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Setting the Operating Reserve Using
Probabilistic Wind Power Forecasts

Manuel A. Matos, Member, IEEE, and R. J. Bessa

Abstract—In power systems with a large integration of wind
power, setting the adequate operating reserve levels is one of the
main concerns of system operators (SO). The integration of large
shares of wind generation in power systems led to the development
of new forecasting methodologies, including probabilistic fore-
casting tools, but management tools able to use those forecasts to
help making operational decisions are still needed. In this paper,
a risk evaluation perspective is used, showing that it is possible to
describe the consequences of each possible reserve level through
a set of risk indices useful for decision making. The new reserve
management tool (RMT) described in the paper is intended to
support the SO in defining the operating reserve needs for the
daily and intraday markets. Decision strategies like setting an
acceptable risk level or finding a compromise between economic
issues and the risk of loss of load are explored. An illustrative
example based on the Portuguese power system demonstrates the
usefulness and efficiency of the tool.

Index Terms—Multicriteria decision, operating reserve, oper-
ating risk, uncertainty, wind power forecast.

I. INTRODUCTION

T HE benefit of accurate wind power forecasting to power
systems management is being increasingly recognized

and became an important issue in defining the operation plan-
ning policies to be adopted by a system operator (SO), namely
in accepting high wind penetration [1]. Currently, increasing
the value of wind generation through the improvement of
prediction systems’ performance with new algorithms is one of
the priorities in wind power forecasting [2], [3].

However, even the best tools are unable to eliminate the un-
certainty associated to each particular forecast. The combination
of generation and consumption variability and high uncertainty
of forecasts can make it more difficult to fit wind generation into
conventional procedures for power system operations, such as
setting reserve levels or scheduling. Therefore, a correct man-
agement of the power system must take into account the uncer-
tainties when making decisions.
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The integration of large shares of wind generation requires
an increase in the amount of reserves that are needed to balance
generation and load. Studies described in [4] showed that large
scale integration of wind generation does not create problems in
terms of primary reserve levels. So, the analysis should only be
considered in terms of the operating reserve management.

The methods employed by the SO to define operating reserve
requirements are generally deterministic, as can be seen in the
survey presented in [5] about reserve categorization that reviews
the criteria used across eight electrical systems. Sometimes, the
UCTE rule [6] for defining secondary reserve is used as a ref-
erence for deterministic criteria. The rule depends only on the
size of the typical load variations and is insensitive to the level
of wind power of the system.

In a market environment, where the reserve cost will be part
of the tariff paid by all customers, a trade-off between cost and
risk should be considered instead of avoiding risk at almost any
cost. On the other hand, since deterministic approaches do not in
fact measure the risk, it may happen that, in some circumstances,
complex risky situations are not covered. Therefore an approach
based on deterministic criteria may lead, either to higher opera-
tional cost, or to excessive risk.

However, SO are starting to abandon deterministic rules,
e.g., ERCOT (Texas Independent System Operator) already
considers a probabilistic method for defining their monthly
nonspinning reserve requirements [7]. The approach consists in
setting a nonspinning reserve corresponding to percentile 95 of
the historical total forecast error.

Probabilistic methods to address reserve assessment prob-
lems are well established in the literature (e.g., [8] and [9]), in-
cluding the use of a risk threshold as a means to set the reserve
[10]. Therefore, we will give more emphasis here to recent re-
search that accounts for wind power forecast uncertainty. Strbac
et al. [11] calculate the standard deviation of the combined wind
and load uncertainty as that of the sum of the two independent
Gaussian random variables. The reserve is defined to cover all
variations contained within of the total system forecasting
error, which means that 99.74% of variations are covered. The
same approach is used by Holttinen [12], where the main goal
was to estimate the increase in hourly load-following reserve
requirements based on wind power generation and hourly load
data in the four Nordic countries. Doherty et al. [13] present
a methodology that relates the reserve level on the system in
each hour to the number of load shedding incidents tolerated
per year. Load and wind power forecast errors are incorporated
in the model as Gaussian errors. All these approaches assume
that the wind power forecast uncertainty may be represented by
a Gaussian distribution. However, wind power forecast error is
well known to have a non-Gaussian distribution [14]–[16]. An
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alternative approach is not assuming any distribution for the un-
certainty. Pahlow et al. [17] study the impact in load curtail-
ment and reserve cost of several criteria based on the use of
wind power ensembles that give a representation of the wind
power forecast uncertainty. Kristoffersen et al. [18] describe a
method adapted from the Wilmar Planning Tool where the wind
power forecast uncertainty is modeled by discrete scenarios of
day-ahead wind power generation generated by a method de-
scribed in [19]. The power balance of each scenario is com-
puted, and then it is assumed that a certain percentile of the total
forecast error has to be covered by the reserve. Maurer et al.
[20] compute the control area power imbalance distribution by
convolving the distributions of generation and load. However,
the authors do not clarify how the distributions are estimated or
represented. The reserve is computed by setting a probability
threshold for upward and downward reserve.

Nevertheless, most methods compute the reserve require-
ments associated with a reference risk level defined a priori. As
stated above, a trade-off between cost and risk could instead be
considered. Leite da Silva et al. [21] describe a methodology for
evaluating the operating reserve requirements in a deregulated
electrical market. They use system interruption costs, repre-
sented by loss of load cost (LOLC), and the reserve bid prices
to balance risk and cost. Wang et al. [22] compute the optimal
reserve capacity in the operating reserve market by minimizing
the social cost, defined as the sum of the reserve cost with the
expected cost of interruptions, represented by the interrupted
energy assessment rates (IEAR). Ortega-Vazquez et al. [23]
balance the spinning reserve cost and benefit in an electrical
market with unit commitment. The benefit is a function of the
reduction in the expected energy not supplied (EENS), and
converted into socioeconomic cost by using the value of lost
load (VOLL). Ortega-Vazquez et al. [24] extend their approach
to include wind power forecast uncertainty, although the uncer-
tainties are represented by Gaussian distributions and combined
using the rule described in [11]. Morales et al. [25] describe
a two-stage stochastic programming problem to compute the
optimal reserve level and the cost of providing such reserve.
The objective is to minimize the expected cost, considering the
value of lost load and energy, as well as the reserve bids. Wind
generation uncertainty is modeled trough a set of scenarios, but
no details are given about the scenarios generation method.

This paper presents a new reserve management tool (RMT)
intended to support the SO in defining the reserve needs for the
daily and intraday markets. Based on probabilistic wind power
and load forecasts, risk indices are calculated that give informa-
tion to the SO about the consequences of setting each possible
reserve level. After interaction with the SO, the tool outputs the
reserve levels to be set for the next day (or current day) that ei-
ther: 1) enforce a maximum acceptable risk level; or 2) respect
a trade-off limit between risk and reserve cost.

The structure of this paper is as follows: Section II presents
the problem and the general methodology. In Section III, the de-
tails of the probabilistic model that computes the system genera-
tion margin distribution are described. Decision-making issues
are discussed in Section IV. The management tool is demon-
strated through an illustrative example in Section V. Section VI
presents the conclusions.

II. GENERAL METHODOLOGY

The proposed tool addresses the problem of defining the op-
erating reserve needs in a market environment where the SO
acquires all of the reserve needed for the control area [26]. The
allocation of reserve to each agent results from an auction mech-
anism where network constraints are not considered and reserve
bids are made in an hour by hour basis. Therefore, ramp rates
and other inter-temporal aspects would be mainly a concern of
the bidders when preparing their offers.

Note that, the methodology can be applied or extended to
other balancing mechanisms without any special difficulty.

A. Operation

In the daily market the SO at day D is in charge of defining
the hourly reserve needs for the next day (day ). The
exercise departs from the feasible daily schedule that results
from market clearing after congestion management analysis per-
formed by the SO. Then, the SO, at time instant , determines
and publishes the reserve needs for each look-ahead time step
of day , the time gap between the beginning of day
and the decision instant being equal to . These reserve
amounts should then be split into secondary and tertiary reserves
according to SO operating rules (problem not addressed in this
paper).

The relevant inputs are the following variables: total load and
wind power probabilistic forecasts, issued at time instant for
each look-ahead time step of day , (time gap between the
beginning of day and the forecast instant equal to

); daily generation schedule at time instant for each look-
ahead time step of day ; failure rates of the conventional
generation; interchange power levels.

Also in each intraday market session the SO has to define the
reserve needs for the next day or for the remaining hours of the
current day. The same framework may be used, the input data
being “refreshed” with the new forecasts and with the feasible
schedule decided by the intraday market.

B. Methodology

The approach computes first the probability distribution of
the system total generation (G), for each look-ahead time step,
by integrating the conventional generation unavailability distri-
bution (C) and wind generation forecast uncertainty (W). Then,
the system generation margin probability distribution (M), de-
fined as the difference between total generation and load (L), is
computed, taking into account the load forecast uncertainty.

For a specific level of operating reserve R (with its inherent
cost), the distribution of can be used to calculate the loss
of load probability (LOLP) and other reliability indices. This
process is repeated for various values of R. As a result, curves
with risk as a function of reserve (or its cost) can be obtained.

The aim here would be to minimize simultaneously risk and
cost, which is not possible, due to the conflict between the two
minimizations. Fig. 1 shows the complete structure of the tool.

In the second step of the methodology, the decision problem
is formulated in a way suitable to incorporate the preferences of
the decision maker (in this case the SO), and the final level of
reserve is decided. So, the decision-aid model incorporates the
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Fig. 1. Reserve management tool structure.

decision maker’s preferences to help finding a preferred solution
for each look-ahead time step.

III. PROBABILISTIC MODEL

A. Representation of Uncertainties

1) Load: Load forecast uncertainty is modeled through a
Gaussian distribution with a given standard deviation and zero
mean [9], approximated by a set of quantiles with 1% increment
in nominal proportion from one quantile to the next.

Note that no changes are necessary in the methodology if the
forecast uncertainty has a nonparametric representation (e.g., set
of quantiles).

2) Conventional Generation: The probability mass function
(pmf) of the conventional generation is analogous to the discrete
probability distribution of the possible capacity states, usually
known as the capacity outage probability table (COPT) [9]. Note
that, because the subject is operating reserve, the outage replace-
ment rate (ORR) is used instead of the forced outage rate (FOR)
[9].

The method used in this paper to build the COPT is similar
to the one described in [27], which is based on the fast Fourier
transform (FFT) algorithm [28]. The method is computation-
ally and mathematically attractive, since the computational time
grows linearly with the number of machines in the system and
can also accurately compute the COPT for systems with small
ORR (which is the case, as the probabilities of failure during the
lead time are very low).

The approach followed for the conventional generation con-
sists in building a COPT using as input the conventional gener-
ation dispatched by the market clearing procedure and modified
in order to guarantee a secure operation of the power system
(frequently called feasible dispatch).

3) Wind Generation: Two sources of uncertainty in wind
power are taken into account by the model, one coming from
the forecast error and the other from possible wind turbines’
unplanned outages.

The first source of uncertainty is related with the impossibility
of producing perfect wind power forecast. Research work has
been developed to estimate uncertainties in wind power fore-
cast. As a result from the ANEMOS project, different methods
to estimate the uncertainty of deterministic (or point) forecasts
were developed [29].

The uncertainty of the deterministic forecast can be ap-
proached by different representations. The most common

representation is a nonparametric probabilistic forecast [14]
represented by quantiles, intervals or probability density func-
tions. The other two representations take the form of risk indices
[14] of the forecasts, and scenarios incorporating temporal [30]
or spatial [31] interdependence structure of prediction errors.

In this paper a nonparametric probabilistic forecast repre-
sented by a set of quantiles ranging from 5% to 95% with a 5%
increment was used. Thus, and since the full probability dis-
tribution is required for convolution purposes, it is necessary
to model the distribution’ tails with exponential functions re-
flecting improbable extreme events [30].

The second source of uncertainty is related with the possible
outages of the wind turbines and could be addressed in a way
similar of the one used for the conventional generation. How-
ever, since there is a large number of a similar wind turbine
(similar size and failure rate ) a simpler model can be used. For
instance, for a system with 2000 similar wind turbines, a failure
rate of 10 failures/year, and a lead time of 24 h, the mean power

is 97.26% of the rated power and the probability of having
at least 96% of the rated power is 99.995% . Therefore,
an adjustment in the forecasted values using the mean value of
the COPT (0.9726 in this case) is sufficient to capture the effect
of wind turbines’ outages.

B. System Generation Margin Model

The system generation margin is the amount that the available
generating capacity exceeds the system load, so, being a func-
tion of two random variables (load and generation), it is also
a random variable. In order to compute the system generation
margin distribution (M), the inputs are the probability distribu-
tions of load (L), conventional generation (C) and wind power
generation (W).

The first step is to compute the pmf of the sum of wind and
conventional generation for each look-ahead
time step. Assuming independence, the sum can be computed
by convolution [32]:

(1)
Finally, the system generation margin (M) is the difference

between generation (G) and load (L), which requires also a con-
volution:

(2)
The preceding convolutions assume independence between

load and wind power forecast uncertainties. Note that this has
nothing to do with the possible correlation of wind power and
load as a function of time.

The system generation margin distribution is a discrete prob-
ability distribution for each look-ahead time step, represented
by its pmf, as depicted in Fig. 2.

The distribution can be calculated by just using (1) and (2)
directly, but we used a more efficient way by making the com-
putation in the frequency domain with the FFT method adapted
from the one described in [33].
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Fig. 2. pmf of the generation margin for a specific look-ahead time step.

Fig. 3. pmf of the generation margin for a operating reserve of 700 MW.

Now, after setting a value for the operating reserve, the trans-
lation of the margin distribution can be used to calcu-
late the probability of losing load and other risk indices. Fig. 3
shows the effect of setting a reserve level of 700 MW in the same
situation of Fig. 2. This additional capacity (as reserve) means
shifting the Fig. 2 pmf to the right by the amount of the reserve
700 MW.

At this point, different risk related attributes meaningful for
the decision maker can be computed. Following the approach
described in [34], the idea is to extract risk attributes from the
system generation margin distribution in order to give informa-
tion about the impact of a potential reserve level.

The classical measures in reliability can be calculated from
the system generation margin distribution, e.g., LOLP, loss of
load expectation (LOLE), or EENS [9]. For instance, in the sit-
uation depicted in Fig. 2 (without any reserve), the risk would
be described by and ,
but, after adding the 700-MW reserve, EENS reduces to only
4.13 MWh and LOLP to 0.04.

A direct reading of some risk attributes (LOLP, LOLE) is
possible by taking the cumulative distribution of the negative
margin. More elaborated indices (EENS) just require some sta-
tistical manipulation.

Fig. 4. Reserve that corresponds to the reference 15 MWh of EENS for a spe-
cific look-ahead time step.

Finally, note that other measures of risk, such as the condi-
tional expected value of loss of load (XLOL), value-at-risk or
conditional value-at-risk [35] could be computed.

Risk measures (related with the downward reserve) can also
be computed from the positive part of the system generation
margin distribution. These risk measures are analogous to the
ones related with the loss of load, for example: 1) probability
of wasting renewable energy; 2) expected wasted renewable en-
ergy.

C. Reserve Cost

The cost of buying reserve in the market can be assessed by
a curve representing the bids offered by the market agents for
selling upward and downward reserve. The bids for selling re-
serve are paid at the bid price or by the marginal price [36]. A
typical curve of the reserve cost for the former case can be seen
in the bottom of Fig. 4.

IV. DECISION-MAKING ISSUES

The preceding analyses and results are the mathematical basis
to set the level of operating reserve, since they allow the operator
to evaluate the risk associated to a specific level of reserve.

However, it is convenient to formalize a decision making
phase where the decision maker communicates preferences
and makes the final decision, sometimes introducing explicitly
economic aspects. In this section, three alternative methods for
decision-making are described.

A. Setting a Threshold for a Risk Attribute

The simplest approach consists in setting a threshold value for
the maximum acceptable risk. If the proposed reserve level leads
to excessive risk then the reserve level must be increased until
the actual risk value is lower than the threshold. Of course, the
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reserve needs for a specific threshold can be read immediately
if a risk/reserve curve was previously constructed.

For instance, in Fig. 4, in order to assure an EENS not greater
than 15 MWh, a reserve level of at least 530 MW would be
necessary.

In this case, the decision maker does not take into account the
reserve cost, (although it is possible to calculate it, 1200 , in the
example) so it may happen that expensive additional capacity is
needed to maintain the risk below the threshold.

B. Multicriteria Approach

If, instead of just setting a threshold, the decision maker wants
to balance risk and cost, a multicriteria approach can be used to
help. Two possibilities were considered, one based on trade-offs
for direct compensation between attributes, the other modeling
more complex preference structures with nonlinear value func-
tions.

1) Equivalent Cost Approach: The equivalent cost approach
uses a constant trade-off between reserve cost and an associated
risk measure (e.g., EENS). The trade-off is the
rate at which the decision maker is ready to give up units
of cost in exchange for gaining units in the risk criterion,
while remaining indifferent between the two solutions [37]. For
example, if the two criteria are EENS and cost, the trade-off can
be interpreted as how much the decision maker is willing to pay
to decrease the EENS, and would be expressed in /MWh.

In this approach, after eliciting the trade-off from the de-
cision maker, we just need to find the reserve level that mini-
mizes the equivalent cost .
Sensitivity analysis around may help the decision maker
choosing the best final value of the reserve.

Some authors, such as [22]–[24], assume that the value of is
equal to the cost of energy not supplied, e.g., VOLL. This may
of course be a point of departure when setting the trade-off, but
the final value of should also reflect the risk attitude of the
decision maker.

2) Value Function Approach: In order to capture more com-
plex preference structures than the ones behind a constant trade-
off, nonlinear value functions can be used. We will restrict the
approach to additive value functions [38], but more complex
functions could be used.

The approach consists in building an individual value func-
tion for each criterion, and then assessing weights to build the
multi-attribute value function whose maximization leads to the
preferred reserve level . Note that, if the individual value func-
tions are all linear, the model reduces to the trade-off approach.

A possible multi-attribute value function for this problem
would be

(3)

where and are the individual value functions for
the two criteria and and are parameters, usually
know as weights .

The shape of the individual value functions reflects the vari-
ation of the decision maker’s increase (decrease) of satisfaction
along the corresponding attribute. The individual value function

TABLE I
CONVENTIONAL GENERATION DATA

of the cost is usually linear, because the increase in decision
maker satisfaction for a specific cost saving is generally inde-
pendent of the cost level. On the other hand, one may see dif-
ferent attitudes regarding EENS: 1) A decision maker may be
very favorable to the decrease of the EENS when its level is high,
but not so enthusiastic when the EENS level is already accept-
able or low; 2) Another decision maker, in contrast, could inten-
sify the willingness to pay for reducing risk when approaching
the best (lower) levels of EENS. Neither of these attitudes can
be classified as correct or incorrect—they simply correspond to
different managing styles and external constraints influence.

In order to capture the decision maker attitude regarding risk
(in this case through EENS), an exponential value function is
proposed, due to its flexibility:

(4)

where
.

In fact, by changing parameter it is possible to change the
underlying preference structure. Negative values of reflect at-
titude 1) described earlier, while positive values of correspond
to attitude 2).

The last step consists in determining the weights and
, using the following procedure:

1) Get an indifference judgment from the decision maker. For
instance, the decision maker states indifference between
solutions A and .

2) Use the information to set
and, in conjunction with

, compute the weights.
It is important to point out that it is always possible to obtain

the indifference judgment by starting with two relatively arbi-
trary alternatives and making changes in one of them (increase
risk, decrease cost, etc.) until the indifference is reached. More
details about this kind of procedure can be seen in [37] or [38].

V. ILLUSTRATIVE EXAMPLE

A. Description

The example used to illustrate the methodology is a single bus
model based on the Portuguese power system. The total installed
capacity of conventional generation is 10 395.8 MW and the
system has 2742 MW of wind power capacity.

The system has 119 units of conventional generation divided
as shown in Table I.

The lead time considered to compute the ORR of each unit
is one hour. The forecasted load curve for the 24-h period of a
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Fig. 5. Forecasted load for a 24-h period.

Fig. 6. Point forecast and a set of interval forecasts for scenario H.

weekday is shown in Fig. 5, where the peak load was 7600 MW
at 20:00.

The load forecast uncertainty is modeled through a Gaussian
distribution with standard deviation computed from a typical
mean absolute percentage error (MAPE) of 2% [26] (note that

MAPE).
For illustrative purposes, we chose a day with a typical pattern

of the wind generation behavior in Portugal, and used global
system wind power forecasts and uncertainty similar to the ones
produced by the ANEMOS platform.

Although it is beyond the scope of the present paper, we must
stress that the quality of probabilistic forecasts should be evalu-
ated (a possible framework is proposed in [39]).

In Figs. 6 and 7, a forecasted distribution for each hour, rep-
resented by 19 percentiles, is depicted for scenarios with high
wind generation (scenario H) and low wind generation (scenario
L).

Since in Portugal wind energy receives a feed-in tariff and
does not go to the market, the market load (conventional gener-
ation) is the difference between the point forecast of the wind
generation and the load forecast. In this test, the reserve needs
are estimated by the SO for the next day in the daily market ses-
sion of the MIBEL market.

Fig. 7. Point forecast and a set of interval forecasts for scenario L.

We will now apply the methodology to the case study. The
first step is the determination of the risk/reserve and risk/reserve
cost curves (shown later in Figs. 11 and 13), as a basis to the ap-
plication of the different decision making procedures described
in Section IV. However, for comparison, the following rules will
be also considered:

Rule A) Secondary reserve given by the UCTE rule
( , being the peak load);
tertiary reserve covers the loss of the largest generating unit [6].

Rule B) Secondary reserve equal to (L is the forecast
hourly load) when the load variation is fast and otherwise,
tertiary reserve is computed hourly as the rated power of the
largest unit within the system plus 2% of the forecast hourly
load; rule used in Spain [26].

Rule C) Based on the probabilistic rule described in [11]. The
operating reserve is given by , where is a
parameter related with the desired confidence level (e.g.,
means that 99.74% of variations are covered) and is the stan-
dard deviation of wind generation (W), load (L) and conven-
tional generation (C). The three distributions are assumed to be
Gaussian; was computed directly from the forecasted un-
certainty and from the COPT.

B. Risk/Reserve Based Decisions

We first simulated a situation where a threshold for the LOLE
was previously set by the decision maker. In this case, the re-
serve level can be obtained directly from the risk/reserve curve.
In Fig. 8 a comparison is depicted between the reserve needs
obtained using our tool (RMT) and rule C for scenario H. The
contribution of combined conventional generation and load un-
certainty for the reserve needs is identified (with wind gener-
ation deterministic forecast). The threshold for the LOLE was
defined by the decision maker as 1 min/h (which corresponds to

, in rule C).
The shape of the reserve needs curve obtained with a deter-

ministic forecast for wind power (“no wind power uncertainty”
in Fig. 8) is similar to the load shape. As expected, integration
of wind generation uncertainty in the model leads to an increase
in the reserve requirements.

For the same threshold level, Fig. 9 shows a comparison be-
tween the RMT and rules A, B, and C.
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Fig. 8. Reserve needs with and without wind generation uncertainty using the
RMT and rule C.

Fig. 9. Reserve needs obtained using RMT and rules A, B, and C.

The reserve needs obtained with rule A have almost the same
value all day, the only variation being due to the capacity of the
largest unit. On the other hand, Rule B seems to ask for addi-
tional reserve in order to deal with the wind generation vari-
ability. Applying rules A and B does not provide the SO infor-
mation about the risk taken, and both are insensitive to wind
power level.

Rule C allows the definition of the acceptable level of risk.
The reserve needs without wind power forecast uncertainty are
almost equal to the ones obtained with the RMT. The difference
becomes significant when the wind power forecast uncertainty
is added; in this case, the results differ significantly. This is due
to the Gaussian assumption for wind power forecast uncertainty
incorporated in rule C, which is not confirmed.

In order to analyze the quality of each suggested reserve level
a Monte Carlo simulation was performed for hour 8:00. The
quality criterion is the number of loss of load occurrences in
a simulation with 20 000 random samples taken from the fore-
casted distributions of each variable. The results are presented
in Table II.

The result obtained with the RMT is consistent with the risk
threshold defined. Rule C presents a LOLE value higher than the
max accepted level. The assumption of a Gaussian distribution
for wind power forecast uncertainty is not adequate, so the real

TABLE II
RESULTS OF THE MONTE CARLO SIMULATION FOR HOUR 8:00

Fig. 10. Reserve needs of scenarios H and L.

risk is most of the times higher than stipulated (although the
inverse may also occur). This happens because the skewness of
the error distribution is generally positive (see [15, Ch. 4]) and
therefore the density of the distribution is concentrated on the
over-prediction part.

Taking into account the stipulated risk, Rule A conducts to
excessive risk and Rule B leads to an excessive reserve level.
Variation of the stipulated risk could change these situations,
but, since the rules are deterministic, only by chance they could
satisfy the threshold.

As shown in Fig. 10, although wind generation in scenario
L is lower than scenario H, the reserve needs for scenario L
are higher when compared with the ones obtained for H. This
result illustrates that it is not only the level of wind generation
which has impact on reserve needs, but also the amount of wind
generation uncertainty and the shape of its distribution. Scenario
L presents a higher amount of wind power forecast uncertainty,
since the inter-quantile range of this scenario is higher.

However, a closer look at hour 8:00 in Figs. 6 and 7 shows that
a higher reserve for scenario H was expected since the proba-
bility of having wind generation below the point forecast (value
used to compute the conventional generation needs) is greater
than in scenario L. This is true for the initial system genera-
tion margin. However, as depicted in the risk/reserve curves of
Fig. 11, there is an intersection of the two scenarios’ curves. If
the decision maker chooses a reference LOLE of 20 min/h then
the reserve will be higher in scenario H, but if the LOLE is 10
min/h the reserve will be higher in scenario L. This behavior is
due to the shape of the wind power forecast uncertainty, which is
reflected in the system generation margin. As depicted in Fig. 12
for a reserve of 200 MW, the sum of the probabilities of the neg-
ative distribution for scenario H is higher, but when the level of
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Fig. 11. Risk/reserve curve for hour 8:00 of scenarios H and L.

Fig. 12. Generation margin pmf for hour 8:00 of scenarios H and L.

reserve increased to 600 MW, scenario L has a higher sum of
probabilities of negative values than scenario H.

C. Risk/Cost Based Decisions

For simplicity, and without loss of generality, only look-ahead
time 8:00 of scenario H is analyzed in this section.

Each equivalent cost function value defines a family of linear
indifference lines (set of alternatives that are valued in the same
way by the decision maker), which describes the preference
structure of the decision maker and their slope is the reference
trade-off value.

Fig. 13 shows the indifference lines for three reference
trade-off values (25, 50 and 150 /MWh) and the risk/cost of
reserve curve. Each curve connects all points that are indifferent
for the decision maker, since they have the same equivalent
cost. For instance, for the trade-off 50 /MW the preferred
solution (y) is the one in the indifference line that has an
equivalent cost of 5084.8 and corresponds to a reserve of 512
MW, and reserve . Now,
a different decision maker, more concerned with the level of
EENS, sets a greater trade-off of 150 /MW, and the preferred
solution (z) will be different: more reserve (730 MW); less
risk and higher cost (5352 ). Solution
(x) represents a trade-off value of 25 /MWh, and we see
that the slope of the indifference curve changes according to

Fig. 13. Indifference lines of the constant tradeoffs (� � ��, 50 and 150
�/MWh).

Fig. 14. Reserve requirements obtained with different trade-off values.

the preferences of the decision maker, moving the preferred
solution along the risk/cost curve.

Fig. 14 depicts the reserve obtained using trade-off values
ranging from 25 to 800 /MWh. As expected, as the trade-off
value changes, the preferred solution moves along the risk/cost
of reserve curve. For lower trade-off values the preferred solu-
tions are in the part of the risk/cost of reserve curve with higher
slope and therefore variations of 25 /MW in the trade-off lead
to higher variations in the reserve (e.g., it increases 190 MW
when the trade-off changes from 25 to 50 /MWh). As we move
to zones with lower slope, the difference between the solutions
becomes smaller. For instance, for trade-offs between 350 and
550 /MW the reserve only varies from 860 to 915 MW.

For more complex preference attitudes, a nonlinear value
function can be used. For a decision maker indifferent between
(5000,60) and (5500,50) and accepting an exponential function
with [see (4)] for the EENS valuation, the (nonlinear)
indifference curves are depicted in Fig. 15.

Since the trade-off is not constant, in the area of high EENS,
a small decrease in EENS offsets a large increase in reserve
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Fig. 15. Indifference curves of the exponential function with � � ��.

cost (the indifference curves are little sloped), because the deci-
sion-maker is prepared to pay the necessary to avoid high values
of EENS. By contrast, in the low EENS, a big decrease in EENS
offsets a small increase in reserve cost, since the values of EENS
are tolerable, the decision maker will just pay something if a
large decrease of EENS happens. In summary, the trade-off in
the first area of the curve is very high, and in the second is very
low. Of course, intermediate values of EENS conduct to inter-
mediate values of the trade-off.

The preferred solution is in the indifference curve with value
0.9641 and corresponds to a reserve of 340 MW, EENS of 62.3
MWh and cost of 2474 .

VI. CONCLUSIONS

This paper describes a methodology developed to support
system operators in defining the operating reserve needs, taking
into account conventional generation outages, load forecast un-
certainty and wind power forecast uncertainty.

The methodology avoids making assumptions on the wind
power forecast distribution, and instead uses probabilistic fore-
casts directly provided by the wind power forecast system. On
the other hand, decisions are supported by a comprehensive
quantification of risk through meaningful indices. The example
shows, for illustration, realistic situations where this approach
is more appropriate than applying rigid deterministic rules or
Gaussian assumptions. Future work will use data now being col-
lected for a long period of time to extend the evaluation.

Besides the risk/reserve curve computation, the methodology
addresses decision making issues, namely when reserve cost and
risk are to be included simultaneously in the decision process.
The methodology is able to model different attitudes and values
of the decision maker, as illustrated in the case study, in order
to support a rational decision process.

This methodology can also support the decision maker in
defining the operating reserve to deal with the risk of having
surplus of generation during valley hours. The decision strate-
gies are analogous to ones presented in this paper and the only

difference is in working with the positive part of the system gen-
eration margin distribution.

The tool is oriented for a deregulated electricity market. How-
ever, the methodology can easily be adapted to other reserve
definition mechanisms or can be combined with a unit commit-
ment procedure.

REFERENCES

[1] M. L. Ahlstrom, L. Jones, R. Zavadil, and W. Grant, “The future of
wind forecasting and utility operations,” IEEE Power Energy Mag.,
Special Issue: Working with Wind; Integrating Wind into the Power
System, vol. 3, no. 6, pp. 57–64, Nov./Dec. 2005.

[2] A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa,
“A review on the young history of the wind power short-term predic-
tion,” Renew. Sustain. Energy Rev., vol. 12, no. 6, pp. 1725–1744, Aug.
2008.

[3] G. Giebel, R. Brownsword, and G. Kariniotakis, State of the Art on
Short-Term Wind Power Prediction, 2003, ANEMOS Deliverable Re-
port D1.1.

[4] H. Banakar, C. Luo, and B. T. Ooi, “Impacts of wind power
minute-to-minute variations on power system operation,” IEEE Trans.
Power Syst., vol. 23, no. 1, pp. 150–160, Feb. 2008.

[5] Y. Rebours and D. S. Kirschen, A Survey of Definitions and Specifica-
tions of Reserve Services, Univ. Manchester, Manchester, U.K., 2005.

[6] UCTE Operating Handbook—Policies P1: Load-Frequency Control
and Performance, 2004.

[7] D. Maggio, “Integrating wind forecasting into market opera-
tion-ERCOT,” in Proc. Presentation at Utility Wind Integration
Group (UWIG) Workshop, Phoenix, AZ, Feb. 2009, pp. 18–19.

[8] L. L. Garver, “Effective load carrying capability of generating units,”
IEEE Trans. Power App. Syst., vol. PAS-85, pp. 910–919, Aug. 1966.

[9] R. N. Allan and R. Billinton, Reliability Evaluation of Power Sys-
tems. New York: Plenum, 1984.

[10] D. Chattopadhyay and R. Baldick, “Unit commitment with proba-
bilistic reserve,” in Proc. IEEE Power Eng. Soc. Winter Meeting, New
York, 2002, vol. 1, pp. 280–285.

[11] G. Strbac, A. Shakoor, M. Black, D. Pudjianto, and T. Boppc, “Impact
of wind generation on the operation and development of the UK elec-
tricity systems,” Elect. Power Syst. Res., vol. 77, no. 9, pp. 1214–1227,
Jul. 2007.

[12] H. Holttinen, “Impact of hourly wind power variations on the system
operation in the Nordic countries,” Wind Energy, vol. 8, no. 2, pp.
197–218, 2004.

[13] R. Doherty and M. O’Malley, “New approach to quantify reserve de-
mand in systems with significant installed wind capacity,” IEEE Trans.
Power Syst., vol. 20, no. 2, pp. 587–595, May 2005.

[14] P. Pinson, “Estimation of the uncertainty in wind power forecasting,”
Ph.D. dissertation, Ecole des Mines de Paris, Paris, France, 2006.

[15] N. Siebert, “Development of methods for regional wind power fore-
casting,” Ph.D. dissertation, Ecole des Mines de Paris, Paris, France,
2008.

[16] M. Lange, “On the uncertainty of wind power predictions-Analysis of
the forecast accuracy and statistical distribution of errors,” J. Solar En-
ergy Eng.—Trans. ASME, vol. 127, no. 2, pp. 177–194, May 2005.

[17] M. Pahlow, C. Möhrlen, and J. U. Jørgensen, “Application of cost func-
tions for large scale integration of wind power using a multi-scheme
ensemble prediction technique,” in Optimization Advances in Electric
Power Systems, E. D. Castronuovo, Ed. Commack, NY: Nova, 2009,
ch. 7.

[18] T. Kristoffersen, P. Meibom, J. Apfelbeck, R. Barth, and H. Brand,
WP3 Prototype Development for Operational Planning Tool, 2008,
Tech. Rep. Risø-R-1666.

[19] L. Soder, “Simulation of wind speed forecast errors for operation plan-
ning of multiarea power systems,” in Proc. Int. Conf. Probabilistic
Methods Applied to Power Systems (PMAPS 2004), Sep. 12–16, 2004,
pp. 723–728.

[20] C. Maurer, S. Krahl, and H. Webe, “Dimensioning of secondary and
tertiary control reserve by probabilistic methods,” Eur. Trans. Elect.
Power, vol. 19, no. 4, pp. 544–552, Jan. 2009.

[21] A. M. Leite Da Silva and G. P. Alvarez, “Operating reserve capacity re-
quirements and pricing in deregulated markets using probabilistic tech-
niques,” IET Gen., Transm., Distrib., vol. 1, no. 3, pp. 439–446, May
2007.



MATOS AND BESSA: SETTING THE OPERATING RESERVE USING PROBABILISTIC WIND POWER FORECASTS 603

[22] J. Wang, X. Wang, and Y. Wu, “Operating reserve model in the power
market,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 223–229, Feb.
2005.

[23] M. A. Ortega-Vazquez and D. S. Kirschen, “Optimizing the spinning
reserve requirements using a cost/benefit analysis,” IEEE Trans. Power
Syst., vol. 22, no. 1, pp. 24–33, Feb. 2007.

[24] M. A. Ortega-Vazquez and D. S. Kirschen, “Estimating the spinning re-
serve requirements in systems with significant wind power generation
penetration,” IEEE Trans. Power Syst., vol. 24, no. 1, pp. 114–124, Feb.
2009.

[25] J. M. Morales, A. J. Conejo, and J. Perez-Ruiz, “Economic valuation of
reserves in power systems with high penetration of wind power,” IEEE
Trans. Power Syst., vol. 24, no. 2, pp. 900–910, May 2009.

[26] E. L. Miguélez, I. E. Cortés, L. R. Rodríguez, and G. L. Camino, “An
overview of ancillary services in Spain,” Elect. Power Syst. Res., vol.
78, no. 3, pp. 515–523, Mar. 2008.

[27] R. N. Allan, A. M. Leite da Silva, A. Abu-Nasser, and R. C. Burchett,
“Discrete convolution in power system reliability,” IEEE Trans. Re-
liab., vol. 30, pp. 452–456, 1981.

[28] J. W. Cooley and J. W. Tukey, “An algorithm for the unit calculation of
complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[29] P. Pinson, H. A. Nielsen, H. Madsen, M. Lange, and G. Kariniotakis,
Methods for the Estimation of the Uncertainty of Wind Power Fore-
casts, Informatics and Mathematical Modeling, Technical Univ. Den-
mark, 2007, ANEMOS project deliverable report D3.1b.

[30] P. Pinson, G. Papaefthymiou, B. Klockl, H. A. Nielsen, and H. Madsen,
“From probabilistic forecasts to statistical scenarios of short-term wind
power production,” Wind Energy, vol. 12, no. 1, pp. 51–62, 2009.

[31] G. Papaefthymiou and P. Pinson, “Modeling of spatial dependence
in wind power forecast uncertainty,” in Proce. 10th Int. Conf. Proba-
bilistic Methods Applied to Power Systems (PMAPS 2008), Mayagüez,
PR, May 2008.

[32] R. C. Williamson, “Probabilistic arithmetic,” Ph.D. dissertation, Univ.
Queensland, Brisbane, Australia, 1990.

[33] M. Kohl, P. Ruckdeschel, and T. Stabla, General Purpose Convolution
Algorithm for Distributions in S4-Classes by Means of FFT, 2005.

[34] M. A. Matos, “Decision under risk as a multicriteria problem,” Eur. J.
Oper. Res., vol. 181, no. 3, pp. 1516–1529, Sep. 2007.

[35] F. Wu, Y. Hou, and H. Zhou, “Measuring reliability (or risk) coher-
ently,” in Proc. 16th Conf. Power Systems Computation (PSCC 2008),
Glasgow, U.K., Jul. 14–18, 2008.

[36] A. E. Kahn, P. C. Cramton, and R. H. Porter, “Uniform pricing or
pay-as-bid pricing: A dilemma for California and beyond,” Elect. J.,
vol. 14, no. 6, pp. 70–79, 2001.

[37] R. T. Clemen and T. Reilly, Making Hard Decisions With Decision
Tools. Pacific Grove, CA: Duxbury, 2001.

[38] R. Keeney and H. Raiffa, Decision With Multiple Objectives: Prefer-
ence and value Tradeoffs. New York: Wiley, 1976.

[39] P. Pinson, H. A. Nielsen, J. K. Møller, H. Madsen, and G. Kariniotakis,
“Nonparametric probabilistic forecasts of wind power: Required prop-
erties and evaluation,” Wind Energy, vol. 10, no. 6, pp. 497–516, 2007.

Manuel A. Matos (M’94) was born in 1955 in Porto, Portugal. He received the
El. Eng., Ph.D., and Aggregation degrees.

He has been with the Faculty of Engineering of the University of Porto
(FEUP) since 1978 (Full Professor since 2000). He is also coordinator of
the Power Systems Unit of INESC Porto. His research interests include
classical and fuzzy modeling of power systems, reliability, optimization, and
decision-aid methods.

R. J. Bessa received the Licenciado (five-year) degree in electrical and computer
engineering from the Faculty of Engineering of the University of Porto, Porto,
Portugal (FEUP), in 2006 and the M.Sc. degree in data analysis and decision
support systems from the Faculty of Economy of the University of Porto (FEP)
in 2008. He is pursuing the Ph.D. degree in the Doctoral program in Sustainable
Energy Systems (MIT Portugal) at FEUP.

Currently, he is a researcher at INESC Porto in its Power Systems Unit. His
research interests include wind power forecasting, electric vehicles, data mining,
and decision-aid methods.


