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Abstract

Tracing back from Charnes, Cooper and Rhodes [9] many ap-
proaches have been proposed to extend the DEA production model
to non-convex technologies. The FDH method were introduced by
Deprins, Simar and Tulkens [13] and it only assumes a free disposal
assumption of the technology. This paper, continues further an earlier
work by Briec and Horvath [7]. Among other things, a new class of
semilattice production technologies is introduced. Duality results as
well as computational issues are proposed.
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1 Introduction

The interest of a convexity assumption in microeconomic production theory
is intimately linked to duality theory. If one defines an optimization problem
with respect to quantities, then there is a corresponding problem defined
with respect to prices that has the same value. This approach is of great
interest for microeconomics both for understanding the mathematics and for
clarifying the economics (see Shephard [27]).

Convexity is also important from an operational standpoint. In their
seminal paper Charnes, Cooper and Rhodes [9] proposed to model produc-
tion technologies using a non-parametric approach that does not assume a
functional form of the production set. Among other things, they showed
how to determine the efficient observed production units in a sample of firms
operating on a specific sector of the economy. They termed their model
DEA (Data Envelopment Analysis). Banker, Charnes, Cooper [2] extended
this approach to the case of variable returns to scale. One can loosely say
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that these technologies are constructed from the convex hull of all the ob-
served production vectors representing each firm respectively. Convexity has
another advantage, it allows to compute the efficiency scores of firms and
yields a procedure to rank them.

While convexity has been traditionally invoked in economic theory, its use
in production theory is questionable. Since prices are often lacking in the
public sector, performance gauging is necessarily limited to technical rather
than allocative efficiency. Tone and Sahoo [29] have mentioned another rea-
son to question the role of convexity in production models, it is the presence
of indivisibleness in all multistage production process. Indivisibilities are
among the main ways in which economies of scale may emerge. This notion
was introduced in economic literature by Kaldor [17] and Samuelson [26],
among others. It is generally claimed that indivisibility argument fit in with
the notion of fixed factor proportions in the neoclassical definition of scale.
Another form of indivisibility by which scale may emerge is to consider the
use of equipment, which has the characteristics of incorporating a factor pro-
portionately less than its contribution to capacity when output is expanded.
In their paper Tone and Sahoo [29] analyzed in details the potential for reor-
ganization of inputs,which can emerge due to indivisibility of specific inputs.
Their conclusion is that the presence of indivisibleness makes the technology
structure non-convex.

Hence, after the growing interest received by DEA in the literature on
operation research and efficiency analysis, several researchers proposed to re-
lax convexity assumptions. Among others, Deprins, Simar and Tulkens [13],
Tulkens [30] and Kerstens and Vanden Eeckaut [18] introduced and extended
the so called FDH model (Free Disposal Hull) which relaxes convexity and
only postulates a free disposal assumption of the technology. Petersen [22]
and Bogetoft [4] also proposed some models based on a relaxed convexity
assumption and, more recently, Podinovski [23] suggested a selective convex-
ity approach merging DEA and FDH. Soleimani-damaneh et al. [25] and
Boussemart et al. [3] developed approaches focusing on the specification
of returns to scale in DEA. More recently Podinovski and Kuosmanen [24]
proposed to model weak disposability in data envelopment analysis under
relaxed convexity assumptions.

This paper proposes new models based on a notion of B-convexity re-
cently introduced by Briec and Horvath [5]. A upper (lower) semilattice is a
partially ordered set in which each pair of elements has a least upper (best
lower) bound. In a recent paper Briec and Horvath [7] proposed to evaluate
performance of firms using B-convexity. A production technology satisfying
a B-convexity assumption has an upper semilattice structure. This means
that the least upper bound of a pair of input vectors can produce the up-
per bound of the outputs they can individually produce. Furthermore, it is
assumed that inputs and outputs can be radially shrunk. This formulation
may have some advantages regarding to DEA. First, it has a computational
interest because efficiency scores can be formulated in closed forms. Hence,
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computation of efficiency measures requires a small number of arithmetic op-
erations and does not require linear programming. Another advantage comes
from the fact that DEA postulates a priori a returns to scale assumption of
the technology. Modelling a non-parametric technology under a B-convexity
assumption implies that returns to scale are not characterized a priori. For
example they may be locally nonincreasing or locally nondecreasing. In par-
ticular B-convexity has the advantage to allow the variations of marginal
productivity to form an alternating sequence, either increasing or decreasing,
according to the frontier points of the production technology one consider.

This semilattice model has also some merits over the FDH model. First,
the number of efficient firms characterizing the frontier is smaller than that
one involved by the FDH model. FDH is based upon a minimum extrapo-
lation principle and, from a certain viewpoint, it underestimates the size of
the production possibilities set because of the minimum extrapolation prin-
ciple. Furthermore, one can notice that a free disposal input set is always
B-convex. Moreover, in the FDH case, the marginal productivity is either
null of infinite which is not the case with the B-convex production model.

However, the approach proposed in [7] has also some drawbacks. In their
paper the authors showed that a B-convex technology is a Kohli technology
under a free disposal assumption (see [19]). This means that the output set
has a cubic structure that is a severe limitation to the proposed approach.
To overcome this problem, this paper pays attention to an alternative for-
mulation of B-convexity. A distinction between B-convex sets and inverse
B-convex sets is proposed. The former corresponds to a notion introduced in
[5] and involves an upper semilattice structure while the latter assumes that
the technology has a lower semilattice structure. Hence, the production set
is a lower semilattice. This means that the lower bound of a pair of input
vectors can produce the lower bound of the outputs they can individually
produce. Furthermore, inputs and outputs can be proportionally expanded.
B-convexity and inverse B-convexity have similar advantages regarding to
the usual methods they are compared to above.

However, there exists some important differences between these two mod-
els. First, the mathematical structure of inverse B-convex technologies differs
from those based upon a B-convexity assumption. It follows that output sets
satisfying a free disposal assumption are always inverse B-convex. More-
over, for such technologies, the output sets are not cubic. Hence, the Kholi
property B-convex technologies obey can be relaxed. Second, the B-convex
production model combines both an upper semilattice structure and a divis-
ibility assumption. However, this is not the case of inverse B-convex pro-
duction technologies which involve a lower semilattice structure and are not
based upon a divisibility assumption.

Duality plays a crucial role in the use of convexity to model economic
problems. Though it is generally difficult to develop a dual framework for
non-convex sets, it has been shown in [7] that B-convex technologies sat-
isfy some special type of dual properties based upon a min−max approach.
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Considering the inverse B-convex case, one can obtain some new properties
involving Leontief functional forms. Under a free disposal assumption the
input set has a Leontief structure. This means that the input requirement
set naturally involves a dual representation in term of Leontief function. The
output case is more interesting and one can show that the traditional Farrell
measure is dually linked to the Leontief function. Analyzing the relationships
between productivity scale and marginal productivity, one can find some im-
portant differences between these two production models we focuss on. It
appears that some properties inherited from the inverse B-convex model seem
to have a more natural economic interpretation than those involved with the
B-convex model.

The remainder of this paper is organized as follows. In section 2 we lay
down the groundwork and present the basic notions of production technol-
ogy. In particular, we focuss on the standard DEA and FDH models under
an assumption of variable returns to scale. In section 3, B-convexity and
inverse B-convexity are introduced. Section 4 provides duality results. An
inverse B-convex production model is proposed in section 5. Finally, section
6 proposes an approach for solving systems of maximum and minimum equa-
tions. Hence, some closed forms are derived to measure technical efficiency
and a numerical example is proposed.

2 Non-Parametric Production Models

The following subsections are devoted to present basic concepts of production
theory as well as traditional methods for estimating the production frontier
in a non-parametric context.

2.1 The Background of Production Models

We first define the notations used in this section. Let Rd
+ be the non negative

Euclidean d-orthant; for all z, w ∈ Rd
+ let us denote z ≤ w ⇐⇒ zi ≤ wi

∀i ∈ [d]1.
Now let m,n ∈ N be two positive natural numbers such that d = m + n.

A production technology transforms inputs x = (x1, ..., xm) into outputs
y = (y1, ..., yn). The set T ⊂ Rm+n

+ of all input-output vectors that are
feasible is called the production set. Namely, it is defined as follows:

T =
{
(x, y) ∈ Rm+n

+ : x can produce y
}
. (2.1)

T can also be characterized by an input correspondence L : Rn
+ −→ 2R

m
+

defined by L(y) =
{
x ∈ Rm

+ : (x, y) ∈ T
}
. L(y) is the set of all the in-

put vectors required to produce y. The technology can also be character-
ized from an output correspondence P : Rm

+ −→ 2R
n
+ , defined by P (x) =

1[d] = {1, ..., d} .
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{
y ∈ Rn

+ : (x, y) ∈ T
}
. P (x) is the set of all the output vectors obtainable

from x. Now, let us denote

K = Rm
+ × (−Rn

+). (2.2)

K is called the free disposal cone. There are some standard assumptions
the production technology must obey (see Shephard [27]):

T1: T is a closed set
T2: For any z ∈ T , (z −K) ∩ T is bounded.
T3: T = (T + K) ∩ Rd

+

T4: T is a convex set.

T1 is a standard mathematical requirement. T2 means that an infinite out-
put cannot be produced from a finite input. T3 imposes that T is strongly
disposable. T4 is the convexity assumption we shall relax in the remainder
of the paper.

Among the input-output vectors of the production set, one can identify
those that are efficient or weakly efficient. The efficient subset of T is defined
by E(T ) =

{
z ∈ T : @w ∈ T, w ∈ z − K\{0}}. The subset Ew(T ) =

{
z ∈

T : @w ∈ T, w ∈ int(z −K)
}

is called the weak efficient subset.
Note that the definitions of E(T ) and Ew(T ) are valid T being convex or

not. The next subsection presents the classical non-parametric approach for
estimating a production technology.

2.2 Non-Parametric Convex and Non-Convex Tech-
nologies

Following Koopmans [20], Farrell [15], Charnes, Cooper and Rhodes [9] and
Banker, Charnes, Cooper [2], the production set is traditionally defined from
the convex hull that contains all the observations under a free disposal as-
sumption. Under an assumption of variable returns to scale (see [2]), the
production set is defined by TDEA =

(
Co(A) + K

) ∩ Rd
+ or equivalently

TDEA =
{

(x, y) ∈ Rm+n
+ : (−x, y) ≤

l∑

k=1

tk (−xk, yk), t ≥ 0,
l∑

k=1

tk = 1
}

,

(2.3)
where A =

{
(xk, yk) : k = 1...l

} ⊂ Rm+n
+ a collection of l observed firms that

operate on a specific sector of the economy and Co(A) denotes the convex hull
of A. This subset is, loosely speaking, the convex hull of a finite number of
observed production vectors. In their seminal work, Charnes, Cooper Rhodes
[9] defined the production set as the smallest convex cone containing all the
observed firms. This implies an assumption of constant returns to scale. This
model is obtained from (2.3) by dropping the constraint

∑l
k=1 tk = 1.
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The above approach summarizes the so-called DEA method (Data Envel-
opment Analysis). It is also possible to estimate a non-parametric technology
which does not postulate a convexity assumption of the technology. The FDH
approach was introduced in [13], [30] and [31] (FDH stands for “Free Disposal
Hull”). The FDH hull of a data set A yields the non-parametric estimation
production set defined by TFDH = (A + K) ∩ Rm+n

+ . One can give a more
explicit form as follows:

TFDH =
{

(x, y) ∈ Rm+n
+ : (−x, y) ≤

l∑

k=1

tk (−xk, yk), t ∈ {0, 1}l,

l∑

k=1

tk = 1
}

.

(2.4)
The main difference between the above convex and non-convex non-parametric
models is that t is a real number in the former while it is valued in {0, 1}l in
the latter. FDH technologies are non-convex but postulates a free disposal
assumption only.

Technical efficiency can then be measured using a notion of gauge function
that looks, loosely speaking, for finding the closest point from any observed
firms to the boundary of the production set. Along this line, the problem of
measuring technical efficiency can be readily solved by linear programming.
Let us define T as the class of all the production sets satisfying axioms
T1− T3. The Debreu-Farrell measure (Debreu [12], Farrell [15]) is the most
usual measure of technical efficiency. It is essentially the inverse of the Shep-
hard distance function (Shephard [27]). The input Debreu-Farrell efficiency
measure is the map Ei : Rm+n

+ × T −→ R ∪ {−∞, +∞} defined by:

Ei(x, y, T ) = inf
{
λ ≥ 0 : (λx, y) ∈ T

}
. (2.5)

In words, this measures the amount an input vector can be shrunk along a
ray until it reaches the isoquant of the input set L(y). If T = TDEA, then it
can be computed by linear programming. In the output case this technical
efficiency measure is the map Eo : Rm+n

+ ×T −→ R∪{−∞, +∞} defined by:

Eo(x, y, T ) = sup
{
θ ≥ 1 : (x, θy) ∈ T

}
. (2.6)

The Debreu-Farrell measure can also be computed for FDH production
technologies using an enumeration method (see Tulkens [30]).

3 On Some Class of Path-Connected Lower

Semilattice

3.1 B-convexity, Lattices and Semilattice Structures

This section lays down the groundwork for the use of B-convexity in efficiency
analysis. More details are given in Briec and Horvath [5] and Briec, Horvath
and Rubinov [6]. A subset of C of Rd

+ is B-convex if for all u, z ∈ C and all
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t ∈ [0, 1] the join of u and tz lies in C. One can loosely say that B-convexity
is obtained from usual convexity making the formal substitution + 7→ max.
Semilattices structures play a crucial role to develop these notions. A subset
L ⊂ Rd is said to be an upper-semilattice if ∀z, t ∈ L then z∨ t ∈ L, where
z∨ t = (max{z1, t1}, . . . , max{zd, td}) . L is a lower-semilattice if ∀z, t ∈ L
then z ∧ t ∈ L, where z ∧ t = (min{z1, t1}, . . . , min{zd, td}) . A lattice is a
subset of Rd that is both an upper and a lower semilattice. In the remainder,
we denote ↑ z = {w ∈ Rd : w ≥ z} and ↓ z = {w ∈ Rd : w ≤ z}.

Let us consider z1, z2, ..., zl ∈ Rd. In the remainder of the paper we denote:

l∨

k=1

zk =
(
max{z1,1, ..., zl,1}, . . . , max{z1,d, ..., zl,d}

)
(3.1)

and
l∧

k=1

zk =
(
min{z1,1, ..., zl,1}, . . . , min{z1,d, ..., zl,d}

)
. (3.2)

The main objective of this contribution is the introduction of a new type
of semilattice technologies. Hence, a connectedness property is important in
our framework because it allows a production technique to be modified using
a continuous transformation. Since in general a semilattice may not be a
path-connected subset, B-convex sets have some advantage in that aspect.
A geometrical representation of the strings joining two points, in each case,
is given in Appendix.

We come now to the introduction of B-convexity. A subset L ⊂ Rd
+ is

said to be a B-convex set, if ∀u, z ∈ L, and all t ∈ [0, 1] u ∨ tz ∈ L. The
basic properties of B-convex sets are analyzed in [5]. From this definition a
set C such that ∀u, z ∈ C, for all s, t ≥ 0 su ∨ tz ∈ C is called a B-convex
cone .

Along this line, a notion of B-convex hull can be provided. Let A =
{z1, ..., zl} ⊂ Rd

+ then the set

B(A) =
{ l∨

k=1

tkzk, t ≥ 0, max
k=1...l

{tk} = 1
}

(3.3)

is called the B-convex hull of A. A geometric representation is depicted in
Figure 3.1.
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Figure 3.1 The B-convex set B(A)

Figure 3.1 is obtained using the geometrical construction of the strings
connecting two points which is depicted in section 8.1.

3.2 Inverse B-convex Sets

This section introduces a notion of inverse B-convex sets. Paralleling our
earlier definition of B-convexity, inverse B-convexity is obtained from usual
convexity making the formal substitution + 7→ min. It is shown in the
remainder of this section that inverse B-convex sets can be derived from B-
convex sets via a suitable homeomorphism. This mean that these notions are
identical making a lexical change based on the formal substitution max →
min. Hence, all the results B-convex sets satisfy can be transposed to inverse
B-convex sets via a suitable homeomorphism.

Definition 3.2.1 Let M ⊂ (R++ ∪ {+∞})d. M is inverse B-convex, if
∀u, z ∈ M , and ∀t ∈ [1, +∞] we have u ∧ tz ∈ M .

Inverse B-convex sets are isomorphically linked to B-convex sets. To see
that let ϕ : R+ −→ R++ ∪{+∞} be the inverse map defined by ϕ(α) −→ 1

α
.

A subset M ⊂ Rd
++ is an inverse B-convex set if and only if L = φ−1(M)

is a B-convex set, where

φ(z1, ..., zd) = (ϕ(z1), ..., ϕ(zd)) . (3.4)

In words, a subset of M ⊂ (R++ ∪ {+∞})d is inverse B-convex if and only
if its inverse is B-convex. Though the respective geometric representation of
B-convex sets and inverse B-convex sets are different they are both linked
through an isomorphism over (R++ ∪ {+∞})d. These convexity concepts
belong to a more general class of topological convexities described in [16].
All the properties stated in the earlier section do not apply for the case of
vectors having null components. From [5] the next results are immediate and
do not require a proof.
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Lemma 3.2.2 Suppose that M is an inverse B-convex subset of (R++ ∪
{+∞})d. Then:
(a) M is a lower-semilattice.
(b) If {z1, ..., zl} ⊂ M and (t1, ..., tl) ∈ [1, +∞]l then

∧l
k=1 tkzk ∈ M .

(c) If W ⊂ (R++ ∪ {+∞})d is inverse B-convex, then M ∩ W is inverse
B-convex.
(d) M is a path connected set.

This last property holds regarding to the topology induced on (R++ ∪
{+∞})d by the norm x 7→ ϕ−1

(‖φ(x)‖), where ‖ · ‖ is a norm defined on Rn.
In [7], a B-convex production model is constructed from the B-convex hull of
a finite number of points. A similar approach is proposed in the remainder of
the paper. For this purpose, the inverse B-convex hull of a finite set of points
is a notion we need to introduce. We then provide the following definition.

Definition 3.2.3 For all A = {z1, ..., zl} ⊂ (R++ ∪ {+∞})d, the set

B−1(A) =

{
l∧

k=1

skzk, min
k=1...l

sk = 1

}

is called the inverse B-convex hull of A.

Now, we want to take into account the case where some components are
null. Such a case cannot be directly derived from the isomorphism φ. Hence,
the next definition provides a relaxed definition of inverse B-convex sets to
Rd

+.

Definition 3.2.4 A subset M ⊂ Rd
+ is pseudo inverse B-convex, if ∀u, z ∈

M , and ∀t ≥ 1 we have u ∧ tz ∈ M .

In general, it is easy to see that the formulation in 3.2.3 yields an inverse
B-convex set in the case where A ⊂ Rd

++. However, if some components are
null then it may not be path connected. This is the reason why we make
a distinction between inverse B-convex sets and pseudo inverse B-convex
sets. Clearly, an pseudo inverse B-convex set having a nonempty interior is
almost everywhere B-convex with respect to the Lebesgue measure. For this
reason, the definition above has some interest for the purpose of this paper.

Examples of the inverse B-convex hull of two points are depicted in Fig-
ures 3.2.1.
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Figure 3.2.1 Inverse B-convex hulls of 2 points.

More details about how to construct this inverse B-convex hull can be
found in Appendix 8.1. Figure 3.2.2 considers a more general case.

z2

z1

z4

z3

B−1(A)

z5

x

y

0

6

-

Figure 3.2.2 The inverse B-convex set B−1(A)

In such a case, a geometrical representation is obtained by connecting
each pair of points following the broken line described in Figure 3.2.1.

4 Duality

In this section some aspects of the economic meaning of B-convexity are ana-
lyzed. A certain form of duality is proposed providing a price interpretation
of technical efficiency measures.

4.1 Inputs and Output sets

We now analyze the input and output sets for each non-parametric technol-
ogy. Clearly, if the subset T defined in 2.1 is a B-convex (inverse B-convex)
technology then for all (x, y) ∈ T , the input set L(y) and the output set
P (x) are B-convex (inverse B-convex). The next result shows that, in the
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case of FDH technology, the input set is B-convex and the output set is
inverse B-convex.

Lemma 4.1.1 Suppose T ∈ T . Then:
(a) The input correspondence L has B-convex values.
(b) The output correspondence P has pseudo inverse B-convex values.

The above property is immediate regarding to the definition of FDH tech-
nologies. However, it seems to have never been pointed in the literature on
production frontier.

4.2 Some Duality Results in B-convex Production Mod-
els

This section focusses on gauge functions and their dual relationships to
maximum and minimum functions. For all a ∈ Rd maximum (resp. min-
imum) functions are defined by the map z 7→ maxi=1...n aizi (resp. z 7→
mini=1...n aizi). Some characterizations of inputs and output sets can be
provided when input and output sets satisfy inverse B-convexity and B-
convexity, respectively.

Proposition 4.2.1 For all production technologies T ∈ T , the following
properties hold:
(a) For all y ∈ Rn

+ if L(y) is an inverse B-convex set then there exists an
uniqueness x̄y ∈ Rm

+ such that L(y) = x̄y + Rm
+ =↑ x̄y.

(b) For all x ∈ Rm
+ , if P (x) is a B-convex set then there exists ȳx ∈ Rn

+ such
that P (x) =

(
ȳx − Rn

+

) ∩ Rn
+ =↓ ȳx ∩ Rn

+.

The result above has an immediate consequence on the structure of B-
convex technologies. It implies they have a functional representation.

Corollary 4.2.2 Let T ∈ T be a production technology.
(a) If the input correspondence L has inverse B-convex values then there
exists a map G : Rn

+ −→ Rm
+ such that T = {(x, y) ∈ Rm+n

+ : x ≥ G(y)}.
(b) If the output correspondence P has B-convex values then there exists a
map F : Rm

+ −→ Rn
+ such that T = {(x, y) ∈ Rm+n

+ : y ≤ F (x)}.

This property is immediate setting G(x) = ȳx and F (y) = x̄y. Notice that
Proposition 4.2.1.b means that the technology is output-cubic. In [7], it
has been pointed out that such a technology is output cubic and can be
related to Kohli technologies [19]. Similarly, Proposition 4.2.1.a means that
the technology has a Leontief structure. Moreover, it is easy to see that both
L(y) and P (x) also have a lattice structure. Notice that some results about
the functional approach in B-convexity can be found in [1].

11



Let Cmax : Rm
+ × Rn

+ −→ R+ ∪ {+∞} be the function defined by:

Cmax(w, y) = inf
x∈L(y)

max
i=1...m

wixi. (4.1)

This function maps each input price w ∈ Rm
+ and each output vector y ∈ Rn

+

to the minimum of the maximal individual cost of each input. Thus, it is
called the max-cost function. A symmetrical definition can be provided to
maximize the revenue. The map Rmax : Rn

+ × Rm
+ −→ R+ ∪ {−∞} defined

by:
Rmax(p, x) = sup

y∈P (x)

max
j=1...n

pjyj (4.2)

is called the max-revenue function. This function function maps each
output price p ∈ Rn

+ and each input vector x ∈ Rm
+ to the maximum of the

maximal individual revenue for each output.
Basically, these functions have some formal analogy with the cost and

revenue functions making the formal substitution + → max. Not surpris-
ingly, their respective economic interpretations are different. For example,
let us consider a firm that selects some input by minimizing this max-cost
function. The map x 7→ maxi=1...m wixi can be interpreted as the maximum
of the individual costs of each factor. By definition, Cmax(w, y) gives the min-
imum amount of the maximal cost required to produce a production vector
y. The corresponding optimization program implies that the optimal input
is obtained imposing a particular proportion in the input consumption. Sup-
pose that a > 0. It is easy to see that there is some x∗ ∈ L(y) minimizing the

maximum cost such that
x∗i
x∗k

=
a∗k
a∗i

for all (i, k) ∈ [m]2. Notice that the form

of the budget constraint can be related to the two-stage budgeting approach
dating back to the creation of the separable utility model by Strotz [28]. It
is further mentioned that Farrell technical efficiency measure is interpretable
as a maximum ratio between the max-cost function and the max-cost of the
observed input vector (Proposition 4.2.3). This duality property only re-
quires a free disposal assumption. However, it has been shown in [7] that
B-convexity is sufficient.

Proposition 4.2.3 For all T ∈ T , if (x, y) ∈ Rm+n
+ and x 6= 0, then:

Ei(x, y, T ) = sup
{

Cmax(w, y) : max
i=1...m

wixi = 1, w ≥ 0
}

.

Moreover, if 0 /∈ L(y), then:

Cmax(w, y) = inf
{

max
i=1...m

wixi : Ei(x, y, T ) = 1, x ∈ Rm
+

}
.

The proof of this property is an immediate consequence of the result
established in [7] for the Shephard input distance function that is the inverse
of the Farrell input measure.
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The producer may also seek to maximize the quantity maxj=1...n pjyj that
is the maximum of the maximal revenue he can expect from each outputs.
It is further established that the Farrell output efficiency measure can be
interpreted as a minimum ratio between this max-revenue function and the
max-revenue of the observed output vector (Proposition 4.2.4).

Proposition 4.2.4 Suppose that T ∈ T . For all (x, y) ∈ Rm+n
+ , if y 6= 0

and P (x) is a B-convex set having a nonempty interior then:

Eo(x, y, T ) = inf

{
Rmax(p, x) : max

j=1...n
pjyj = 1, p ≥ 0

}
.

Moreover

Rmax(p, x) = sup

{
max
j=1...n

pjyj : Eo(x, y, T ) = 1, y ∈ Rn
+

}
.

Let us introduce, the function Cmin : Rm
+ × Rn

+ −→ R+ ∪ {+∞} defined by:

Cmin(w, y) = inf
x∈L(y)

min
i=1...m

wixi. (4.3)

This is called the min-cost function. Moreover, the function Rmin : Rn
+ ×

Rm
+ −→ R+ ∪ {−∞} defined by

Rmin(p, x) = sup
y∈P (x)

min
j=1...n

pjyj (4.4)

is called the min-revenue function.
These functions are constructed paralleling our earlier definitions of max-

cost and max-revenue functions. In such a case, one assume that the producer
seeks to minimize the function x 7→ mini=1...m wixi that can be interpreted as
the minimum cost that he (or she) can pay for each factor. Along this line,
the function Cmin(w, y) gives the minimum amount of the cost expected by
the producer given the technology T . This implies that, on the input side,
the technology has a Leontief structure. It is shown below that the Farrell
input technical efficiency measure can then be interpreted as a maximum
ratio between this min-cost function and the min-cost corresponding to the
observed input vector (Proposition 4.2.5).

Proposition 4.2.5 Suppose that T ∈ T . For all (x, y) ∈ Rm+n
+ , if x 6= 0

and L(y) is an inverse B-convex set then:

Ei(x, y, T ) = sup
{
Cmin(w, y) : min

i=1...m
wixi = 1, w ≥ 0

}
.

Moreover

Cmin(w, y) = sup
{

min
i=1...m

wixi : Ei(x, y, T ) = 1, w ≥ 0
}
.
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Focusing on the output side, the producer seeks to maximize the quantity
minj=1...n pjyj. Therefore the min-revenue function Rmin(p, x) is interpreted
as the minimum revenue he can expect from each outputs. It is shown
below that the Farrell output measure can be interpreted as a minimum ratio
between this min-revenue function and the minimum revenue corresponding
to the observed output vector (Proposition 4.2.6).

To show this, it is useful to use a result established by Mart́ınez, Rubinov
and Singer [21]. Given some y ∈ Rn

+\P (x), it is always possible to find some
p ∈ Rn

+ such that minj∈[n] pjyj > Rmin(p). Consequently, the output set P (x)
is the intersection of all its supporting half spaces. Namely, we have:

P (x) =
⋂

p∈Rn
+

{y ∈ Rn
+ : min

i∈[n]
pjyj ≤ Rmin(p, x)}. (4.5)

Proposition 4.2.6 For all T ∈ T , if (x, y) ∈ Rm+n
+ and y 6= 0 then

Eo(x, y, T ) = inf
{
Rmin(p, x) : min

j=1...n
pjyj = 1, p ≥ 0

}
.

Moreover

Rmin(p, x) = sup
{

min
j=1...n

pjyj : Eo(x, y, T ) = 1, p ≥ 0
}
.

Duality of the output Farrell measure and min-revenue function is de-
picted in Figure 4.5.

6

- y1

y2

0

P (x)

y

Rmin(p, x)

min pjyj = min pjvj

y∗

Figure 4.5 Duality with min-revenue function.

In Figure 4.5, y∗ is the radial projection of y onto the frontier of the output
set P (x). Clearly, we have Rmin(p, x) = minj∈[n] pjy

∗
j and Eo(x, y, T ) =

minj∈[n] pjy∗j
minj∈[n] pjyj

. It is easy to check that if p′ 6= p and minj∈[n] p
′
jyj = 1 then

minj∈[n] pjy∗j
minj∈[n] pjyj

≤ Rmin(p′,x)
minj∈[n] pjyj

. Notice that this geometrical representation of our

duality result has some formal analogy to the convex case by replacing the
class of linear maps with that of the Leontief functions.
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5 B-convex and Inverse B-convex Non-Parametric

Technologies

5.1 The B-convex Case: Some Known Results

This subsection presents the B-convex non-parametric model introduced in
[7]. We consider a collection A =

{
(xk, yk) : k = 1...l

}
of l observed firms.

The subset of Rm+n
+ defined by

Tmax =
(
B(A) + K

) ∩ Rd
+ (5.1)

is called a B-convex non-parametric estimation of the production tech-
nology. One can equivalently write:

Tmax =
{

(x, y) ∈ Rm+n
+ : x ≥

l∨

k=1

tkxk, y ≤
l∨

k=1

tkyk, max
k=1...l

tk = 1, t≥0)
}

.

(5.2)
It has bee proved in [7] that Tmax is a closed B-convex set. Consequently, it
also has an upper semilattice structure. The economic meaning of this model
is discussed with more details in section 5.3. The basic idea is to replace
usual convexity with B-convexity. This implies a divisibility assumption and
an upper semilattice structure of the technology. Consequently, the upper
bound of two input production vectors can always produce the upper bound
of the output vectors they are individually able to produce.2 Comparing
such an assumption to convexity, one can say that it has some advantages
and drawbacks. Regarding the input side B-convexity encompasses as a
special case the situation where the technology assumes the inputs are freely
disposable. Looking at the output side, B-convexity implies, under a free
disposal assumption, that the production set has an output cubic structure.
This means that an assumption of output complementarity is implicitly made
on the technology.

5.2 Inverse B-convex Non-parametric Production Model

This section proposes an inverse B-convex production model. This is con-
structed by analogy to the DEA model and the B-convex structure proposed
in the earlier section.

Definition 5.2.1 Let A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
+ a collection of l

observed production vectors. The subset

Tmin =
{

(x, y) ∈ Rm+n
+ : x ≥

l∧

k=1

sk xk, y ≤
l∧

k=1

sk yk, min
k=1...l

sk = 1
}

2There exists also DEA production models having a nonadditive algebraic structure,
see for example[10, 11].
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is called the inverse B-convex non-parametric estimation of the production
technology.

Note that if A ⊂ Rm+n
++ then its inverse B-convex hull B−1(A) is well defined

and one can equivalently write:

Tmin =
(
B−1(A) + K

) ∩ Rd
+. (5.3)

The next result establishes some basic results about the properties this in-
verse B-convex model satisfies.

Proposition 5.2.2 For all subset A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
+ the

production set Tmin satisfies the following assumptions:
(a) Tmin is a closed set.
(b) Tmin is an pseudo inverse B-convex set.
(c) Tmin is a lower semilattice, i.e ∀z, w ∈ Tmin, z ∧ w ∈ Tmin.

Paralleling the B-convex case, this construction replaces usual convexity
with pseudo inverse B-convexity. This implies that production vectors are ex-
pandable. Moreover, the production set is endowed with a lower semilattice
structure. Consequently, the lower bound of two input production vectors
can always produce the lower bound of the output vectors they are individ-
ually able to produce. As in the B-convex case, this approach also has both
some merits and drawbacks. From the input side, inverse B-convexity implies
that, under a free disposal assumption, the input set has a Leontief struc-
ture. This means that the technology exhibits complementarity of inputs.
Looking at the output side, inverse B-convexity encompasses as a special case
the situation where the technology only assumes that the outputs are freely
disposable.

5.3 Comparison Between B-convexity and Inverse B-
convexity

To make a comparison, we first depict the B-convex and inverse B-convex
cases respectively.

x

y

z1

z3

0

z4

6

-

Tmax

z2

Figure 5.3 B-convex estimation

x

y

z1

z3

0

z4

6

-

Tmin

z2

Figure 5.4 Inverse B-convex estimation
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The configuration of data set A = {z1, z2, z3, z4} is identical in Figures 5.3.
and 5.4. However, it is easy to see that the technologies resulting from this
data sets are very different. Points z1, z2 and z3 are weakly efficient both with
respect to Tmax and Tmin. An eyeball shows that the productivity average is
greater in z1 than in z2 and z3. Clearly, z1 is a maximum productivity scale
point. It is now of interest to compare the ways z3 is connected to z1 and z1

is connected to z2 respectively.
To do that, one should pay attention to the marginal productivities in-

volved by the production frontier between z3, z1 and z2. Since in both cases
z3 and z2 are connected by a broken line, the marginal productivity is not
defined everywhere. However, it is clearly defined almost everywhere and
allows for a local comparison of the production frontiers of Tmax and Tmin re-
spectively. Concerning Tmax, marginal productivity is nonincreasing from z3

to z1 and nondecreasing from z1 to z2. Hence, it follows that the technology
is locally nonconvex between z3 and z1 and locally convex between z1 and z2.
This implies that the marginal productivity at z1 is infinite between z3 and z1

while it is finite and positive between z1 and z3. Clearly, the improvement of
the average productivity required to reach the maximum productivity scale
is achieved at the input level x3.

Concerning Tmin the above analysis is reversed. Marginal productivity is
nondecreasing from z3 to z1 and nonincreasing from z1 to z2. Not surprisingly,
it follows that the technology is locally convex between z3 and z1 and locally
nonconvex between z1 and z2. In particular, this means that the marginal
productivity at z1 is positive and finite between z3 and z1 while it is null
between z1 and z3. Consequently, a nondecreasing marginal productivity
yields to an improvement of productivity scale. Conversely, a nonincreasing
marginal productivity yields to a deterioration of productivity scale. Hence,
some properties inherited from the inverse B-convex model seem to have a
more natural economic interpretation than those involved with the B-convex
model. In addition, the Leontief structure of the inverse B-convex input sets
seems to be preferable to the cubic form of the B-convex outputs sets (see
Proposition 4.2.1).

5.4 Mixed Estimation

In this section we also propose a mixed estimation that is defined as the inter-
section between the B-convex and the inverse B-convex estimations. Namely,
the mixed non-parametric estimation is defined by

Tmix = Tmax ∩ Tmin. (5.4)

For all subset A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
+ the mixed estimation

Tmix is a closed set. Such an estimation is defined as the intersection of two
technologies previously discussed.

The representation of is depicted in the following figure.
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Figure 5.5 Mixed estimation

This approach has the advantage to provide a better extrapolation of the
data. However, the technology is less “smooth” than in the B-convex and
inverse B-convex cases.

6 Computation of Efficiency Measures

This section provides a general procedure to calculate Farrell efficiency mea-
sure in the input and output cases. This we do by focusing on the solutions
of a system of maximum equations and minimum equations.

6.1 Systems of Maximum and Minimum Equations

Systems of maximum (resp. minimum) equations are obtained making the
formal substitutions + → max (resp. + → min). Maximum equation sys-
tems where studied in [5] to find the extreme points of a polytope. This
paper also looks at the case of a minimum system of equations. As for max-
imum equation system, it is shown that some solutions can be obtained in
closed form. We further establish that these results yield two general formula
allowing to compute Farrell technical efficiency measures. For k = 1...l and
i = 1...m, let us denote

ak =
(
ak

1, . . . , a
k
m

)
and ai =

(
a1

i , . . . , a
l
i

)
. (6.1)

Maximum equations systems where studied in [5]. We briefly summarize
their basic properties. The system of equations:





max{a1
1x1, . . . , a

l
1xl} = b1

...
...

max{a1
mx1, . . . , a

l
mxl} = bm

(6.2)

where ak ∈ Rn
+, ak 6= 0 for k = 1...l and b ∈ Rm

++ is called a maximum

equation system. If some bi is null, then for all j, aj
i > 0 implies xk = 0.

Therefore equation (i) can be suppressed. Consequently, such a system whose
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some components of b are null can be reduced to a system with b ∈ Rm
++.

Let S denote the set of solutions of system (6.2). Notice that the solutions
can be characterized by the equivalence:

x ∈ S ⇐⇒
∨

k=1...l

xja
j = b (6.3)

where x ∈ Rl
+. Briec and Horvath [5] have established a necessary and

sufficient conditions for the existence of some solution to system (6.2):

S 6= ∅ ⇐⇒
∧

i=1...n

biφ(ai) ∈ S (6.4)

where φ is the inverse function defined in (3.4).
This section pay attention to the case of a minimum equation system.
The system of equations:





min{a1
1x1, . . . , a

l
1xl} = b1

...
...

min{a1
mx1, . . . , a

l
mxl} = bm

(6.5)

where for k = 1...l, ak ∈ Rl
++, and b ∈ Rm

++ is called a minimum equation
system. If some bi is infinite, the problem is symmetrical to that arising for
a maximum equation system. For all k, ak

i < ∞ implies xk = ∞. Therefore
equation (i) can be suppressed. Consequently, such a system whose some
components of b are infinite can be converted to a system with b ∈ Rm

++. Let
us denote Q as the set of solutions satisfying (6.5). Notice that the solutions
can be characterized by the equivalence:

x ∈ Q ⇐⇒
∧

k=1...l

xka
k = b, (6.6)

for all x ∈ Rl
++. The next result establish a necessary and sufficient condition

for the existence of some solution to the system (6.5)

Proposition 6.1.1 If ak ∈ R++ and bi ∈ R++ for all (i, k) ∈ [m]× [l] , one
has

Q 6= Ø ⇐⇒
∨

i=1...n

biφ(ai) ∈ Q

To illustrate the result above a simple numerical example is provided. Let
us consider the following system:

{
min{2x, 3y} = 1
min{4x, y} = 2

(6.7)

We have a1 = (2, 3) and a2 = (4, 1). Now, φ(a1) = φ(2, 3) = (1
2
, 1

3
). Moreover

φ(a2) = φ(4, 1) = (1
4
, 1). Consequently since b1 = 1 and b2 = 2, we deduce

b1φ(a1)∨b2φ(a2) = (1
2
, 1

3
)∨2(1

4
, 1) = (1

2
, 2). It is now immediate to verify that

(1
2
, 2) is the solution of S. We now study the case of an inequality system.
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6.2 Systems of Maximum and Minimum Inequations

A maximum-inequations system is defined from a finite number of in-
equalities. The next result provides necessary and sufficient conditions for
the existence of some solution.

Proposition 6.2.1 Let us consider the two maximum-inequations systems:





max{a1
1x1, . . . , a

l
1xl} ≤ b1

...
...

max{a1
mx1, . . . , a

l
mxl} ≤ bm

(6.8)

where for k = 1...l, ak ∈ Rm
+ , ak 6= 0 and b ∈ Rm

++, and





max{c1
1x1, . . . , c

l
1xl} ≥ d1

...
...

max{c1
nxn, . . . , c

l
nxl} ≥ dn

(6.9)

where for k = 1...l, ck ∈ Rn
+, ck 6= 0 and d ∈ Rn

++. Let IS and IS ′ be the
solution sets of systems (6.8) and (6.9) respectively. Then

IS ∩ IS ′ 6= ∅ ⇐⇒
∧

i=1...n

biφ(ai) ∈ IS ∩ IS ′.

A similar result can be stated in the context of a minimum-inequality
system.

Proposition 6.2.2 Let us consider the two minimum-inequations systems:





min{a1
1x1, . . . , a

l
1xl} ≥ b1

...
...

min{a1
mx1, . . . , a

l
mxl} ≥ bm

(6.10)

where for k = 1...l, ak ∈ Rm
++, and b ∈ Rm

++, and





min{c1
1x1, . . . , c

l
1xl} ≤ d1

...
...

min{c1
nx1, . . . , c

l
nxl} ≤ dn

(6.11)

where for k = 1...l, ck ∈ Rn
++ and d ∈ Rn

++. Let IQ and IQ′ be the solution
sets of (6.10) and (6.11) respectively. Then

IQ ∩ IQ′ 6= ∅ ⇐⇒
∨

i=1...m

biφ(ai) ∈ IQ ∩ IQ′.
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6.3 Measurement of Technical Efficiency and B-convex
Non-Parametric Technologies

A general method to calculate the Farrell measures is proposed in this section.
To simplify the notations, we assume that A =

{
(xk, yk) : k = 1...l

} ⊂
Rm+n

++ . This means that we suppose the observed input and output vectors
are positive. In the B-convex case, a closed form calculating the Shephard
input distance function have not yet been obtained. However, this was based
upon another approach using the cubic structure of the technology (see Briec
and Horvath [7]). The method we use in this section is based on max-
programming. Moreover, since the Shephard distance function is essentially
the inverse of the Farrell measure, the next results are equivalent to those
obtained in [7]. In addition, a formula is given in the output case.

Proposition 6.3.1 For all A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
++ , let us denote

αk̄,k = min
i=1...m

x
k̄,i

xk,i

.

(a) For each k̄ ∈ [l], the input Farrell technical efficiency measure is:

Ei(xk̄, yk̄, Tmax) = max
{

max
j=1...n

min
k

y
k̄,j
≤yk,j

{ y
k̄,j

y
k̄,k

α
k̄,k

}
, min

k

1

α
k̄,k

}
.

(b) The Farrell output measure is:

Eo(xk̄, yk̄, Tmax) = min
j=1...n

max
k

{yk,j min{α
k̄,k

, 1}
y

k̄,j

}
.

6.4 Measurement of Technical Efficiency and Inverse
B-convex Non-Parametric Technologies

We now provide a method for calculating the Farrell measure over an inverse
B-convex set non-parametric technology.

Proposition 6.4.1 Let A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
++ . Assume that

∀k = 1...l, xk 6= 0. Let us denote

βk̄,k = min
j=1...n

yk,j

yk̄,j

.

(a) For all k̄ ∈ [l], the input Farrell efficiency measure is:

Ei(xk̄, yk̄, Tmin) = max
i=1...m

min
k

{ xk,i

xk̄,i min{βk̄,k, 1}
}
.

(b) The output Farrell efficiency measure is:

Eo(xk̄, yk̄, Tmin) = min
{

min
i=1...m

max
k

xk,i≤xk̄,i

{xk̄,iβk̄,k

xk,i

}
, max

k
βk̄,k

}
.
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Results hereinbefore enables us to formulate a direct method for calcu-
lating Farrell measures in a case of the above defined mixed technology.

Lemma 6.4.2 Let A =
{
(xk, yk) : k = 1...l

} ⊂ Rm+n
++ . Assume that for

k = 1...l, xk 6= 0. Then, for all k̄ ∈ [l] the Farrell input measure is:

Ei(xk̄, yk̄, Tmix) = max{Ei(xk̄, yk̄, Tmax), Ei(xk̄, yk̄, Tmin)}
and the Farrell output measure is:

Eo(xk̄, yk̄, Tmix) = min{Eo(xk̄, yk̄, Tmax), Eo(xk̄, yk̄, Tmin)}.
In the following, a numerical example is proposed. Farrell input and

output measures are computed and compared in several cases.

Example 6.4.3 The following data sample that can be found is Färe, Grosskopf
and Lovell [14].

Table 1. Data Sample
Firms Input Output 1 Output 2

1 2 3/2 1
2 2 2 1
3 4 3 2
4 6 6 6
5 7 6 6
6 8 7 4
7 9 7 4

Using the formula established in the sections above we obtain the following
results.

Table 2. Farrell Measures.
Firms Input

Tmax

Input
Tmin

Input
Tmix

Input
TFDH

Output
Tmax

Output
Tmin

Output
Tmix

Output
TFDH

1 1 1 1 1 4/3 1 1 1
2 1 1 1 1 1 1 1 1
3 3/4 1 1 1 4/3 1 1 1
4 1 1 1 1 1 1 1 1
5 6/7 6/7 6/7 6/7 1 1 1 1
6 1 7/8 1 1 1 1 1 1
7 8/9 7/9 8/9 8/9 1 1 1 1

Not surprisingly, when firms are efficient regarding to the FDH technol-
ogy, they may not be efficient with respect to the other models. The FDH
production set is the smallest one satisfying a free disposal assumption. One
can see that the efficiency scores are strongly dependant on the choice of
the technology. If Farrell efficiency measures are output oriented, then all
the firms are efficient in both the DEA, inverse B-convex and mixed cases.
However, if the production technology is B-convex, then firm 1 and 3 are not
efficient. This is due to the fact that the output set of such a technology is
cubic and multidimensional (n = 2). If Farrell efficiency measures are in-
put oriented, then the efficiency of production units depends on the type of
B-convex structure the technology satisfies. Firm 3 is efficient in the inverse
B-convex case, and inefficient in the B-convex one. One can check that the
situation is reversed for firm 6. Only firm 4 is efficient in the input and
output cases for all the technologies presented in our example.
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7 Conclusion

We have introduced in this paper a production model based on B-convexity
and inverse B-convexity. In particular, the inverse B-convex model has been
analyzed in depth and some earlier results established in [7] have been ex-
tended. Output measures of technical efficiency have also been computed
and some additional methods of min-programming have been provided. We
have shown that these B-convex models can be used to overcome some limi-
tations inherited from convex production technologies which do not take into
account the presence of indivisibleness and impose a particular structure of
returns to scale. Along this line further investigations should be made on the
local structure of returns to scale B-sets are based upon.
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8 Appendix

8.1 The Geometrical Representation of B-convex and
Inverse B-convex Sets

The following figures depict the geometric form of the broken lines joining
two points with respect to the convexity type that is considered. Figure 8.1.1
depicts the case x1 and x2 are not ordered.
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x1

x2

0

6

-

Convex

Inverse B-convex

A

6

B-convex

B

º
:

9
²

Figure 8.1.1 The segment lines joining x1 and x2 when they are not ordered

The B-convex set B (x1, x2) is the broken line connecting points x1, B and
x2. The inverse B-convex set B−1 (x1, x2) is the broken line joining points x1,
A and x2. Figure 8.1.2 depicts a case x1 and x2 are ordered.
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Figure 8.1.2 x2 under the halfline spanned by x1
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Figure 8.1.3 x2 upper the half line spanned by x1.

In Figure 8.1.2 we consider the case x1 ≤ x2 and x2 under the half line
spanned by x1 (the half line [x1, D] in Figure 8.1.2). We first analyze the
case B-convex case. It is clear that point A can be written as A = tAx2 with
tA ≤ 1. Taking the maximum vector between A and x1 yields the point A′.
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Moreover, any C ∈ [B, x2] can be written C = tCx2 the maximum between C
and x1 belongs to the segment line [B, x2]. Hence the B-convex set B (x1, x2)
is the broken line joining points x1, B and x2. A symmetrical analysis can be
provided in the inverse B-convex case. In Figure 8.1.2 point D can be written
as D = sDDx1 with sD ≥ 1. Taking the minimum vector between D and x2

yields the point D′. Moreover, any F ∈ [x1, E] can be written F = sF x1 the
minimum between F and x2 is F and therefore belongs to the segment line
[x1, E]. Consequently the inverse B-convex set B−1 (x1, x2) is the broken line
joining points x1, E and x2.
Figure 8.1.2. depicts the case x1 ≤ x2 and x2 is under the half line spanned
by x1. Using a similar approach the case x2 is upper the half line spanned
by x1 is illustrated in Figure 8.1.3.

8.2 Proof of results

Proof of Lemma 4.1.1: (a) By hypothesis T satisfies a free disposal as-
sumption. Consequently, for all y ∈ Rn

+ the subset L(y) also satisfies a free
disposal assumption. Hence, from [7] L(y) is B-convex. (b) Fix some x ∈ Rm

+

and suppose that P (x) is a nonempty subset of Rn
+. Assume that y, v ∈ P (x).

We need to prove that for all s ≥ 1 one has y ∧ sv ∈ P (x). By hypothesis,
since u, v ≥ 0 we have 0 ≤ y ∧ sv ≤ y. Since T satisfies a free disposal
assumption, it follows that y ∧ sv ∈ P (x) which ends the proof. 2

Proof of Proposition 4.2.1: a) The first step of the proof is to establish
that L(y) has a minimal element. Let us consider the map f : Rm

+ −→ R+

defined by f(x) = x1 + · · · + xm. This function is continuous and nonde-
creasing on Rm

+ . Fix some u ∈ L(y) and define Lu(y) = L(y)∩ ↓ u. Since
L(y) is inverse B-convex it is a lower semilattice. Moreover ↓ u is also a
lower semilattice. Thus Lu(y) is a lower semilattice and since Rm

+∩ ↓ u is
closed and bounded it follows that Lu(y) is a compact lower semilattice of
Rm

+ . Consequently there is some x̄y ∈ Lu(y) that achieves the infimum of f
on Lu(y). We first prove that x̄y is a minimal element of Lu(y). Suppose
this is not the case. Then there is some x ∈ Lu(y) such that x /∈↑ x̄y. Hence
x ∧ x̄y 6= x̄y which implies that f(x ∧ x̄y) < f(x̄y). However, since Lu(y)
is a lower semilattice x ∧ x̄y ∈ Lu(y) and this is a contradiction. Thus x̄y

is a minimal element of Lu(y). To complete the proof, remark that for all
v ∈ L(y) one has x̄y ∧ v ≤ x̄y ≤ u. Hence x̄y ∧ v ∈ Lu(y) that implies
x̄y ≤ x̄y ∧ v. Consequently x̄y = x̄y ∧ v and we deduce that for all v ∈ L(y)
one has v ≥ x̄y. Thus x̄y is a minimal element of L(y) and it follows that
L(y) ⊂ x̄y + Rm

+ .
Furthermore, since the strong disposal assumption hods x̄y +Rm

+ ⊂ L(y)
which proves (a). (b) From Axiom T3, P (x) is bounded for all x ∈ Rm

+ . Since
P (x) is B-convex and closed, one can deduce from [6] that it has a maximal
element. Hence P (x) ⊂ (ȳx − Rn

+

) ∩ Rn
+. However since the free disposal

assumption holds the converse inclusion is also true which ends the proof. 2
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Proof of Proposition 4.2.4: We first prove that there is some p̄ such that
Eo(x, y, T ) = Rmax(p̄,x)

maxj∈[n] p̄jyj
. Since P (x) is compact and B-convex set it has

a maximal element ȳ. Moreover P (x) has a nonempty interior. Thus its
maximal element lies in the interior of Rn

+ and this implies that ȳx > 0.
From Proposition 4.2.1, P (x) =

(
ȳx − Rn

+

) ∩ Rn
+. It follows that P (x) =

{v ∈ Rn
+ : maxj∈[n]

vj

ȳx,j
} ≤ 1. It follows that Eo(x, y, T ) = minj∈[n]

ȳx,j

yj
=[

maxj∈[n]
yj

ȳx,j

]−1
. Fix p̄ = ( 1

ȳx,1
, ..., 1

ȳx,n
). By construction we have Rmax(p̄, x) =

1. It follows that, for all p ∈ Rn
+ we have

Eo(x, y, T ) =
Rmax(p̄, x)

maxj∈[n] p̄jyj

≤ sup
{
θ : max

j∈[n]
pjθyj ≤ Rmax(p, x)

}
.

We then deduce that Eo(x, y, T ) ≤ Rmax(p,x)
maxj∈[n] pjyj

and normalizing the price

vectors this proves the first part of the statement. The second statement is
immediate from the fact that the maximum function is nondecreasing and
positively semi-homogenous. Hence, its maximum is achieved by a frontier
point such that Eo(x, y, T ) = 1. 2

Proof of Proposition 4.2.5: We first prove that there is some w̄ such that
Ei(x, y, T ) = Cmin(w̄,y)

minj∈[n] w̄ixi
. Since L(y) is an inverse B-convex this means that

L(y) ⊂ Rm
++. Moreover, from Proposition 4.2.1 L(y) has a minimal element

x̄y. Thus its minimal element lies in the interior of Rm
+ and this implies

that x̄y > 0. From Proposition 4.2.1, it follows that L(y) = {u ∈ Rm
+ :

mini∈[m]
ui

x̄y,i
} ≥ 1. Hence Ei(x, y, T ) = maxi∈[m]

x̄y,i

xi
=

[
mini∈[m]

xi

x̄y,i

]−1
. Fix

w̄ = ( 1
x̄y,1

, ..., 1
x̄y,m

). By construction we have Cmin(w̄, y) = 1. It follows that,

for all w ∈ Rm
+ we have

Ei(x, y, T ) =
Cmin(w̄, y)

mini∈[m] w̄ixi

≥ sup
{
λ : min

i∈[m]
wiλxi ≥ Cmin(w, y)

}
.

We then deduce that Ei(x, y, T ) ≥ Cmin(w,y)
mini∈[m] wixi

and normalizing the price vec-

tors this proves the first part of the statement. The second statement is
immediate from the fact that the minimum function is nondecreasing and
positively semi-homogeneous. Hence, its minimum is achieved by a frontier
point such that Ei(x, y, T ) = 1. 2

Proof of Proposition 4.2.6: (a) Since P (x) is a subset of Rn
+, we have for

all y ∈ Rn
+

Eo(x, y, T ) = sup{θ : θy ∈ P (x)}.
One equivalently has

Eo(x, y, T ) = inf{θ : θy /∈ P (x)}.
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Since P (x) =
⋂

p∈Rn
+
{v ∈ Rn

+ : minj∈[n] pjvj ≤ Rmin(p, x)}, it follows that

Rn
+\P (x) =

⋃

p∈Rn
+

Rn
+\{v ∈ Rn

+ : min
j∈[n]

pjvj ≤ Rmin(p, x)}

=
⋃

p∈Rn
+

{v ∈ Rn
+ : min

j∈[n]
pjyvj > Rmin(p, x)}.

Consequently,

Eo(x, y, T ) = inf{θ : θy ∈
⋃

p∈Rn
+

{v ∈ Rn
+ : min

j∈[n]
pjvj > Rmin(p, x)}}

= inf
p∈Rn

+

inf{θ : θy ∈ {v ∈ Rn
+ : min

j∈[n]
pjvj > Rmin(p, x)}}

= inf
p∈Rn

+

inf{θ : min
j∈[n]

pjθy > Rmin(p, x)}

= inf
p

Rmin(p, x)

pjyj

.

Making an immediate normalization yields the result. (b) The second state-
ment is immediate from the fact that the minimum function is nondecreasing
and positively semi-homogenous. Hence, its maximum is achieved by a fron-
tier point such that Eo(x, y, T ) = 1.2

Proof of Proposition 5.2.2: (a) The map s 7→ mink=1,...,l sk is continuous,

consequently B = {∧l
k=1 sk(xk, yk) : min sk = 1} is a closed subset of Rm+n

+ .
Since by definition Tmin = (B+K)∩Rm+n

+ it follows that Tmin is a closed. (b)
Assume that (x, y), (u, v) ∈ Tmin. In such a case, there exists s1, ..., sl ≥ 0,
such that min{s1, ..., sl} = 1, x ≥ ∧l

k=1 sk xk and y ≤ ∧l
k=1 sk yk. Moreover,

there exists t1, ..., tk ≥ 0 with min{t1, ..., tl} = 1 such that u ≥ ∧l
k=1 tk xk and

v ≤ ∧l
k=1 tk yk. Now, let q, r ≥ 0 such that min{q, r} = 1. We have qx∧ru ≥

q
(∨l

k=1 sk xk

)
∧ r

(∧l
k=1 tk xk

)
=

∧l
k=1 min{qsk, rtk} xk. Similarly qy∧ sv ≤

∧l
k=1 min{qsk, rtk} yk. But it is easy to see that mink=1...l min{qsk, rtk} = 1.

Consequently q(x, y)∨ s(u, v) ∈ Tmin and Tmin is an pseudo inverse B-convex
set. (c) is an immediate consequence of (b) since an pseudo inverse B convex
set is a lower semilattice setting q = r = 1. 2

Proof of Proposition 6.1.1: By definition the inverse map φ is defined on
Rl

++ by φ(x) = (ϕ(x1), ..., ϕ(xl)) where ϕ(xk) = 1
xk

for each k. However, for

all i ∈ [m], we have

min
k∈[l]

ak
i xk = bi ⇐⇒ ϕ

(
max
k∈[l]

φ(ak
i ) φ(xk)

)
= bi.

The reciprocal of ϕ is ϕ itself. Hence, the problem of finding an optimal
solution can the be converted to solve a system of maximum equations defined
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by
max
k∈[l]

{
φ(ak

i ) φ(xk)
}

= ϕ(bi) i ∈ [m].

Consequently, since the reciprocal of φ is also φ itself, we deduce from (6.4)

Q 6= Ø ⇐⇒
∧

i=1...m

ϕ(bi)ai ∈ φ
(
Q

)
,

which yields the result. 2

Proof of Proposition 6.2.1: Assume that IS ∩ IS ′ 6= ∅. If x̄ ∈ IS ∩ IS ′,
then x̄ ∈ IS. But from equation (6.4) the vector

∧
i=1...m biφ(ai) satis-

fies conditions for being in IS. Moreover, it is maximal in IS. Conse-
quently, we have x̄ ≤ ∧

i=1...m biφ(ai). Since the maximum function is non
decreasing and x̄ ∈ IS ′, we deduce that

∧
i=1...m biφ(ai) ∈ IS ′. Therefore∧

i=1...m biφ(ai) ∈ IS ∩ IS ′, and the first part of the equivalence is proven.
Since the converse is immediate the result is stated. 2

Proof of Proposition 6.2.2: The proof is obtained from Proposition 6.2.1
making an elementary change in the variables. 2

Proof of Proposition 6.3.1: (a) Let us consider the inequations system:




∨
k=1...l tkxk ≤ λxk̄∨
k=1...l tkyk ≥ yk̄

maxk=1...l tk = 1 t ≥ 0
(8.1)

It can be rewritten:




∨
t=1...l tkxk ≤ λxk̄

maxk=1...l tk ≤ 1∨
k=1...l tkyk ≥ yk̄

maxk=1...l tk ≥ 1 t ≥ 0

(8.2)

From Proposition 6.2.1 the solution set S set of the system (8.1) is nonempty
if and only if

∧
i=1...m λx

k̄,i
φ(txi) ∧ 1m is solution, where the txi’s denote the

vectors txi = (xi,1, ..., xi,l) and 1l is a l-dimensional vector with all component
equal to one. Therefore, since A ⊂ Rd

++ and from the definition of Tmax we
need to solve the minimization program:

inf λ

st max
k=1...l

{
xk,i min

{
min

i=1...m
λ

x
k̄,i

xk,i

, 1
}}

≤ λxk̄,i i = 1...m (8.3)

max
k=1...l

{
yk,j min

{
min

i=1...m
λ

x
k̄,i

xk,i

, 1
}}

≥ yk̄,j j = 1...n

max
k=1...l

{
min

{
min

i=1...m
λ

x
k̄,i

xk,i

, 1
}}

= 1

30



This yields:

inf λ

st. max
k=1...l

{
xk,i min

{
min

i=1...m

x
k̄,i

xk,i

,
1

λ

}}
≤ xk̄,i i = 1...m (8.4)

max
k=1...l

{
yk,j min

{
λ min

i=1...m

x
k̄,i

xk,i

, 1
}}

≥ yk̄,j j = 1...n

max
k=1...l

{
min

{
λ min

i=1...m

x
k̄,i

xk,i

, 1
}}

= 1

From the notations above, this program can be rewritten:

inf λ

st. max
k=1...l

{
xk,i min

{
αk̄,k,

1

λ

}}
≤ xk̄,i i = 1...m (8.5)

max
k=1...l

{
yk,j min

{
λαk̄,k, 1

}}
≥ yk̄,j j = 1...n

max
k=1...l

{
min

{
λαk̄,k, 1

}}
= 1

Equivalently:

inf λ

st max
k=1...l

{
min

{
xk,iαk̄,k,

1

λ
xk,i

}}
≤ xk̄,i i = 1...m (8.6)

max
k=1...l

{
min

{
λyk,jαk̄,k, yk,j

}} ≥ yk̄,j j = 1...n

max
k=1...l

{
min

{
λαk̄,k, 1

}}
= 1

To solve this optimization program, we first mention the following interme-
diary properties. For all real numbers β1, β2, b > 0, we have:

(i) inf
{
λ ≥ 0 : min

{
β1, β2

1
λ

} ≤ b
}

=

{
0 b ≥ β1
β2

b
b < β1

(ii) inf {λ ≥ 0 : min {β1λ, β2} ≥ b} =

{
+∞ if b > β2

b
β1

if b ≤ β2

(iii) inf {λ ≥ 0 : min {β1λ, β2} = b} =

{
+∞ if b > β2

b
β1

if b ≤ β2

Since, by definition x
k̄,i
≥ α

k̄,k
xk,i, it follows that only the constraints j =

1...n and the last constraint are active. Moreover, by definition, the condition
yk̄,j ≤ yk,j implies that min

{
λ : min

{
λyk,jαk̄,k, yk,j

} ≥ y
k̄,j

}
=

y
k̄,j

αk̄<kyk,j
∀k, j.

Moreover min
{
λ : min

{
α

k̄,k
λ, 1

}
= 1

}
= 1

α
k̄,k

. We deduce:
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Ei(xk̄, yk̄, Tmax) = max
{

max
j=1...n

min
k

yk̄,j≤yk,j

{ yk̄,j

yk,jαk̄,k

}
, min

k

1

αk̄,k

}
.

(b) To compute the Farrell output measure we need to solve the maximization
program:

sup θ

st. max
j=1...p

{
xk,i min

{
min

i=1...m

xk̄,i

xk,i

, 1
}}

≤ xk̄,i i = 1...m (8.7)

max
k=1...l

{
yk,j min

{
min

i=1...m

xk̄,i

xk,i

, 1
}}

≥ θyk̄,j j = 1...n

max
k=1...l

{
min

{
min

i=1...m

xk̄,i

xk,i

, 1
}}

= 1

This yields:

sup θ

st. max
k=1...l

{
xk,i min

{
αk̄,k, 1

}}
≤ xk̄,i i = 1...m (8.8)

max
k=1...l

{
yk,j

1

θ
min{αk̄,k, 1}

}
≥ yk̄,j j = 1...n

max
k=1...l

{
min

{
αk̄,k, 1

}}
= 1

Since, by definition xk̄,i ≥ αk̄,kxk,i, it follows that the constraints i = 1...m
hold. Moreover, the last constraint holds also (just take k = k̄). Now, the
last constraint is active. Moreover, max{θ : 1

θ
yk,j min{αk̄,k, 1} ≥ yk̄,j} =

yk,j min{αk̄,k,1}
yk̄,j

for j = 1...n. We deduce that:

Eo(xk̄, yk̄, Tmax) = min
j=1...n

max
k

{
yk,j min{αk̄,k, 1}

yk̄,j

}
.2

Proof of Proposition 6.4.1: (a) The minimization program one should
solve is:

inf λ

st.
∧

k=1...l

skxk ≤ λxk̄ (8.9)

∧

k=1...l

skyk ≥ yk̄

min
k=1...l

sk = 1
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This can be rewritten:

inf λ

st. φ

( ∨

k=1...l

ϕ(sk)φ(xk)

)
≤ λxk̄ (8.10)

φ

( ∨

k=1...l

ϕ(sk)φ(yk)

)
≥ yk̄

ϕ
(

max
k=1...l

ϕ(sk)
)

= 1

or equivalently, setting tk = ϕ(sk) for k = 1...l and θ = ϕ(λ):

max λ

st.
∨

k=1...l

tkφ(xk) ≥ θφ(xk̄) (8.11)

∨

k=1...l

tkφ(yk) ≤ φ(yk̄)

max
k=1...l

tk = 1, t ≥ 0

Now if θ∗ is solution of the program above, then we have Ei(xk̄, yk̄, Tmin) =
ϕ(θ∗). Hence, using the results in Proposition 6.3.1, we obtain:

Ei(xk̄, yk̄, Tmin) =

[
min

i=1...m
max

k

{xk̄,i min{βk̄,k, 1}
xk,i

}]−1

(b) Using a similar approach, the Farrell output measure can be calculated
using Proposition 6.3.1.b, and we obtain:

Eo(xk̄, yk̄, Tmin) =


max

{
max

i=1...m
min

k
xk,i≤xk̄,i

{ xk,i

xk̄,iβk̄,k

}
, min

k

1

βk̄,k

}


−1

.2

Proof of Lemma 6.4.2: Let us fix λmax = Ei(xk̄, yk̄, Tmax) and λmin =
Ei(xk̄, yk̄, Tmin). From the strong disposability assumption {(λxk̄, yk̄) : λ ≥
λmax} ⊂ Tmax and {(λxk̄, yk̄) : λ ≥ λmin} ⊂ Tmin. Consequently, their inter-
section is a subset of Tmix. It follows that {(λxk̄, yk̄) : λ ≥ max{λmax, λmin}} ⊂
Tmix. Hence Ei(xk̄, yk̄, Tmix) ≤ max{Ei(xk̄, yk̄, Tmax), Ei(xk̄, yk̄, Tmin)}. More-
over, since Tmix ⊂ Tmax and Tmix ⊂ Tmin, the converse inequality is imme-
diate, which yields the result. The proof of the second statement is similar. 2
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