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Abstract. We introduce estimation and test procedures through divergence minimiza-

tion for models satisfying linear constraints with unknown parameter. These procedures

extend the empirical likelihood (EL) method and share common features with generalized

empirical likelihood approach. We treat the problems of existence and characterization

of the divergence projections of probability distributions on sets of signed finite mea-

sures. We give a precise characterization of duality, for the proposed class of estimates

and test statistics, which is used to derive their limiting distributions (including the EL

estimate and the EL ratio statistic) both under the null hypotheses and under alterna-

tives or misspecification. An approximation to the power function is deduced as well as

the sample size which ensures a desired power for a given alternative.
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1. Introduction and notation

Statistical models are often defined through estimating equations

E [g(X, θ)] = 0,

where E[·] denotes the mathematical expectation, g := (g1, . . . , gl)
> ∈ Rl is some specified

vector valued function of a random vector X ∈ Rm and a parameter vector θ ∈ Θ ⊂ Rd.

Examples of such models are numerous, see e.g. Qin and Lawless (1994), Haberman

(1984), Sheehy (1987), McCullagh and Nelder (1983), Owen (2001) and the references

therein. Denote P0 the probability distribution of the random vector X. Then the above

estimating equations can be written as∫
Rm

g(x, θ) dP0(x) = 0.

Denoting M1 the collection of all probability measures (p.m.) on the measurable space

(Rm,B(Rm)), the submodel M1
θ, associated to a given value θ of the parameter, consists

of all distributions Q satisfying l linear constraints induced by the vector valued function

g(., θ), namely

M1
θ :=

{
Q ∈M1 such that

∫
g(x, θ) dQ(x) = 0

}
,
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with l ≥ d. The statistical model which we consider can be written as

M1 :=
⋃
θ∈Θ

M1
θ. (1.1)

Let X1, ..., Xn denote an i.i.d. sample of X with unknown distribution P0. We denote

θ0, if it exists, the value of the parameter such that P0 belongs toM1
θ0

, namely the value

satisfying

E [g(X, θ0)] = 0,

and we assume obviously that θ0 is unique. This paper addresses the two following natural

questions :

Problem 1 : Does P0 belong to the model M1?

Problem 2 : When P0 is in the model, which is the value θ0 of the parameter for which

E [g(X, θ0)] = 0? Also can we perform tests about θ0? Can we construct confidence areas

for θ0?

When m = d = l, and g(x, θ) = x − θ, then the model is the same as those of Owen

(1988) and Owen (1990), and in this case our interest concerns interval estimation or

confidence areas construction for the parameter θ. The main interest, however, is the

case where l > d. We introduce some examples for illustration; see Qin and Lawless

(1994), Guggenberger and Smith (2005) and Owen (2001).

Example 1.1. Sometimes we have information relating the first and second moments

of a random variable X (see e.g. Godambe and Thompson (1989) and McCullagh and

Nelder (1983)). Let X1, . . . , Xn be an i.i.d. sample of a random variable X with mean

E(X) = θ, and assume that E(X2) = h(θ), where h(·) is a known function. Our aim is to

estimate θ. The information about the distribution P0 of X can be expressed in the form

of (1.1) by taking g(x, θ) := (x− θ, x2 − h(θ))
>
.

Example 1.2. Let (X1,1, X2,1), . . . , (X1,n, X2,n) be an i.i.d. sample of a bivariate random

vector X := (X1, X2)> with E(X1) = E(X2) = θ. In this case, we can take g(x, θ) =
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(x1−θ, x2−θ)>. A some what similar problem is when E(X1) = c is known and E(X2) = θ

is to be estimated, by taking g(x, θ) = (x1 − c, x2 − θ)>. Such problems are common in

survey sampling (see e.g. Kuk and Mak (1989) and Chen and Qin (1993)).

Example 1.3. Let F0 be a continuous distribution function of a random variable X with

probability distribution P0 that is symmetric about zero, namely F0(t) = 1− F0(−t) for

all t ∈ R. Consider estimation of the parameter θ = F0(t), for a given t ∈ R, from an

i.i.d. sample X1, . . . , Xn of X. This problem can be handled in the context of model (1.1)

by taking g(x, θ) =
(
1]−∞,t](x)− θ,1]−t,+∞[(x)− θ

)>
.

We note that the problems 1 and 2 have been investigated by many authors. Hansen

(1982) considered generalized method of moments (GMM). Hansen et al. (1996) intro-

duced the continuous updating (CU) estimate. The empirical likelihood (EL) approach,

developed by Owen (1988) and Owen (1990), has been investigated in the context of

model (1.1) by Qin and Lawless (1994) and Imbens (1997) introducing the EL estimate.

The recent literature in econometrics focusses on such models; Smith (1997), Newey and

Smith (2004) provided a class of estimates called generalized empirical likelihood (GEL)

estimates which contains the EL and the CU ones. Schennach (2007) discussed the as-

ymptotic properties of the empirical likelihood estimate under misspecification; the author

showed the important fact that the EL estimate may cease to be root n consistent when

the functions gj defining the moments conditions and the support of P0 are unbounded.

Among other results pertaining to EL, Newey and Smith (2004) stated that EL estimate

enjoys optimality properties in term of efficiency when bias corrected among all GEL es-

timates including the GMM one. Moreover, Corcoran (1998) and Baggerly (1998) proved

that in a class of minimum discrepancy statistics (called power divergence statistics), EL

ratio is the only one that is Bartlett correctable. Confidence areas for the parameter θ0

have been considered in the seminal paper by Owen (1990). Problems 1 and 2 have been

handled via EL and GEL approaches in Qin and Lawless (1994), Smith (1997) and Newey

and Smith (2004) under the null hypothesis H0 : P0 ∈ M1; the limiting distributions of

the GEL estimates and the GEL test statistics have been obtained only under the model
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and under the null hypotheses; Imbens (1997) discusses the asymptotic properties of the

EL and exponential tilting estimates under misspecification and give the formula of the

asymptotic variance, using dual characterizations, without presenting the hypotheses un-

der which their results hold. Chen et al. (2007) give the limiting distribution of the EL

estimate under misspecification as well as the EL ratio statistic between a parametric

model and a moment condition model. The paper by Kitamura (2007) gives a discussion

of duality for GEL estimates under moment condition models. Bertail (2006) uses duality

to study, under the model, the asymptotic properties of the EL ratio statistic and its

Bartlett correctability; the author extends his results to semiparametric problems with

infinite-dimensional parameters.

The main contribution of the present paper is the precise characterization of duality for

a large class of estimates and test statistics (including GEL and EL ones) and its use

in deriving the limiting properties of both the estimates and the test statistics under

misspecification and under alternative hypotheses. Moreover,

1) The approach which we develop is based on minimum discrepancy estimates, which

extends the EL method and has common features with minimum distance and

GEL techniques, using merely divergences. We propose a wide class of estimates,

test statistics and confidence regions for the parameter θ0 as well as various test

statistics for Problems 1 and 2, all depending on the choice of the divergence.

2) The limiting distribution of the EL test statistic under the alternative and under

misspecification remains up to date an open problem. The present paper fills

this gap; indeed, we give the limiting distributions of the proposed estimates

and test statistics (including the EL ones) both under the null hypotheses, under

alternatives and under misspecification.

3) The limiting distributions of the test statistics under the alternatives and misspec-

ification are used to give an approximation to the power function and the sample

size which ensures a desired power for a given alternative.
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4) We extend confidence region (C.R.) estimation techniques based on EL (see Owen

(1990)), providing a wide range of such C.R.’s, each one depending upon a specific

divergence.

From the point of view of the statistical criterion under consideration, the main advan-

tage, of using a divergence based approach and duality, lays in the fact that it leads to

asymptotic properties of the estimates and test statistics under the alternative, includ-

ing misspecification, which cannot be achieved through the classical EL context. In the

case of parametric models of densities, White (1982) studied the asymptotic properties of

the parametric maximum likelihood estimate and the parametric likelihood ratio statistic

under misspecification; Keziou (2003) and Broniatowski and Keziou (2009) stated the

consistency and obtained the limiting distributions of the minimum divergence estimates

and the corresponding test statistics (including the parametric likelihood ones) both un-

der the null hypotheses and the alternatives, from which they deduced an approximation

to the power function. In this paper, we extend the above results for the proposed class

of estimates and test statistics (including the EL ones) in the context of semiparametric

models (1.1).

The rest of the paper is organized as follows. Section 2 describes the statistical divergences

used in the sequel. Section 3 is devoted to the description of the proposed estimation and

test procedures. In Section 3, we adapt the Lagrangian duality formalism to the context

of statistical divergence, and we use it to give practical formulas (for the study and the

numerical computation) of the proposed estimates and test statistics. Section 5 deals

with the asymptotic properties of the estimates and the test statistics under the model

and under misspecification. Simulations results are given in Section 6. All proofs are

postponed to the Appendix.

2. Statistical divergences

We first set some general definitions and notations. Let P be some p.m. on the measurable

space (Rm,B(Rm)). Denote by M the space of all signed finite measures (s.f.m.) on
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(Rm,B(Rm)). Let ϕ be a convex function from R onto [0,+∞] with ϕ(1) = 0, and such

that its domain, domϕ := {x ∈ R such that ϕ(x) <∞} =: (a, b), is an interval, with

endpoints satisfying a < 1 < b, which may be bounded or unbounded, open or not. We

assume that ϕ is closed; the closedness of ϕ means that if a or b are finite then ϕ(x)→ ϕ(a)

when x ↓ a, and ϕ(x)→ ϕ(b) when x ↑ b. Note that, this is equivalent to the fact that the

level sets {x ∈ R; ϕ(x) ≤ α}, ∀α ∈ R, are closed in R endowed with the usual topology.

For any s.f.m. Q ∈M , the ϕ-divergence between Q and the p.m. P , when Q is absolutely

continuous with respect to (a.c.w.r.t) P , is defined through

Dϕ(Q,P ) :=

∫
Rm

ϕ

(
dQ

dP
(x)

)
dP (x), (2.1)

in which dQ
dP

(·) denotes the Radon-Nikodym derivative. When Q is not a.c.w.r.t. P , we

set Dϕ(Q,P ) := +∞. For any p.m. P , the mapping Q ∈ M 7→ Dϕ(Q,P ) is convex and

takes nonnegative values. When Q = P then Dϕ(Q,P ) = 0. Furthermore, if the function

x 7→ ϕ(x) is strictly convex on a neighborhood of x = 1, then

Dϕ(Q,P ) = 0 if and only if Q = P. (2.2)

All the above properties are presented in Csiszár (1963), Csiszár (1967) and in Chapter 1

of Liese and Vajda (1987), for ϕ−divergences defined on the set of all p.m.’s M1. When

the ϕ-divergences are extended to M , then the same arguments as developed on M1 hold.

When defined on M1, the Kullback-Leibler (KL), modified Kullback-Leibler (KLm), χ2,

modified χ2 (χ2
m), Hellinger (H), and L1 divergences are respectively associated to the

convex functions ϕ(x) = x log x − x + 1, ϕ(x) = − log x + x − 1, ϕ(x) = 1
2
(x− 1)2,

ϕ(x) = 1
2
(x− 1)2/x, ϕ(x) = 2(

√
x− 1)

2
and ϕ(x) = |x− 1|. All these divergences except

the L1 one, belong to the class of the so called power divergences introduced in Cressie

and Read (1984) (see also Liese and Vajda (1987) and Pardo (2006)). They are defined

through the class of convex functions

x ∈ R∗+ 7→ ϕγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
(2.3)
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if γ ∈ R \ {0, 1}, ϕ0(x) := − log x + x − 1 and ϕ1(x) := x log x − x + 1. So, the

KL−divergence is associated to ϕ1, the KLm to ϕ0, the χ2 to ϕ2, the χ2
m to ϕ−1 and the

Hellinger distance to ϕ1/2. We extend the definition of the power divergences functions

Q ∈ M1 7→ Dϕγ (Q,P ) onto the whole set of signed finite measures M as follows. When

the function x 7→ ϕγ(x) is not defined on ]−∞, 0[ or when ϕγ is defined on R but is not

convex (for instance when γ = 3), we extend the definition of ϕγ as follows

x ∈ R 7→ ϕγ(x)1[0,+∞[(x) + (+∞)1]−∞,0[(x). (2.4)

Note that for χ2-divergence, the corresponding ϕ function ϕ(x) = 1
2
(x − 1)2 is convex

and defined on whole R. In this paper, for technical considerations, we assume that the

functions ϕ are strictly convex on their domain (a, b), twice continuously differentiable on

]a, b[, the interior of their domain. Hence, ϕ′(1) = 0, and for all x ∈]a, b[, ϕ′′(x) > 0. Here,

ϕ′ and ϕ′′ are used to denote respectively the first and the second derivative functions

of ϕ. Note that the above assumptions on ϕ are not restrictive, and that all the power

functions ϕγ, see (2.4), satisfy the above conditions, including all standard divergences.

Definition 2.1. Let Ω be some subset of M . The ϕ−divergence between the set Ω and a

p.m. P is defined by

Dϕ(Ω, P ) := inf
Q∈Ω

Dϕ(Q,P ).

A finite measure Q∗ ∈ Ω, such that Dϕ(Q∗, P ) <∞ and

Dϕ(Q∗, P ) ≤ Dϕ(Q,P ) for all Q ∈ Ω,

is called a projection of P on Ω. This projection may not exist, or may be not defined

uniquely.

3. Minimum divergence estimates

Let X1, ..., Xn denote an i.i.d. sample of a random vector X ∈ Rm with distribution P0.

Let Pn(·) be the empirical measure pertaining to this sample, namely

Pn(·) :=
1

n

n∑
i=1

δXi(·),
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where δx(·) denotes the Dirac measure at point x, for all x. We will endow our statistical

approach in the global context of s.f.m.’s with total mass 1 satisfying l linear constraints,

namely,

Mθ :=

{
Q ∈M such that

∫
Rm

dQ(x) = 1 and

∫
Rm

g(x, θ) dQ(x) = 0

}
(3.1)

and

M :=
⋃
θ∈Θ

Mθ, (3.2)

sets of signed finite measures that replace M1
θ and M1. Enhancing the model (1.1) to

the above one (3.2) bears a number of improvements upon existing results; this is argued

at the end of the present Section; see also Remark 4.6 below. The “plug-in” estimate of

Dϕ(Mθ, P0) is

D̂ϕ(Mθ, P0) := inf
Q∈Mθ

Dϕ(Q,Pn) = inf
Q∈Mθ

∫
Rm

ϕ

(
dQ

dPn
(x)

)
dPn(x). (3.3)

If the projection Q
(n)
θ of Pn onMθ exists, then it is clear that Q

(n)
θ is a s.f.m. (or possibly

a p.m.) a.c.w.r.t. Pn; this means that the support of Q
(n)
θ must be included in the set

{X1, . . . , Xn}. So, define the sets

M(n)
θ :=

{
Q ∈M | Q a.c.w.r.t. Pn,

n∑
i=1

Q(Xi) = 1 and
n∑
i=1

Q(Xi)g(Xi, θ) = 0

}
, (3.4)

which may be seen as subsets of Rn. Then, the plug-in estimate (3.3) can be written as

D̂ϕ(Mθ, P0) = inf
Q∈M(n)

θ

1

n

n∑
i=1

ϕ (nQ(Xi)) . (3.5)

In the same way, Dϕ(M, P0) := infθ∈Θ infQ∈Mθ
Dϕ(Q,P0) can be estimated by

D̂ϕ(M, P0) := inf
θ∈Θ

inf
Q∈M(n)

θ

1

n

n∑
i=1

ϕ (nQ(Xi)) . (3.6)

By uniqueness of arg infθ∈ΘDϕ(Mθ, P0) and since the infimum is reached at θ = θ0 under

the model, we estimate θ0 through

θ̂ϕ := arg inf
θ∈Θ

inf
Q∈M(n)

θ

1

n

n∑
i=1

ϕ (nQ(Xi)) . (3.7)
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Enhancing M1 to M and accordingly extensions in the definitions of the ϕ functions on

R and the ϕ-divergences on the whole space of s.f.m’s M , is motivated by the following

arguments :

- If the domain (a, b) of the function ϕ is included in [0,+∞[ then minimizing over

M1 or overM leads to the same estimates and test statistics. It is the case of the

KLm, KL, modified χ2 and Hellinger divergences.

- Let θ be a given value in Θ. Denote Q
(1,n)
θ and Q

(n)
θ , respectively, the projection

of Pn onM1
θ and onMθ. If Q

(1,n)
θ satisfies 0 < Q

(1,n)
θ (Xi) < 1, for all i = 1, . . . , n,

then Q
(1,n)
θ = Q

(n)
θ . Therefore, in this case, both approaches leads also to the same

estimates and test statistics.

- It may occur that for some θ in Θ and some i = 1, . . . , n, Q
(1,n)
θ (Xi) is a boundary

value of [0, 1], hence the first order conditions are not met which makes a real dif-

ficulty for computing the estimates over the sets of p.m. M1
θ and M1. However,

whenM1 is replaced byM, then this problem does not hold any longer in partic-

ular when domϕ = R, which is the case for the χ2-divergence. Other arguments

are given in Remark 4.6 below.

The empirical likelihood paradigm (see Owen (1988), Owen (1990), Qin and Lawless

(1994) and Owen (2001)), enters as a special case of the statistical issues related to esti-

mation and tests based on ϕ−divergences with ϕ(x) = ϕ0(x) := − log x + x− 1, namely

on KLm−divergence. Indeed, it is straightforward to see that the empirical log-likelihood

ratio statistic for testing H0 : P0 ∈ M against H1 : P0 /∈ M, in the context of ϕ-

divergences, can be written as 2nD̂KLm(M, P0); and that the EL estimate of θ0 can be

written as θ̂KLm = arg infθ∈Θ D̂KLm(Mθ, P0); see Remark 4.4 below. In the case of the

power functions ϕ = ϕγ, the corresponding estimates (3.7) belong to the class of GEL

estimates introduced by Smith (1997) and Newey and Smith (2004), and (3.5) in this case

are the empirical Cressie-Read statistics introduced by Baggerly (1998) and Corcoran

(1998); see Remark 4.5 below.
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The constrained optimization problems (3.5), (3.6) and (3.7) can be transformed into

unconstrained ones making use of some arguments of “duality” which we briefly state

below from Rockafellar (1970). On the other hand, the obtaining of asymptotic statistical

results of the estimates and the test statistics, under misspecification or under alternative

hypotheses, requires handle existence conditions and characterization of the projection of

P0 on the submodelMθ or on the modelM. This also will be considered through duality,

along the following Section.

4. Dual representation of ϕ−divergences under constraints

This Section is central for our purposes. Indeed, it provides the explicit form of the

proposed estimates by transforming the constrained problems (3.5) to unconstrained ones,

using Lagrangian duality which is a classical tool in optimization theory. This Section

adapts this formalism to the context of divergences and the present statistical setting.

The Lagrangian “dual” problems, corresponding to the “primal” ones

inf
Q∈Mθ

Dϕ(Q,P0) (4.1)

and its empirical counterpart (3.5), make use of the so-called Fenchel-Legendre transform

of ϕ, defined by

ψ : t ∈ R 7→ ψ(t) := sup
x∈R
{tx− ϕ(x)} . (4.2)

The “dual” problems associated to (4.1) and (3.5) are respectively

sup
t∈R1+l

{
t0 −

∫
Rm

ψ(t0 +
l∑

j=1

tjgj(x, θ)) dP0(x)

}
, (4.3)

and

sup
t∈R1+l

{
t0 −

∫
Rm

ψ(t0 +
l∑

j=1

tjgj(x, θ)) dPn(x)

}
= sup

t∈R1+l

{
t0 −

1

n

n∑
i=1

ψ(t0 +
l∑

j=1

tjgj(Xi, θ))

}
.

(4.4)

In the following Propositions 4.1 and 4.2, we state sufficient conditions under which the

primal problems (4.1) and (3.5) coincide respectively with the dual ones (4.3) and (4.4).

We give also sufficient conditions for the existence of the “primal optimal” solutions (i.e.,
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the projection Q∗θ of P0 on the set Mθ, and the projection Q
(n)
θ of Pn on the set M(n)

θ ),

which will be related to the “dual attainment” problem, namely the existence of the

supremum (in t ∈ R1+l) in the dual problems (4.3) and (4.4).

First, recall some properties of the convex conjugate ψ of ϕ. For the proofs we can refer to

Section 26 in Rockafellar (1970). Theses properties will be used to determine the convex

conjugates ψ of some standard divergence functions ϕ; see Table 1 below. The function

ψ is convex and closed, its domain is an interval (a∗, b∗) with endpoints

a∗ := lim
x→−∞

ϕ(x)

x
, b∗ := lim

x→+∞

ϕ(x)

x
(4.5)

satisfying a∗ < 0 < b∗ with ψ(0) = 0. Note that the interval

(ã, b̃) :=

(
lim
x↓a

ϕ(x)

x
, lim
x↑b

ϕ(x)

x

)
can be different from (a∗, b∗), the real domain of ψ given by (4.5). This holds when a or

b is finite and ϕ′(a) or ϕ′(b) is finite, respectively. For example, for the convex function

ϕ(x) =
1

2
(x2 − 1)21R+(x) + (+∞)1]0,+∞[(x),

we have domϕ = [0,+∞[ and ϕ′(0) = −1, and we can see that the domain of ψ is (a∗, b∗) =

(−∞,+∞) which is different from (ã, b̃) =
(

limx↓0
ϕ(x)
x
, limx↑+∞

ϕ(x)
x

)
= (−1,+∞). The

two intervals (a∗, b∗) and (ã, b̃) coincide if the function ϕ is “essentially smooth”, i.e.,

differentiable with

limt↓a ϕ
′(t) = −∞ if a is finite,

limt↑b ϕ
′(t) = +∞ if b is finite.

(4.6)

The strict convexity of ϕ on its domain (a, b) is equivalent to the condition that its

conjugate ψ is essentially smooth, i.e., differentiable with

limt↓a∗ ψ
′(t) = −∞ if a∗ is finite,

limt↑b∗ ψ
′(t) = +∞ if b∗ is finite.

(4.7)
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Conversely, ϕ is essentially smooth on its domain (a, b) if and only if ψ is strictly convex

on its domain (a∗, b∗).

In all the sequel, we assume additionally that ϕ is essentially smooth. Hence, ψ is strictly

convex on its domain (a∗, b∗), and it holds that

a∗ = lim
x→−∞

ϕ(x)

x
= lim

x↓a

ϕ(x)

x
= lim

x↓a
ϕ′(x), b∗ = lim

x→+∞

ϕ(x)

x
= lim

x↑b

ϕ(x)

x
= lim

x↑b
ϕ′(x),

and

ψ(t) = tϕ′
−1

(t)− ϕ
(
ϕ′
−1

(t)
)
, for all t ∈]a∗, b∗[, (4.8)

where ϕ′−1 denotes the inverse function of ϕ′. It holds also that ψ is twice continuously

differentiable on ]a∗, b∗[ with

ψ′(t) = ϕ′
−1

(t) and ψ′′(t) =
1

ϕ′′
(
ϕ′−1(t)

) . (4.9)

In particular, ψ′(0) = 1 and ψ′′(0) = 1. Obviously, since ϕ is assumed to be closed, we

have

ϕ(a) = lim
x↓a

ϕ(x) and ϕ(b) = lim
x↑b

ϕ(x),

which may be finite or infinite. Hence, by closedness of ψ, we have

ψ(a∗) = lim
t↓a∗

ψ(x) and ψ(b∗) = lim
t↑b∗

ψ(t).

Finally, the first and second derivatives of ϕ in a and b are defined to be the limits of

ϕ′(x) and ϕ′′(x) when x ↓ a and when x ↑ b. The first and second derivatives of ψ in a∗

and b∗ are defined in a similar way. In Table 1, using the above properties, we give the

convex conjugates ψ of some standard functions ϕ, associated to standard divergences.

We determine also their domains, (a, b) and (a∗, b∗).

Proposition 4.1. Let θ be a given value in Θ. If there exists Q0 in M(n)
θ such that

a < Q0(Xi) < b, for all i = 1, . . . , n, (4.10)
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Table 1. Convex conjugates for some standard divergences.

Dϕ ϕ domϕ domψ ψ

DKLm ϕ(x) := − log x+ x− 1 ]0,+∞[ ]−∞, 1[ ψ(t) = − log(1− t)

DKL ϕ(x) := x log x− x+ 1 [0,+∞[ R ψ(t) = et − 1

Dχ2
m

ϕ(x) := 1
2

(x−1)2

x
]0,+∞[

]
−∞, 1

2

]
ψ(t) = 1−

√
1− 2t

Dχ2 ϕ(x) := 1
2

(x− 1)2 R R ψ(t) = 1
2
t2 + t

DH ϕ(x) := 2(
√
x− 1)2 [0,+∞[ ]−∞, 2[ ψ(t) = 2t

2−t

Dϕγ ϕ(x) := xγ−γx+γ−1
γ(γ−1)

−− −− ψ(t) = 1
γ

(γt− t+ 1)
γ
γ−1 − 1

γ

then

inf
Q∈M(n)

θ

Dϕ(Q,Pn) = sup
t∈R1+l

{
t0 −

1

n

n∑
i=1

ψ(t0 +
l∑

j=1

tjgj(Xi, θ))

}
(4.11)

with dual attainment. Conversely, if there exists some dual optimal solution t̂ := (t̂0, t̂1, . . . , t̂l)
> ∈

R1+l such that

a∗ < t̂0 +
l∑

j=1

t̂jgj(Xi, θ) < b∗, for all i = 1, . . . , n, (4.12)

then the equality (4.11) holds, and the unique optimal solution of the primal problem

inf
Q∈M(n)

θ
Dϕ(Q,Pn), namely the projection of Pn on M(n)

θ , is given by

Q
(n)
θ (Xi) =

1

n
ϕ′
−1

(t̂0 +
l∑

j=1

t̂jgj(Xi, θ)), i = 1, . . . , n,

where t̂ := (t̂0, t̂1, . . . , t̂l)
> is solution of the system of equations 1− 1

n

∑n
i=1 ϕ

′−1(t̂0 +
∑l

j=1 t̂jgj(Xi, θ)) = 0,

− 1
n

∑n
i=1 gj(Xi, θ)ϕ

′−1(t̂0 +
∑l

j=1 t̂jgj(Xi, θ)) = 0, j = 1, . . . , l.
(4.13)

Remark 4.1. For the χ2−divergence, we have a = −∞ and b = +∞. Hence, condition

(4.10) holds whenever M(n)
θ is not void. More generally, the above Proposition holds for

any ϕ-divergence with domϕ = R.
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Remark 4.2. Assume that g(x, θ) := (x− θ)>. So, for any divergence Dϕ with domϕ =

]0,+∞[, which is the case of the modified χ2 divergence and the modified Kullback-Leibler

divergence (or equivalently EL method), condition (4.10) means that θ is an interior point

of the convex hull of the data (X1, ..., Xn). This is precisely what is checked in Owen

(1990), p. 100, for the EL method; see also Owen (2001).

For the asymptotic counterpart of the above results we have; see Theorem 1 in Bronia-

towski and Keziou (2006):

Proposition 4.2. Let θ be a given value in Θ. Assume that
∫
|gj(x, θ)| dP0(x) <∞, for

all j = 1, . . . , l. If there exists Q0 in Mθ with Dϕ(Q0, P0) <∞ and1

a < inf
x∈Rm

dQ0

dP0

(x) ≤ sup
x∈Rm

dQ0

dP0

(x) < b, P0 − a.s., (4.14)

then

inf
Q∈Mθ

Dϕ(Q,P0) = sup
t∈R1+l

{
t0 −

∫
Rm

ψ(t0 +
l∑

j=1

tjgj(x, θ)) dP0(x)

}
(4.15)

with dual attainment. Conversely, if there exists some dual optimal solution t∗ which is

an interior point of the set{
t ∈ R1+l such that

∫
Rm
|ψ(t0 +

l∑
j=1

tjgj(x, θ))| dP0(x) <∞

}
, (4.16)

then the dual equality (4.15) holds, and the unique optimal solution Q∗θ of the primal

problem infQ∈Mθ
Dϕ(Q,P0), namely the projection of P0 on Mθ, is given by

dQ∗θ
dP0

(x) = ϕ′
−1

(t∗0 +
l∑

j=1

t∗jgj(x, θ)), (4.17)

where t∗ := (t∗0, t
∗
1, . . . , t

∗
l )
> is solution of the system of equations 1−

∫
ϕ′−1(t∗0 +

∑l
j=1 t

∗
jgj(x, θ)) dP0(x) = 0,

−
∫
gj(x, θ)ϕ

′−1(t∗0 +
∑l

j=1 t
∗
jgj(x, θ)) dP0(x) = 0, j = 1, . . . , l.

(4.18)

1The strict inequalities (4.14) mean that P0

{
x ∈ Rm | dQ0

dP0
(x) ≤ a

}
= P0

{
x ∈ Rm | dQ0

dP0
(x) ≥ b

}
= 0.
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Furthermore, t∗ is unique if the functions 1Rm , g1(., θ), . . . , gl(., θ) are linearly independent

in the sense that P0

{
x ∈ Rm | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0 for all t ∈ Rm with t 6= 0.

Remark 4.3. Broniatowski and Keziou (2006) obtained the dual equality (4.15), results

about the existence of the projection of P0 on the setsMθ and the characterization (4.17)

under different assumptions; see Theorem 5.1, Corollary 5.2 and Proposition 5.3.

For sake of brevity and clearness, we must introduce some additional notations. In all

the sequel, ‖x‖ denotes the norm of x defined by ‖x‖ := supi |xi| for any vector x :=

(x1, . . . , xk)
> ∈ Rk, and for any matrix A, the norm of A is defined by ‖A‖ := supi,j |ai,j|.

Denote by g the vector valued function g := (1Rm , g1, . . . , gl)
> ∈ R1+l. For any p.m. P

on (Rm,B(Rm)) and any measurable function f from (Rm,B(Rm)) to (R,B(R)), denote

Pf :=

∫
Rm

f(x) dP (x).

Let

t>g(x, θ) := t0 +
l∑

j=1

tjgj(x, θ)

and

m(x, θ, t) := t0 − ψ(t>g(x, θ)), for all x ∈ Rm, θ ∈ Θ ⊂ Rd, t ∈ R1+l. (4.19)

Note that the sup in (4.11) and (4.15) can be restricted, respectively, to the sets

Λ
(n)
θ :=

{
t ∈ R1+l | a∗ < t>g(Xi, θ) < b∗, for all i = 1, . . . , n

}
(4.20)

and

Λθ :=

{
t ∈ R1+l |

∫
Rm
|ψ(t0 +

l∑
j=1

tjgj(x, θ))| dP0(x) <∞

}
. (4.21)

In view of the above two Propositions 4.1 and 4.2, we redefine the estimates (3.5), (3.6)

and (3.7) as follows

D̂ϕ (Mθ, P0) := sup
t∈Λ

(n)
θ

1

n

n∑
i=1

m(Xi, θ, t) := sup
t∈Λ

(n)
θ

Pnm(θ, t), (4.22)
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D̂ϕ (M, P0) := inf
θ∈Θ

sup
t∈Λ

(n)
θ

1

n

n∑
i=1

m(Xi, θ, t) := inf
θ∈Θ

sup
t∈Λ

(n)
θ

Pnm(θ, t) (4.23)

and

θ̂ϕ := arg inf
θ∈Θ

sup
t∈Λ

(n)
θ

1

n

n∑
i=1

m(Xi, θ, t) := arg inf
θ∈Θ

sup
t∈Λ

(n)
θ

Pnm(θ, t). (4.24)

Remark 4.4. When ϕ(x) = − log x+x−1, then the estimate (3.7) clearly coincides with

the EL one, so it can be seen as the value of the parameter which minimizes the KLm-

divergence between the model M and the empirical measure Pn of the data X1, . . . , Xn.

The statistic 2nD̂KLm(M, P0), see (3.6), coincides with the empirical likelihood ratio

statistic associated to the null hypothesis H0 : P0 ∈ M against the alternative H1 : P0 6∈

M. The dual representation of D̂KLm(M, P0), see (4.23) and (4.11), is

D̂KLm(M, P0) = inf
θ∈Θ

sup
t∈Λ

(n)
θ

{
t0 +

1

n

n∑
i=1

log(1− t0 −
l∑

j=1

tjgj(Xi, θ))

}
.

For a given θ ∈ Θ, the KLm-projection Q
(n)
θ , of Pn on Mθ, is given by (see Proposition

4.1)

1

Q
(n)
θ (Xi)

= n

(
1− t̂0 −

l∑
j=1

t̂jg(Xi, θ)

)
, i = 1, . . . , n,

which, multiplying by Q
(n)
θ (Xi) and summing upon i = 1, . . . , n, yields t̂0 = 0. Therefore,

t0 can be omitted, and the above representation can be rewritten as follows

D̂KLm(M, P0) = inf
θ∈Θ

sup
t1,...,tl∈R

{
1

n

n∑
i=1

log(1 +
l∑

j=1

tjgj(Xi, θ))

}

and then

θ̂KLm = θ̂EL = arg inf
θ∈Θ

sup
t1,...,tl∈R

{
1

n

n∑
i=1

log(1 +
l∑

j=1

tjgj(Xi, θ))

}
(4.25)

in which the sup is taken over the set{
(t1, . . . , tl)

> ∈ Rl such that − 1 <
l∑

j=1

tjgj(Xi, θ) < +∞, for all i = 1, . . . , n

}
.
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The formula (4.25) is the ordinary dual representation of the EL estimate; see Qin and

Lawless (1994) and Owen (2001).

Remark 4.5. Consider the power divergences, associated to the power functions ϕγ; see

(2.3) and (2.4). We will show that the estimates θ̂ϕγ belong to the class of GEL estimators

introduced by Smith (1997) and Newey and Smith (2004). The projection Q
(n)
θ of Pn on

Mθ is given by

Q
(n)
θ (Xi) =

(
(γ − 1)(t̂0 +

l∑
j=1

t̂jg(Xi, θ)) + 1

)1/(γ−1)

, i = 1, . . . , n.

Using the constraint
∑n

i=1Q
(n)
θ (Xi) = 1, we can explicit t̂0 in terms of t̂1, . . . , t̂l, and hence

the sup in the dual representation (4.24) can be reduced to a subset of Rl, as in Newey and

Smith (2004). When ϕ(x) = 1
2
(x− 1)2, it is straightforward to see that the corresponding

estimate θ̂ϕ coincides with the continuous updating estimator of Hansen et al. (1996).

Remark 4.6. (Numerical calculation of the estimates and the specific role of

the χ2-divergence). The computation of t̂(θ) for fixed θ ∈ Θ as defined in (4.13) is

difficult when handling a generic divergence. In the particular case of χ2-divergence, i.e.,

when ϕ(x) = 1
2
(x−1)2, optimizing on all s.f.m’s, the system (4.13) is linear; we thus easily

obtain an explicit form for t̂(θ), which in turn allows for a single gradient descent when

optimizing upon Θ. This procedure is useful in order to compute the estimates for all

other divergences (for which the corresponding system is non linear) including EL, since

it provides an easy starting point for the resulting double gradient descent. Moreover,

Hjort et al. (2009) extend the EL approach, to more general moment condition models,

allowing the number of constraints to increase with growing sample size. In this case, the

computation of EL estimate is more complex, and the same idea as above can help to

solve the problem.
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5. Asymptotic properties of the estimates of the parameter and the

divergences

5.1. Asymptotic properties under the model. This Section addresses Problems 1

and 2, aiming to test the null hypothesis H0 : P0 ∈ M against the alternative H1 :

P0 6∈ M. We derive the limiting distributions of the proposed test statistics which are

the estimated divergences between the model M and P0. We also derive the limiting

distributions of the estimates of θ0. The following two Theorems 5.1 and 5.2 extend

Theorems 3.1 and 3.2 in Newey and Smith (2004) to the context of divergence based

approach. The Assumptions which we will consider match those of Theorems 3.1 and 3.2

in Newey and Smith (2004).

Assumption 1. a) P0 ∈ M and θ0 ∈ Θ is the unique solution of E [g(X, θ)] = 0; b)

Θ ⊂ Rd is compact; c) g(X, θ) is continuous at each θ ∈ Θ with probability one; d)

E [supθ∈Θ ‖g(X, θ)‖α] < ∞ for some α > 2; e) the matrix Ω := E
[
g(X, θ0)g(X, θ0)>

]
is

nonsingular.

Theorem 5.1. Under Assumption 1, with probability approaching one as n → ∞, the

estimate θ̂ϕ exists, and converges to θ0 in probability. 1
n

∑n
i=1 g(Xi, θ̂ϕ) = OP (1/

√
n),

t̂(θ̂ϕ) := arg sup
t∈Λ

(n)

θ̂ϕ

Pnm(θ̂ϕ, t) exists and belongs to int(Λ
(n)

θ̂ϕ
) with probability approach-

ing one as n→∞, and t̂(θ̂ϕ) = OP (1/
√
n).

In order to obtain asymptotic normality, we need some additional Assumptions. Denote

by G the matrix G := E [∂g(X, θ0)/∂θ].

Assumption 2. a) θ0 ∈ int(Θ); b) with probability one, g(X, θ) is continuously differen-

tiable in a neighborhood Nθ0 of θ0, and E
[
supθ∈Nθ0

‖∂g(X, θ)/∂θ‖
]
<∞; c) rank(G) = d.

Theorem 5.2. Assume that Assumptions 1 and 2 hold. Then,

1)
√
n
(
θ̂ϕ − θ0

)
converges in distribution to a centered normal random vector with

covariance matrix

V :=
[
GΩ−1G>

]−1
.
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2) If l > d, then the statistic 2nD̂ϕ(M, P0) converges in distribution to a χ2 random

variable with (l − d) degrees of freedom.

Remark 5.1. Observe that the estimates θ̂ϕ are asymptotically equivalent in term of

efficiency, in the sense that the limiting variance is the same as that of EL case, and it

does not depend on the choice of the divergence.

Remark 5.2. The above Theorem allows to perform statistical tests (of the model) with

asymptotic level α ∈]0, 1[. Consider the null hypothesis

H0 : P0 ∈M against the alternative H1 : P0 6∈ M. (5.1)

The critical region is then

Cϕ :=
{

2nD̂ϕ(M, P0) > q(1−α)

}
where q(1−α) is the (1− α)-quantile of the χ2(l− d) distribution. When ϕ(x) = − log x+

x − 1, it is straightforward to see that the corresponding test is the empirical likelihood

ratio one; see Qin and Lawless (1994).

5.2. Asymptotic properties of the estimates of the divergences for a given value

of the parameter. For a given θ ∈ Θ, consider the test problem of the null hypothesis

H0 : P0 ∈Mθ against two different families of alternative hypotheses: H1 : P0 /∈Mθ and

H′1 : P0 ∈ M \Mθ. Those two tests address different situations since H1 may include

misspecification of the model. We give two different test statistics each pertaining to

one of the situations and derive their limiting distributions both under H0 and under

the alternatives. As a by product, we also derive confidence areas for the true value

θ0 of the parameter. We will first state the convergence in probability of D̂ϕ(Mθ, P0)

to Dϕ(Mθ, P0), and then we obtain the limiting distribution of D̂ϕ(Mθ, P0) both when

P0 ∈ Mθ and when P0 6∈ Mθ. Obviously, when P0 ∈ Mθ, this means that θ0 = θ since

the true value θ0 of the parameter is assumed to be unique.

Assumption 3. a) P0 ∈Mθ and θ is the unique solution of E [g(X, θ)] = 0; b) E [‖g(X, θ)‖α] <

∞ for some α > 2; c) the matrix Ω := E
[
g(X, θ)g(X, θ)>

]
is nonsingular.
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Theorem 5.3. Under Assumption 3, we have

1) t̂(θ) := arg sup
t∈Λ

(n)
θ
Pnm(θ, t) exists and belongs to int(Λ

(n)
θ ) with probability ap-

proaching one as n→∞, and t̂(θ) = OP (1/
√
n).

2) The statistic 2nD̂ϕ(Mθ, P0) converges in distribution to a χ2(l) random variable.

In order to obtain the limiting distribution of the test statistic 2nD̂ϕ (Mθ, P0) under the

alternative H1 : P0 /∈Mθ, including misspecification, the following Assumption is needed.

Assumption 4. a) P0 6∈ Mθ, and t∗(θ) := arg supt∈Λθ
E [m(X, θ, t)] exists and is an interior

point of Λθ; b) E
[
supt∈Nt∗(θ) |m(X, θ, t)|

]
<∞ for some compact set Nt∗(θ) ⊂ Λθ such that

t∗(θ) ∈ int(Nt∗(θ)); c) the functions 1Rm , g1, . . . , gl are linearly independent in the sense

that : P0

{
x ∈ Rm | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0 for all t ∈ R1+l with t 6= 0.

Remark 5.3. Assumption 4.c above ensures the strict concavity of the function t ∈ Λθ 7→

E [m (X, θ, t)] on the convex set Λθ, which implies that t∗(θ) is unique. It can be replaced

by the following Assumption : there exists a neighborhood, Nt∗(θ) ⊂ Λθ, of t∗(θ), such

that E
[
supt∈Nt∗(θ) ‖∂m(X, θ, t)/∂t‖

]
< ∞, E

[
supt∈Nt∗(θ) ‖∂

2m(X, θ, t)/∂t2‖
]
< ∞ and

the matrix E [∂2m(X, θ, t∗(θ))/∂t2] is nonsingular; which implies also that t∗(θ) is unique.

Theorem 5.4. Under Assumption 4, when P0 6∈ Mθ, we have

1) t̂(θ) converges in probability to t∗(θ).

2) D̂ϕ(Mθ, P0) converges in probability to Dϕ(Mθ, P0).

We now give the limiting distribution of the test statistic under H1. We need the following

additional condition.

Assumption 5. a) There exists Nt∗(θ) ⊂ Λθ, some compact neighborhood of t∗(θ), such

that

E[ sup
t∈Nt∗(θ)

‖∂m(X, θ, t∗(θ))/∂t‖] <∞, E[ sup
t∈Nt∗(θ)

‖∂2m(X, θ, t∗(θ))/∂t2‖] <∞;

b) as δ → 0,

E

{
sup

{t;‖t−t∗(θ)‖≤δ}

∥∥∂2m(X, θ, t)/∂t2 − ∂2m(X, θ, t∗(θ))/∂t2
∥∥}→ 0;
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c) E [m(X, θ, t∗(θ))2] <∞, E [‖∂m(X, θ, t∗(θ))/∂t‖2] <∞

and the matrix E [∂2m(X, θ, t∗(θ))/∂t2] is nonsingular.

Remark 5.4. Assumption 5.b is used here to relax the condition on the third derivatives

(in t) of the function t 7→ m(X, θ, t).

Theorem 5.5. Under Assumptions 4 and 5, we have

1)
√
n(t̂(θ)−t∗(θ)) converges in distribution to a centered normal random vector with

covariance matrix

[E [m′′(X, θ, t∗)]]
−1 E

[
m′(X, θ, t∗)m′(X, θ, t∗)>

]
[E [m′′(X, θ, t∗)]]

−1
.

2)
√
n
(
D̂ϕ(Mθ, P0)−Dϕ(Mθ, P0)

)
converges in distribution to a centered normal

random variable with variance

σ2(θ, t∗(θ)) := E
[
m(X, θ, t∗(θ))2

]
− [E [m(X, θ, t∗(θ))]]2 .

Remark 5.5. Let θ be a given value in Θ. Consider the test of the null hypothesis

H0 : P0 ∈Mθ against H1 : P0 /∈Mθ. (5.2)

In view of Theorem 5.3 part 2, we reject H0 against H1, at asymptotic level α ∈]0, 1[,

when 2nD̂ϕ (Mθ, P0) exceeds the (1−α)- quantile of the χ2(l) distribution. Theorem 5.5

part 2 is useful to give an approximation to the power function

P0 /∈Mθ 7→ β(P0) := P0

[
2nD̂ϕ (Mθ, P0) > q(1−α)

]
.

We obtain then the following approximation

β(P0) ≈ 1− FN
( √

n

σ(θ, t∗(θ))

[q1−α

2n
−Dϕ(Mθ, P0)

])
, (5.3)

where FN is the cumulative distribution function of the standard normal distribution.

From this approximation, we can give the approximate sample size that ensures a desired

power β for a given alternative P0 /∈Mθ. Let n0 be the positive root of the equation

β = 1− FN
[ √

n

σ(θ, t∗(θ))

(q(1−α)

2n
−Dϕ (Mθ, P0)

)]
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i.e.,

n0 =
(a+ b)−

√
a (a+ 2b)

2Dϕ (Mθ, P0)2

with a := σ2(θ, t∗(θ))
[
F−1
N (1− β)

]2
and b := q(1−α)Dϕ (Mθ, P0) . The required sample

size is then bn0c+ 1, where bn0c denotes the integer part of n0.

Remark 5.6. (Generalized empirical likelihood ratio test). For testing H0 : P0 ∈

Mθ against the alternative H′1 :M\Mθ, we propose to use the statistics

2nSϕn := 2n

[
D̂ϕ (Mθ, P0)− inf

θ∈Θ
D̂ϕ (Mθ, P0)

]
, (5.4)

which converge in distribution to a χ2(d) random variable under H0 when Assumptions

1 and 2 hold. This can be proved using similar arguments as in Theorems 5.2 and 5.3.

We then reject H0 at asymptotic level α when 2nSϕn > q(1−α), the (1− α)-quantile of the

χ2(d)-distribution. Under H′1 and when Assumptions 1,2,4 and 5 hold, as in Theorem

5.5, it can be proved that
√
n (Sϕn −Dϕ (Mθ, P0)) (5.5)

converges to a centered normal random variable with variance

σ2(θ, t∗(θ)) := E
(
m(X, θ, t∗(θ))2

)
− (Em(X, θ, t∗(θ)))2 .

So, as in the above Remark, we obtain the following approximation

β(P0) ≈ 1− FN
( √

n

σ(θ, t∗(θ))

[q1−α

2n
−Dϕ(Mθ, P0)

])
(5.6)

to the power function P0 ∈ M/Mθ 7→ β(P0) := P0

[
2nSϕn > q(1−α)

]
. The approximated

sample size required to achieve a desired power for a given alternative can be obtained in

a similar way.

Remark 5.7. (Confidence region for the parameter). For a fixed level α ∈]0, 1[,

using convergence (5.4), the set{
θ ∈ Θ such that 2nSϕn ≤ q(1−α)

}
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is an asymptotic confidence region for θ0 where q(1−α) is the (1−α)-quantile of the χ2(d)-

distribution. It is straightforward to see that the confidence region obtained for the

KLm-divergence coincides with that of Owen (1991) and Qin and Lawless (1994).

5.3. Asymptotic properties under misspecification. We address Problem 1 stating

the limiting distribution of the proposed test statistics under the alternativeH1 : P0 /∈M.

This needs the introduction of Q∗θ∗ , the projection of P0 on M. Assumption 6 below

ensures the existence of the “pseudo-true” value θ∗ as well as the existence of the projection

Q∗θ∗ of P0 on M, and states some necessary other regularity conditions. Proposition 4.2

above states the existence and characterization of the projection Q∗θ of P0 on Mθ, for a

given θ ∈ Θ.

Assumption 6. a) Θ is compact, θ∗ := arg infθ∈Θ supt∈Λθ
E [m(X, θ, t)] exists and is unique;

b) g(X, θ) is continuous at each θ ∈ Θ with probability one;

c) E
[
sup{θ∈Θ,t∈Nt∗(θ)} |m(X, θ, t)|

]
< ∞, where Nt∗(θ) ⊂ Λθ is a compact set such that

t∗(θ) ∈ int
(
Nt∗(θ)

)
; d) for all θ ∈ Θ, the functions 1Rm , g1, . . . , gl are linearly independent

in the sense that P0

{
x ∈ Rm | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0, for all t ∈ R1+l with t 6= 0.

Remark 5.8. Assumption 6.d ensures the strict concavity of the function t ∈ Λθ 7→

E [m(X, θ, t)] on the convex set Λθ, which implies the uniqueness of t∗(θ), for all θ ∈ Θ.

This Assumption can be replaced by the following one : for all θ ∈ Θ, there exists a

neighborhood Nt∗(θ) of t∗(θ) such that

E[ sup
t∈Nt∗(θ)

‖∂m(X, θ, t)/∂t‖] <∞, E[ sup
t∈Nt∗(θ)

∥∥∂2m(X, θ, t)/∂t2
∥∥] <∞

and the matrix E [∂2m(X, θ, t∗(θ))/∂t2] <∞ is nonsingular, which implies the uniqueness

of t∗(θ), for all θ ∈ Θ.

Theorem 5.6. Under Assumption 6, we have

1) ‖t̂(θ)− t∗(θ)‖ converges in probability to 0 uniformly in θ ∈ Θ.

2) θ̂ϕ converges in probability to θ∗;

3) D̂ϕ(M, P0) converges in probability to Dϕ(M, P0).
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The asymptotic normality of the test statistics under misspecification requires the follow-

ing additional conditions.

Assumption 7. a) θ∗ ∈ int(Θ); b) there exists N ⊂ Θ× ΛΘ, some compact neighborhood

of (θ∗, t∗(θ∗)), such that with probability one (θ, t) ∈ N 7→ m(X, θ, t) is C2 and

E[ sup
(θ,t)∈N

‖∂m(X, θ, t)/∂(θ, t)‖] <∞, E[ sup
(θ,t)∈N

‖∂2m(X, θ, t)/∂(θ, t)2‖] <∞;

c) as δ → 0,

E

{
sup

{(t,θ);‖(t,θ)−(t∗(θ∗),θ∗)‖≤δ}

∥∥∂2m(X, θ, t)/∂(θ, t)2 − ∂2m(X, θ∗, t∗(θ∗))/∂(θ, t)2
∥∥}→ 0;

d) E [m(X, θ∗, t∗(θ∗))2] , E
[
‖∂m(X, θ∗, t∗(θ∗))/∂t‖2] and E

[
‖∂m(X, θ∗, t∗(θ∗)/∂θ‖2] are

finite, and the matrix

S :=

 S11 S12

S21 S22

 ,

is nonsingular, where S11 := E [∂2m(X, θ∗, t∗(θ∗))/∂t2],

S12 = S21
> := E [∂2m(X, θ∗, t∗(θ∗))/∂t∂θ] and S22 := E [∂2m(X, θ∗, t∗(θ∗))/∂θ2] .

Remark 5.9. Assumption 7.c is used here to relax the condition on the third derivatives

(in t and θ) of the function (θ, t) 7→ m(X, θ, t).

Theorem 5.7. Under Assumptions 6 and 7, we have

1)

√
n

 t̂(θ̂ϕ)− t∗(θ∗)

θ̂ϕ − θ∗


converges in distribution to a centered normal random vector with covariance ma-

trix

W := S−1MS−1

where

M := E


 ∂

∂t
m (X, θ∗, t∗(θ∗))

∂
∂θ
m (X, θ∗, t∗(θ∗))

 ∂
∂t
m (X, θ∗, t∗(θ∗))

∂
∂θ
m (X, θ∗, t∗(θ∗))

>
 ;
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2)
√
n
(
D̂ϕ(M, P0)−Dϕ(M, P0)

)
converges in distribution to a centered normal ran-

dom variable with variance

σ2(θ∗, t∗(θ∗)) := E
[
m(X, θ∗, t∗(θ∗))2

]
− [E [m(X, θ∗, t∗(θ∗))]]2 .

Remark 5.10. In the case of EL, i.e., when ϕ(x) = − log x + x − 1, Assumption 6.c

implies that

−∞ < inf
x∈Rm

t0 +
l∑

i=1

tigi(x, θ) ≤ sup
x∈Rm

t0 +
l∑

i=1

tigi(x, θ) < 1 (5.7)

for all x ∈ Rm − P0-a.s., for all θ ∈ Θ and for all t ∈ Nt∗(θ). This imposes a restriction

on the model when the support of P0 and at least one function gi is unbounded. Indeed,

when the support of P0 is for example the whole space Rm, the condition above does not

hold when at least one function gi is unbounded. In this case, the EL estimate may cease

to be consistent as it is stated by Schennach (2007) under misspecification. This is a

potential problem for all divergences associated to ϕ-functions with domain of the form

(a,+∞[, ] −∞, b) or (a, b), where a and b are some finite real numbers; it is the case of

modified χ2, Hellinger, KL and modified KL divergences. At the contrary, Assumption

6.c may be satisfied for other divergences associated to ϕ functions with domϕ = R which

is the case of χ2 divergence for example.

Remark 5.11. Theorem 5.7 part 2 is useful for the computation of the power function.

For testing the null hypothesis H0 : P0 ∈ M against the alternative H1 : P0 /∈ M, the

power function is

P0 /∈M 7→ β(P0) := P0

[
2nD̂ϕ (M, P0) > q(1−α)

]
. (5.8)

Using Theorem 5.7 part 2, we obtain the following approximation to the power function

(5.8):

β(P0) ≈ 1− FN
[ √

n

σ (θ∗, t∗(θ∗))

(q(1−α)

2n
−Dϕ (M, P0)

)]
(5.9)



ESTIMATION AND TEST UNDER MOMENT CONDITION MODELS 27

where FN is the empirical cumulative distribution of the standard normal distribution.

From the proxy value of β(P0) hereabove, the approximate sample size that ensures a

given power β for a given alternative P0 6∈ M can be obtained in similar way as above.

6. Simulation results: Approximation of the power functions of the

empirical likelihood ratio and the empirical chi-square tests

We will illustrate by simulation the accuracy of the power approximation (5.9) in the

case of EL method (or KLm-divergence), i.e., when ϕ(x) = − log x + x − 1, and for the

χ2-divergence, i.e., when ϕ(x) = 1
2
(x − 1)2. We will consider tow different models from

Examples 1.1 and 1.2.

Example 6.1. Consider the model test (see Example 1.1) of the null hypothesis

H0 : P0 ∈M against the alternative H1 : P0 /∈M,

whereM :=
⋃
θ∈RMθ andMθ is the set of all s.f.m’s satisfying the constraints

∫
dQ(x) =

1 and
∫
g(x, θ) dQ(x) = 0 with g(x, θ) := (x, x2 − θ)>, namely

Mθ :=

{
Q ∈M such that

∫
R
dQ(x) = 1 and

∫
R
g(x, θ) dQ(x) = 0

}
,

where θ ∈ Θ := R is the parameter of interest to be estimated. We consider the asymptotic

level α = 0.05 and the alternatives P0 := U([−1, 1 + ε]) 6∈ M for different values of ε in

the interval ]0, 1]. Note that when ε = 0 then the uniform distribution U([−1, 1]) belongs

to the model M. For this model, we can show that all Assumptions of Theorem 5.2 are

satisfied when ε = 0, and all Assumptions of Theorem 5.7 are met under alternatives for

both KLm and χ2 divergences. The power function (5.8) is plotted (with a continuous

line), with sample sizes n = 50, n = 100, n = 200 and n = 500, for different values

of ε ∈]0, 1]. Each power entry was computed by Monte-Carlo from 1000 independent

runs. The approximation (5.9) is plotted (with a dashed line) as a function of ε; both

σ(θ∗, t∗(θ∗)) and Dϕ (M, P0) in (5.9) are computed through their empirical counterparts

σ̂(θ̂ϕ, t̂(θ̂ϕ)) and D̂ϕ(M, P0) respectively. The estimates θ̂ϕ and D̂ϕ(M, P0) are computed

using the Newton-Raphson algorithm for χ2-divergence and the Uzawa algorithm for
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KLm-divergence. The results are presented in Figure 1 for the EL ratio test and in

Figure 2 for the empirical χ2 test. We observe that the approximation is accurate even for

moderate sample sizes for both EL ratio and χ2 tests, but for small samples sizes (n = 50)

the approximation is slightly better for the EL ratio test. However, the computation is

faster for the χ2 divergence since the optimization on the parameter t := (t0, t1, t2)> is

obtained explicitly by solving the system (4.13) which is linear only for the χ2 divergence.

At the contrary, the EL case needs a double gradient descent both on θ and t (using

Uzawa algorithm).

Figure 1. Example 6.1 : Approximation of the power function of the EL

ratio test (KLm)
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Figure 2. Example 6.1 : Approximation of the power function of the

empirical χ2 test
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Example 6.2. Consider the model test (see Example 1.2) of the null hypothesis

H0 : P0 ∈M against the alternative H1 : P0 /∈M,

whereM :=
⋃
θ∈ΘMθ andMθ is the set of all s.f.m’s satisfying the constraints

∫
dQ(x) =

1 and
∫
g(x, θ) dQ(x) = 0 with g(x, θ) := (1]−∞,1/2](x)− θ,1]−1/2,+∞[(x)− θ)>, namely

Mθ :=

{
Q ∈M such that

∫
R
dQ(x) = 1 and

∫
R
g(x, θ) dQ(x) = 0

}
,

where θ := F0(1/2) ∈ Θ := [0, 1] is the parameter of interest to be estimated. We

aim to test the equality F0(1/2) = 1 − F0(−1/2) and estimate the value θ = F0(1/2)
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using this symmetry. We consider the asymptotic level α = 0.05 and the alternatives

P0 := U([−1, 1 + ε]) 6∈ M for different values of ε in the interval ]0, 1]. Note that when

ε = 0 then the uniform distribution P0 := U([−1, 1]) belongs to the model M, since

it is symmetric about zero. For this model, we can show also that all Assumptions of

Theorem 5.2 are satisfied when ε = 0, and all Assumptions of Theorem 5.7 are met

under alternatives for both KLm and χ2 divergences. The power function (5.8) is plotted

(with a continuous line), with sample sizes n = 50, n = 100, n = 200 and n = 500, for

different values of ε ∈]0, 1]. Each power entry was computed by Monte-Carlo from 1000

independent runs. The approximation (5.9) is plotted (with a dashed line) as a function

of ε, and it was computed in a similar way as in Example 6.1. The results for EL ratio

test are presented in Figure 3, and in Figure 4 for empirical χ2 test. We obtain similar

results as in Example 6.1 for both EL ratio and empirical χ2 tests.

7. Concluding remarks and possible developments

We have proposed new estimates and tests for model satisfying linear constraints with

unknown parameter through divergence based methods which generalize the EL approach.

The use of duality leads to the obtaining of the limiting distributions of the test statistics

and the estimates of the parameter under alternatives and under misspecification. An

approximation to the power function is deduced, as well as the sample size which ensures

a desired power for a given alternative, for all the proposed empirical divergence tests

including the EL ratio one. Consistency of the test statistics under the alternatives is

the starting point for the study of the optimality of the tests through Bahadur approach;

also the generalized Neyman-Pearson optimality of EL test (as developed by Kitamura

(2001)) can be adapted for empirical divergence based methods. The proposed estimates

of the parameters are asymptotically equivalent in term of efficiency at first order; many

problems remain to be studied in the future such as the choice of the divergence which

leads to an optimal (in some sense) estimator or test in terms of second order efficiency

and/or robustness. Preliminary simulation results show that Hellinger divergence enjoys

good properties in terms of efficiency-robustness; see Broniatowski and Keziou (2008).
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Figure 3. Example 6.2 : Approximation of the power function of the EL

ratio test (KLm)
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Comparaisons of the robustness of the estimates and tests in term of influence function

can be handled in a similar way as the case of parametric models; see Toma and Leoni-

Aubin (2010). Also comparisons of the tests under local alternatives should be developed.

8. Appendix

Proof of Theorem 5.1.

The same arguments, used for the proof of Theorem 3.1 in Newey and Smith (2004), hold

when their criterion function (θ, λ) ∈ Θ × Rl 7→ 1
n

∑n
i=1 ρ(λ>g(X, θ)) is replaced by our
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Figure 4. Example 6.2 : Approximation of the power function of the

empirical χ2 test

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
n = 50

Alternatives

P
o

w
e

r 
fu

n
c
ti
o

n
 a

n
d

 i
ts

 a
p

p
ro

x
im

a
ti
o

n

 

 

Power

Approxim.

Level

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n = 100

Alternatives
P

o
w

e
r 

fu
n

c
ti
o

n
 a

n
d

 i
ts

 a
p

p
ro

x
im

a
ti
o

n

 

 

Power

Approxim.

Level

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n = 200

Alternatives

P
o

w
e

r 
fu

n
c
ti
o

n
 a

n
d

 i
ts

 a
p

p
ro

x
im

a
ti
o

n

 

 

Power

Approxim.

Level

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n = 500

Alternatives

P
o

w
e

r 
fu

n
c
ti
o

n
 a

n
d

 i
ts

 a
p

p
ro

x
im

a
ti
o

n

 

 

Power

Approxim.

Level

function (θ, t) ∈ Θ× R1+l 7→ 1
n

∑n
i=1m(t>g(X, θ)). In particular, we have

max
1≤i≤n

∣∣∣t̂(θ̂ϕ)>g(Xi, θ̂ϕ)
∣∣∣→ 0

in probability, which implies that t̂(θ̂ϕ) ∈ int(Λ
(n)

θ̂ϕ
) with probability one as n→∞, since

a∗ < 0 < b∗.

Proof of Theorem 5.2.

The proof is similar to that of Newey and Smith (2004) Theorem 3.2.
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Proof of Theorem 5.3.

It is a particular case of Theorem 5.1 taking Θ = {θ}.

Proof of Theorem 5.4.

1) First, note that t∗(θ) exists and is unique by Assumption 4. By the uniform weak law

of large numbers (UWLLN), using continuity of m(X, θ, t) in t, and Assumption 4.b, we

obtain

|Pnm(θ, t)− E [m(X, θ, t)]| → 0, (8.1)

in probability uniformly in t over the compact set Nt∗(θ). Using this and the fact that

t∗(θ) := arg supt∈Λθ
P0m(θ, t) is unique and belongs to int(Nt∗(θ)) and the strict concavity

of t 7→ P0m(θ, t), we conclude that any value

t := arg sup
t∈Nt∗(θ)

Pnm(θ, t) (8.2)

converges in probability to t∗(θ); see e.g. Theorem 5.7 in van der Vaart (1998). We end

then the proof by showing that t̂(θ) belongs to int(Nt∗(θ)) with probability one as n→∞,

and therefore it converges to t∗(θ). In fact, since for n sufficiently large any value t lies

in the interior of Nt∗(θ), concavity of t 7→ Pnm(θ, t) implies that no other point t in the

complement of int(Nt∗(θ)) can maximize Pnm(θ, t) over t ∈ R1+l, hence t̂(θ) must belongs

to int(Nt∗(θ)).

2) With probability tending to 1 as n→∞, we have D̂ϕ(Mθ, P0) = Pnm(θ, t̂) = Pnm(θ, t).

We can then write∣∣∣D̂ϕ(Mθ, P0)−Dϕ(Mθ, P0)
∣∣∣ =

∣∣Pnm(θ, t)− P0m(θ, t∗(θ))
∣∣ =: |A|,

and

Pnm(θ, t∗(θ))− P0m(θ, t∗(θ)) ≤ A ≤ Pnm(θ, t)− P0m(θ, t).

Both the RHS and the LHS in the above display tend to 0 in probability by (8.1). Hence,∣∣∣D̂ϕ(Mθ, P0)−Dϕ(Mθ, P0)
∣∣∣ tends to 0 in probability as n→∞. This ends the proof.
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Proof of Theorem 5.5.

1) For n sufficiently large, by a Taylor expansion, there exists t ∈ R1+l inside the segment

that links t̂ and t∗(θ) with

0 = Pnm
′(θ, t̂)

= Pnm
′(θ, t∗(θ)) +

(
Pnm

′′(θ, t)
)> (

t̂− t∗(θ)
)
.

(8.3)

By Assumptions 5.a and 5.b, using the fact that t = t∗(θ) + oP (1) and the UWLLN, we

can prove that

Pnm
′′(θ, t) = P0m

′′(θ, t∗(θ)) + oP (1).

Using this display, one gets from (8.3)

− Pnm′(θ, t∗(θ)) = (P0m
′′(θ, t∗(θ)) + oP (1))

(
t̂− t∗(θ)

)
. (8.4)

Assumptions 4.a and 5.a imply that P0m
′(θ, t∗(θ)) = 0. By the central limit theorem

(CLT), we have
√
nPnm

′(θ, t∗(θ)) = OP (1),

which by (8.4) implies that
√
n
(
t̂− t∗(θ)

)
= OP (1). From (8.4), we get then

√
n
(
t̂− t∗(θ)

)
= [−P0m

′′(θ, t∗(θ))]
−1√

nPnm
′(θ, t∗(θ)) + oP (1). (8.5)

The CL and Slutsky theorems conclude the proof of part 1.

2) Using the fact that
(
t̂− t∗(θ)

)
= OP (1/

√
n) and Pnm

′(θ, t∗(θ)) = P0m
′(θ, t∗(θ)) +

oP (1) = 0 + oP (1) = oP (1), we obtain

√
n
(
D̂ϕ(Mθ, P0)−Dϕ(Mθ, P0)

)
=
√
n
(
Pnm(θ, t̂)− P0m(θ, t∗(θ))

)
=
√
n (Pnm(θ, t∗(θ))− P0m(θ, t∗(θ))) + oP (1),

and the CL and Slutsky theorems conclude the proof.

Proof of Theorem 5.6.

1) First note that Assumption 6.d implies that the function t ∈ Λθ 7→ Em(X, θ, t) is

strictly concave for all θ ∈ Θ, which implies that t∗(θ) is unique for all θ ∈ Θ. By the
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UWLLN, using continuity of m(X, θ, t), in θ and t, and Assumption 6.c, we obtain the uni-

form convergence in probability, over the compact set
{

(θ, t) ∈ Θ× R1+l; θ ∈ Θ, t ∈ Nt∗(θ)

}
,

sup
{θ∈Θ,t∈Nt∗(θ)}

|Pnm(θ, t)− P0m(θ, t)| → 0. (8.6)

We can then prove the convergence in probability supθ∈Θ ‖t̂(θ)− t∗(θ)‖ → 0 in two steps.

Step 1: Let η > 0. We will show that P0

[
supθ∈Θ ‖t(θ)− t∗(θ)‖ ≥ η

]
→ 0 for any value

t(θ) := arg sup
t∈Nt∗(θ)

Pnm(θ, t). (8.7)

Step 2: To conclude the proof, we will show that t̂(θ) belongs to int(Nt∗(θ)) with probability

one as n → ∞ for all θ ∈ Θ. Let η > 0 such that supθ∈Θ ‖t(θ) − t∗(θ)‖ ≥ η. Sine Θ

is a compact set, by continuity there exists θ ∈ Θ such that supθ∈Θ ‖t(θ) − t∗(θ)‖ =

‖t(θ)− t∗(θ)‖ ≥ η. Hence, there exists ε > 0 such that P0m(θ, t∗(θ))− P0m(θ, t(θ)) > ε.

In fact, ε may be defined as follows

ε := inf
θ∈Θ

sup
{t∈Nt∗(θ); ‖t−t∗(θ)‖≥η}

E[m(X, θ, t∗(θ))]− E[m(X, θ, t)],

which is strictly positive by the strict concavity of E[m(X, θ, t)] in t for all θ ∈ Θ,

the uniqueness of t∗(θ) ∈ int(Nt∗(θ)) and the fact that Θ is compact. Hence the event[
supθ∈Θ ‖t(θ)− t∗(θ)‖ ≥ η

]
implies the event[
P0m(θ, t∗(θ))− P0m(θ, t(θ)) ≥ ε

]
,

from which we obtain

P0

[
sup
θ∈Θ
‖t(θ)− t∗(θ)‖ ≥ η

]
≤ P0

[
P0m(θ, t∗(θ))− P0m(θ, t(θ)) ≥ ε

]
. (8.8)

On the other hand, by (8.6), we have

P0m(θ, t∗(θ))− P0m(θ, t(θ)) = Pnm(θ, t∗(θ))− P0m(θ, t(θ)) + oP (1)

≤ Pnm(θ, t(θ))− P0m(θ, t(θ)) + oP (1)

≤ sup
{θ∈Θ,t∈Nt∗(θ)}

|Pnm(θ, t)− P0m(θ, t)|+ oP (1).
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Combining this with (8.8) and (8.6), we conclude that

sup
θ∈Θ
‖t(θ)− t∗(θ)‖ → 0 (8.9)

in probability. In particular, t(θ) ∈ int(Nt∗(θ)) for sufficiently large n, uniformly in θ ∈

Θ. Since t 7→ Pnm(θ, t) is concave, then the maximizer t̂(θ) belongs to int(Nt∗(θ)) for

sufficiently large n; hence the same result (8.9) holds when t(θ) is replaced by t̂(θ).

2) From part 1, we have for large n,

sup
θ∈Θ
|Pnm(θ, t̂(θ))− P0m(θ, t∗(θ))| = sup

θ∈Θ
|Pnm(θ, t(θ))− P0m(θ, t∗(θ))| =: sup

θ∈Θ
|B|.

On the other hand, we have

Pnm(θ, t∗(θ))− P0m(θ, t∗(θ)) ≤ B ≤ Pnm(θ, t(θ))− P0m(θ, t(θ)).

By Assumption 6.c, and the convergence in probability supθ∈Θ ‖t(θ) − t∗(θ)‖ → 0, both

the RHS and LHS of the above display tends to 0 in probability uniformly in θ ∈ Θ,

by the UWLLN. Hence, supθ∈Θ |Pnm(θ, t̂(θ)) − P0m(θ, t∗(θ))| → 0 in probability. Now,

since the minimizer θ∗ of θ 7→ P0m(θ, t∗(θ)) over the compact set Θ is unique and interior

point of Θ, by continuity and the above uniform convergence, we conclude that θ̂ϕ tends

in probability to θ∗; see e.g. Theorem 5.7 in van der Vaart (1998).

3) This holds as a consequence of the uniform convergence in probability

sup
θ∈Θ
|Pnm(θ, t̂(θ))− P0m(θ, t∗(θ))| → 0 (8.10)

proved in part 2 above. In fact, we have for n sufficiently large

|D̂ϕ(M, P0)−Dϕ(M, P0)| = |Pnm(θ̂, t̂(θ̂))− P0m(θ∗, t∗(θ∗))| =: |C|,

with

Pnm(θ̂, t̂(θ̂))− P0m(θ̂, t∗(θ̂)) ≤ C ≤ Pnm(θ∗, t̂(θ∗))− P0m(θ∗, t∗(θ∗))

and both the RHS and LHS tend to 0 in probability by (8.10). This concludes the proof.
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Proof of Theorem 5.7.

1) By the first order conditions, with probability tending to one, we have Pn
∂
∂t
m
(
θ̂, t̂(θ̂)

)
= 0

Pn
∂
∂θ
m
(
θ̂, t̂(θ̂)

)
+ Pn

∂
∂t
m
(
θ̂, t̂(θ̂)

)
∂
∂θ
t̂(θ̂) = 0.

The second term in the LHS of the second equation is equal to 0, due to the first equation.

Hence, t̂(θ̂) and θ̂ are solutions of the somehow simpler system

Pn
∂

∂t
m
(
θ̂, t̂(θ̂)

)
= 0 (8.11)

Pn
∂

∂θ
m
(
θ̂, t̂(θ̂)

)
= 0. (8.12)

Using a Taylor expansion in (8.11) in (θ̂, t̂) around (θ∗, t∗); there exists
(
θ, t
)

inside the

segment that links (θ̂, t̂(θ̂)) and (θ∗, t∗(θ∗)) such that

0 = Pn
∂

∂t
m (θ∗, t∗(θ∗)) +

[(
Pn

∂2

∂t2
m(θ, c)

)>
,

(
Pn

∂2

∂θ∂t
m(θ, c)

)>]
an

(8.13)

with

an :=

((
t̂(θ̂)− t∗(θ∗)

)>
,
(
θ̂ − θ∗

)>)>
. (8.14)

By Assumption 7, using the UWLLN, we can write[
Pn

∂2

∂t2
m(θ, c), Pn

∂2

∂θ∂t
m(θ, c)

]
=

[
P0

∂2

∂t2
m(θ∗, t∗(θ∗)), P0

∂2

∂θ∂t
m(θ∗, t∗(θ∗))

]
+ oP (1),

to obtain from (8.13)

− Pn
∂

∂t
m(θ∗, t∗) =

[(
P0

∂2

∂t2
m(θ∗, t∗)

)>
+ oP (1),

(
P0

∂2

∂θ∂t
m(θ∗, t∗)

)>
+ oP (1)

]
an.

(8.15)

In the same way, using a Taylor expansion in (8.12), we obtain

− Pn
∂

∂θ
m(θ∗, t∗) =

[(
P0

∂2

∂t∂θ
m(θ∗, t∗)

)>
+ oP (1),

(
P0

∂2

∂θ2
m(θ∗, t∗)

)>
+ oP (1)

]
an.

(8.16)
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From (8.15) and (8.16), we get

√
nan =

√
n

 P0
∂2

∂t2
m(θ∗, t∗)

(
P0

∂2

∂θ∂t
m(θ∗, t∗)

)>(
P0

∂2

∂t∂θ
m(θ∗, t∗)

)>
P0

∂2

∂θ2
m(θ∗, t∗)


−1

×

×

 −Pn ∂
∂t
m(θ∗, t∗)

−Pn ∂
∂θ
m(θ∗, t∗)

+ oP (1). (8.17)

Denote S the (1 + l + d)× (1 + l + d)−matrix defined by

S :=

 S11 S12

S21 S22

 :=

 P0
∂2

∂t2
m(θ∗, t∗)

(
P0

∂2

∂θ∂t
m(θ∗, t∗)

)>(
P0

∂2

∂t∂θ
m(θ∗, t∗)

)>
P0

∂2

∂θ2
m(θ∗, t∗)

 . (8.18)

Hence, we obtain

√
n

 t̂(θ̂)− t∗(θ∗)

θ̂ − θ∗

 =
√
nS−1

 −Pn ∂
∂t
m(θ∗, t∗)

−Pn ∂
∂θ
m(θ∗, t∗)

+ oP (1),

and the CL and Slutsky theorems conclude the proof.

2) Using the fact that

t̂(θ̂)− t∗(θ∗) = OP (1/
√
n), Pn∂m(θ∗, t∗(θ∗))/∂t = P0∂m(θ∗, t∗(θ∗))/∂t+ oP (1) = oP (1)

and

θ̂ − θ∗ = OP (1/
√
n), Pn∂m(θ∗, t∗(θ∗))/∂θ = P0∂m(θ∗, t∗(θ∗))/∂θ + oP (1) = oP (1),

we can write

√
n
(
D̂ϕ(M, P0)−Dϕ(M, P0)

)
=
√
n
(
Pnm(θ̂, t̂(θ̂))− P0m(θ∗, t∗(θ∗))

)
=
√
n (Pnm(θ∗, t∗(θ∗))− P0m(θ∗, t∗(θ∗))) + oP (1),

and the CL and Slutsky theorems end the proof.
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