to the sample covariance matrix as it can possibly have. We

fix the dimension p = 100 and let the sample size n vary from n = 125 to n = 10, 000. In

practice, very few applied researchers are fortunate enough to have as many as n = 10, 000

i.i.d. observations, or a concentration ratio c = p/n as low as 0.01. The respective PRIALs of

Sor
n , Ŝn and Sn are plotted in Figure 8.

One crucial difference with all the previous simulations is that the target for the PRIAL

is no longer S∗
n, but instead the population covariance matrix Σ itself, because now Σ can be

consistently estimated. Note that, since the matrix dimension is fixed, Σn does not change

with n; therefore, we can drop the subscript n. Thus, in this subsection only:

PRIAL ≡ PRIAL(Σ̂n) ≡ 100 ×



1 −

E

[∥∥Σ̂n − Σ
∥∥2

]

E

[∥∥Sn − Σ
∥∥2

]



 % ,

where Σ̂n is an arbitrary estimator of the population covariance matrix Σ. By definition, the

PRIAL of Sn is 0% while the PRIAL of Σ is 100%.

In this setting, Ledoit and Wolf (2004) acknowledge that the improvement of the linear

shrinkage estimator over the sample covariance matrix vanishes asymptotically, because the

optimal linear shrinkage intensity vanishes. Therefore it should be no surprise that the PRIAL

of Sn appears to go to zero in Figure 8. Perhaps more surprising is the continued ability of

the oracle and the nonlinear shrinkage estimator to improve by approximately 60% over the

sample covariance matrix, even for a sample size as large as n = 10, 000, and with no sign

of abating as n goes to infinity. This is an encouraging result, as our simulation gave every

possible advantage to the sample covariance matrix by placing it in the asymptotic conditions

where it possesses well-known optimality properties, and where the earlier linear shrinkage

estimator of Ledoit and Wolf (2004) is most disadvantaged.

Intuitively, this is because the oracle shrinkage formula becomes more and more nonlinear

as n goes to infinity for fixed p. Bai and Silverstein (1998) show that the sample covariance

matrix exhibits ‘spectral separation’ when the concentration ratio p/n is sufficiently small. It

means that the sample eigenvalues coalesce into clusters, each cluster corresponding to a Dirac

of population eigenvalues. Within a given cluster, the smallest sample eigenvalues need to

be nudged upwards, and the largest ones downwards, to the average of the cluster. In other

words: full shrinkage within clusters, and no shrinkage between clusters. This is illustrated in

Figure 9, which plots a typical simulation result for n = 10, 000.1

1For enhanced ability to distinguish linear shrinkage from the sample covariance matrix, we plot the two

uninterrupted lines, even though the sample eigenvalues lie in three disjoint intervals (as can be seen from

nonlinear shrinkage).
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By detecting this intricate pattern automatically, that is, by discovering where to shrink

and where not to shrink, the nonlinear shrinkage estimator Ŝn showcases its ability to generate

substantial improvements over the sample covariance matrix even for very low concentration

ratios.

7 Conclusion

Estimating a large-dimensional covariance matrix is a very important and challenging problem.

In the absence of additional information concerning the structure of the true covariance matrix,

a successful approach consists of appropriately shrinking the sample eigenvalues, while retaining

the sample eigenvectors. In particular, such shrinkage estimators enjoy the desirable property

of being rotation equivariant.

In this paper, we have extended the linear approach of Ledoit and Wolf (2004) by applying

a nonlinear transformation to the sample eigenvalues. The specific transformation suggested is

motivated by the oracle estimator of Ledoit and Péché (2011) which, in turn, was derived by

studying the asymptotic behavior of the finite-sample optimal rotation equivariant estimator

(that is, the estimator with the rotation equivariant property which is closest to the true

covariance matrix when distance is measured by the Frobenius norm).

The oracle estimator involves the Stieltjes transform of the limiting spectral distribution

of the sample eigenvalues, evaluated at various points on the real line. By finding a way to

consistently estimate these quantities, in a uniform sense, we have been able to construct a

bona fide nonlinear shrinkage estimator which is asymptotically equivalent to the oracle.

Extensive Monte Carlo studies have demonstrated the improved finite-sample properties

of our nonlinear shrinkage estimator compared to the sample covariance matrix and the linear

shrinkage estimator of Ledoit and Wolf (2004), as well as its fast convergence to the performance

of the oracle. In particular, when the sample size is very large compared to the dimension, or

the population eigenvalues are very dispersed, the nonlinear shrinkage estimator still yields a

significant improvement over the sample covariance matrix, while the linear shrinkage estimator

no longer does.

Many applied problems require an estimator of the inverse of the covariance matrix, which

is called the precision matrix. We have modified our nonlinear shrinkage approach to this

alternative problem, thereby constructing a direct estimator of the precision matrix. Monte

Carlo studies have confirmed that this estimator yields a sizeable improvement over the indirect

method of simply inverting the nonlinear shrinkage estimator of the covariance matrix itself.
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A Proofs

Before proving Proposition 4.1, it is instructive to first state and prove a simpler result only

claiming pointwise convergence of the estimated solutions. We will then see that this sim-

pler proof can be extended relatively easily to also cover the more general claim of uniform

convergence.

Proposition A.1. Let {Ĥn} be a sequence of probability measures with Ĥn ⇒ H. Let {ĉn}

be a sequence of positive real numbers with ĉn → c. Let K ⊆ (0,∞) be a compact interval

satisfying yx ∈ K. Let ŷn,x ≡ miny∈K g bHn,bcn
(y, x). It then holds that ŷn,x → yx.

Proof. Assume K = [k1, k2]. Define B ≡ {x + i y : x ∈ [u1, u2], y ∈ K}, which implies

B ⊆ C
+.

We first claim that:

mL bHn
(z) → mLH(z) uniformly in z ∈ B . (A.1)

Recalling that for any c.d.f. G, we have mLG(z) = 1 + z mG(z) and by the compactness of the

set B, this results will follow from:

m bHn
(z) → mH(z) uniformly in z ∈ B , (A.2)

which we establish now.

For fixed z ∈ B, consider the function:

hz(τ) ≡
τ

τ − z
.

Then it is easy to see that there exist two finite constants d1, d2, depending only on k1 > 0

but not on z, such that:

|hz(τ1) − hz(τ2)| ≤ d1|τ1 − τ2| and sup
τ

|hz(τ)| ≤ d2 . (A.3)

The fact that convergence in distribution of Ĥn to H is equivalent to convergence to zero of the

bounded-Lipschitz metric between Ĥn and H then implies (A.2); for example, see Example 22

of of Pollard (1984). In turn, we have thus established (A.1) as well. But (A.1) immediately

implies:

g bHn,bcn
(y, x) → gH,c(y, x) uniformly in y ∈ K . (A.4)

We note the following two facts:

∀ε > 0 ∃ δ > 0 such that inf
y∈K,|y−yx|≥ε

gH,c(y, x) ≥ δ (A.5)

and

g bHn,bcn
(ŷn,x, x) = o(1) , (A.6)
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where (A.6) follows from g bHn,bcn
(ŷn,x, x) ≤ g bHn,bcn

(yx, x), (A.4), and gH,c(yx, x) = 0.

By the triangular inequality:

gH,c(ŷn,x, x) ≤ |gH,c(ŷn,x) − g bHn,bcn
(ŷn,x)| + |g bHn,bcn

(ŷn,x)|

= |gH,c(ŷn,x) − g bHn,bcn
(ŷn,x)| + o(1) by (A.6)

= o(1) + o(1) by (A.4)

= o(1) .

This last result together with (A.5) now imply ŷn,x → yx.

Proof of Proposition 4.1. We start with part (i). Assume K = [k1, k2]. Define B ≡

{x + i y : x ∈ [u1, u2], y ∈ K}, which implies B ⊆ C
+.

By the same arguments leading up to (A.4) we can more generally establish that:

g bHn,bcn
(z) → gH,c(z) uniformly in z ∈ B . (A.7)

We note the following two facts:

∀ε > 0 ∃ δ > 0 such that inf
x∈[u1+η,u2−η]

{
inf

y∈K,|y−yx|≥ε
gH,c(y, x)

}
≥ δ (A.8)

and

sup
x∈[u1+η,u2−η]

g bHn,bcn
(ŷn,x, x) = o(1) , (A.9)

where (A.9) follows from g bHn,bcn
(ŷn,x, x) ≤ g bHn,bcn

(yx, x), (A.7), and gH,c(yx, x) = 0.

To simplify the notation, let I ≡ [u1 + η, u2 − η]. By the triangular inequality:

sup
x∈I

gH,c(ŷn,x, x) ≤ sup
x∈I

|gH,c(ŷn,x) − g bHn,bcn
(ŷn,x)| + sup

x∈I
|g bHn,bcn

(ŷn,x)|

= sup
x∈I

|gH,c(ŷn,x) − g bHn,bcn
(ŷn,x)| + o(1) by (A.9)

= o(1) + o(1) by (A.7)

= o(1) .

This last result together with (A.9) now imply ŷn,x → yx uniformly in x ∈ I = [u1 + η, u2 − η].

Part (ii) is proven analogously to part (i) by restricting attention to the set of probability

one on which Ĥn ⇒ H happens.

Proof of Proposition 4.2. The proof is similar to the proof of Proposition 4.1. The

details are left to the reader.

Proof of Proposition 4.3. We start with part (i)(a). Fix λ ∈ [z̃1 + δ̃, z̃2 − δ̃]. Consider:

∣∣m̆F bHn,bcn
(λ) − m̆F (λ)

∣∣ =

∣∣∣∣
1 − ĉn

ĉn λ
−

1

ĉn

1

v̂n,λ
−

(
1 − c

c λx
−

1

c

1

vλ

)∣∣∣∣ .
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The function mapping λ onto vλ is continuous, and therefore uniformly continuous, in λ ∈

[z̃1, z̃2]. As λ varies in [z̃1 + δ̃, z̃2 − δ̃], the resulting vλ varies in a compact region in C
+.

Therefore, for any ξ > 0, there exists κ > 0 such that:

∣∣m̆F bHn
,bcn

(λ) − m̆F (λ)
∣∣ < ξ as long as max

{
|ĉn − c|, |v̂n,λ − vλ|

}
< κ .

First, we can find N1 such that |ĉn − c| < κ for all n ≥ N1. Second, by part (i) of

Proposition 4.2, we can find N2 such that |v̂n,λ − vλ| < κ for all n ≥ N2, uniformly in

λ ∈ [z̃1 + δ̃, z̃2 − δ̃]. Define N ≡ max{N1, N2}. Then for all n ≥ N , it holds that:

∣∣m̆F bHn,bcn
(λ) − m̆F (λ)

∣∣ < ξ, uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] .

Since ξ can be chosen arbitrarily small, part (i)(a) obtains.

We now turn to part (i)(b). For any δ̃ > 0, it holds:

||Ŝn − Sor
n ||2 =

1

p

p∑

i=1

(
λi∣∣1 − ĉn − ĉn λi m̆F bHn,bcn

(λi)
∣∣2 −

λi∣∣1 − c − c λi m̆F (λi)
∣∣2

)2

=
1

p

∑

λi∈[ez1+eδ,ez2−eδ]

(
λi∣∣1 − ĉn − ĉn λi m̆F bHn,bcn

(λi)
∣∣2 −

λi∣∣1 − c − c λi m̆F (λi)
∣∣2

)2

+
1

p

∑

λi /∈[ez1+eδ,ez2−eδ]

(
λi∣∣1 − ĉn − ĉn λi m̆F bHn,bcn

(λi)
∣∣2 −

λi∣∣1 − c − c λi m̆F (λi)
∣∣2

)2

≡ A + B .

By our general set of assumptions, in particular Assumption (A4), combined with the results

of Bai and Silverstein (1998) and Mestre (2008, Section II), there exist two finite, non-zero

constants κ1 < κ2 such that κ1 ≤ λi ≤ κ2 for all i = 1, . . . , p and for all n large enough.

Fix ε > 0. First, we can pick δ̃ small enough to achieve B ≤ ε/2 eventually. To appreciate

why, denote be µ(δ̃) the mass which F assigns to the set [z̃1, z̃1 + δ̃] ∪ [z̃2 − δ̃, z̃2], satisfying

µ(δ̃) → 0 as δ̃ → 0. Then it is not too difficult to see that there exists a finite constant ∆,

possibly depending on H and c, such that B ≤ ∆µ(δ̃), for n sufficiently large. The reason, in

addition to κ1 ≤ λi ≤ κ2, is that also the correction factors
∣∣1 − ĉn − ĉn λi m̆F bHn,bcn

(λi)
∣∣2 and

1/|1 − c − c λi m̆F (λi)
∣∣2 are bounded away from infinity. Then, choose δ̃ small enough so that

µ(δ̃) ≤ (2/ε)∆.

Having chosen and fixed δ̃, the first half of the assertion ensures that A ≤ ε/2 eventually.

Again, we use here that κ1 ≤ λi ≤ κ2 and that also also the correction factors 1/|1 − c −

c λi m̆F (λi)
∣∣2 are bounded away from infinity. This demonstrates part (i)(b).

Part(i)(c) can be handled in a very similar fashion.

Part (ii) is proven analogously to part (i) by focusing on the set of probability one on which

Ĥn ⇒ H happens.
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Before proving Theorem 5.1, we need to establish some auxiliary results.

Recall the following notation. For a grid Q on the real line and for two c.d.f.s G1 and G2,

define:

||G1 − G2||Q ≡ sup
t∈Q

|G1(t) − G2(t)|

Lemma A.1. Let {Gn} and G be c.d.f.s on the real line, with the support of G being compact.

Let {Qn} be a sequence of grids on the real line, asymptotically covering the support of G, with

grid sizes {γn} satisfying γn → 0.

If G is continuous, then Gn ⇒ G. In particular, supt|Gn(t) − G(t)| → 0.

Proof. Denote the compact support of G by [a, b]. To prove the first part of the assertion,

let ε > 0. Fix δ > 0 such that for all t < t′ with t′ − t < δ, it holds G(t′) − G(t) < ε/4. Also

fix φ > 0. First, there exists N1 such that γn < δ for all n ≥ N1. Second, there exists N2 such

that supt∈Qn
|Gn(t) − G(t)| < ε/4 for all n ≥ N2. Third, there exists N3 such that Qn covers

[a + φ, b − φ] for all n ≥ N3. Set N ≡ max{N1, N2, N3}. For an arbitrary t ∈ [a + φ, b − φ]

and for n ≥ N , let tn ≡ max{t̃ : t̃ ∈ Qn, t̃ ≤ t} and t′n ≡ min{t̃ : t̃ ∈ Qn, t̃ ≥ t}, which implies

tn − t′n < δ. Then for all n ≥ N :

|Gn(t) − G(t)| ≤ |Gn(tn) − G(t′n)| + |Gn(t′n) − G(tn)|

≤ |Gn(tn) − G(tn)| + |Gn(t′n) − G(t′n)| +
ε

4
+

ε

4

≤
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε .

Therefore, Gn(t) converges to G(t) for all t ∈ [a+φ, b−φ]; and since φ can be chosen arbitrarily,

Gn(t) converges to G(t) for all t ∈ (a, b). By picking φ sufficiently small such that |G(a+φ)| ≤ ε

and |G(b − ε)| ≥ 1 − ε, and by the monotonicity of c.d.f.s, it also follows that |Gn(t)| ≤ 2ε for

all t ≤ a as well as |Gn(t)| ≥ 1−2ε for all t ≥ b as long as n ≥ N (where N of course is allowed

to depend on φ.) Therefore, Gn(t) converges to G(t) for all t, which establishes Gn ⇒ G. The

second part of the assertion follows immediately from the first part and Polya’s Theorem.

Lemma A.2. Let G be a probability measure with compact support contained in (0,+∞) and

let d > 0. Let {Ĝn} be a sequence of probability measures on the nonnegative real line with

Ĝn ⇒ G and let {d̂n} be a sequence of positive real numbers with d̂n → d. Also assume that

there exists an interval [a, b] contained in (0,+∞) such that Supp(Ĝn) ⊆ [a, b] for all n large

enough.

Then F bGn, bdn
⇒ FG,d.

Proof. Let zj ≡ i · (1 + 1/j), for j = 1, 2, . . . Then {zj} is an infinite sequence in C
+ with

limit point z0 ≡ i ∈ C
+. By Theorem 2 of Geronimo and Hill (2003), it is sufficient to show

that for all zj :

mF bGn, bdn
(zj) → mFG,d

(zj) . (A.10)
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Recall the notation mF eH,ec
for the solution of the Marčenko-Pastur equation, for any proba-

bility measure H̃ and for any c̃ > 0. Namely, for each z ∈ C
+, mF eH,ec

(z) is the unique solution

for m ∈ C
+ to the equation:

m =

∫ +∞

−∞

1

τ [1 − c̃ − c̃ z m] − z
dH̃(τ) .

Also, define the function:

∀m, z ∈ C f eH,ec
(m, z) ≡

∣∣∣∣m −

∫ +∞

−∞

1

τ [1 − c̃ − c̃ z m] − z
dH̃(τ)

∣∣∣∣ .

In this notation, for a given z ∈ C
+, mF eH,ec

(z) is the unique solution for m ∈ C
+ to the equation

f eH,ec(m, z) = 0. Alternatively, mF eH,ec
(z) is the unique minimizer over m ∈ C

+ of the function

f eH,ec(· , z). Note that the Stieltjes transform of any probability measure maps C
+ onto C

+. So

if z ∈ C
+, then mF eH,ec

(z) is actually the unique minimizer over m ∈ C of the function f eH,ec(· , z).

Fix zj and use the following abbreviations: m̂n,zj
≡ mF bGn, bdn

(zj) and mzj
≡ mFG,d

(zj). The

goal then is to show that m̂n,zj
→ mzj

.

We claim that there exists a compact set S ⊆ C such that m̂n,zj
∈ S for all n. The

proof is by means of contradiction. Assume the claim does not hold. Then there exists a

subsequence {nk} such that |m̂nk,zj
| → ∞. By the combined assumptions, we can then find

∆ > 0 such that for all nk large enough and for all τ ∈ [a, b]:

1∣∣τ [1 − d̂nk
− d̂nk

zj m̂nk,zj
] − zj

∣∣ ≤ ∆

implying that for all nk large enough:

|m̂nk,zj
| =

∣∣∣∣∣

∫ +∞

−∞

1

τ [1 − d̂n,k − d̂n,k zj m̂nk,zj
] − zj

dĜnk
(τ)

∣∣∣∣∣

=

∣∣∣∣∣

∫ b

a

1

τ [1 − d̂n,k − d̂n,k zj m̂nk,zj
] − zj

dĜnk
(τ)

∣∣∣∣∣

≤

∫ b

a

1∣∣τ [1 − d̂n,k − d̂n,k zj m̂nk,zj
] − zj

∣∣ dĜnk
(τ)

≤ (b − a)∆ .

But this is in contradiction to |m̂nk,zj
| → ∞. We may assume w.l.o.g. that mzj

∈ S as well;

otherwise sufficiently enlarge S.

We may further assume that S is ‘doubly nonnegative’, that is, for all m ∈ S, it holds that

Re(m) ≥ 0 as well as Im(m) ≥ 0. The reason is as follows. On the one hand, Re(m̂n,zj
) ≥ 0

for all n as well as Re(mzj
) ≥ 0. For example, recalling that Re(zj) = 0:

Re(mzj
) = Re(mFG,d

(zj)) =

∫ ∞

−∞
Re

(
1

λ − zj

)
dFG,d(λ) =

∫ ∞

−∞

λ

|λ − zj|2
dFG,d(λ) ,
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where FG,d places all its mass on [0,+∞). On the other hand, since zj ∈ C
+, also Im(m̂n,zj

) > 0

for all n as well as Im(mzj
) > 0.

We next claim that:

f bGn,d
(m, zj) → fG,d(m, zj) uniformly in m ∈ S. (A.11)

To see why, for m ∈ S, consider the function:

hm,zj
(τ) ≡

1

τ [1 − d − d zj m] − zj
.

Since S is compact, min{Re(m), Im(m)} ≥ 0 for all m ∈ S, Re(zj) = 0, and Im(zj) ≥ 1, there

exist two finite constants d1 and d2, allowed to depend on S, such that:

|hm,zj
(τ1) − hm,zj

(τ2)| ≤ d1|τ1 − τ2| for τ1, τ2 ∈ [0,+∞) (A.12)

and

sup
τ∈[0,+∞)

|hm,zj
(τ)| ≤ d2 . (A.13)

To see why, start with (A.13). It holds that:

Im(τ [1 − d − d zj m] − zj) = −(τ d [Re(zj) Im(m) + Im(zj)Re(m)] + Im(zj)) .

Under the stated conditions, Re(zj) Im(m) + Im(zj)Re(m) ≥ 0 and Im(zj) ≥ 1. Therefore, as

long as τ ≥ 0, it follows that:

|τ [1 − d − d zj m] − zj | ≥ |Im(τ [1 − d − d zj m] − zj)| ≥ 1 ,

implying that we may choose d2 ≡ 1.

Moving on to (A.12), let ∆ ≡ maxm∈S |m| and note that |zj | ≤ 2. Therefore, for any

τ1, τ2 ∈ [0,+∞):

|hm,zj
(τ1) − hm,zj

(τ2)| = |τ1 − τ2|

∣∣∣∣
1 − d − d zj m

(τ1 [1 − d − d zj m] − zj) (τ2 [1 − d − d zj m] − zj)

∣∣∣∣

= |τ1 − τ2|
|1 − d − d zj m|

|τ1 [1 − d − d zj m] − zj | |τ2 [1 − d − d zj m] − zj |

= |τ1 − τ2|
|1 − d − d zj m|

|τ1 [1 − d − d zj m] − zj| |τ2 [1 − d − d zj m] − zj |

≤ |τ1 − τ2| (1 + d + 2 d∆) ,

implying that we may choose d1 ≡ (1 + d + 2 d∆).

Recall that convergence in distribution of Ĝn to G is equivalent to convergence to zero of

the bounded-Lipschitz metric between Ĝn and G; for example, see Pollard (1984, Example 22).
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Furthermore, since Ĝn and G put all their mass on [0,∞), it is actually sufficient to start all

integrals at τ = 0 rather than at τ = −∞. Therefore:

∫ +∞

−∞

dĜn(τ)

τ [1 − d − d zj m] − zj
=

∫ +∞

0

1

τ [1 − d − d zj m] − zj
dĜn(τ)

=

∫ ∞

0
hm,zj

(τ) dĜn(τ)

→

∫ ∞

0
hm,zj

(τ) dG(τ)

=

∫ +∞

0

1

τ [1 − d − d zj m] − zj
dG(τ)

=

∫ +∞

−∞

1

τ [1 − d − d zj m] − zj
dG(τ) uniformly in m ∈ S ,

which establishes (A.11). But (A.11), combined with the compactness of S, further implies

that also:

f bGn, bdn
(m, zj) → fG,d(m, zj) uniformly in m ∈ S. (A.14)

Summing up, we have the following facts: First, there exists a compact set S ⊆ C such that

m̂n,zj
is the unique minimizer of f bGn, bdn

(· , zj) over m ∈ S and mzj
is the unique minimizer of

fG,d(· , zj) over m ∈ S. Second, the function fG,d(· , zj) is continuous in m. Third, the uniform

convergence (A.14).

With these facts, m̂n,zj
→ mzj

follows from arguments very similar to those used in the

proof of Proposition A.1.

Proof of Theorem 5.1. We start with the proof of part (i). Since c < 1, it follows

from Silverstein and Choi (1995) that F is continuously differentiable on all of R. By Polya’s

Theorem it then follows that supt |Fn(t)− F (t)| → 0 a.s., implying that ||Fn − F ||Qn → 0 a.s.

Also, by construction, ||F bHn,bcn
− Fn||Qn ≤ ||FH,bcn

− Fn||Qn . Therefore:

||F bHn,bcn
− F ||Qn ≤ ||F bHn,bcn

− Fn||Qn + ||Fn − F ||Qn

≤ ||FH,bcn
− Fn||Qn + ||Fn − F ||Qn

≤ ||FH,bcn
− FH,c ||Qn + ||FH,c − Fn||Qn + ||Fn − F ||Qn

= ||FH,bcn
− F ||Qn + 2 ||Fn − F ||Qn → 0 a.s. ,

where Lemma A.2 in conjunction with Polya’s Theorem is used to show that ||FH,bcn
−F ||Qn → 0.

The desired result now follows by Lemma A.1.

We now turn to proving part (ii). By Theorem 2 of Geronimo and Hill (2003), it is sufficient

to show that there exists an infinite sequence {vj} in C
+ with a limit point v0 ∈ C

+ such that:

m bHn
(vj) → mH(vj) a.s. ∀j . (A.15)
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Recall the notation mF eH,ec
for the solution of the Marčenko-Pastur equation, for any proba-

bility measure H̃ and for any c̃ > 0. Namely, for each z ∈ C
+, mF eH,ec

(z) is the unique solution

for m ∈ C
+ to the equation:

m =

∫ +∞

−∞

1

τ [1 − c̃ − c̃ z m] − z
dH̃(τ) .

Analogously, to Subsection 2.2, also let:

∀x ∈ R F eH,ec(x) ≡ (1 − c̃)1[0,+∞)(x) + c̃ F eH,ec(x)

and

∀z ∈ C
+ mF eH,ec

(z) ≡
c̃ − 1

z
+ c̃ mF eH,ec

(z) .

Hence, for each z ∈ C
+, mF eH,ec

(z) is the unique solution for m ∈ C
+ to the equation:

m = −

[
z − c̃

∫ +∞

−∞

τ

1 + τ m
dH̃(τ)

]−1

.

On C
+, mF eH,ec

(z) has a unique inverse, given by:

∀m ∈ mF eH,ec
(C+) zF eH,ec

(m) ≡ −
1

m
+ c̃

∫ +∞

−∞

τ

1 + τ m
dH̃(τ) .

Note that both mF eH,ec
and zF eH,ec

are continuous functions. Also in this notation, we have

F = FH,c, mF = mFH,c
, and zF = zF H,c

then.

As Silverstein and Choi (1995) show:

∀m ∈ mF eH,ec
(C+) zF eH,ec

(m) = −
1

m
+

c̃

m
−

c̃

m2
m eH

(
−

1

m

)
,

which, letting v ≡ −1/m, is equivalent to:

∀v ∈ C
+ such that −

1

v
∈ mF eH,ec

(C+) m eH
(v) = −

1

c̃ v2

[
zF eH,ec

(
−

1

v

)
− v + c̃ v

]
. (A.16)

For the special case of H̃ ≡ H and c̃ ≡ c, this simplifies to

∀v ∈ C
+ such that −

1

v
∈ mF (C+) mH(v) = −

1

c v2

[
zF

(
−

1

v

)
− v + c v

]
. (A.17)

Let M ⊆ C
+ be a compact set contained in mF (C+) and also contained in mF bHn,bcn

(C+),

at least for n large enough. Let {mj} ⊆ M be an infinite sequence with limit point m0 ∈ M .

Let vj ≡ −1/mj and v0 ≡ −1/m0. Then {vj} ⊆ C
+ with limit point v0 ∈ C

+. Finally, let

zj ≡ zF (mj) and z0 ≡ zF (m0).

Part (i) of the theorem implies that F bHn,bcn
⇒ F a.s. It then follows from Corollary 1 of

Geronimo and Hill (2003) that:

mF bHn,bcn
(zj) → mF (zj) a.s. ∀j .
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In particular, the proof of Corollary 1 of Geronimo and Hill (2003) uses that convergence in

distribution of probability measures implies convergence of integrals of bounded and continuous

functions. A completely analogous argument can therefore be invoked to show that also:

zF bHn,bcn
(mj) → zF (mj) a.s. ∀j

or, equivalently, that:

zF bHn,bcn

(
−

1

vj

)
→ zF

(
−

1

vj

)
a.s. ∀j .

Using relation (A.16), with H̃ ≡ Ĥn and c̃ ≡ c̃n, and relation (A.17), this implies that:

m bHn
(vj) = −

1

ĉn v2
j

[
zF bHn,bcn

(
−

1

vj

)
− vj + ĉn vj

]

→ −
1

c v2
j

[
zF

(
−

1

vj

)
− vj + c vj

]
= mH(vj) a.s. ∀j ,

which completes the proof of part (ii) the theorem.

Proof of Corollary 5.1. We start with the proof of part (i). Following El Karoui (2008),

we call HTn a discretization of H on the grid {Jn/Tn, (Jn + 1)/Tn, . . . ,Kn/Tn}. For instance,

we can choose HTn to be a step function with HTn(x) ≡ H(x) if x = l/Tn, l ∈ N, and HTn is

constant on [l/Tn, (l + 1)/Tn). If the support of H is given by [h1, h2], say, then the support

of HTn is contained in [h1 − 1/Tn, h2 + 1/Tn]. It is easy to see that for such a discretization

HTn , it holds that HTn ⇒ H as long as:

∃ b > 0 such that λp ≤ b for all n sufficiently large and (A.18)

∃ γ > 0 such that Jn/Tn ≤ h1 − γ and Kn/Tn ≥ h2 + γ for all n sufficiently large . (A.19)

First, (A.18) holds a.s. as shown by Bai and Silverstein (1998) and Mestre (2008, Section II)

given our set of assumptions, in particular Assumption (A4) Second, the support of F is

denoted by [z̃1, z̃2]. On the one hand, it follows from Lemma 1.4 of Bai and Silverstein (1999)

that z̃1 < h1 and z̃2 > h2. Therefore, it holds that z1 = h1 − δ1 and z2 = h2 + δ2 for some

δ1, δ2 > 0. On the other hand, Fn ⇒ F a.s., implying that λ1 ≤ z̃1 + δ1/2 and λp ≥ z̃2 − δ2/2

for n sufficiently large a.s. So, letting γ ≡ min{δ1/2, δ2/2}, condition (A.19) holds a.s. as well.

Taken together, it follows that HTn ⇒ H a.s.

By construction:

||F bHn,bcn
− Fn||Qn ≤ ||FHTn ,bcn

− Fn||Qn ≤ ||FHTn ,bcn
− F ||Qn + ||F − Fn||Qn .

We know that ||F − Fn||Qn → 0 a.s. So to establish part (i), it is sufficient to show that

||FHTn ,bcn
− F ||Qn → 0 a.s. Since HTn ⇒ H a.s. and ĉn → c, it follows from Lemma A.2 and

Polya’s Theorem that supt |FHTn ,bcn
(t)−F (t)| → 0 a.s., implying that ||FHTn ,bcn

−F ||Qn → 0 a.s.
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But, having established part (i), part (ii) follows in exactly the same fashion as in the proof

of Theorem 5.1.

Proof of Corollary 5.2. We start with some preliminary results, leading up to the

proof of part (ii). Let G be a c.d.f. with continuous density g and compact support [a, b].

For a grid Q ≡ {. . . , t−1, t0, t1, . . .} covering the support of G, the approximation to G via

trapezoidal integration is defined as in (5.3). Since g is Lipschitz-continuous on [a, b], there

exists a (smallest) finite ε > 0 such that |g(t1) − g(t2)| ≤ ε as long as t1 − t2| ≤ γ. Denote

by ĝQ the density corresponding to ĜQ. By definition of the trapezoidal rule, ĝQ is piecewise

linear and agrees with g at all points tk ∈ Q. Since the grid size of Q is given by γ, we may

infer that:

sup
t

|g(t) − ĝQ(t)| ≤ 2 ε and thus sup
t

|G(t) − ĜQ(t)| ≤ 2 ε (b − a + 2 γ) . (A.20)

We have assumed from the outset that c < 1. By construction:

||F̂ bHn,bcn;Qn
−Fn||Qn ≤ ||F̂HTn ,bcn;Qn

−Fn||Qn ≤ ||F̂HTn ,bcn;Qn
−FHTn ,bcn

||Qn + ||FHTn ,bcn
−Fn||Qn .

It follows from the proof of Corollary 5.1 that ||FHTn ,bcn
− Fn||Qn → 0 a.s. So if we can show

that ||F̂HTn ,bcn;Qn
− FHTn ,bcn

||Qn → 0, it follows that ||F̂ bHn,bcn;Qn
− Fn||Qn → 0 a.s.

For any probability measure H̃, any c̃ > 0, and any λ ∈ (0,+∞), let:

m̆F eH
,ec(λ) = lim

z∈C+→λ
mF eH,ec

(z) .

Also let f eH,ec
(λ) ≡ π−1Im[m̆F eH,ec

(λ)] and define f eH,ec
(0) ≡ 0. Then:

∫ t

−∞
f eH,ec(λ) dλ =

{
F eH,ec(t) if c̃ < 1

c̃ F eH,ec
(t) if c̃ > 1 .

We know that f ≡ fH,c is continuous, and therefore Lipschitz-continuous, on [z̃1, z̃2] and

constantly equal to zero outside [z̃1, z̃2]. Denote by fmax the maximum value of f . Since

HTn ⇒ H, it follows from part (i) of Proposition 4.2 that, for every δ̃ > 0:

fHTn ,bcn
(λ) → f(λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] . (A.21)

In particular, for every ε > 0, we can find N such that for all n ≥ N :

|fHTn ,bcn
(λ) − f(λ)| < ε for all λ ∈ [z̃1 + δ̃, z̃2 − δ̃] .

For every n, the function fHTn ,bcn
is monotonically increasing near the left boundary of its

support and monotonically decreasing near the right boundary of its support; see Silverstein

and Choi (1995, Section 5). The compact support of F is given by [z̃1, z̃2]. Lemma A.2 then

implies that the support of FHTn ,bcn
is contained in [z̃1 − ηn, z̃2 + ηn] for some positive sequence

ηn → 0, so:

fHTn ,bcn
(λ) = 0 for λ /∈ [z̃1 − ηn, z̃2 + ηn] . (A.22)
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And further, for ηn and δ̃ sufficiently small and for n sufficiently large, we may assume that:

fHTn ,bcn
(λ) ≤ 2 fmax for all λ ∈ [z̃1 − ηn, z̃1 + γ̃n] ∪ [z̃2 − γ̃n, z̃2 + ηn] . (A.23)

Since f is Lipschitz-continuous on [z̃1, z̃2], for ε > 0, there exists δ > 0 such that |f(λ1) −

f(λ2)| ≤ ε/2 for all λ1, λ2 ∈ [z̃1, z̃2] with |λ1 − λ2| < δ. From (A.21) it then follows that for n

large enough that:

|fHTn ,bcn
(λ1) − fHTn ,bcn

(λ2)| ≤ ε for all λ1, λ2 ∈ [z̃1 + δ̃, z̃2 − δ̃] with |λ1 − λ2| ≤ δ .

Applying the previous discussion for a general c.d.f. G and a general grid Q leading to (A.20)

to the special cases of FHTn ,bcn
and Qn, respectively, we thus obtain that for n large enough (in

particular, satisfying γn ≤ δ):

sup
λ∈[ez1+eδ,ez2−eδ]

|fHTn ,bcn
(λ) − f̂HTn ,bcn;Qn

(λ)| ≤ 2 ε . (A.24)

Combining (A.22)–(A.24) yields, for ǫ and δ̃ small enough and for n large enough:

sup
λ∈R

|FHTn ,bcn
(λ) − F̂HTn ,bcn;Qn

(λ)| ≤ 2 ε (z̃2 − z̃1 + 2 δ) + 4 fmax (ηn + δ̃) . (A.25)

Since the right hand side of (A.25) can be made arbitrarily small, we have established that

||F̂HTn ,bcn;Qn
− FHTn ,bcn

||Qn → 0, which implies that ||F̂ bHn,bcn;Qn
− Fn||Qn → 0 a.s., which, in

return, implies that:

||F̂ bHn,bcn;Qn
− F ||Qn ≤ ||F̂ bHn,bcn;Qn

− Fn||Qn + ||Fn − F ||Qn → 0 a.s. . (A.26)

Lemma A.1 then tells us that F̂ bHn,bcn;Qn
⇒ F a.s.

We now show that this implies part (ii) of the corollary, namely that Ĥn ⇒ H a.s. by means

of contradiction. To this end, assume that Ĥn ⇒ H a.s. is not the case. The sequence {Ĥn}

is tight a.s. This is because the upper bound of the support of Hn is given by Kn/Tn which,

by definition of Kn satisfies Kn/Tn ≤ λp + 1/Tn; and we know from Bai and Silverstein (1998)

that for any ε > 0, λp ≤ z̃2 + ε for n large enough a.s. Similar for the lower bound, or simply

use zero as very crude lower bound. Therefore, if Ĥn ⇒ H a.s. is not the case, there then

exists a probability measure H ′ 6= H and a subsequence {nk} such that on a set with positive

probability, we have Ĥnk
⇒ H ′.

Similarly to an argument used in the proof of part (i) of Corollary 5.1 — with Ĥnk
and H ′ now

playing the roles of HTn and H, respectively — it then follows that ||F bHnk
,bcnk

−FH′,c||Qnk
→ 0

on a set with positive probability. But it also holds that ||F̂ bHnk
,bcnk

;Qnk

− F bHnk
,bcnk

||Qnk
→ 0

similarly to an argument used above — with F bHnk
,bcnk

now playing the role of FHTn ,bcn
. Together,

we obtain that ||F̂ bHnk
,bcnk

;Qnk

−FH′,c||Qnk
→ 0 on a set with positive probability. Since we are

working under the assumption that c < 1, both FH and FH′ are continuous. Lemma A.1 then
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tells us that supt |F̂ bHnk
bcnk

;Qnk

(t)−FH′,c(t)| → 0 on a set with positive probability. But this in

contradiction to supt |F̂ bHn,bcn;Qn
− F (t)| → 0 a.s. So the proof of part (ii) is accomplished.

We now can establish that ||F̂ bHn,bcn;Qn
− F bHn,bcn

||Qn → 0 a.s., knowing that Ĥn ⇒ H a.s.,

very much in the same way as we established before that ||F̂HTn ,bcn;Qn
− FHTn ,bcn

||Qn , knowing

that HTn ⇒ H. As a result, we obtain that ||F bHn,bcn
− F ||Qn → 0 a.s. Invoking Lemma A.1

establishes part (i) then.

Parts (iii)–(iv) follow immediately from parts (i)–(ii) and Proposition 4.3, part (ii).
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density has been shifted to the interval [1, 10] by a linear transformation. In order to enhance

clarity, the densities corresponding to the parameters (2, 1) and (5, 2) have been omitted,

because they are symmetric to (1, 2) and (2, 5) respectively about the mid-point of the support.
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Figure 7: Performance of the Nonlinear Shrinkage with Beta Densities. The various curves

correspond to different shapes of the population spectral density. The support of the population

spectral density is [1, 10].
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Figure 8: Fixed-Dimension Asymptotics. 20% of population eigenvalues are equal to 1, 40% are

equal to 3, and 40% are equal to 10. Variables are normally distributed. Every point is the

result of 1, 000 Monte Carlo simulations.
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Figure 9: Nonlinear Shrinkage under Fixed-Dimension Aymptotics. 20% of population eigen-

values are equal to 1, 40% are equal to 3, and 40% are equal to 10. p = 100 and n = 10, 000.

The oracle is not shown because it is virtually identical to the nonlinear shrinkage estimator.
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