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Square Error in Offline and Online Three-Day

Ahead Wind Power Forecasting
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Abstract—This paper reports new results in adopting entropy
concepts to the training of neural networks to perform wind power
prediction as a function of wind characteristics (speed and direc-
tion) in wind parks connected to a power grid. Renyi’s entropy is
combined with a Parzen windows estimation of the error pdf to
form the basis of two criteria (minimum entropy and maximum
correntropy) under which neural networks are trained. The results
are favorably compared in online and offline training with the tra-
ditional minimum square error (MSE) criterion. Real case exam-
ples for two distinct wind parks are presented.

Index Terms—Correntropy, entropy, neural networks, Parzen
windows, wind power forecasting.

I. INTRODUCTION

W HEN wind generation is significant in a power system,
wind power forecasting becomes an important factor

in defining the operation planning policies to be adopted by a
transmission system operator (TSO), namely in accepting high
wind penetration [1]. Furthermore, in a market organization of
the business, the wind power contribution to the generation pool
becomes important in defining the price in the daily or hourly
market: variations in the estimated wind power (placed at zero
cost as a base generation before the market bidding process) will
influence the final clearing price. If an agent has the power to
manipulate the wind power prediction, it has the power to ma-
nipulate the market. For these reasons, wind power prediction
has become a major concern in the European Union and TSOs,
generating companies (GENCOs), and regulators all support ef-
forts to develop better, more reliable, robust, and accurate fore-
casting models. Wind park owners also benefit from better wind
power prediction, to support a competitive participation in elec-
tricity markets against more stable energy sources [2].

The prediction of power output from a wind park is highly
important presently in Europe, where the growing penetration
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of wind generation has reached heavy percentages (in the range
of 5% to 20%) in some countries in recent years, like Ger-
many, Spain, Denmark, or other, and increases in these values
are common targets for energy policies defined. For instance, in
Portugal by 2010, some 5100 MW of wind generators will be
installed, when country peak power consumption is about 8500
MW in 2008. So, we are no longer talking of marginal effects.

Short-term wind power forecasting refers to the prediction of
electric power output from wind parks in a range from a few up
to 72 h ahead. The basic inputs to a forecasting model are wind
speed and direction predictions, usually coming from a numer-
ical weather prediction (NWP) meso-scale model, which must
be transformed into power predictions. The quality of predic-
tions will be evaluated in the signal processing sense, i.e., by
measuring the adherence of the prediction to real data. This is
important for system operators. Other issues such as the eco-
nomical value of errors, important for wind power producers,
will not be discussed.

This paper presents practical results supporting two ideas: a)
criteria based on entropy (measure of information content) of
the prediction error distribution are more suitable than the tra-
ditional minimum square error (MSE) criterion to train accu-
rate wind power prediction models, and b) the entropy-based
criteria can be formatted into online self-adaptive models that
perform better than offline trained models when using feed-for-
ward neural networks.

II. BRIEF OVERVIEW

A. Main Trends

In [3], a recent overview of the history and state of the art
in wind power forecasting is summarized. Two classes of ap-
proaches can be found in the literature: statistical and physical.
The fundamental idea of the latter is to refine the NWP forecasts
through physical considerations about the site, such as surface
roughness, orography, obstacles, and stratification of the atmos-
phere, and by modeling the profile of the local wind possibly ac-
counting for atmospheric stability. Several physical approaches
have been developed and some are being used as forecasting
tools for electric power system operators or wind power pro-
ducers, such as the Danish Prediktor model [4], or the German
Previento model [5].

The statistical approach is based in one or more models that
establish a relationship between historical values of generation
and forecasted weather variables. These models can be divided
in two groups: models that only employ time series data and
predict future values taking into account the past history [6],
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[7]; and models that use, in addition to the mean electric power
time series data, forecasted values from an NWP model corre-
sponding mainly to hourly mean wind speed and direction [8],
[9]. The published results obtained with these models reveal an
important improvement with respect to the results obtained with
the models in the first group, but only when the forecast horizon
is beyond a few hours.

It is well known that the wind speed versus power curve of
a wind turbine is highly nonlinear. The transformation of wind
speed to wind power changes the statistical properties of the er-
rors. This has been shown, for instance, in [10] for six sites in
Germany, where error distributions from wind power prediction
models were right skewed and had positive excess of kurtosis,
meaning that they were asymmetrical, presented a higher fre-
quency of errors to the left of the mean, and were flatter than
the Gaussian distribution. The same shape of the error distribu-
tion can be found in [11] and [12].

To deal with the non-Gaussian nature of the wind power fore-
casting error, nonparametric methods have been developed. For
example, in [13], a local quantile regression is used to forecast
the quantiles of the probability distribution; the kernel density
estimation to forecast the pdf is proposed in [14]. Furthermore,
alternative cost functions have been developed; for example, in
[15], the minimization of a weighted total least squares for the
local linear regression is used; in [16], a local polynomial re-
gression based on robust estimation is presented.

Moreover, it has been observed that wind speed behavior ex-
hibits a trait called concept drift in the vocabulary of special-
ists of data streams, meaning that it changes characteristics over
time. Therefore, a model trained offline will display, after some
time, a pattern of growing error in prediction values.

To deal with stationarity, adaptive models have been devel-
oped. In [16], the estimation of the model parameters is based
on an exponential weighted adaptive recursive least squares con-
trolled by a forgetting factor. Also in [15], a recursive method
for the estimation of the local model coefficients is proposed;
the time dependence of the cost function is ensured by expo-
nential forgetting of past observations. Another example is the
Spanish model Sipreolico [9], which is being used as forecasting
tool by the Spanish TSO (REE). The use of stochastic gradient
for online training of neural networks in wind power forecasting
was addressed in [17]. The application to local recurrent neural
networks of online learning algorithms based on the recursive
prediction error is described in [18]. However, even now, some
authors still seem to train neural networks for wind power fore-
casting in an offline mode: one example is presented in [8].

When observing the literature, one realizes that online and of-
fline models usually adopt the MSE as a quality criterion. The
applicability of MSE to train a mapper (any model mapping an
input-output relation such as neural networks, fuzzy inference
systems, time series, or other, with parameters to be learned) is
optimal only if the probability distribution function (pdf) of the
prediction errors is Gaussian [19]. Minimizing the square error
is equivalent to minimizing the variance of the error distribu-
tion. Using this criterion, the higher moments (e.g., skewness,
kurtosis, etc.) are not captured, but they contain information that
should be passed to the parameters (weights) of the neural net-
work instead of remaining in the error distribution.

Fig. 1. Basic arrangement of a mapper training procedure identifying its three
main modules.

B. Entropy Criteria for Non-Gaussian Prediction Errors

The presence of non-Gaussian distributions has motivated re-
search for techniques that would train mappers based on mini-
mizing the information content of the error distribution instead
of minimizing its variance (MSE). A measure of information
content is entropy and incorporating entropy as a cornerstone
concept in the training of mappers has been the object of infor-
mation theoretic learning (ITL) [20].

In a first paper devoted to wind power estimation [21], an evo-
lutionary particle swarm optimization (EPSO) algorithm was
used to optimize offline the weights of a Takagi–Sugeno Fuzzy
Inference System (TS-FIS) to perform wind speed conversion to
wind power based on wind speed and wind direction measure-
ments. In that paper, then, a comparison was made between a
TS-FIS trained by minimizing the mean square error of predic-
tions and one trained by minimizing the Renyi’s quadratic en-
tropy [22] of the error distribution—and the results have shown
that a model with higher frequency of errors close to zero was
produced by the entropy-based model.

In a more recent paper [23], the authors have engaged in eval-
uating the performance of neural networks, trained in offline
mode, comparing the MSE criterion with three ITL inspired cri-
teria. The conclusion, drawn from the analysis of two real cases
of wind parks in Portugal, was unmistakable: in offline training,
entropy as a performance criterion leads to better predictions
(in terms of higher frequency of errors close to zero and in-
sensitivity to outliers) than adopting minimum square error as
a training criterion.

Wind power prediction errors are non-Gaussian (see also
Appendix B). This paper brings further contributions to build
better wind power forecasting models by extending the princi-
ples of information theoretic learning [24]–[27] and the concept
of training mappers based on entropy to online trained systems
in three-day ahead forecasting. Until know, the online training
with entropy had been only tested in artificial data, and no
publication has so far come to light about online training of
neural networks using correntropy.

III. MSE VERSUS MEE, MCC, AND MEEF CRITERIA

Fig. 1 illustrates a mapper being subject to supervised
training to produce an output y from an input x by having its
weights w adjusted by an optimizing algorithm that is driven
by a performance criterion. This picture clearly illustrates that
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the choice of criterion is decoupled from the choice of algo-
rithm. The MSE and the three ITL criteria under comparison,
optimized by a backpropagation algorithm, are:

1) Minimum square error (MSE). This is the classical crite-
rion that minimizes the variance of the error distribution
and has the form

(1)

where is the error of sample relative to the
target value .

2) Minimum error entropy (MEE). This is the fundamental
ITL criterion where the minimization of the entropy of the
error distribution is equivalent to

(2)

where is a Gaussian function, in this case with a variance
given by a value represented by , for reasons that will be
seen in Appendix A. is called the information potential.

3) Maximum correntropy (MCC). This criterion is based on a
generalized similarity measure called correntropy [18] and
may be translated by

(3)

4) Minimum error entropy with fiducial points (MEEF). This
criterion [18] intends to anchor the error distribution to
a zero mean by defining a compromise between mini-
mizing entropy and maximizing correntropy through a
cost function

(4)

where is a weighting constant between 0 and 1.
MEE is an exact criterion in terms of entropy concept while

MCC is only an approximation. However, MEE is much more
demanding in computing effort. Also, MEE has degenerate
minima because it is insensitive to the mean of the error. There
are methods to deal with the problem. The first method is to
correct the MEE result by properly modifying the output bias
of the neural network to yield zero mean error over the training
data set just after training ends. The other way is to add a
so-called MCC term to the MEE cost function, leading to the
MEEF criterion.

Criteria 2, 3, and 4 are based on a representation of the error
pdf by the Parzen window method [28], where the expression of
the estimation for the real pdf of a set of points (errors)
is a summation of individual contributions:

(5)

This expression assumes that a Gaussian kernel G with vari-
ance is used to define the Parzen window around each point
(kernel bandwidth)—see Appendix A.

These four criteria represent different options and assump-
tions about the error distribution when training a neural net-
work. Ideally, the best error distribution would have a Dirac
function representing its probability density, meaning that all
errors would be equal—this would allow one to simply compen-
sate this systematic error with a bias to have a perfect mapper
producing exact forecasts. The Dirac function has minimum en-
tropy and the MEE criterion seeks precisely that target. As a
consequence, it is more effective than the MSE criterion in iso-
lating outliers [29]. However, as the entropy calculation is done
over all pairs of errors of the training (or test) set, each eval-
uation becomes much heavier than with the MSE or the MCC
criteria that depend only on the errors.

Correntropy is discussed in [30] and [31]. It has been proven
that correntropy is related with a distance measure CIM(X,Y) be-
tween two arbitrary scalar random variables X and Y satisfying
all the properties of a metric. CIM divides space in three dif-
ferent regions: when the error is close to zero, CIM is equivalent
to an L2 norm (Euclidean, similar to the MSE criterion); when
the error grows, CIM becomes like an L1 norm (sum of the differ-
ences of coordinates); when the error is very large, CIM becomes
an L0 norm, the metric saturates and becomes very insensitive to
large errors. This property highlights the importance of the def-
inition of kernel bandwidth: a small kernel size leads to a small
Euclidean zone while a large kernel size will increase the Eu-
clidean region where the metric behaves like the MSE criterion.

When we use correntropy to train adaptive systems, we ac-
tually make the system output close to the desired response in
the CIM sense. We can use the MCC as a performance func-
tion, with the advantage over MSE of being a local criterion of
similarity and very useful for cases with nonzero mean, non-
Gaussian, with large outliers. It does not require the computing
effort of MEE but tends to minimize entropy because it tends to
maximize the pdf value at the origin.

All criteria are continuous functions of the errors in a
real-valued domain that can be differentiated. This means
that one may derive expressions in all cases for the derivative of
an error relative to the output of a neural network. These can be
used in a chain rule derivative of errors as a function of network
weights, and therefore, in all three cases, one may build a gra-
dient-based back-propagation algorithm to optimize weights and
train neural networks to perform according to each criterion [30],
[32], [33]. The backpropagation algorithm is not a mandatory
condition however, to determine the conclusions of this paper,
and other optimization algorithms could have been used instead.

IV. IMPORTANCE OF SELF-ADAPTIVE ONLINE TRAINING

Offline training of neural networks is a well-known tech-
nique. For online training, the methodology adopted when fol-
lowing the MCC or MSE criteria is as follows.

• First, train a neural network using a batch back-propaga-
tion approach with the available historical data.

• Then, in the online mode, the neural network makes pre-
dictions for time sample at the time stamp t.
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Fig. 2. Comparison between online and offline train for artificial data with con-
cept change.

• When the measured value is known past k time stamps,
then the neural network forecasts again for time stamp t
and the forecast error (or the correntropy) committed in
t (on the new arrived measured value) is computed and
back-propagated through the network (weights and bias are
updated) only once.

The artificial data set consists on 12 667 examples generated
using the function from Friedman 2 problem [34] and 4223
generated using the function from Friedman 3 problem [34].
The white Gaussian error parameters were the same used in
the Friedman problems. A preliminary test was performed with
such approach in artificial data exhibiting concept drift, to con-
firm the importance of providing online training when in the
presence of this phenomenon.

Two neural networks were trained in offline and online
modes, under the MSE criterion. The cumulative mean absolute
error (CMAE) of the normalized values was used for evaluating
the NN performance over time (iterations), for test purposes
(avoiding a bias in performance evaluation). Fig. 2 displays the
evolution of CMAE in both cases, when a concept change was
introduced in the test data, in iteration 2581. The NN trained
online quickly adapts to the new concept, in contrast to the
offline model which is unable to change with the concept. The
online mode presents a decrease in the error because the values
of the second function are lower and so the error also displays
lower differences.

The methodology for the self-adaptive online training under
the MEE criterion is similar to the one described above. The
only difference is that the information potential of the error is
then recursively estimated [29]. When a new measure arrives,
the prediction error of the neural network is computed and added
to a time window with M errors of previous predictions. The
information potential of the error is then recursive estimated
using the following equation:

(6)

where is a forgetting factor with values between 0 and 1. A
window with the M most recent errors was also used. The re-
cursion of the information potential uses the gradient from the
previous time step.

TABLE I
SOME CHARACTERISTICS OF THE DATA AVAILABLE

It is important to choose a small step size because the two gra-
dients and must have a small difference
between then.

Although in wind forecasting problems it is difficult to detect
the point where concept changes, it is beyond doubt that this
effect happens. This concern has been addressed in [9], [17],
and [35].

V. CASE STUDIES

This section presents results for two training modes (offline
and online) in two real wind power forecasting problems, com-
paring the performance of neural networks resulting from the
adoption of several criteria, comparing the traditional MSE with
the set of three ITL criteria.

A. Wind Park Characteristics

Wind park A has a rated power around 20 MW with equal
wind turbines, all below 2 MW. The wind park is situated in
Iberia, in a complex mountainous region.

Wind park B has a rated power of around 35 MW and com-
prises a number of equal wind turbines above 2 MW. It is situ-
ated in Iberia, in a soft mountainous region near the coast.

B. Data Characteristics

Data collected in the wind parks include SCADA registers
with average 10 min power delivered by the wind park to the
grid. One has also available forecasts produced for the same pe-
riod by an MM5 [http://www.mmm.ucar.edu/mm5/] model, for
mean wind speed, wind direction, temperature, and atmospheric
pressure, for a reference point in the wind park, with forecasting
horizons ranging from 0 to 72 h in half-hour intervals. The MM5
model is initialized every day with the predictions of the GFS
model (global model) corresponding to the assimilation of at-
mospheric data at 00:00 GMT. The MM5 forecasts are available
at about 07:00 GMT. The first forecasted values corresponded
to 07:00 of the present day and the last forecasts to 00:00 three
days later.

To organize the tests, the available data were divided into three
sets. The first set, with several months of data, was used as a
training set. The second set, with one month of data, was used as
a validation set. The third set, with the remaining months, was
used as a testing set for comparative proposes among the dif-
ferent training modes and training criteria. Table I shows the sta-
tistical characteristics of the electric power series data. The nega-
tive values indicate electric power consumption of the wind park.
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C. Testing Methodology

A neural network using only NWP predictions as inputs is ex-
pected to have an unsatisfactory performance when predicting
power for the first six hours [17]. This effect is usually compen-
sated by combining with models that only employ time-series
models for this first period. The results in this paper are concen-
trating on power predictions up to 72 h ahead and the compen-
sation for the first six hours is not considered.

Neural networks were used to predict the power pro-
duced by the wind park a look-ahead . The wind power
prediction was performed for each day of the test data set when
new NWP predictions (7:00 GMT) become available. For online
training, the arrival of new SCADA measurements were simu-
lated, and between two predictions of consecutive days, some
function of the error detected from comparing prediction with
measurement was back-propagated.

The inputs used by the neural networks are NWP meteoro-
logical forecasted values: forecasted mean wind speed values

, forecasted wind direction values , and an index
corresponding to the number of past half hours of NWP fore-

casted values. Due to the cyclic characteristic of wind direction
(geography) and the variable (daily hour), these variables are
represented by sine and cosine components. For each day one has
three NWP predictions available; these predictions differ on the
daytheyweremade(theantiquity).Thismeansa totaloffive input
variables, which were standardized using the min-max method.

A feed-forward neural network was organized with only one
hidden layer comprising nine neurons, using hyperbolic tangent
activation functions. Determining the best topology of the neural
network was out of the scope of this work. The stopping crite-
rion for each cost function was early stopping and maximum
number of iterations (800 epochs). The training was stopped
when the validation error starts to increase.

Following the analysis performed in [23] and [27], the
iRPROP algorithm [36] was used instead of the classic
back-propagation, because with a variable learning rate, it can
achieve faster convergence and maintains good performance.
Improved results were achieved with an adaptive kernel size
strategy: in each case one starts with a large kernel size which
during training is gradually and slowly decreased. Finally, the
use of the batch-sequential approach tested in [23] for this type
of problems helped in reducing the large processing time.

In the iRPROP training algorithm, the standard parameter
values were chosen for the increase and decrease factors

, because they actually produce the best results in-
dependently of the learning problem. The remaining parameters
adopted in iRPROP were the range of the weight update values
( , ) and the initial weight update value

. The tuning of these parameters is not critical.
The batch-sequential subsets length was 2000 points.

The error measure adopted to evaluate performance was nor-
malized mean absolute error (NMAE). This error average was
calculated over all three-day horizon windows available in the
test set months. The rationale for this choice is two-fold: it is a
criterion often used by researchers working in wind power fore-
casting [37] and it would not introduce a bias in comparisons
(one is adopting a criterion not used in the calculations). The

TABLE II
TRAINING, VALIDATION, AND TEST SETS

Fig. 3. Wind park A: NMAE errors for offline predictions.

Fig. 4. Wind park B: NMAE errors for offline predictions.

errors are also compared with a classical reference model: per-
sistence, which corresponds to offer as forecast the value of the
last known value of the generation time series.

D. Analysis of Offline Prediction Results

This section presents the offline prediction results obtained
for the two wind parks when training under MSE, MCC, and
MEEF, by showing the NMAE of the power generation forecast
errors in forecast horizons from 0.5 until 72 h.

The exclusion of MEE in these tests is justified because in
early tests, the error distribution resulted asymmetric and with
heavy tails [23]. Modifying the output bias of the neural net-
work to yield zero mean error over the training data set, when
applying the simple MEE for problems with nonsymmetric dis-
tributions, may not be the best approach.

Table II presents the months used for training, testing, and
validation of the neural networks.

In the kernel size annealing strategy used, the initial kernel
size for MEEF was 0.3 and for MCC was 0.02. The value of the
weighting constant in MEEF was set to 0.3.

Figs. 3 and 4 show the NMAE errors for the MCC, MEEF,
and MSE models for each hour through the forecast horizons,
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Fig. 5. Forecasted and measured values of the electric power from wind park
A obtained with the three cost functions (October 26–28, 2006).

in each wind park (WP), for lead times up to 72 h. Note that
the predictions were made only after 7:00 of the first day of the
time horizon. The figures include also the predictions from the
“persistence” model. These figures make visually evident that
the MCC and MEEF criteria presents better results than MSE
for all wind parks and for almost every lead time of the fore-
cast horizon. No significant differences exist between MEEF
and MCC.

The average difference between the two criteria (MEEF and
MCC) and MSE is 1.48% and 0.45%, for wind park A and B,
respectively. The average difference between MEEF and MCC
is favorable to MEEF for wind farm A in 0.04% and for wind
farm B in 0.02%. The NMAE of the persistence model error
rises relatively quickly in the first six hours for each wind park.
After that, the error stabilizes or increases slowly. As explained,
neural network models with only NWP as input display a worse
performance than persistence in these first hours.

The use of the persistence is interesting here because it gives
a clear indication on how easy (or difficult) predictions may be
for distinct parks. For example, neural network predictions for
wind park B provided the smallest errors but also the persistence
model for this wind park has the best results; so, wind park B is
more “predictable”.

Fig. 5 compares forecasted and measured values of the 30 min
mean electric power for wind park A: the forecast was made at
07:00 on October 26, one of the days of the test data set, with a
forecast step of half hour, until 00:00 on October 29, 2006. One
may observe that in this case, both criteria follow reasonably
well the power values measured from SCADA but the MCC and
MEEF models give better results. The forecasted value in both
cases followed a similar pattern because the same wind forecast
from MM5 was used.

E. Analysis of Self-Adaptive Online Prediction Results

This section presents the prediction results obtained with the
self-adaptive online methodology described in Section IV for
the two wind parks with the three criteria, as well as an assess-
ment of the impact of each neural network parameter on the on-
line training results.

The online training with MEEF was achieved as a hybrid of
the entropy recursive estimation and the stochastic back-propa-

Fig. 6. Wind park A: NMAE for online training with different fixed learning
rates and a variable learning rate, for the MSE criterion.

Fig. 7. Wind park A: NMAE for online training with different momentum
terms and MCC cost function.

gation of the correntropy. The same value of the weighting con-
stant used for the offline training was used.

The first step was to analyze the impact of learning rate and
momentum in a real-time neural network training. For this pur-
pose, the same data of the offline training was used. The ob-
jective is to change only one parameter at each time. For the
self-adaptive online training, the heuristic used in the iRPROP
training algorithm was not applicable for this case.

Fig. 6 displays the results obtained for wind park A with dif-
ferent fixed learning rates and with a simple parameter adapta-
tion technique described in [38]; the momentum term was set to
zero and the criterion used was MSE.

This figure and other tests made it became clear that for an
online training, the effective learning rate must be small. A
learning rate with a high value makes the learning process hard
to converge while a low value makes the convergence slow and
smooth, which is desirable in problems with concept change.
For the online methodology (process one new measured value
at a time), changing the learning rate based on only the sign
of the gradient has not proved to be the best criterion. A more
elaborated mechanism with change detection must be devel-
oped and tested in the future.

Fig. 7 presents the results for wind park A, for the cost func-
tion MCC with fixed learning rate , also a fixed
kernel size (0.5) and different momentum terms. The same be-
havior was verified for wind parks B with MCC, and also with
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Fig. 8. Wind park A: NMAE for online training with different kernel sizes for
the MCC criterion.

Fig. 9. Wind park A: NMAE for online training with different kernel sizes for
the MEEF criterion.

MSE. A general conclusion from these tests is that the mo-
mentum term should have a low or zero value in self-adaptive
online training. This result has a simple explanation. In a non-
stationary signal, the inputs of the neural network change with
time. A known result is that the error surface and the location of
the minimum in this surface change with inputs.

If this surface changes during training (not in offline training
with epochs), a parameter preventing the learning process from
stopping in a shallow local minimum is unimportant. Also, a
momentum term with a high value increases the weights’ up-
date, which in this type of problem is not desirable.

Fig. 8 presents the results with a fixed learning rate
, without momentum term and different kernel sizes for

wind park A. The best results were obtained with a kernel of
0.5; the results for sizes between 0.1 and 1.2 are very similar.

Fig. 9 shows the results for online training with the MEEF
criterion with a fixed learning rate (0.001) and different kernel
sizes (the same for MCC and MEE terms) for wind park A. The
same behavior with different kernel sizes for both MCC and
MEEF was verified for wind park B.

The correct choice of kernel size is a major concern. As ex-
pected, a small kernel size makes the neural network very robust
to outliers. But these outliers in a problem with concept drift
may be points from a new concept, and with a small kernel size,

Fig. 10. Wind park A: NMAE for online training.

Fig. 11. Wind park B: NMAE for online training.

the neural network cannot adapt. More important than having a
variable learning rate, for the case of the ITL criteria, is to vary
the kernel size as the concept changes. The use of a kernel size
that is a function of a change detection mechanism is a strong
tool to deal with concept change.

The same data were used for the online training. For wind
park B, one could examine the behavior of the method in a
demanding circumstance: training data comprised a period
when the wind park had a different installed power from the test
set; this is one cause behind concept change. The training data
for wind park B consisted of months March to June 2005, and
the test data consisted of months July to December 2005. The
parameters of the neural network adopted for the online training
were the best parameters determined above. The forgetting
factor for the entropy recursive estimation was 0.08 and the
window length M was 2000.

Figs. 10 and 11 compare the use of MSE, MCC, and MEEF
criteria for each wind park for an online training mode. The best
result of the offline training (MCC) is depicted for comparison
with the online training result. Notice how the offline MCC per-
forms better than the MSE online.

In the online case, there are some differences between MEEF
and MCC. The average difference between online MEEF and
online MCC is 0.1% favorable to MCC for wind farm A and
0.06% favorable to MEEF for wind farm B.
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Fig. 12. Wind park B’ data: NMAE for online training.

Fig. 13. Wind park B: forecasted and measured values of the electric power
obtained with online and offline training (November 12–14, 2005).

The online training presents better results than offline for all
cases. The case of wind park B’ data (Fig. 12) where there was
an addition of installed capacity is an excellent result. It shows
that the online learning mode is a good tool to deal with up-
grades in wind park capacity without the need to re-train the
forecasting model.

Also bear in mind that in cases where a wind park is built
close to an existing one, the concept may change.

In Fig. 12, the average difference between online MEEF and
online MCC is 0.09% and favorable to MEEF. The average
difference between the online training and offline of MEEF is
1.56%. The average difference between online MEEF and on-
line MSE is 1.19%. This illustrates that the theoretical result is
achievable in practice: an entropy criterion will always lead to
some improvement over MSE, except in the limit case of, by
chance, having a specific site Gaussian prediction errors. The
actual improvement will depend of the wind park site. Using
entropy assures that the best result will be achieved and this is
independent of the site.

Finally, Fig. 13 shows one example of forecasted and mea-
sured values of the 30 min mean electric power from wind park
B obtained with online and offline training. The forecast was
made at 07:00 on November 12, 2006, one of the days of the test

data set from wind park B, until 00:00 on November 15, 2006.
We can visually observe that in this case, the online training
model is a better approach to the actual measured value. An
analysis of the error probability distribution function would con-
firm that smaller errors have a higher frequency for the online
model.

VI. CONCLUSIONS

Wind power prediction is associated with non-Gaussian error
probability distributions. It is unfortunate that so many predic-
tion works remain based on criteria optimizing variance (such
as MSE) when advantage could be taken from dealing with the
full information content of the underlying probability distribu-
tion by training models based on entropy concepts.

This paper is a major contribution to the adoption of ITL cri-
teria to wind power prediction. Evidence is given that online
training procedures for a 72-h prediction horizon can be orga-
nized for entropy-based criteria and that these produce better
models than with MSE or in offline training. Entropy combined
with a self-adaptive online training mode allows one to ade-
quately deal with data streams in the presence of concept drift or
concept changes. These derive from wind behavior and from the
practical operation of wind parks, namely, due to the variation
in the available generating capacity, either because of mainte-
nance, failure, or simply because of capacity additions.

The paper shows that the direct use of an entropy measure
such as the Renyi’s quadratic function (the MEE criterion) is
possible, but that an approximation based on correntropy (the
MCC criterion) has clear computing advantages. The paper also
includes useful indications on the algorithmic implementation
of the methods.

All statements have been supported with evidence from real
cases confirming theoretical expectations. It is important to
point out that the objective of this paper was not to build a
complete model to predict for time horizons between 24–72 h.
But the integration of the methodology described in this paper
will be a major improvement in more sophisticated wind power
prediction systems: the entropy criteria will always provide a
better result than the MSE criterion, in the signal processing
sense, whenever errors are not Gaussian-distributed. The use of
an independent criterion such as NMAE has served to confirm
such assertion.

In all real cases tested, the ITL criteria presented better re-
sults than MSE for all wind parks in the online training mode
and for almost every lead time of the forecast horizon. There-
fore, the paper allows the conclusion that ITL criteria cannot
be ignored when building robust wind power prediction models
and whenever the quality criterion is linked with a “best fit” of
the predictions to the actual values verified.

APPENDIX A

A. Estimation of a Pdf With Parzen Windows

The estimation of the pdf of data from a sample constituted
by discrete points , in a M-dimensional
space, may be done by the Parzen window method [4]. This
technique looks at a point as being locally described by a proba-
bility density Dirac function, which is replaced or approximated
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by a continuous function (kernel) representing it. If a Gaussian
kernel G is used, the expression of the estimation for the real
pdf of a set of N points is

(7)

where is the covariance matrix (here assumed with indepen-
dent and equal variances in all dimensions). In each dimension,
we have

(8)

It is easy to understand that the “size” of the window, here
defined by the value of , is important in obtaining a smoother
or more “spiky” estimate for .

B. Renyi’s Entropy and Its Estimation With Parzen Windows

Renyi’s entropy [11] of a discrete probability distribution
is defined as

with (9)

Renyi’s entropy is a family of functions depending on a
real parameter . When , we have what is called quadratic
entropy

(10)

This definition can be generalized for a continuous random
variable Y with pdf :

(11)

A breakthrough has been achieved with combining Renyi’s
entropy definition with an estimate of a pdf by the Parzen
window method [20], [24]—this has been called ITL. An
entropy estimator for a discrete set of data points is

(12)

where, using (7)

(13)
In this expression, we recognize the convolution of Gaussian

functions, and the integral of two Gaussians with equal standard
deviations is a Gaussian with twice the standard deviation. Then
we have the following result:

(14)

Fig. 14. MM5 wind speed prediction error histogram in one wind park and
normal distribution (curve) with mean of�0.10 and standard deviation of 2.90.

which allows the practical evaluation of entropy by simply cal-
culating the Gaussian function values of the vector distances be-
tween pairs of samples. V(y) is called the information potential
(IP) of the data set.

APPENDIX B

Real data reinforce the need to develop models that do not
rely on the assumption that errors are Gaussian distributed (an
assumption behind the MSE criterion if this is thought as the
best criterion to train mappers).

Fig. 14 displays a histogram of one year (2005) of 24-h pre-
diction errors from the NWP MM5 meteorological mesoscale
wind speed/direction model—Against real wind speed values
measured by the metering station at a real wind park.

A Kolmogorov–Smirnov test [39] rejected the null hypoth-
esis (that the NWP error could be taken as a Gaussian distri-
bution) for all practical levels of significance with a -value of

. This non-Gaussian uncertainty will contaminate
any model predicting wind power and adds importance to the
working hypothesis of non-Gaussian errors, already suggested
in [10].
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