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This paper presents a novel time-adaptive quantile-copula estimator for kernel density forecast and
a discussion of how to select the adequate kernels for modeling the different variables of the problem.
Results are presented for different case-studies and compared with splines quantile regression (QR). The
datasets used are from NREL’s Eastern Wind Integration and Transmission Study, and from a real wind
farm located in the Midwest region of the United States. The new probabilistic prediction model is
elegant and simple and yet displays advantages over the traditional QR approach. Especially notable is
the quality of the results achieved with the time-adaptive version, namely when evaluated in terms of
prediction calibration, which is a characteristic that is advantageous for both system operators and wind
power producers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of forecasting wind power has grown in parallel
with the increase in penetration of wind generation on inter-
connected power systems. It can be loosely said, for the short term,
that the uncertainty inwind power prediction is higher than in load
forecasting. This very fact has strong implications for the security
and costs associated with decision making in systems with high
penetration of wind power, for instance in generator scheduling
and determination of operating reserve margins. Furthermore, in
regions where there is a transition from a feed-in tariff scheme to
direct market participation for wind power, an accurate represen-
tation of forecasting uncertainty also has an important function in
controlling the trade-off between risk and return when wind
energy is scheduled in the electricity market.

This necessity of having uncertainty estimation and character-
ization in wind power forecasting for the next hours/days has
motivated the development of advanced physical and statistical
based approaches. State-of-the-art algorithms in wind power
uncertainty forecasting are referenced in a recent comprehensive
report [1].

Two of the most popular statistical methods are: splines quan-
tile regression [2], which consists of a linear quantile regression
x: þ351 222 094 050.
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with the base functions formulated as cubic B-splines, and adapted
resampling [3], which uses a fuzzy inference model and resampling
to determine the distributions of forecast errors associated with the
power output forecast. As an alternative, physics based models can
also be used; two examples are: meteorological ensembles [4] and
spatial fields displaying wind forecast information from multiple
grid points [5].

Three key features have taken researchers’ attention: i) the
representation of wind power uncertainty; ii) the chain of models
for uncertainty forecasting; iii) time-adaptive (or online) models to
cope with evolving data streams.

Wind power uncertainty can take the form of probabilistic
forecasts, risk indices [6], or scenarios [5,7] for short-term wind
power generation. Probabilistic forecasting consists of expressing
the wind power generation or forecast error in “probabilistic
terms”, such as: a) parametric representation (e.g. Gaussian
distribution); b) moments of the distributions (e.g. mean, standard
deviation, skewness); c) a set of quantiles; d) probability mass
function (pmf); and e) probability density function (pdf). Normally,
the uncertainty representation is determined by the algorithm
used, e.g. if quantile regression is used, the uncertainty is repre-
sented by a set of quantiles.

The traditional model chain for wind power uncertainty fore-
casting, according to Juban et al. [8], consists of using as input the
forecast errors or point forecasts from a wind power deterministic
forecasting model. The uncertainty estimationmodel is placed after
the model that produces deterministic wind power forecasts. A
-copula for wind power probabilistic forecasting, Renewable Energy
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preferred approach consists of either using the Numerical Weather
Prediction (NWP) forecast error as input for the uncertainty esti-
mation method or computing the uncertainty directly from the
NWP points. This class of algorithms avoids an intermediate step
(conversion of wind to power) since probabilistic and deterministic
forecasts can be produced directly from the NWP. For instance, the
local quantile regression described by Bremnes [9] forecasts the
wind power generation quantiles based on information about
explanatory variables (e.g. NWP forecasts); a set of quantiles
characterize the uncertainty, and the point forecast could be
associated to the median (quantile 50%). The Kernel Density Esti-
mation described by Juban et al. [10] also provides uncertainty
estimation and point forecasts.

Some models available in the literature are trained in an offline
mode, meaning that the models are unable to cope with changes in
the underlying distributions of the several variables. Examples of
offline forecasting algorithms are the quantile regression presented
by Bremnes [9] and the model described by Juban et al. [10]. On the
other hand, the tendency in the state of the art is to develop
algorithms capable of adapting to changes in data; one example is
the time-adaptive quantile regression model described by Møller
et al. [11].

Consequently, an algorithm for wind power uncertainty fore-
casting shall ideally have as requisites: i) a high flexibility to
represent wind power uncertainty; ii) time-adaptive characteris-
tics, and iii) avoiding an intermediate step that computes wind
power point forecasts, which is particular important when both
point and uncertainty forecasts are time adaptive.

In this paper, a kernel density forecast (KDF) method, which
respects the three above mentioned requisites, is described. The
main differences that this methodology displays, in comparison to
the current state-of-the-art in kernel density estimation (e.g [10].)
are: i) a time-adaptive version of the quantile-copula estimator [12]
is described and tested in a real wind farm, this is an extension of
[13]; ii) our method is based on selecting adequate kernels for
modeling the different variable types of the wind power problem.

2. Motivation to represent wind power uncertainty by
probability density functions

From an information theory perspective, the probability density
function (pdf) contains all the information associated with
a random variable. For instance, it enables the computing of the
moments of the forecasted distribution. Therefore, we may argue
that the pdf is generic and can be transformed into several uncer-
tainty forms of representation, such as quantiles, standard devia-
tion, or skewness.

The best way to represent uncertainty is determined by the end-
user’s requests and the nature of the decision-making problem
being addressed. In general, one cannot talk about better and worse
uncertainty representations, only of more or less adequate repre-
sentations (for a similar discussion regarding point forecasts, see
[14]). However, the pdf by itself gives the necessary flexibility for
several decision-making problems.

One decision-making problem which benefits from a pdf
representation of the wind power uncertainty is the problem of
finding the “optimal” wind power bidding strategy for the elec-
tricity market. For example, when the objective is to maximize the
expected profit (or minimize the expected cost of imbalances) the
aim consists of finding the optimal quantile, which for some elec-
tricity markets is determined by imbalances in price ratios [9].
Thus, it is possible to extract the optimal quantile from the pdf for
each hour and, consequently, the “optimal” decision under the
expected value paradigm. Botterud et al. [15] presented an
approach based onmaximizing the utility; for this approach the pdf
Please cite this article in press as: Bessa RJ, et al., Time-adaptive quantile
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enables the production of a probability mass function (pmf) that
can be used to compute the expected utility. Bourry et al. [16]
described an approach based on portfolio theory where a trade-
off between expected income and risk (described by the condi-
tional value-at-risk) is evaluated to find the “optimal” bid. For this
problem, the knowledge of the pdf allows the computation of any
risk measure. For instance, it is possible to evaluate a trade-off
between expected income and risk described by the variance and
skewness.

The pdf representation is also useful for system operators in
setting the required operating reserve for the current and next
days, using for instance the method presented by Matos and Bessa
[17]. The pdf representation provides the full probability distribu-
tion, which allows for a better characterization of the tails.
According to Bessa and Matos [18] the tails in the operating reserve
problem are the critical factor, in particular if the system operator
prefers a higher security (e.g. loss of load probability around 0.1%).

The method described by Pinson et al. [7] to represent the
uncertainty by scenarios with temporal correlation of forecast
errors could also benefit from the pdf representation. With a fore-
casted pdf the distribution is fully characterized and there is no
need to perform an exponential interpolation.

For multimodal distributions a density forecast allows the
computation of the modes instead of just computing the expected
value (which in this case is not a good summary of the distribution).
In recent practice, it is unlikely to find wind power multimodal
density distributions, but the adoption of ensemble approaches
may favor this possibility. In any case, the mode or the median is
still a better deterministic forecast, because normally the wind
power distributions are highly skewed.
3. Kernel density forecast methodology

3.1. Kernel density estimation

Kernel Density Estimation (KDE) consists of a non-parametric
estimator of a density function, and was introduced by Rosenblatt
[19], with several properties derived by Parzen [20]. Given inde-
pendent and identically distributed data (i.i.d) X1,.,Xn drawn from
an unknown density function f, the univariate KDE is given by:

f̂ XðxÞ ¼ 1
N$h

XN
i¼1

K
�
x� Xi

h

�
(1)

where N is the number of samples, K is a kernel function and h the
bandwidth parameter.

Eq. (1) represents the placing of a kernel at each sample Xi. The
corresponding estimated density function is derived from dividing
by N the sum of the N kernels centered on each sample.

Given i.i.d multivariate data X1,.,Xd from d different variables
drawn from an unknown multivariate density function f, the
multivariate KDE [21] is given by:

f̂ ðx1;/; xdÞ ¼ 1
N,h1,.,hd

XN
i¼1

Yd
j¼1

Kj

 
xj � Xij

hj

!
(2)

where K is a multivariate kernel function and h1,.,hd a bandwidth
vector.
3.2. Conditional kernel density estimation

Conditional density estimation consists of estimating the
density of a random variable Y, knowing that the explanatory
random variable X is equal to x. In other words, it consists of
-copula for wind power probabilistic forecasting, Renewable Energy
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estimating the density of Y conditioned on X ¼ x, i.e. f(yjX ¼ x). The
conditional density can be formulated as follows

f ðyjX ¼ xÞ ¼ fXY ðx; yÞ
fXðxÞ

(3)

where f(x,y) is the multivariate density function of X and Y (joint
distribution function) and f(x) is the marginal density of X.

It is also possible to have nonparametric conditional density
estimation for Eq. (3). The classic approach is the Nadaraya-Watson
kernel smoother proposed by Rosenblatt [22]:

f̂ ðyjX ¼ xÞ ¼ f̂ XY ðx; yÞ
f̂ XðxÞ

¼
XN
i¼1

Khy

�
y� Yi
hy

�
$wiðxÞ (4)

where

wiðxÞ ¼
Khx

�
x� Xi

hx

�
PN

i¼1 Khx

�
x� Xi

hx

� (5)

The wind power density forecasting problem can be formulated
as: forecast the wind power pdf at time step t for each look-ahead
time step t þ k of a given time-horizon (e.g. up to 72 h ahead)
knowing a set of explanatory variables, e.g. Numerical Weather
Prediction (NWP) forecasts, wind power measured values, hour of
the day.

Translating this sentence to an equation, we have:

f̂
�
ytþk

���X ¼ xtþkjt
�

¼
fY ;X
�
ytþk; xtþkjt

�
fX
�
xtþkjt

� (6)

where ytþk is the wind power forecasted for look-ahead time t þ k,
xtþkjt are the explanatory variables forecasted for look-ahead time
step tþ k and available/launched at time step t.Eq. (6) can be solved
using the approach that is presented in the next section.
Fig. 1. Bivariate copula density function of quantile transforms of forecasted wind
speed (v) and measured wind power (u).
3.3. Quantile-copula estimator

The quantile-copula estimator was introduced by Faugeras [12].
According to the authors, its main advantages over the existing
methods are: the methods based on the NW estimator are
numerically unstable when the denominator is close to zero; for
a problemwith several explanatory variables, this method has only
one kernel product, instead of two; at a conceptual level, density
estimation should only be based on density estimation methods
and not on regression approaches.

The main difference from the estimator in Eqs. 4 and 5 is in the
joint density function of Y and X. Almost at the same time, Faugeras
[12] and Bouezmarni et al. [23] proposed the idea of using a copula
for modeling the dependency structure between Yand X. Regarding
copulas, the Sklar theorem [24] says the following for the bivariate
case:

Let H be a two-dimensional distribution function with marginal
distribution functions F and G. Then there is a copula C such that

Hðx; yÞ ¼ CðFðxÞ;GðyÞÞ (7)

Conversely, for any univariate distribution functions F and G and
any copula C, the function H is a two-dimensional distribution
function with marginals F and G. Furthermore, if F and G are
continuous, then C is unique.

This theorem means that the multivariate distribution function
can be separated into two parts: i) marginal functions that can be
Please cite this article in press as: Bessa RJ, et al., Time-adaptive quantile
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estimated separately; ii) dependency structure between the
marginal which is modeled by the copula. For more details about
copulas see Nelson [25]. A conditional density estimator can be
built departing from the definition of Eq. (7). So, we know that

FXY ðx; yÞ ¼ CðFXðxÞ; FY ðyÞÞ (8)

then Eq. (2) (for the bivariate case) can be replaced by

f ðx; yÞ ¼ v2

vu$vv
Cðu; vÞ ¼ fXðxÞ$fYðyÞ$cðu; vÞ (9)

where u and v are a quantile transform of the data, u ¼ FX(x) and
v ¼ FY(y), and c is the copula density function.

Replacing Eq. (9) in Eq. (3), we have the following conditional
density estimator:

f ðyjX ¼ xÞ ¼ fY ðyÞ$cðu; vÞ (10)

Now it is necessary to build a nonparametric estimator for Eq.
(10). The idea proposed by Bouezmarni et al. [23] was a semi-
parametric approach, where a parametric model is used for the
copula, and the marginal distributions are represented by
a nonparametric model (empirical distribution function). However,
we followed the idea described by Faugeras [12], where the copula
density is estimated with KDE.

The estimator for fY(y) is the KDE in Eq. (1). The copula density
estimator is the estimator in Eq. (2) as follows:

ĉðu; vÞ ¼ 1
N$hu$hv

XN
i¼1

Khu

�
u� Ui

hu

�
$Khv

�
v� Vi

hv

�
(11)

where Ui and Vi are the data transformed by the empirical cumu-
lative distribution function, i.e. Ui ¼ FX

e(Xi) and Vi ¼ FY
e (Yi). An

empirical cumulative distribution function (cdf) is defined as:

FeðtÞ ¼ 1
N

XN
i¼1

Iðxi � tÞ (12)

where I is the indicator function of event xi � t.
Fig. 1 depicts the copula density computed with Eq. (11) for the

quantile transform of the wind speed (variable v) and wind power
(variable u) from a real wind farm (case-study of section 4). This
copula density function represents the probability density
-copula for wind power probabilistic forecasting, Renewable Energy
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associated to each point plotted in the wind speed against wind
power scatter plot in Fig. 2.

The copula represents the dependence structure between the
two variables. Therefore, we see that there is a strong dependence
in the two extreme corners, e.g. when there are lower quantiles in
wind speed (lower wind speed values) the wind power quantiles
also present lower values with a higher probability.

An interesting conclusion is that this copula density seems very
similar to a family of parametric copulas, the elliptical copulas [26].

The quantile-copula conditional KDE is written as:

f̂ ðyjX ¼ xÞ ¼ 1
N$hy

$
XN
i¼1

Khy

�
y� Yi
hy

�
$

1
N$hu$hv

$$
XN
i¼1

Khu

�
�
FeXðuÞ � FeXðUiÞ

hu

�
$Khv

�
FeYðvÞ � FeY ðViÞ

hv

�
(13)

3.4. Kernel functions

The choice of the kernel function K depends on the type of
variable. In what regards the data type, we have in the wind power
problem three different types: i) wind power bounded between
0 (e.g. zero generation) and 1 (e.g. rated power); ii) wind speed
bounded between 0 and þN; iii) circular variables like the hour of
the day and the wind direction. For these three types, different
kernels should be considered.

We need two different types of kernels for the quantile-copula
estimator: i) a kernel for variables bounded between 0 and 1, i.e.,
after normalizing, wind power and the quantile transforms vari-
ables u and v; ii) circular kernel for the wind direction.

For variables bounded between 0 and 1 the following beta
kernel proposed by Chen [27] was adopted:

f̂ 1ðxÞ ¼ 1
N
$
XN
i¼1

Kx=hþ1;ð1�xÞ=hþ1ðXiÞ (14)

where Kp,q is the density function of a Beta(p,q) random variable
with p and q as the two positive shape parameters, and h being the
bandwidth parameter of Kp,q.
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Fig. 2. Scatter plot of quantile transform of forecasted wind speed (v) against
measured wind power (u).
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A comparison of the beta kernel with other alternative bounded
kernels (e.g. Gaussian-copula kernel) for the wind power forecast
problem can be found in a previous paper from the authors [13], for
an offline Quantile-copula estimator.

Fig. 3 and Fig. 4 depicts the beta kernel shape for five different
points and the Gaussian kernel for the same points respectively. As
shown, the beta kernel presents a varying shape according to the
values of x, in fact the varying shape changes the amount of
smoothing applied to the kernel estimator. Moreover, the kernels
are non-negative (and consequently the estimator), in contrast to
the Gaussian kernel. The Gaussian kernel shape is fixed for any
value of x. The Gaussian kernel may lead to inconsistent results at
the boundaries.

As mentioned in [28] the integrals computed from the beta
kernels may not converge to their theoretical counterpart. This may
lead to distributions that do not have an integral equal to 1.
Moreover, the kernel is also inconsistent for distributions that are
point mass at 0% and 100%. This is due to lack of normalization, and
the idea proposed in [28] consists of a modified beta kernel esti-
mator (named “macro-beta”):

f̂ 0ðxÞ ¼ f̂ ðxÞZ1
0

f̂ ðxÞdx
(15)

Since this is only a change of scale, the normalization for the
conditional KDE is employed over the conditional function of Eq.
(13).

Circular variables are a particular case for KDE. For instance, the
angular difference between awind direction of 350� and 10� is only
20�, while the linear real valued distance is 340�. The approach is to
use circular distributions such as the wrapped normal distribution
or the von Mises distribution [29]. In this case, and since it is
mathematically more simple and a close approximation to the
wrapped normal distribution, we used the von Mises distribution.
The von Mises distribution is given by:

gðq;m; kÞ ¼ 1
2p$I0ðkÞ

ek$cosðq�mÞ (16)
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Fig. 3. Beta kernels of Eq. (14) for h ¼ 0.02 (x ¼ 0.01, x ¼ 0.1, x ¼ 0.5, x ¼ 0.9, x ¼ 0.99).

-copula for wind power probabilistic forecasting, Renewable Energy



Wind Power [p.u.] 

D
en

si
ty

−0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
5

10
15

20

Fig. 4. Gaussian kernels for h ¼ 0.02 (x ¼ 0.01, x ¼ 0.1, x ¼ 0.5, x ¼ 0.9, x ¼ 0.99).

R.J. Bessa et al. / Renewable Energy xxx (2011) 1e11 5
where I0 is the modified Bessel function of the first kind and order
0 and defined by

I0ðkÞ ¼ 1
2p

Z2p
0

ek$cosðqÞdq (17)

The parameter m is the directional center of the distribution, k is
the concentration parameter and q belongs to any interval of length
2p. The concentration parameter can be used to control the degree
of smoothing in circular KDE, and it is analogous to the bandwidth
parameter but larger values lead to less smoothing.

Note that the circular kernel is used for the quantile transform of
the wind direction. Therefore, it is necessary to perform a change of
scale from [0,1] to [0, 6.266] (in radians).

3.5. Time-adaptive estimator

Wegman and Davies [30] introduced a recursive estimator of
KDE for Eq. (1). The density function can be calculated recursively
using the following:

f̂ nðxÞ ¼ n� 1
n

$f̂ n�1ðxÞ þ
1

n$hi
Kh

�
x� Xi

hi

�
(18)

The extension to the multivariate case (Eq. (2) and (11)) is
straightforward.

Eq. (18) allows updating the density functionwhen new samples
are available without the need to entirely recompute the whole
density function. However, as the number of t increases, the ratio
(n � 1)/n approaches one (and 1/n approaches zero), and then the
new samples become redundant. Moreover, if there is a change in
the generating structure of the data (concept drift), this recursive
estimation is incapable of automatically discard older data.

In order to overcome these problems, Wegman and Marchette
[31] proposed the KDE estimator with exponential smoothing, and
the KDE formulation with adjustable discarding of old data
becomes:

f̂ nðxÞ ¼ l$f̂ n�1ðxÞ þ
ð1� lÞ

hi
Kh

�
x� Xi

hi

�
(19)
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where l is called forgetting factor and controls how quickly or
slowly the exponential smoothing adapts to the new data (expo-
nential forgetting); l replaces (n� 1)/n and (1�l) replaces 1/n, and
its value should be slightly below one.

The quantile-copula estimator described in section 3.4 can be
converted to a time-adaptive estimator using Eq. (19). The quantile
transform function (the empirical cumulative distribution function
of Eq. (12)) is transformed to time-adaptive using the following
equation:

FeðxÞt ¼ le$FeðxÞt�1þð1� leÞ$IðXi � xÞ (20)

where le is the forgetting factor of the empirical cumulative
distribution.

The estimator becomes

f̂ ðyjx ¼ XÞt ¼ f̂ tðyÞ$ĉtðu; vÞ (21)

where

f̂ tðyÞ ¼ l$f̂ t�1ðyÞ þ
ð1� lÞ

hy
$K
�
y� Yi
hy

�
(22)

and

ĉtðu; vÞ ¼ l,ĉt�1ðu; vÞ þ
ð1� lÞ
hx$hy

$

�
Khx

�
FeXðuÞ � FeXðUiÞ

hx

�

$Khy

�
FeYðvÞ � FeY ðViÞ

hy

��
(23)

where f(yjx¼ X)tmeans the knowledge of the model at time instant
t, which is updated using recent values of Y and X, and l is the
forgetting factor.

Note that different values of l should be defined for Eq. (20) and
(22), (23), because the quantile transform of the data should change
with a lower rate otherwise the model could become unstable.

In the wind power forecast problem, when new values of
measured wind generation and NWP data are available, this recent
data are used to update the knowledge of the model.

Nevertheless, data pre-processing for filtering erroneous
measurements from SCADA systems is crucial for these methods,
otherwise the time-adaptive training is contaminated and model
performance degrades.
4. Case-studies

4.1. Description

Two different datasets were used as case-studies. The first
dataset consists of hourly day-ahead wind power point forecasts
and realized wind power generation for 15 hypothetical sites in the
state of Illinois, within the MISO footprint for 2006 obtained from
NREL’s EWITS study [32]. The data were produced by combining
a mesoscale NWP model with a composite power curve for
a number of potential sites for wind power farms. The day-ahead
forecasts were generated based on observed forecast errors from
four real wind power plants. The resulting Markov chain forecast
models for each of the four sites were randomly assigned to the
sites in the dataset. The data methodology is explained in [33].

We used the wind power data (forecasts and realized genera-
tion) for the period from January to August to train the uncertainty
forecast model. The months between September and December
were used as a validation dataset. The explanatory variable for this
dataset is the point forecast.

The second dataset is from a large-scale wind farm located in
a flat terrain in the U.S. Midwest. The complete dataset (SCADA and
-copula for wind power probabilistic forecasting, Renewable Energy
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NWP) correspond to the period between January 2nd 2009 and
February 20th 2010. The NWP data was generated by the WRF
model [34] at Argonne National Laboratory for one reference point
located in the wind farm at 6 AM every day.

The temporal horizon of the predictions used was t þ 6 up to
t þ 48 h; the very-short term (up to 6 h) is not addressed in this
paper.

The required temporal resolution for wind power forecasts is
usually 1 h, compatible with market purposes. Both the SCADA and
NWP data in the second dataset have temporal resolution of 10min,
so a simple average of the 10 min data was performed to produce
hourly data.

The training dataset was selected to have 70% of all examples
(30% of examples for testing). Hence, the training set is from 1
January 2009 to 21 November 2009 (12,169 points), and the testing
set from 22 November 2009 to 20 February 2010 (5203 points). The
explanatory variables for these data are the wind speed and direc-
tion forecasts from the NWP model, and the look-ahead time step.
4.2. Evaluation framework

A framework to evaluate wind power probabilistic forecasts is
detailed in [35]. The evaluation set consists of a series of quantile
forecasts for unique or varying nominal proportions and observa-
tions (measured values). The presented classification can be
unconditional, but because several variables might influence the
quality of probabilistic forecasts, the evaluation can also become
conditional in order to reveal the influence of such variables (e.g. by
look-ahead time step).

For the evaluation purpose, three metrics were considered:
calibration (or reliability), sharpness, and skill score.

A requirement for probabilistic forecasts is that the nominal
probabilities (or nominal proportions) of quantile forecasts match
the observed probabilities. In other words, in an infinite series of
probabilistic forecasts, observed proportions should equal the pre-
assigned probability exactly. This property is commonly referred to
as reliability or calibration. Here, we will use calibration to avoid
confusion with power system reliability. The difference between
observed and nominal probabilities is the bias of the probabilistic
forecasting method.

Sharpness is the tendency of probability forecasts towards
discrete forecasts, measured by the mean size of the forecast
intervals (distance between quantiles). Quantiles are gathered by
pairs in order to obtain intervals with different nominal coverage
rate. This gives an indication on the level of usefulness, where
narrow intervals are desired. This measure does not depend on
observations.

The objective of scoring rules is to give a global information on
model performance in a single measure [35] The skill score is then:

Scðf̂ tþk; ptþkÞ ¼
Xm
i¼1

	
xai
k � ai


�
ptþk � q̂ai

tþk

�
(24)

where ptþk is the realized wind power, ai is the quantile proportion,
qtþk is the forecasted quantile,m the number of quantiles (i.e.m¼ 1
means the evaluation of a single quantile). x is an indicator variable
which gets 0 or 1 if:

xai
k ¼

�
1 if ptþk � q̂ ai

tþkjt0 otherwise (25)

The higher the scoring rule, the better: the maximum value is
0 for perfect probabilistic forecasts.

The skill score can be computed for each look-ahead time step
using with the following:
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Sck ¼ 1XN
Scðf̂ tþk;ptþkÞ (26)
N
j¼1

where N is the number of samples from the test set.
Pinson et al. [35] mentioned that using a unique proper skill

score allows one to compare the overall skill of competitive
approaches, since scoring rules encompass all the aspects of
probabilistic forecast evaluation. However, it does not inform on
the contributions of calibration or sharpness to the skill score.
Hence, these authors suggested that calibration should be assessed
in a first analysis (as the primary requirements), and then the
information provided by skill score allows to derive conclusions
about the remaining metrics.

Although a holistic indicator has undeniable utility, one must
bear in mind however that the ultimate usefulness of a model
rating system depends on the use and value of the use that will be
given to themodel. This discussion could follow parallel steps to the
one in [14]. Therefore, we suggest that any evaluation of merit
cannot be reduced to assessing a single, albeit global, score and
distinct criteria should be kept e and, for wind power uncertainty
forecasts, calibration seems to be of the utmost importance, over
other criteria.

For reasons of comparison, the probabilistic forecast is repre-
sented through a set of quantiles ranging from 5% to 95% with a 5%
increment.

The results obtained with the quantile-copula estimator are
compared with the splines quantile regression [2], which may be
seen as the most widely used for the representation of probabilistic
wind power forecasts within the industry. For the circular variables,
a periodic cubic spline basis with equidistant knots is used. This is
done by the S-PLUS/R functions “pb.bse”, “pb.h” and “bint0”
available in [36].
4.3. Evaluation results: NREL’s EWITS study

4.3.1. Offline results
Fig. 5 depicts an example of a probabilistic forecast obtained

with quantile-copula estimator in the form of a set of interval
forecasts.

The kernel size was 0.001 for both realized and forecasted wind
power. The degrees of freedom for the cubic splines are 6. These
values were determined by cross validation, and using as starting
point the bandwidth values suggested by the function “cde.-
bandwidths” from the R package “hdrcde” [37].

Fig. 6 depicts the calibration diagram averaged for the whole
time horizon (24 h) for the probabilistic forecasts obtained with the
splines quantile regression (Splines QR) and Quantile-copula (QC)
estimator. Note that what is depicted in the diagram is the differ-
ence from the “perfect calibration” (i.e. perfect match between
nominal and observed probabilities).

The two models presented in Fig. 6 show a deviation from the
“perfect calibration” below 5%, which according to Juban et al. [8] is
equivalent to what is found in the literature. For the quantiles
between 70-95% and 5e25% the QC estimators present a lower
deviation than the quantile regression method. For the remaining
quantiles, the splines QR achieves the lowest deviation. On average,
the methods overestimate (nominal proportions greater than
observed) the quantiles.

Fig. 7 depicts a sharpness diagram where the x-axis is the
nominal coverage of the forecast interval (1-a) and the y-axis is the
average size of the intervals. In this case what is desired is to have
intervals with smaller size for all coverage rates. In terms of
sharpness the forecasted intervals presented relatively narrow
amplitudes in the two methods, although splines QR presented
-copula for wind power probabilistic forecasting, Renewable Energy
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Fig. 7. Sharpness diagram for the offline test with NREL data.

0

 0.2

 0.4

 0.6

 0.8

1

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Po
w

er
 [p

.u
.]

Time Horizon [hr]

90% int.
80% int.
70% int.
60% int.
50% int.
40% int.
30% int.
20% int.
10% int.

Measured

Fig. 5. Probabilistic forecast for NREL dataset obtained with the quantile-copula
estimator.
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a slightly lower sharpness. It is important to note that Juban et al.
[8] found a trade-off between reliability and sharpness, meaning
that improving the reliability will generally degrade the sharpness
and vice-versa.

Fig. 8 depicts the skill score computed for each look-ahead time
step. The performance of both approaches is very similar, in some
hours there is a slight advantage for QC and in others is the opposite
situation.

4.3.2. Time-adaptive test: proof of concept
The aim of this section is to demonstrate that the time-adaptive

concept presented in Section 3.5 works in conditional KDE and can
be applied to the wind power forecast problem. The same EWITS
dataset was used for this test. However, in order to introduce
a concept change (rough, not smooth) in the data structure, we
“disconnected” two sites (one of 211.6 MW and another of
616.1MW, out of a 5.19 GW total) between January and October. The
same testing period between September and December was used
for this simulation.
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Fig. 6. Calibration diagram for the offline test with NREL data.
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This situation was created artificially but it simulates a situation
that could happen to a system operator. For instance, a system
operator is currently receiving forecasts from 13 wind farms, then
these forecasts are summed up and estimates the uncertainty
associated to the total wind power generation. Then, in October two
wind farms are connected to the grid, and in this case the knowl-
edge from past observations has limited validity. By using a time-
adaptive model the system operator is able to adapt to the new
situation without requiring an offline training of the model.
Moreover, the system operator would have to wait several months
in order to have sufficient data to perform the offline training.

The results will only be analyzed in terms of calibration, since
the major impact on the system operator in this situation is in an
underestimation or overestimation of the quantiles. Fig. 9 depicts
the calibration diagram for the offline and time-adaptive QC
Look−ahead Time [hours]

Sk
ill 

Sc
or

e

0 2 4 6 8 10 12 14 16 18 20 22

−0
.6

4
−0

.6
2

−0
.6

0
−0

.5
8

−0
.5

6
−0

.5
4

−0
.5

2
−0

.5
0

QC
Splines QR
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Fig. 10. Probabilistic forecast for the Midwest wind farm obtained with the quantile-
copula estimator.
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Fig. 11. Calibration diagram for the Midwest wind farm offline QC and splines QR.
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estimator (the offline splines QR behaves similarly to the offline QC
in this case). The preliminary tests showed that the value of l for
the empirical cumulative distribution function should be very low;
in this case a value equal to 0.9995 was used.

Due to the increase in the wind power generation because of
the connection of two wind farms, it is expected that the offline
approach gives an underestimation of the quantiles for values
below the 50% quantile and an overestimation of the quantiles for
greater values. As an example, the 95% quantile means that the
probability of having wind generation above its value is only 5%,
however, the observed quantiles estimated with the offline
approach fix this probability at 13.6%. This means that the prob-
ability of having more wind generation in the system is higher
than the predicted one. The opposite situation is verified for the
quantiles below 50%, e.g. the 10%means that with 90% probability
the wind generation is above its value, but the observed
proportion for the offline approach reveals that this probability is
84.7%.

The time-adaptive approach can incorporate the recent infor-
mation and discount the old information (controlled with l).
Therefore, under and overestimations are corrected using this
approach.

For instance, for the quantile 95% the observed proportions
obtained with the time-adaptive approach is 91.4% with l ¼ 0.999
and 88.5% with l ¼ 0.995. For the 10% quantile the observed
proportions are 11.7% (l ¼ 0.999) and 15.7% (l ¼ 0.995). The QC
estimator that presents better calibration performance is with l
equal to 0.999. As a first consideration, it is clear that the use of
a lower value for l could be used in order to quickly learn the new
data structure. However, as the result for 0.99 shows that a lower
value leads to results with larger deviations than the offline
approach. The reason is that the QC becomes numerically unstable
and it is unable to properly assimilate the recent information. The
main conclusion is that a value of l near 1 should be used. In the
case of concept change this value could be reduced, but after
a while it should be increased again. A method such as the novelty
criterion described in [38] can be used to detect data samples from
a completely different concept. However, during a wind farm
operation it is very improbable that abrupt changes occur, normally
the changes are smoothly and gradually.
Please cite this article in press as: Bessa RJ, et al., Time-adaptive quantile
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4.4. Evaluation results: midwest wind farm

4.4.1. Offline results
The following kernel functions were used in the Quantile-

Copula (QC) estimator:

� wind power generation: Chen’s beta kernel from Eq. (14) with
a bandwidth equal to 0.008;

� wind speed forecast: Chen’s beta kernel from Eq. (14) with
a bandwidth equal to 0.008;

� wind direction: von Mises distribution from Eq. (16) with
a bandwidth equal to 1.0;

� look-ahead time step: Chen’s beta kernel from Eq. (14) with
a bandwidth equal to 0.2;

The degrees of freedom for the cubic splines are 8.
These values were determined by cross validation, and using as

starting point the bandwidth values suggested by the function
“cde.bandwidths” from the R package “hdrcde” [37].
-copula for wind power probabilistic forecasting, Renewable Energy
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Fig. 12. Sharpness diagram for the Midwest wind farm offline QC and splines QR.
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Fig. 10 depicts an example of a probabilistic forecast obtained
with the QC estimator for the Midwest wind farm.

Fig. 11 depicts the calibration obtained with an offline QC and
splines QR. Note that the calibration is presented for quantiles
between 1% and 5% in 1% steps, them from 5% to 95% in 5% steps,
and finally from 95% to 99% in 1% steps. The QC estimator presents
the best calibration performance compared to splines QR, e.g. the
maximum deviation of QR is around 8%, while for QC it is less than
6%. Splines QR presents the best calibration for the left tail, while
QC presents the best calibration for the right tail.

Fig. 12 depict the sharpness obtained for QC and QR. As expec-
ted, the method with better calibration presents a worse perfor-
mance in terms of sharpness. There is slighly better sharpness
performance from QR.

Fig. 13 presents the skill score computed for each look-ahead
time step. The performance of both methods is very similar, with
a slight advantage for QC in a majority of the look-ahead time steps.
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4.4.2. Time-adaptive results
In this section the time-adaptive versionwas comparedwith the

offline version for different values of the forgetting factor (l). For
a better understanding of the meaning associated with different l
values, l was represented by the corresponding size of the equiv-
alent sliding window (n), according to l ¼ n/(n þ 1).

So, three values for l (of Eq. (22) and (23)) were considered:
0.99963477 (corresponds to n ¼ 2738 points), 0.999 (corresponds
to n ¼ 1000 points) and 0.995 (corresponds to n ¼ 200 points).

The same kernel and bandwidths used in the offline versionwas
also considered for the time-adaptive versions. Note that the time-
adaptive version of the empirical cumulative distribution function
(le in Eq. (20)) has a different value. Since this dataset does not have
significant variations in the data structure (in contrast to the
dataset used in section 4.3.2) the adopted value was 0.9999. Note
that a smaller value would lead to very poor results.
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Fig. 14 depicts the calibration results. The time-adaptive version
with l ¼ 0.99963477 (n ¼ 2738 points) and l ¼ 0.999 (n ¼ 1000
points) achieved the best performance.

The version with higher l does not have a significant impact on
sharpness (depicted in Fig. 15).

Fig. 16 depicts the skill score for the offline and time-adaptive
versions. The best performance was obtained with the time-
adaptive versions with 2738 and 1000 points, while the version
with 200 points presents the worst performance.

One conclusion that can be derived from these results is that the
time-adaptive approach changes calibration, or in other words, it
changes the bias of the probabilistic forecasts. This change in
probabilistic bias is performed in a rather uniform fashion for each
quantile, i.e. it is almost a linear shift for high l values.

5. Conclusions

This paper presented new contributions to the advancement of
wind power probabilistic forecasting beyond the current state-of-
the-art. A new time-adaptive quantile-copula method applied to
the wind power uncertainty forecast problem was described. The
method is based on conditional kernel density estimation and
produces as output the wind power pdf for each look-ahead time
step.

The results obtained for the two case-studies (i.e. NREL’s EWITS
Study and a Midwest wind farm) have shown that the quantile-
copula method led to a better calibration performance, while the
splines quantile regression (a method from the state-of-the-art)
presented slightly better sharpness performance. The skill score
performance is rather similar for both approaches, with a slightly
advantage for the new model (quantile-copula).

In this paper, only the quality (i.e. correspondence between
forecasts and observations) of the probabilistic forecast was eval-
uated. No considerations were made about the forecast value, i.e.
the incremental benefits (economic/or other) from the new tech-
nique when employed by end-users as an input into their decision-
making processes. Nevertheless, we defend that model comparison
in forecast evaluation, and in probabilistic forecasts in particular,
should also be done by an ex-post evaluation of the benefits
obtained within the decision-making problems that use the
Please cite this article in press as: Bessa RJ, et al., Time-adaptive quantile
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forecasts as input. We wish to stress that the incremental forecast
value will differ from problem to problem, and from end-user to
end-user. In the authors opinion, the “ideal” evaluation metric
should be a kind of skill score that may account for end-user
preferences (and idea of what a “good” forecast is), oriented to
a particular decision-making context, and not an "abstract" formula
unrelated to the problem, albeit mathematically sound.

Nevertheless, the three metrics used in this paper give indica-
tions about the forecast value, even if the interpretation may differ
from problem to problem. For instance, the calibration metric is
particularly important for the wind power bidding problem. As
proven in [39] for convex loss functions, the optimal solution that
minimizes the expected loss is a forecast quantile related with an
asymmetry parameter that reflects the possibly distinct costs of
underforecast and overforecast. This can be extrapolated for elec-
tricity markets with asymmetric penalizations for positive and
negative deviations between bids andmeasured values. In this case,
the optimal quantile (in the expected value paradigm) differs from
the median. Therefore, a calibration deviation may lead to situa-
tions of under or overestimation of the optimal quantile, and
consequently a deviation from what is optimal in the economic
sense.

The same idea can be applied to the problem of setting the
operating reserve for a power system. As shown in [18], deviations
in calibration may lead to under and overestimation of the loss of
load probability, which can increase the operators’ stress. A lower
sharpness performance may also lead to high amounts of recom-
mend reserve, which means an increase in the cost of providing
reserves.

Therefore, a wind power probabilistic forecast method should
provide an adequate compromise between calibration and sharp-
ness, keeping in mind that calibration is the major requirement.
The quantile-copula method described in this paper shows a good
balance between both metrics, which indicates a likely improve-
ment in several decision-making problems.

For future work, we foresee three important aspects: i) a time-
adaptive forgetting factor; ii) a robust and time-adaptive
approach (or rules) for setting the kernels’ bandwidth; iii) the
possibility of producing multi-period forecast intervals including
information about the temporal correlation of forecast errors. These
three lines of progress will deal with the ultimate goal of having
robust and reliable time-adaptive processes and representing other
important characteristics of the wind power series that are not
captured by the conditional estimates discussed in this paper.
Nevertheless, the Quantile-Copula model presented in this paper
offers not only advantages over existing approaches, but also to
serve as a stepping stone for further progress.
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