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Abstract

Some 30 years ago Charnes, Cooper and Rhodes [7] proposed DEA
(Data Envelopement Analysis) as a mean of measuring and evaluat-
ing performance of firms. This paper proposes a model for produc-
tion technologies which differs from the traditional DEA production
model. The usual convex framework of the DEA model is replaced
by an order theorethical condition: if two input vectors can produce a
given output then the maximum coordinatewise of these two vectors
can produce that same output. In this model, technologies are dually
linked by a min-max cost function that is dual to the Shephard’s dis-
tance function. Assuming free disposal of outputs these technologies
can be completely described and the Shephard’s distance function can
be given in closed form .

Keywords: min-max cost function, technology, upper semilattice, B-convex
sets, non-parametric models, DEA.

1 Introduction

In microeconomic production theory, a technology is characterized by the set
of all technically feasible combinations of output and inputs.

Building on the seminal ideas of Farrell [11], Charnes, Cooper and Rhodes
[7] proposed to model production technologies using a non parametric ap-
proach that does not involve a functional form of the production set. Among
other things, they showed how to determine the efficient observed production
units in a sample of firms operating on a specific sector of the economy. They
termed their model DEA (Data Envelopement Analysis). Banker, Charnes,
Cooper [2] extended this approach to the case of variable returns to scale.
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While convexity has been traditionally invoked in Operations Research
literature on DEA, its use is sometimes questionable. Prices are often lacking
in the public and privates sectors, performance gauging is necessarily limited
to technical rather than allocative efficiency.

One of the assumptions of the model developed in this paper is that
the least upper bound of a pair of input vectors can produce the upper
bound of the outputs they can individually produce. This model allows a
dual economic interpretation of technologies through a so called min-max
cost function. We prove that the traditional Shephard’s distance function is
primal to this min-max cost function that is dual to the Shephard’s distance
function. By replacing the usual convex hull of a subset of Rd

+ by what we
call its B-convex hull (B-convexity has been introduced by Briec and Horvath
in [3]), The Shephard distance function can be explicitely calculated.

The paper unfolds as follows. Notations and the gauges functions as-
sociated to a multivalued map are presented in Section 2; gauge and the
duality relation between the cogauge and the “max”-support functional of
upward sets are presented is Sections 2.2 and 2.3; the classical DEA method
for production models is described in Section 3; duality for technologies with
strongly disposable inputs is derived in Section 2.3 ; B-convexity is presented
in Section 4.1; technologies whose input and output sets are semilattices are
described in Sections 4.2 and 4.3 as well as the general form of their Shep-
hard’s distance function; the B-convex estimation of a technology is intro-
duced in Section 4.4; the Shephard’s distance functions for those technologies
are explicitely computed in Section 4.5.

2 Gauge, duality and upward sets

2.1 Notations

The set Rd
+ =

{
(x1, · · · , xd) ∈ Rd : min{x1, · · · , xd} ≥ 0

}
is the positive cone

of Rd and Rd
++ the set of those elements (x1, · · · , xd) ∈ Rd such that

min{x1, · · · , xd} > 0. The partial order on Rd associated to the positive
cone Rd

+ is defined, as usual, by z ≤ w if w − z ∈ Rd
+ or, equivalently,

z ≤ w if, for all i ∈ {1, · · · , d}, zi ≤ wi. If x ≤ y we denote by [x, y]
the set {w ∈ Rd : x ≤ w ≤ y}. Given u and v in Rd the vector u ∨ v is
the least upper bound of u and v, that is, (max{u1, v1}, · · · , max{ud, vd});∨k

i=1 xi stands for the least upper bound of set of vectors {x1, · · · , xk} (to
avoid confusion between a set of vectors and the coordinates {x1, · · · , xd} of
a given vector x we will denote “the vector of index i” by xi).
The norm of a vector x ∈ Rd is ‖x‖ = max{|x1|, · · · , |xd|}. The carrier of
an element u of Rm

+ is the set car(u) = {i : ui > 0}.
A multivalued map T from from a set X to a set Y assigns to each

element x of X a subset T (x) of Y ; no special notation will be used for
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multivalued or single valued maps, both will simply be called maps (from
X to Y ). As usual a map T : X → Y will be identified with its graph,
that is

{
(x, y) ∈ X × Y : y ∈ T (x)

}
. To an arbitrary map T : X → Y one

associates its inverse T−1; it is the map from Y to X defined by x ∈ T−1(y)
if and only if y ∈ T (x). The sets T (x) are the values of T while the sets
T−1(y) are the fibers of T. The image of a subset A of X by T is the set
T (A) =

⋃
x∈A T (x).

2.2 Gauges and cogauges

For x ∈ Rd
+ let R+(x) = {λx : λ ≥ 0} and R++(x) = {λx : λ > 0} ; if x 6= 0

they are, respectively, the halfline and the open halfline through the point x.
The Minkowski gauge µA and cogauge νA of a nonempty subset A of Rd

are the maps from Rd to R+ ∪ {+∞} respectively defined by

µA(x) = inf {λ > 0 : x ∈ λA} and νA(x) = sup {λ > 0 : x ∈ λA} . (2.1)

If A ∩R++(x) = ∅ then µA(x) = ∞ and νA(x) = 0; with this remark one
can extend the definition of µA and νA to the case A = ∅.

A subset A of Rd is radiant if, for all 0 < λ ≤ 1 and all x ∈ A, λx ∈ A; it
is coradiant if, for all λ ≥ 1 and all x ∈ A, λx ∈ A. A set A is simultaneously
radiant and coradiant if and only if, for all x ∈ A, R++(x) ⊂ A. Such a set is
a cone. A closed radiant set is starshaped1, that is, if λ ∈ [0, 1] and x ∈ A
then λx ∈ A.

One can very easily see that the gauge µA, respectively the cogauge νA,
of an arbitrary radiant, respectively coradiant, set A of Rd

+ is positively
homogeneous of degree one.

Theorem 2.2.1 (1) If A is a closed radiant set of Rd
+ then

A =
{
x ∈ Rd

+ : µA(x) ≤ 1
}

(2) If A is a closed coradiant set of Rd
+ then A =

{
x ∈ Rd

+ : νA(x) ≥ 1
}
.

This follows from the much more general Propositions 5.1 and 5.6 of [14].

Maps which are cogauges of closed coradiant sets are characterized by the
following proposition which can be obtained from Proposition 5.8 of [14].

Theorem 2.2.2 Given a map q : Rd
+ → [0,∞] let B = {x ∈ Rd

+ : q(x) ≥ 1}.
Then statements (1) and (2) are equivalent:

(1) q is upper semicontinuous, positively homogeneous of degree one and
q 6= 0;

(2) B is a nonempty closed coradiant subset of Rd
+ and νB = q.

1Starshaped at 0 would be more precise; we will consider only that particular caes.
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Theorem 2.2.1 tells us how T can be reconstructed from either the gauge or
the cogauge:

Proposition 2.2.3 (1) If T has closed and radiant values then,
for all x ∈ Rm

+ ,
T (x) = {y ∈ Rn

+ : µT (x)(y) ≤ 1}. (2.2)

(2) If T has closed and coradiant fibers then, for all y ∈ Rn
+,

T−1(y) = {x ∈ Rm
+ : νT−1(y)(x) ≥ 1}. (2.3)

2.3 Duality and upward sets

A subset A of Rm
+ is upward if the following condition holds:

∀x ∈ A ∀x′ ∈ Rm
+

[
x ≤ x′ ⇒ x′ ∈ A

]
. (2.4)

In section 3, a production model is proposed with strongly disposable inputs.
Such an assumption means the input sets are upward. It is therefore appro-
priate to begin this section with a short analysis of upward subsets of Rm

+ .
Notice that there is a recent paper [16] which deals with some mathematical
concepts used in the present section.

A symmetrical definition is useful to model strongly disposable outputs.
A subset B of Rm

+ is downward if the following condition holds:

∀y ∈ B ∀y′ ∈ Rm
+

[
y ≥ y′ ⇒ y′ ∈ B

]
. (2.5)

A detailed analysis of downward sets is proposed in [13].

Lemma 2.3.1 below gives an analytic characterization of closed upward
subsets of Rm

+ . First, let us introduce the following notation2: for (w, x) ∈ Rm
+

let
〈w, x〉 = max

1≤i≤m
wixi (2.6)

and for A ⊂ Rm
+ let σmax

A : Rm
+ → [0,∞] be the map defined as follows:

σmax
A (w) = inf

x∈A
〈w, x〉 (2.7)

if A 6= ∅ and σmax
A (w) = +∞ otherwise.

For all u ∈ Rm
+ let K(u) = {v ∈ Rm

+ : 〈u, v〉 > 0} and K1(u) = {v ∈ Rm
+ :

〈u, v〉 ≥ 1}.
2〈w, x〉max, or even 〈w, x〉max,m would be more precise, but the lack of subscript should

not be a cause of confusion since the meaning of 〈w, x〉 will remain constant throughout
this paper.
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Lemma 2.3.1 For all non empty closed subsets A of Rm
+ \{0} the following

statements are equivalent.

(1) A is an upward subset of Rm
+ ;

(2) for all x ∈ Rm
+ \A there exists ŵ ∈ Rm

++ such that 〈ŵ, x〉 < σmax
A (ŵ);

(3) A =
{
x ∈ Rm

+ : ∀w ∈ E(x) 〈w, x〉 ≥ σmax
A (w)

}
where E(x) can be any one

of the following sets: Rm
++, Rm

+ , K(x), K1(x).

Proof (1) Assume that A is closed and upward and that x 6∈ A. Then
inf
a∈A

max
1≤i≤n

|xi − ai| > 0 and therefore one can choose η > 0 such that x̂ =

(x1 + η, · · · , xm + η) 6∈ A. Let ŵ = x̂−1. We obviously have 〈ŵ, x〉 ≤ 1. From
x̂ 6∈ A and A being upward we have [0, x̂]∩A = ∅, that is, for all a ∈ A there
exists at least one index j such that aj > x̂j or, equivalently, 〈ŵ, a〉 > 1 and
therefore σmax

A (ŵ) ≥ 1. This proves (2). Assume that (2) holds then

Rm
+ \A ⊂

⋃

w∈Rm
++

{
x ∈ Rm

+ : 〈w, x〉 < σmax
A (w)

}
.

The reverse inclusion trivially holds. This proves (3) for E(x) = Rm
++ and

E(x) = Rm
+ , since Rm

++ ⊂ Rm
+ .

The set defined defined in (3) is clearly closed and upward. We have
shown that (1), (2) and (3) for E(x) = Rm

++ and E(x) = Rm
+ are equivalent.

To obtain the remaining equivalences notice that if 〈w, x〉 > 0 then ŵ =
〈w, x〉−1w ∈ K1(x) and use the homogeneity of σA and of w 7→ 〈w, x〉. 2

Corollary 2.3.2 If A is a closed non empty upward subset of Rm
+ \{0} then

A =
{

x ∈ Rm
+ : inf

w∈K1(x)

〈w, x〉
σmax

A (w)
≥ 1

}
(2.8)

and also

A =
{

x ∈ Rm
+ : sup

w≥0

〈w,x〉=1

σmax
A (w) ≤ 1

}
(2.9)

Proof Since 0 /∈ A, we have σmax
A (w) > 0 for all w 6= 0. Equation 2.9 is a

direct consequence of 2.8 (which does not need a proof), of the homogeneity of
the functions involved and of 〈wx, x〉 = 1 if 〈w, x〉 > 0 and wx = 〈w, x〉−1w.2

A set A0 is a generating family of the upward set A ⊂ Rm
+ if, for all

x ∈ Rm
+ , x ∈ A if and only if there exists a ∈ A0 such that a ≤ x.

Proposition 2.3.3 If A0 is a generating family of the non empty upward
set A ⊂ Rm

+ \{0} then

νA(x) = sup
a∈A0

min
i∈car(a)

(xi

ai

)
(2.10)
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and
σmax

A (w) = inf
x∈A0

max
i∈car(w)

wixi. (2.11)

Proof Since 0 /∈ A, for all a ∈ A0 car(a) 6= ∅. Let q(x) be the expression
on the right hand side of 2.10. It is a continuous positively homogeneous
map that is not identically 0. The inequality x ≥ a is equivalent to, for all
i ∈ car(a), xi ≥ ai. From Theorem 2.2.1, q is νA. Equation 2.11 trivially
follows from the definition of σmax

A and of 〈w, x〉 ≥ 〈w, a〉 if x ≥ a. 2

Corollary 2.3.4 (Duality) If A is a closed and upward subset of Rm
+ then,

for all x,w ∈ Rm
+ \{0},

νA(x) = inf
w∈K1(x)

〈w, x〉
σmax

A (w)
=

[
sup
w≥0

〈w,x〉=1

σmax
A (w)

]−1

(2.12)

and

σmax
A (w) = inf

x∈K1(w)

〈w, x〉
νA(x)

=
[

sup
w≥0

〈w,x〉=1

νA(x)
]−1

. (2.13)

Proof Suppose that A = ∅. Since for all x,w ∈ Rm
+ \{0}, νA(x) = 0 and

σmax
A (w) = +∞, equations (2.12) and (2.13) hold true. Suppose that A is

a nonempty set. If 0 ∈ A then A = Rm
+ . By definition νA(x) = +∞ and

since σA is identically 0, the result is immediate. If 0 /∈ A then the first part
of equation follows from Corollary 2.3.2 and Theorem 2.2.1; the second part
from the homogeneity of the maps involved.

To establish 2.13 notice that by homogeneity equation 2.12 can also be
written as

νA(x) = inf
w≥0

〈w,x〉>0

〈w, x〉
σmax

A (w)

from which we have

σmax
A (w) ≤ inf

w≥0

〈w,x〉>0

〈w, x〉
νA(x)

.

let (an)n∈N be a sequence of elements of A such that lim
n→∞

〈w, an〉 = σmax
A (w).

From νA(an) ≥ 1 and 〈w, an〉 > 0 we obtain inf
w≥0

〈w,x〉>0

〈w, x〉
νA(x)

≤ 〈w, an〉. 2

Corollary 2.3.4 could also have been obtained directly from Proposition 2.3.3.
Notice that if A and B are two subsets of Rm

+ satisfying the conditions of
Corollary 2.3.4, then σmax

A = σmax
B if and only if A = B. One can go a bit

further to establish a link between the support function of A and the cogauge
of its dual defined by A∗ =

⋂
x∈AK1(x).
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Corollary 2.3.5 If A is a closed nonempty and upward subset of Rm
+ . Sup-

pose that 0 /∈ A. Then,

νA∗ = σmax
A and νA = σmax

A∗ . (2.14)

Proof By definition, K1(x) = {w ∈ Rm
+ : 〈w, x〉 ≥ 1}. Using the fact that

νA∗ = µRm
+ \A∗ , we have:

νA∗(w) = inf
{

λ > 0 :
w

λ
∈ Rm

+\
⋂
x∈A

K1(x)
}

.

Hence, one trivially has:

νA∗(w) = inf
{

λ > 0 :
w

λ
∈

⋃
x∈A

(
Rm

+\K1(x)
)}

.

Consequently,

νA∗(w) = inf
x∈A

inf
{
λ > 0 :

w

λ
∈ Rm

+\K1(x)
}
,

which can be rewritten:

νA∗(w) = inf
x∈A

inf
{
λ > 0 : 〈w

λ
, x〉 < 1

}
= inf

x∈A
〈w, x〉 = σmax

A (w).

The proof of the second statement is similar. 2

There are cases when νA can be simply and explicitely computed, as Lemma
2.3.6 below shows.

Lemma 2.3.6 Let ϕj : Rm
+ → R+, j ∈ {1, · · · , n}, be upper semicontinu-

ous and positively homogeneous maps and let A =
n⋂

j=1

{
x ∈ Rm

+ : rj ≤ ϕj(x)
}
.

Assume that A 6= ∅ and 0 /∈ A. Then, for all x ∈ Rm
+ \{0}

νA(x) = min
rj 6=0

ϕj(x)

rj

(2.15)

Proof Since 0 /∈ A, {j : rj 6= 0} 6= ∅. Obviously

A =
⋂

rj 6=0

{
x ∈ Rm

+ :
ϕj(x)

rj

≥ 1
}

=
{
x ∈ Rm

+ : q(x) ≥ 1
}

where q(x) stands for the right hand side of 2.15. Since A is not empty q is not
identically zero, it is also upper semicontinuous and positively homogeneous.
By Theorem 2.2.1, q = νA. 2
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3 Production models

In this section we present the basic concepts of production theory in a non
parametric context.

3.1 The basic framework

A production technology is the graph T ⊂ Rm
+ ×Rn

+ of a map from Rm
+ to

Rn
+; the elements x = (x1, · · · , xm) of Rm

+ are the inputs of the technology
and the elements y = (y1, · · · , yn) of Rn

+ are its outputs. The map x 7→ T (x)
is the output map; its inverse is the input map. The set T ⊂ Rm

+ ×Rn
+ is

the set of all feasible input-output vectors:

T =
{
(x, y) ∈ Rm

+ × Rn
+ : x can produce y

}
.

To a given a map T : Rm
+ → Rn

+ one associates two single valued maps Di

and Do from Rm
+ × Rn

+ → [0,∞], the so called output and input Shephard’s
distance functions, defined as follows:

Do(x, y) = µT (x)(y) and Di(x, y) = νT−1(y)(x). (3.1)

Under suitable conditions Di(x, y) can be interpreted as a measure of
efficiency of the input vector x given the output vector y. For example,
under the conditions of part (2) of Proposition 2.2.3, if Di(x, y) < 1 then x
cannot produce y and if Di(x, y) > 1 then there exists a λ < 1 such that
(λx, y) ∈ T ; all the nonzero coordinates of λx are strictly smaller than those
of x and the output y can be produced from the input λx. If Di(x, y) = 1
then, given the output y, the input vector x is efficient.

There are some standard assumptions that are usually made on the produc-
tion technology, that T is not empty and closed, for example (see Shephard
[15] for a taxonomy); some are purely mathematical others have a natural
interpretation.

NFL (there is no free lunch)

∀y ∈ Rn
+ (0, y) ∈ T implies that y = 0.

NFL means that a positive output cannot be obtained from a null input
vector.

IS (inputs are strongly disposable)

∀y ∈ Rn
+ T−1(y) is an upward set.

IS can also be interpreted as a condition on the output map since it is clearly
equivalent to the monotonicity of T , that is, if x ≤ x′ then T (x) ⊂ T (x′);
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(IS) implies that, for all y ∈ Rn
+, T−1(y) is coradial. It can also be written

as

∀x ∈ Rm
+ T

(
[0, x]

)
= T (x). (3.2)

The interpretation is obvious: if a given output y can be produced from the
input x then it can also be produced from a larger input.

OS (outputs are strongly disposable)

∀x ∈ Rm
+ T (x) is a downward set.

OS can be seen as a condition on the input map since it clearly says that
T−1 is decreasing, that is, if y′ ≤ y then T−1(y) ⊂ T−1(y′). It implies that T
has radial images.

Condition OS says that less output can always be produced with the same
input.

TS (the technology is strongly disposable)

∀(x, y) ∈ T if x ≤ x′ and 0 ≤ y′ ≤ y then (x′, y′) ∈ T.

TS is obviously the conjunction of IS and OS.

Using the so called free disposal cone, that is K = Rm
+ × (−Rn

+), TS can be
written as T =

(
T + K

) ∩ (
Rm

+ × Rn
+

)
.

Other commonly found conditions are :

(CR ∀λ ≥ 0), (ND ∀λ ≥ 1); (NI ∀λ ∈ [0, 1]) λT ⊂ T . 3

Clearly, these conditions imply, in the language of the previous section, that
T is, respectively, a cone, coradial, radial.

3.2 Estimating the technology from a given data

To estimate the efficiency of each of the input-output vectors of a given a finite
set A =

{
(x1, y1), · · · , (xl, yl)

} ⊂ Rm
+ ×Rn

+ of observed input-output vectors
the data set A is embedded in a technology T for which Di can possibly be
used as a measure of efficiency and preferably actually computed, using for
example mathematical programming techniques .

Following the work by Farrell [11], Charnes, Cooper and Rhodes [7] in-
troduced the DEA model. Under a constant return to scale assumption this
nonparametric technology is defined by

T+
c =

{
(x, y) ∈ Rm

+ × Rn
+ : ∃(x′, y′) ∈ Cc(A) s.t. x ≥ x′ and y ≤ y′

}
(3.3)

3CR stands for Constant Return to scale, ND for Non Decreasing return to scale and
NI for Non Increasing return to scale.
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which can also be written as T+
c =

[
Cc(A) + K

] ∩ [
Rm

+ × Rn
+

]
4. It is not

hard to see that T+
c is the smallest closed and convex technology containing

A for which (TS) and (CR) hold, that is the, the smallest closed convex cone
of Rm

+ × Rn
+ containing A for which T is increasing and T−1 is decreasing.

Following Banker, Charnes, Cooper [2], the production technology can
also be defined as the weakly monotonic convex hull of the observations,
that is

T+
v =

{
(x, y) ∈ Rm

+ × Rn
+ : ∃(x′, y′) ∈ Co(A) s.t. x ≥ x′ and y ≤ y′

}
. (3.4)

Equivalently, T+
v =

[
Co(A) + K

] ∩ [
Rm

+ × Rn
+

]
.

This discussion summarizes the so called DEA method (Data Envelope-
ment Analysis) for which Di(x, y) is usually computed using linear program-
ming techniques.

x

y

z1

z3

0

z4

6

-

T+
v

T+
c

z2

Figure 3.1 DEA non parametric estimation

x

y

z1

z3

0

z4

6

-

z2

Figure 3.2 Free disposal hull of A

There are models in which convexity is relaxed. A classical example is
given by the FDH approach introduced and developed in [9] (FDH stands
for “Free Disposal Hull”). The technology is the smallest set containing the
data and satisfying a free disposal assumption.

Such production models are said to be nonparametric because because
they do not rely on an a priori functional specification of the production
frontier.

In Section 4.4 the data set A will be embedded in a technology whose
construction is similar to that of the DEA model with the difference that the
convex hull of A will be replaced by a non convex set. As we will see, the
Shephard’s distance is effectively computable.

4The convex hull and the conical convex hull of a set A are denoted Co(A) and Cc(A)
respectively.
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4 B-convex production technologies

4.1 B-convexity

In this section we focus on a particular class of path-connected semi-lattice.
A subset A of Rd

+ is a semilattice5 if, for all u and v in A, u ∨ v ∈ A.
The output sets of a technology T are semilattices if, whenever an input
x can produce y1 and y2, that is (x, y1) ∈ T and (x, y2) ∈ T , then it can
produce

(
max{y1

1, y
2
1}, · · · , max{y1

n, y2
n}

)
. This section describes technologies

and their Shepard’s distance functions under the assumption that outputs
are strongly disposable and input sets are connected semilattices.

This we do by considering the case where the input sets T−1(y) are B-
convex. An assumption of B-convexity means that technology obeys two
basic properties. First it is endowed with a upper semilattice structure: the
least upper bound of two input vectors allows to produce the least upper
bound of the output vectors they can individually produce. This upper
semilattice structure stands in place of the additive structure inherited from
the traditional convexity assumption. Moreover B-convexity implies that the
production vectors are divisible as in the usual convexity. We have mentioned
above that a B-convex technology is a path-connected upper semilattice.
From an economical viewpoint connexity is important because it allows the
possibility of continuously transforming a production technique.

We say that a subset C of Rd
+ is a B-convex set if,

∀ (z1, z2, t) ∈ C × C × [0, 1] tz1 ∨ z2 ∈ C. (4.1)

Remark 4.1.1 A B-convex set C is a semilattice (take t = 1) and it is
connected.

Remark 4.1.2 If C is a B-convex subset of Rm
+ ×Rn

+ then its projections on
Rm

+ and Rn
+ are also B-convex.

Remark 4.1.3 If C is an upward subset of Rm
+ then it is B-convex, since

∀ (z1, z2, t) ∈ C × C × [0, 1] we have tz1 ∨ z2 ≥ z2 implies that tz1 ∨ z2 ∈ C.

For an arbitrary finite subset A = {z1, · · · , zl} of Rd
+ let

B(A) =
{ l∨

k=1

tkz
k : (t1, · · · , tl) ∈ [0, 1]l and max{t1, · · · , tl} = 1

}
. (4.2)

B(A) is the B-convex hull of A; it is clearly compact and path connected,
and therefore connected.

Examples of B-convex sets are depicted in Figures 4.4.4 and 4.4.5.

5An upper semilattice would be more precise.
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Figure 4.4.4 B-convex hulls of 2 points.

z2

z1

z4

z3

z5

z

z′

0

6

-

Figure 4.4.5 B-convex hull of 5 points.

Notice that Remark 4.1.3 implies that the continuity properties of the
cogauge of an upward set can be deduced from [4]. More details on B-convex
sets can be found in Briec and Horvath [3], Briec, Horvath and Rubinov [4]
and Adilov and Rubinov [1].

4.2 Technologies whose the input set is semilattice

Notice that remark 4.1.3 means that the upward sets are a special case of B-
convex sets. Consequently, an input set satisfying a free disposal assumption
is B-convex.Given a technology T ⊂ Rm

+ ×Rn
+, the min-max cost function

associated to T is the map Cmax from Rn
+ × Rm

+ to R+ ∪ {+∞} defined by

Cmax(w, y) = σmax
T−1(y)(w). (4.3)

The following proposition is then immediate.

Proposition 4.2.1 Let T ⊂ Rm
+ × Rn

+ be a technology such that, for all
y ∈ Rn

+, T−1(y) is closed. Then IS holds if and only if, for all y ∈ Rn
+,

T−1(y) =
{
x ∈ Rm

+ : ∀w ∈ Rm
+ 〈w, x〉 ≥ Cmax(w, y)

}
. (4.4)

Proof If 0 ∈ T−1(y) then IS means that T−1(y) = Rm
+ and the result is

immediate. If 0 /∈ T−1(y) then we immediately obtain the result from Lemma
2.3.1. 2

The main result of this section, Proposition 4.2.2 below, shows that, under
strong disposability of outputs, the Shephard distance function and the the
min-max cost function are dual to each other.

12



Proposition 4.2.2 Let T ⊂ Rm
+ × Rn

+ be a technology such that, for all
y ∈ Rn

+, T−1(y) is closed and upward, that is, (IS) hold. Then, for all input
vector x ∈ Rm

+\{0}, one has

Di(x, y) = inf
w∈K1(x)

〈w, x〉
Cmax(w, y)

(4.5)

and

Cmax(w, y) = inf
x∈K1(w)

〈w, x〉
Di(x, y)

(4.6)

We show below that the result established in Proposition 4.2.2 can be
generalized to the case of B-convex input set.

Intuitively, this means that the producer seeks to find a virtual price
minimizing the ratio between his or her cost and the minimum cost that is
the cost function. Notice that strong disposability assumption is not required
in the next result. However, notice that the ray spanned by the input vector
we consider must intersect the input set.

Proposition 4.2.3 Let T ⊂ Rm
+ ×Rn

+ be a technology such that, for all y ∈
Rn

+, T−1(y) is closed and B-convex. Then, for all input vector x ∈ Rm
+\{0},

such that R++(x) ∩ T−1(y) 6= ∅, equations (4.5) and (4.6) hold true.

Proof: Let us denote T−1
+ (y) = T−1(y) +Rm

+ . Since T−1
+ (y) is an upward set,

we deduce from Proposition 2.3.4 that,

νT−1
+ (y)(x) = inf

w∈K1(x)

〈w, x〉
σmax

T−1
+ (y)

(w)
and σmax

T−1
+ (y)

(w) = inf
x∈K1(w)

〈w, x〉
νT−1

+ (y)(x)
.

Consequently, we need to prove that if R++(x)∩T−1(y) 6= ∅ then we have: (i)
σmax

T−1(y) = σmax
T−1
+ (y)

and (ii) νT−1(y) = νT−1
+ (y). Let us prove (i). Since T−1(y) ⊂

T−1(y)+Rm
+ , we deduce that σmax

T−1(y) ≥ σmax
T−1
+ (y)

. Moreover, for all w ∈ Rn
+, the

map x 7→ maxi=1,...,n wixi is nondecreasing. Hence, we obtain the converse
inequality

σmax
T−1(y)(w) = inf

x∈T−1(y)
max

i=1,...,n
wixi ≤ inf

x∈T−1(y)
u∈Rn

+

max
i=1,...,n

wi(xi + ui) = σmax
T−1
+ (y)

(w),

which proves (i).
Suppose that 0 ∈ T−1(y). Since we have 0 ∈ T−1

+ (y), it follows that
νT−1

+ (y)(x) = νT−1(y)(x) = +∞ and (ii) holds true. Suppose that 0 /∈ T−1(y).

In such a case 0 /∈ T−1
+ (y) which implies that νT−1

+ (y)(x) < +∞. Clearly,

we have νT−1
+ (y) ≥ νT−1(y). Hence, we need to establish that νT−1

+ (y)(x) ≤
νT−1(y)(x). Since, 0 /∈ T−1(y), x 6= 0 and R++(x) ∩ T−1(y) 6= ∅ we have

0 < νT−1(y)(x) ≤ νT−1
+ (y)(x) < +∞. Fix ρ̄ =

[νT−1(y)(x)

ν
T−1
+ (y)

(x)

]
. Let us define

p(x) = [νT−1(y)(x)]−1 x and p+(x) = [νT−1
+ (y)(x)]−1 x,

13



respectively. We need to prove that p+(x) ∈ T−1(y). Since T−1(y) is closed
and νT−1(y)(x, y) > 0, we have p(x) ∈ T−1(y). Moreover, there is some
x0 ∈ T−1(y) such that p+(x) ∈ x0 + Rn

+. This implies that x0 ≤ p+(x). Let
us consider the input vector

x̄ = x0 ∨ ρ̄ p(x).

Notice that ρ̄ p(x) = p+(x) and ρ̄ ≤ 1. Since x0, and p(x) belong to T−1(x),
we deduce from the B-convexity of T−1(y) that x̄ ∈ T−1(y). Hence, since
x0 ≤ p+(x), we have

x̄ = x0 ∨ p+(x) = p+(x) ∈ T−1(y).

Therefore, νT−1
+ (y)(x) ≤ νT−1(y) which ends the proof. 2

Notice that the type of input sets depicted in the next figure may have
some importance because they allow the case of a possible congestion of the
technology. This means that there is a lack of the disposability of certain
inputs which the use does not necessarily increase the production. These
configurations of the technology frequently appear in agricultural and envi-
ronmental economics.

x

x1

x2

0

6

-

x
Di(x,y)

maxi wix
′
i = maxi wiximaxi wix

′
i = Cmax(w, y)

Figure 4.4.5 Duality and B-convex input set.

4.3 A Particular class of technologies whose the output
set is a semilattice

A technology T ⊂ Rm
+ × Rn

+ is a Kohli input price (KI) nonjoint tech-
nology if there exist n single output technologies T j ⊂ Rm

+ × R+ such that,
for all input vectors x ∈ Rm

+ , T (x) = T 1(x) × · · · × T n(x) . More details
can be found in [12] about this notion which is a generalization of the fixed-
coefficient Leontief transformation.
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Let {e1, · · · , en} be the canonical basis of Rn. To a given technology
T ⊂ Rm

+ × Rn
+ we associate n single output technologies defined as follows:

T [j](x) =
{
yj ∈ R+ : yjej ∈ T (x)

}
.

Theorem 4.3.1 Let T ⊂ Rm
+×Rn

+ be a technology whose output sets are con-
nected semilattices and assume that, for all x, 0 ∈ T (x). Then the following
statements are equivalent.

(1) outputs are freely disposable, that is OS holds;

(2) for all x ∈ Rm
+ , T (x) = T [1](x)× · · · × T [n](x);

(3) for all y ∈ Rn
+, T−1(y) =

n⋂
j=1

T [j]−1(yj).

Proof: If OS holds and if y ∈ T (x) then, for all j ∈ {1, · · · , n}, yjej belongs
to T (x); in other words, yj ∈ T [j](x). This shows that

T (x) ⊂ T [1](x)× · · · × T [n](x).

The reverse inclusion is an obvious consequence of y =
n∨

j=1

yjej since T (x) is

a semilattice. We have shown that (1) implies (2).

Assume that (2) holds. Then, for all j ∈ {1, · · · , n}, T [j](x) is connected,
and it contains 0 by hypothesis. In conclusion T [j](x) is an interval of R+

containing 0. If y ∈ T (x) and if y′ ≤ y then, for all j ∈ {1, · · · , n}, 0 ≤
y′j ≤ yj ∈ T [j](x) and therefore y′j ∈ T [j](x) . We have shown that y′ ∈
T [1](x)×· · ·×T [n](x) and also that (1) and (2) are equivalent. The equivalence
of (2) and (3) is purely set theoretical. 2

We have seen in the course of the proof that T [j](x) is an interval of R+

containing 0. If (2) holds then T (x) is compact if and only if each T [j](x)
is a compact interval of R+ containing 0. From this one easily proves the
following corollary.

Corollary 4.3.2 Let T ⊂ Rm
+ × Rn

+ be a technology whose output sets are
connected semilattices; assume that, for all x, 0 ∈ T (x) and that OS holds.

(1) T has compact values if and only if there exist functions ϕj : Rn
+ → R+,

the production functions of the technology, such that, for all x ∈ Rm
+ ,

T (x) = [0, ϕ1(x)] × · · · × [0, ϕn(x)], and therefore, for all y ∈ Rn
+, T−1(y) =⋂n

j=1

{
x ∈ Rm

+ : yj ≤ ϕj(x)
}
;

(2) T has compact values and inputs are freely disposable, IS holds, if and
only if all the production functions ϕj are increasing;

(3) T is a technology with compact values with constant return to scale if
and only if, for all j ∈ {1, · · · , n}, ϕj superhomogeneous, that is, for all
(t, x) ∈ R+ × Rm

+ , ϕ(tx) ≥ tϕ(x).
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(4) If T has compact values and all the value functions are upper semicon-
tinuous then T has closed input sets.

Proposition 4.3.3 Let T be a technology with compact values for which OS,
NFL and constant returns to scale hold. For all j ∈ {1, · · · , n}, let D

[j]
i be

the Shephard’s distance function of the single output technology T [j]. Then,
if all the ϕj are upper semicontinuous and positively homogenous maps, one
has, for all x, y ∈ Rn

+\{0} such that T−1(y) 6= ∅,

Di(x, y) = min
j∈car(y)

ϕj(x)

yj

= min
j∈car(y)

D
[j]
i (x, yj). (4.7)

Proof: This is a reformulation of Lemma 2.3.6. 2

A few remarks are in order. The results of this section specify the struc-
ture of a technology under some structural assumptions on the input and out-
put sets. The production functions themselves are not explicitly given and
very little can be said about their nature; as a matter of fact they could be
rather arbitrary. Computing the Shepard’s distance Di(x, y) from 4.7 could
therefore be a hopeless task. Also one can see from 4.7 that for Di(x, y) to be

equal to 1 it is sufficient to have D
[j]
i (x, yj) ≥ 1 for all j and D

[j0]
i (x, yj0) = 1

for one index j0. In other words, (x, y) is an efficient programm if, for all
j ∈ {1, · · · , n}, (x, yj) is a feasible programm for the technology T j and, for
one j0, (x, yj0) is an efficient programm for T j0 . The KI nonjoint technologies
involve a semilattice output set. The next section introduces a special class
of technologies whose the input set is semilattice.

4.4 B-convex estimation of a technology

To a given data set A ⊂ Rm
+ ×Rn

+ we associate a technology whose values are
compact connected semilattices. For these technologies the functions ϕj as
well as the Shephard’s distance functions can be explicitly computed. The
construction is done as with the usual DEA model with the difference that
the convex hull of a set A is replaced by what we call its B-convex hull. Let
A =

{
(x1, y1), · · · , (xl, yl)

} ⊂ Rm
+ × Rn

+ be a set of l observed production
vectors. The subset of Rm

+ × Rn
+ defined by

T∨
v =

{
(x, y) ∈ Rm

+ × Rn
+ : ∃(x′, y′) ∈ B(A) s.t. x ≥ x′ and y ≤ y′

}
(4.8)

is the B-convex estimation of the production technology under a variable
returns to scale assumption.
One can equivalently write T∨

v = (B(A) + K) ∩ [
Rm

+ × Rm
+

]
, where

K = Rm
+ × (−Rn

+).
This type of technology is depicted in Figure 4.4.6.
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Figure 4.4.6 B-convex estimation

Proposition 4.4.1 For all subsets A =
{
(x1, y1), · · · , (xl, yl)

} ⊂ Rm
+ × Rn

+

of l observed production vectors, the nonparametric technology T∨
v has the

following properties:

(1) T∨
v is a closed B-convex subset of Rm

+ × Rn
+;

(2) TS (therefore OS and IS) holds;

(3) for all x ∈ Rm
+ , T∨

v (x) is a compact B-convex subset of Rn
+;

(4) for all y ∈ Rn
+, T∨−1

v (y) is a closed B-convex subset of Rm
+ .

Proof: (1) From the definition of T∨
v and from 4.1 the set T∨

v is a B-convex
subset of Rm

+ × Rn
+. From Remark 4.1.2, the values of T∨

v are B-convex.
The set A is finite, which implies that B(A) is compact. Since the sum of

a compact set with a closed set is closed we deduce that B(A) + K is closed.
Consequently, (B(A) + K) ∩ [

Rm
+ × Rm

+

]
is a closed set and therefore T∨

v is
closed.

(2) If x ≤ x̂ and y ∈ T∨
v (x) then there exists (x′, y′) ∈ B(A) such that

x ≥ x′ and y ≤ y′; we trivially also have x̂ ≥ x′ which shows that y ∈ T∨
v (x̂).

In other words T∨
v (x) ⊂ T∨

v (x̂). Similarly, if y ≤ ŷ then T∨−1
v (ŷ) ⊂ T∨−1

v (y).

(3) T∨
v (x) is the projection on Rm

+ of
[{x}×Rn

+

]∩ T∨
v , which is B-convex

in Rm
+ × Rn

+; by Remark 4.1.2, T∨
v (x) is a B-convex set.

Let us see that T∨
v (x) is closed. If (yk)k∈N is a sequence of elements of

T∨
v (x) which converges to y? then take a sequence

(
(xk, y′k)

)
k∈N in B(A) such

that, for all k ∈ N, x ≥ xk and y′k ≥ yk. From the compactness of B(A) we
deduce, as in (1), that y? ∈ T∨

v (x). To complete the proof of this part we
verify that T∨

v (x) is bounded. If y ∈ T∨
v (x) there exists y′ ∈ B(A) such that

y ≤ y′. By 4.2 there exists (t1, · · · , tl) ∈ [0, 1] such that y′ =
∨l

i=1 tlyl and

therefore y′ ≤ ∨l
i=1 yl.
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The proof of (4) is entirely similar to the proof of (3). 2

Theorem 4.3.1 and Proposition 4.4.1 can not be directly used for the
technology T∨

v since the condition 0 ∈ T∨
v (x) might not hold. As one can see,

0 ∈ T∨
v (x) if and only if T∨

v (x) 6= ∅.
As with the standard DEA model we define the B-convex estimation of

the technology under a constant return to scale assumption by replacing in
the definition of T∨

c the B-convex hull of a subset A of Rd
+, that is B(A), by

its B-convex conic hull of A, that is

Bc(A) =
{ l∨

k=1

tkz
k : (t1, · · · , tl) ∈ Rd

+

}
. (4.9)

This gives the following technology, which is clearly B-convex and satisfies a
constant return to scale assumption.

T∨
c =

{
(x, y) ∈ Rm

+ × Rn
+ : ∃(x′, y′) ∈ Bc(A) s.t. x ≥ x′ and y ≤ y′

}
. (4.10)

Lemma 4.4.2 Let T be a closed production technology under a constant re-
turn to scale assumption. There is no free lunch (NFL) if and only if for all
x ∈ Rm

+ T (x) is compact.

Proof: Assume that there is no free lunch. T (x) is the projection on Rm
+ of[{x}×Rn

+

]∩T , which is closed in Rm
+×Rn

+, thus T (x) is a closed set. Hence, all
we need to prove is that T (x) is bounded. Suppose that there is some x ∈ Rm

+

such that T (x) is not bounded and let us show a contradiction. If T (x) is not
bounded then there is a sequence (yk)k∈N in T (x) such that limk→∞ ‖yk‖ =
+∞, where ‖ · ‖ is an arbitrary norm defined on Rn. Consequently, there is
some k0 such that for all k ≥ k0 ‖yk‖ ≥ 1. By hypothesis, (x, yk) ∈ T for all
natural number k. Since T satisfies a constant returns to scale assumption,

we have for all k ≥ k0,
(

x
‖yk‖ ,

yk

‖yk‖
) ∈ T . Moreover

( x

‖yk‖ ,
yk

‖yk‖
) ∈ [0, x]× S(0, 1)

where S(0, 1) = {y ∈ Rn : ‖y‖ = 1} is the unit sphere of Rn, and [0, x] =
{v ∈ Rn : 0 ≤ v ≤ x}. It follows that

( x

‖yk‖ ,
yk

‖yk‖
) ∈ T ∩

(
[0, x]× S(0, 1)

)
.

Since T ∩
(
[0, x] × S(0, 1)

)
is closed and bounded, it is a compact set and

one can find a subsequence (kl)l∈N such that
((

x
‖ykl‖ ,

ykl

‖ykl‖
))

l∈N
converges to

some (x?, y?) ∈ T ∩
(
[0, x]× S(0, 1)

)
. Obviously, since liml→∞ ‖ykl‖ = +∞,
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one has x? = 0. Moreover, ‖y?‖ = 1 and, therefore y? 6= 0. Since there is
no free lunch, this is a contradiction and the first part of the proof is estab-
lished. The reciprocal is immediate. If NFL does not hold then there is some
y 6= 0 such that (0, y) ∈ T . Under a constant returns to scale assumption,
R++(0, y) ⊂ T and consequently T (0) is not bounded. 2

Most of the following properties are immediate. The compactness of
T∨

c (x) for all input vector x is an immediate consequence of the lemma above.

Corollary 4.4.3 Let T∨
c be the B-convex estimation of a technology associ-

ated to the data A = {(x1, y1), · · · , (xl, yl)} ⊂ Rm
+ × Rn

+ under a constant
return to scale assumption. Then, if T∨

c satisfies OS and IS , for all x ∈ Rm
+ ,

0 ∈ T∨
c (x) and T∨

c (x) is B-convex. Moreover, if for k = 1 · · · l one has yk 6= 0
then T∨

c satisfies NFL and T∨
c (x) is compact for all x ∈ Rm

+ .

We close this section with a lemma which reduces the study of T∨
c to

that of T∨
v . To do that we fix some notations. Let 11l ∈ Rl be the vector

whose coordinates are all equal to 1. Let {e1, · · · , el} be the elements of the
canonical basis of Rl. Given A = {(x1, y1), · · · , (xl, yl)} ⊂ Rm

+ × Rn
+ let

Ã =
{(

(x1, e1), (y1, e1)
)
, · · · ,

(
(xl, el), (yl, el)

)} ⊂ Rm+l
+ × Rn+l

+ . (4.11)

Since we will have to consider different data sets we will write T̃∨
c , the

production set constructed from the data set Ã.

Lemma 4.4.4 Given A = {(x1, y1), · · · , (xl, yl)} ⊂ Rm
+×Rn

+, for all (x, y) ∈
Rm

+ × Rn
+, (x, y) ∈ T∨

v if and only if there exists k0 ∈ {1, · · · , l} such that(
(x, 11l), (y, ek0)

) ∈ T̃∨
c .

Proof: By definition of T∨
v , (x, y) ∈ T∨

v if and only if there exists (ρ1, · · · , ρl) ∈
[0, 1]l such that

max
i≤k≤l

ρk = 1, x ≥
l∨

k=1

ρkx
k and y ≤

l∨

k=1

ρky
k (4.12)

and, by definition of T∨
c ,

(
(x, 11l), (y, ek0)

) ∈ T̃∨
c if and only if there exists

(ρ1, · · · , ρl) ∈ Rl
+ such that

(x, 11l) ≥
l∨

k=1

ρk(x
k, ek) and (y, ek0) ≤

l∨

k=1

ρk(y
k, ek). (4.13)

Notice that (4.13) reduces to x ≥ ∨l
k=1 ρkx

k, y ≤ ∨l
k=1 ρky

k, 0 ≤ ρk ≤ 1 for

all k and ρk0 = 1. 2
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4.5 Computing the Shephard’s distance

Proposition 4.5.1 Let T∨
c be the B-convex estimation of a technology asso-

ciated to the data A = {(x1, y1), · · · , (xl, yl)} ⊂ Rm
+ × Rn

+ under a constant
return to scale assumption and such that there is no free lunch. Let, for all
k ∈ {1, · · · , l},

αk(x) = min
i∈car(xk)

xi

xk
i

. (4.14)

Then, for all y ∈ Rn
+\{0} such that T∨−1

c (y) 6= ∅,

Di(x, y) = min
j∈car(y)

max1≤k≤l

{
αky

k
j (x)

}

yj

. (4.15)

Furthermore for all x ∈ Rm
+\{0},

T∨
c (x) = [0, ϕ1(x)]× · · · × [0, ϕn(x)]. (4.16)

where

ϕj(x) = max
1≤k≤l

{
αk(x)yk

j

}
. (4.17)

Proof: Let for all, k ∈ {1, · · · , l},

αk(x) = min
i∈car(xk)

xi

xk
i

. (4.18)

and, for all j ∈ {1, · · · , n},

ϕj(x) = max
1≤k≤l

{
αky

k
j (x)

}
. (4.19)

Since there is no free lunch car(xk) 6= ∅ and αk(x) is well defined for all
k ∈ {1, · · · , l}.

Recall that (x, y) ∈ T∨
c if and only if there exists (ρ1, · · · , ρl) ∈ Rl

+ such

that x ≥ ∨l
k=1 ρkx

k and y ≤ ∨l
k=1 ρky

k. The first inequality says that, for all
i ∈ {1, · · · ,m} and all k ∈ {1, · · · , l}, xi ≥ ρkx

k
i which is clearly equivalent

to αk(x) ≥ ρk. If the second inequality holds then y ≤
l∨

k=1

αk(x)yk also

holds. The inequality x ≥
l∨

k=1

αk(x)xk always holds. In other words, (x, y) ∈

T∨
c if and only if y ≤

l∨

k=1

αk(x)yk or, equivalently, for all j ∈ {1, · · · , n},

yj ≤ max
1≤k≤l

αk(x)yk
j . From Corollary 2.3.6 the result is nos immediate. 2
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Proposition 4.5.2 Let A =
{
(x1, y1), · · · , (xl, yl)

} ⊂ Rm
+ × Rn

+. Suppose
that there is no free lunch. For all k ∈ {1, · · · , l} and all (x, y) ∈ Rm

+ × Rn
+

let
αk(x) = min

i∈car(xk)

xi

xk
i

, α(x) = max
1≤k≤l

αk(x).

and

βj(x, y) = max
1≤k≤l

yj≤yk
j

αk(x)yk
j

yj

For all y ∈ Rn
+\{0} such that T∨−1

v (y) 6= ∅ the Shephard’s distance function
is given by:

Di(x, y) = min
{

min
j∈car(y)

βj(x, y), α(x)
}

. (4.20)

Furthermore, for all x ∈ Rm
+ , T∨

v (x) 6= ∅ if and only if α(x) ≥ 1 and, if
α(x) ≥ 1, then

T∨
v (x) =

n∏
j=1

[0, ϕj(x)] (4.21)

where
ϕj(x) = max

1≤k≤l
min{αk(x)yk

j , y
k
j }. (4.22)

Proof: Let D̃i be the Shephard’s distance function computed on T̃∨
v . Using

Lemma 4.4.4 the computation of Di is reduced to that of D̃i. Starting from
(x, y) ∈ T∨

v if and only if there exists k0 ∈ {1, · · · , l} such that
(
x + 11l, y +

ek0
) ∈ T̃∨

c we proceed with T̃∨
c as in the proof of Proposition 4.5.1 to find

that (x, y) ∈ T∨
v if and only there exists k0 such that

min
j∈car(y)

max
1≤k≤l

min
{

αk(x)
yk

j

yj

,
yk

j

yj

}
≥ 1 (4.23)

and
min

{
αk0(x), 1

} ≥ 1 (4.24)

from which (4.20) easily follows. For the last part, that is (4.21) and (4.22)
recall that T∨−1

v (y) is closed and coradial and use part 2 of Proposition 2.2.3.2

Example 4.5.3 The following data sample, with m = 1, n = 2 and l = 7,
can be found is Färe, Grosskopf and Lovell [10].

Table 1. Data Sample
Firms Input Output 1 Output 2

1 2 3/2 1
2 2 2 1
3 4 3 2
4 6 6 6
5 7 6 6
6 8 7 4
7 9 7 4
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For k, k′ ∈ {1, · · · , l} let αk(x
k′) = ak′,k′ and let A be the l × l matrix whose

coefficients are the numbers ak′,k.

With the data from Table 1 we obtain:

A =

0
BBBBBBB@

1 1 2 3 7/2 4 9/2
1 1 2 3 7/2 4 9/2

1/2 1/3 1 3/2 7/4 2 9/4
1/3 1/3 2/3 1 7/6 4/3 3/2
2/7 2/7 4/7 6/7 1 8/7 9/7
1/4 1/4 4/8 3/4 7/8 1 9/8
2/9 2/9 4/9 2/3 7/9 8/9 1

1
CCCCCCCA

.

The values of the Shephard distance function for the DEA and FDH esti-
mations are listed in Table 2 where B stands for B-convex and C for convex.

Table 2. Distance Function and Technologies.
Firms B-VRS B-CRS C-VRS C-CRS FDH

1 1 4/3 1 4/3 1
2 1 1 1 1 1
3 4/3 4/3 4/3 4/3 1
4 1 1 1 1 1
5 7/6 7/6 7/6 7/6 7/6
6 8/7 8/7 1 8/7 1
7 9/8 9/8 9/8 9/7 9/8

The results obtained under a B-convexity assumption are no less than those
obtained in the convex and FDH cases. One can easily check that the inef-
ficiency score are greater in the CRS models than in the V RS models. This
is especially true in B-convex versions. Notice that firms 2 and 4 are effi-
cient for all types of estimations. Moreover, the FDH estimation being the
minimal extrapolation of the “observed” data-set yields the largest number of
efficient firms. Finally, notice that firm 6 lies on the frontier of the convex
V RS model though it is inefficient in the B-convex model.
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