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Abstract

This paper considers nonstandard hypothesis testing problems that involve a nui-

sance parameter. We establish a bound on the weighted average power of all valid

tests, and develop a numerical algorithm that determines a feasible test with power

close to the bound. The approach is illustrated in six applications: inference about

a linear regression coefficient when the sign of a control coefficient is known; small

sample inference about the difference in means from two independent Gaussian sam-

ples from populations with potentially different variances; inference about the break

date in structural break models with moderate break magnitude; predictability tests

when the regressor is highly persistent; inference about an interval identified parame-

ter; and inference about a linear regression coefficient when the necessity of a control

is in doubt.
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1 Introduction

This paper considers statistical hypothesis tests concerning a parameter θ = (β0, δ0)0 where
β is a parameter of interest and δ is a nuisance parameter. Both the null and alternative are
composite

H0 : β = β0, δ ∈ ∆ against H1 : β ∈ B, δ ∈ ∆ (1)

so that the null specifies the value of β, but not δ.
A key example of a hypothesis testing problem with a nuisance parameter is the Gaussian

shift experiment, where the single observation Y is drawn from

Y =

Ã
Yβ

Yδ

!
∼ N

ÃÃ
β

δ

!
,Σ

!
(2)

and the positive definite covariance matrix Σ is known. With an unrestricted nuisance
parameter space ∆, there are good reasons for simply ignoring Yδ, even if Σ is not block-
diagonal: For scalar β, the one-sided test (1) based on Yβ is uniformly most powerful. In the
two-sided problem, rejecting for large values of |Yβ − β0| yields the uniformly most powerful
unbiased test. These arguments can be generalized to vector valued β0 and unrestricted B by
either imposing an appropriate rotational invariance for Yβ, by focussing on most stringent
tests or by maximizing weighted average power on alternatives that are equally difficult
to distinguish (see, for instance, Choi, Hall, and Schick (1996) and Lehmann and Romano
(2005) for a comprehensive treatment and references).
These results are particularly significant because LeCam’s Limits of Experiments Theory

implies that inference about the parameter of a well behaved parametric model is large
sample equivalent to inference in a Gaussian shift experiment. See, for instance Lehmann
and Romano (2005) or van der Vaart (1998) for textbook introductions. As a consequence,
the usual likelihood ratio, Wald and score tests have a well defined asymptotic optimality
property also in the presence of a nuisance parameter.
These standard results only apply to the Gaussian shift experiment with unrestricted ∆,

however. Outside this class it is sometimes possible to deal with nuisance parameters using
specific techniques. One approach is to impose invariance constraints. For example, Dufour
and King’s (1991) and Elliott, Rothenberg and Stock’s (1996) optimal unit root tests impose
translation invariance that eliminates the mean parameter. In many problems, however,
invariance considerations only reduce the dimensionality of the nuisance parameter space. In
the weak instrument problem with multiple instruments, for instance, rotational invariance
reduces the effective nuisance parameter to the concentration parameter, a nonnegative

1



scalar. What is more, even if an invariance transformation can be found such that the
maximal invariant is pivotal under the null hypothesis, the restriction to invariant tests
might not be natural. Imposing invariance can then rule out perfectly reasonable, more
powerful procedures. We provide such an example below.
A second approach is to impose similarity, unbiasedness or conditional unbiasedness. In

particular, conditioning on a statistic that is sufficient for δ ensures by construction that
conditional distributions no longer depend on δ. Depending on the exact problem, this
allows the derivation of optimal tests in the class of all similar or conditionally unbiased
tests, such as Moreira’s (2003) CLR test for the weak instrument problem. The applicability
of this approach, however, is quite problem specific. In addition, it is again possible that an
exclusive focus on, say, similar tests rules out many reasonable and powerful tests a priori.1

A general solution to hypothesis tests in the presence of a nuisance parameter is obtained
by integrating out the parameter θ with respect to some probability distribution under the
null and alternative, respectively. The test statistic is then simply the likelihood ratio of
the resulting integrated null and alternative densities. In this approach, the probability
distribution under the alternative can be freely chosen and represents the relative weights
a researcher attaches to the power under various alternatives. The resulting test is then
optimal in the sense of maximizing weighted average power. The probability distribution
over δ under the null hypothesis, in contrast, has to be carefully matched to the problem
and weighting function. Technically, the null distribution that yields the optimal likelihood
ratio test is known as the "least favorable distribution" (see Lehmann and Romano (2005)
for details).
The least favorable approach is very general. Indeed, the standard results about the

Gaussian location problem (2) reviewed above are obtained in this fashion. For nonstandard
problems, however, it can be extremely challenging to identify the least favorable distribu-
tion, and thus the efficient test. This is the problem that we address in this paper.
Our approach is based on the notion of an "approximate least favorable distribution"

(ALFD), which we determine numerically. The ALFD plays two conceptually distinct roles:
on the one hand, it yields an analytical upper bound on the weighted average power of all
valid tests. On the other hand, the test based on the likelihood ratio statistic with the null
density integrated out with respect to the ALFD yields weighted average power close to the
upper bound. The approach can be extended to tests that switch to a given "standard"

1In the Behrens-Fisher problem Linnik (1966, 1968) and Salaevskii (1963) have shown that all similar
tests have highly undesirable features, at least as long the smaller sample has at least three observations.
More recently, Andrews (2011) shows that similar tests have poor power.
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test (with high probability) in particular regions of the nuisance parameter space. In our
numerical work we determine tests whose weighted average power is within 0.5 percentage
points of the bound, and this is the sense in which the tests are nearly optimal.
The algorithm may be applied to solve for nearly efficient tests in a variety of contexts:

small sample and asymptotic Limit of Experiment-type problems, time series and cross
section problems, nonstandard and Gaussian shift problems. Specifically, we consider six
applications. First, we introduce a running example to motivate our general approach that
involves the Gaussian shift problem (2) with scalar β and δ, where δ is known to be non-
negative. This arises, for instance, in a regression context where the sign of the coefficient
of one of the controls is known. Second, we consider the small sample problem of testing
for the equality of means from two normal populations with unknown and possibly different
variances, the so called "Behrens-Fisher problem". While much is known about this well-
studied problem (see Kim and Cohen (1998) for a survey), small sample optimal tests have
not been developed, making the application of the algorithm an interesting exercise. The
third example concerns inference in the predictive regression model with a highly persistent
regressor. We compare our near-optimal tests to the tests derived by Campbell and Yogo
(2006), and find that our tests have higher power for most alternatives. Fourth, we consider
inference about the break date in a time series model with a single structural change. In this
problem δ is related to the size of the parameter break, where ruling out small breaks (as, for
example Bai (1994, 1997) and much of the subsequent literature) may lead to substantially
over-sized tests (see Elliott and Müller (2007)). We compare our near-optimal test to the
invariant tests developed in Elliott and Müller (2007), and find that the invariance restric-
tion is costly in terms of power. The fifth example considers near optimal inference about
a set-identified parameter as in Imbens and Manski (2004), Woutersen (2006) and Stoye
(2009). Finally, we consider a canonical model selection problem, where the parameter of
interest β is the coefficient in a linear regression, and the necessity of including a particular
control variable is in doubt. It is well understood that standard model selection procedures
do not yield satisfactory inference for this problem–Leeb and Pötscher (2005) provide a
succinct review and references. The application of our approach here yields a power bound
for the performance of any uniformly valid procedure, as well as a corresponding test with
power very close to the bound.
In all of these applications, δ is one dimensional. Generally, high dimensional δ pose

substantial numerical difficulties for the algorithm. In two companion papers, Müller and
Watson (2009) and Elliott and Müller (2009), we successfully apply the algorithm to two
additional time series problems with a two-dimensional nuisance parameter.
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The hypothesis testing problem (1) can be recast in the form of a general decision prob-
lem, and we do so in the concluding Section 6 below. In that form, the analytical result on
the upper bound for the power of any valid test is a consequence of the well-known Minimax
Theorem of classical decision theory (see, for instance, Ferguson (1967), or Chamberlain
(2000) for a recent application). In this general form, the analogous bound plays a promi-
nent role in the numerical determination of the least favorable prior distribution suggested
by Kempthorne (1987). Specialized to the hypothesis testing problem, Andrews, Moreira,
and Stock (2008) discuss and employ the upper bound on power in the context of inference
with weak instruments. Sriananthakumar and King (2006) numerically determine tests for a
composite null hypothesis in the form of the generalized Neyman-Pearson Lemma, and apply
it to specification tests for Gaussian time series models. Finally, Chiburis (2009) provides a
numerical approach to determine the optimal critical region directly. This has the advantage
of yielding a linear programming problem, but the disadvantage that feasibility requires a
low dimensional sample space (whereas for our approach, only the dimension of the nuisance
parameter space is relevant).
The remainder of the paper is organized as follows. Section 2 formally states the problem,

introduces the running example and states the analytical power bound result. Section 3
describes the algorithm to determine the ALFD, and Section 4 extends the approach to tests
that are constrained by a switching rule to a given standard test. Section 5 contains the
results for the additional five examples. We conclude with a particular decision theoretic
justification for the least favorable distribution, and offer a few remarks about the resulting
AFLD tests and Bayes factors. The Appendix contains additional details on the algorithm
and the six applications.

2 Hypothesis Tests with Composite Null

2.1 Statement of the Problem

We observe a random element Y that takes values in the metric space S. The distribution
of Y is parametric with parameter θ ∈ Θ ∈ Rk, so that the probability density function is
fθ(y) relative to some sigma-finite measure ν. Based on this single observation, we seek to
test the hypotheses

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 (3)

where Θ0 ∩Θ1 = ∅ and Θ0 is not a singleton, so that the null hypothesis is composite.
Tests of (3) are measurable functions ϕ : S 7→ [0, 1], where ϕ(y) indicates the rejection
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probability conditional on observing Y = y. Thus, a non-randomized test has restricted
range {0, 1}, and CR= {y : ϕ(y) = 1} is its critical region. If ϕ(y) ∈ (0, 1) for some y ∈ S,
then ϕ is a randomized test. In either case, the rejection probability of the test is equal toR
ϕfθdν for a given θ ∈ Θ, so that the size of the test is supθ∈Θ0

R
ϕfθdν, and by definition,

a level α test has size smaller or equal to α.
In many problems, a composite null hypothesis arises due to the presence of a nuisance

parameter. In a typical problem, θ can be parametrized as θ = (β, δ)0, where β ∈ Rkβ is the
parameter of interest and δ ∈ Rkδ is a nuisance parameter. The hypothesis testing problem
(3) then is equivalent to

H0 : β = β0, δ ∈ ∆ against H1 : β ∈ B, δ ∈ ∆ (4)

where β0 /∈ B, Θ0 = {θ = (β, δ)0 : β = β0, δ ∈ ∆} and Θ1 = {θ = (β, δ)0 : β ∈ B, δ ∈ ∆}.
One motivation for the single observation problem involving Y is a small sample paramet-

ric problem, where Y simply contains the n observations (or a lower dimensional sufficient
statistic). Alternatively, the single observation problem may arise as the limiting problem
in some asymptotic approximation, as we now discuss.
Running example: To clarify ideas and help motivate our proposed testing procedures,

we use the following example throughout the paper. (Related problems were considered by
Moon and Schorfheide (2009) and Andrews and Guggenberger (2010)). Suppose we observe
n observations from a parametric model with parameter a = (b, d) ∈ R2. The hypothesis
of interest is H0 : b = b0, and it is known a priori that d ≥ d0. For instance, b and d may
correspond to regression coefficients, and it is known that the marginal effect of the control
variable is non-negative. Let β =

√
n(b − b0) and δ =

√
n(d − d0). If the model is locally

asymptotic normal at (b, d) = (b0, d0) at the usual parametric
√
n rate with non-singular

Fisher information matrix Σ−1, then by Corollary 9.5 of van der Vaart (1998), the Limit
Experiment local to (b0, d0) concerns the bivariate normal observation

Y =

Ã
Yβ

Yδ

!
∼ N

ÃÃ
β

δ

!
,Σ

!
(5)

where Σ is known. The hypothesis testing problem concerning (5) is

H0 : β = 0, δ ≥ 0 against H1 : β ∈ B, δ ≥ 0 (6)

where B = (0,∞) and B = R\{0} correspond to one-sided and two-sided alternatives,
respectively. It clear that in either case, we can normalize Σ to be unity on the diagonal
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without loss of generality, so that the testing problem is only indexed by the correlation
ρ ∈ (−1, 1).
By the Asymptotic Representation Theorem (van der Vaart (1998, Theorem 9.3)), the

local asymptotic rejection profile of any test in the original n observation problem can be
matched by a test in the single observation problem (5). What is more, for any test of
(5), one can construct a corresponding test in the original parametric problem with the
same asymptotic local power. Thus, the derivation of large sample tests with good local
asymptotic power for the original problem reduces to the derivation of good tests for (5).
If the original parametric model concerns additional nuisance parameters, then the Limit

Experiment (5) involves a larger dimensional normal variate. It is clear, however, that
any valid test of the bivariate problem can still be applied, as the additional Gaussian
observations in the Limit Experiment may simply be ignored (although additional arguments,
such as invariance considerations, would be needed to argue for the optimality of such a
procedure). A similar point applies in the presence of infinite dimensional additional nuisance
parameters, that is if the underlying model is semiparametric (see Choi, Hall, and Schick
(1996) for details).
Finally, one could also rely on approach developed by Müller (2011) to argue for the

asymptotic reduction to the single observation problem (5). We omit details for brevity. N

2.2 Weighted Average Power

The determination of a good test of (3) is difficult because both the null and the alternative
are composite. A composite null requires that the test controls rejection probability over
all values of θ ∈ Θ0; a composite alternative leads to the consideration of how the test’s
power varies over θ ∈ Θ1. In this subsection we consider the complication that arises from
a composite nature of the alternative.
A standard solution to this problem is to consider weighted average power as the scalar

criterion to choose among tests

WAP(ϕ) =
Z µZ

ϕfθdν

¶
dF (θ), (7)

where F is a probability measure with support on (the closure of) Θ1. The weighting function
F describes the importance a researcher attaches to the ability of the test to reject under
different alternatives. This approach underlies the optimality of Wald’s (1943) statistics and
has been employed in the influential work by Andrews and Ploberger (1994).
Since tests that maximize WAP equivalently maximize

R
ϕ
¡R

fθdF (θ)
¢
dν (where the

interchange of the order of integration is allowed by Fubini’s Theorem), efficient tests under
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the WAP criterion also maximize power against the single density h =
R
fθdF (θ). Thus,

with a WAP criterion, the hypothesis testing problem (3) effectively becomes

H0 : the density of Y is fθ, θ ∈ Θ0 against H1,F : the density of Y is h =
Z

fθdF (θ)

(8)
and under the simple alternative hypothesis H1,F , the density h of Y is a mixture of fθ, with
mixing weights F . The power of a test under H1,F is synonymous to weighted average power
under the composite alternative H1 with weighting function F .
If a uniformly most powerful test exists, then it maximizes WAP for all choices of F , so

that in this sense a focus on WAP is without loss of generality. In most problems, however,
the choice of the weighting function F matters, as there is no uniformly most powerful test:
there are many tests whose power functions cross, and one can reasonably disagree about
the overall preferred test. We discuss the choice of F in more detail in Section 4.

2.3 A Set of Power Bounds

Under the weighted average power criterion (7) the challenge is to derive a good test of a
composite null against a simple alternative, that is good tests of (8). This subsection does
not derive such tests directly, but rather provides a general set of bounds on the power of any
level α test. These bounds are useful both for constructing efficient tests and for evaluating
the efficiency of ad hoc tests.
Suppose the composite null hypothesis in (8) is replaced by the single hypothesis

H0,Λ : The density of Y is
Z

fθdΛ(θ)

where Λ is a probability distribution with support on Θ0. In general, the size α Neyman-
Pearson test of H0,Λ against H1,F is not a level α test of H0 in (8), as its null rejection
probability is equal to α by definition only when Y is drawn from the mixture distributionR
fθdΛ(θ) and does not satisfy the size constraint for the composite null H0. Its properties

are nevertheless helpful to bound the power of any level α test of (8).

Lemma 1 Let ϕΛ be the size α test of H0,Λ against H1,F of the Neyman-Pearson form

ϕΛ(y) =

⎧⎪⎨⎪⎩
1 if h(y) > cv

R
fθ(y)dΛ(θ)

λ if h(y) = cv
R
fθ(y)dΛ(θ)

0 if h(y) < cv
R
fθ(y)dΛ(θ)

(9)
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for some cv ≥ 0 and λ ∈ [0, 1]. Then for any level α test ϕ of H0 against H1,F ,
R
ϕΛhdν ≥R

ϕhdν.

Proof. Since ϕ is a level α test of H0,
R
ϕfθdν ≤ α for all θ ∈ Θ. Therefore,R R

ϕfθdνdΛ(θ) =
R R

ϕfθdΛ(θ)dν ≤ α, where the equality follows from Fubini’s Theo-
rem, so that ϕ is also a level α test of H0,Λ against H1,F . The result now follows from the
Neyman-Pearson Lemma.

Lemma 1 formalizes the intuitive result that replacing the composite null hypothesis H0

with the single mixture null hypothesis H0,Λ can only simplify the testing problem in the
sense of allowing for more powerful tests. Its appeal lies in the fact that the power of the
test ϕΛ can be easily computed. Thus, Lemma 1 provides a set of explicit power bounds on
the original problem, indexed by the distribution Λ.
Running example, ctd: Suppose ρ = corr(Yβ, Yδ) = 1/2 in the running example, and

consider maximizing weighted average power for the degenerate distribution F that puts all
mass at θ1 = (β, δ)0 = (1, 0)0. Further, choose Λ as a degenerate distribution with all its
mass at θ0 = (0, 1)0. The likelihood ratio test ϕΛ of H0,Λ against H1,F then rejects for large
values of Yβ − Yδ. Since Yβ − Yδ|H0,Λ ∼ N (−1, 3), ϕΛ(y) = 1[yβ − yδ > 1.85], where the
critical value 1.85 is chosen to produce a rejection probability of 5% under H0,Λ. Note that
ϕΛ is not a valid 5% level test of H0 : β = 0, δ ≥ 0, since it has a rejection probability
greater than 5% when δ < 1. Under the alternative, Yβ − Yδ|H1,F ∼ N (1, 3), so that the
power of ϕΛ is given by

R
ϕΛhdν = 0.31. While ϕΛ may not control size under H0, Lemma

1 implies that any 5% level test of H0 : β = 0, δ ≥ 0 against H1,F has power that does not
exceed 0.31. N
Lemma 1 can usefully be thought of as generalizing a standard result concerning tests

with a composite null hypothesis; see, for instance, Theorem 3.8.1 of Lehmann and Romano
(2005): A distribution Λ∗∗ is least favorable if the best level α test of H0,Λ∗∗ against the single
alternative H1,F is also of level α in the testing problem with the composite null hypothesis
H0 against H1,F , so that–using the same reasoning as in the proof of Lemma 1–this test
is also the best test of H0 against H1,F . In contrast to this standard result, Lemma 1 is
formulated without any restriction on the probability distribution Λ. This is useful because
in many contexts, it is difficult to identify the least favorable distribution Λ∗∗ (indeed, it
may not even exist).
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2.4 Using the Power Bound to Gauge Potential Efficiency of ad
hoc Tests

It is sometimes possible to construct an ad hoc test ϕah of (3) that is known to be of level
α, even if the nuisance parameter space is high dimensional, but ϕah has no optimality
property by construction. The power bounds from Lemma 1 can then be used to check its
efficiency: if the (weighted average) power of ϕah is close to the power bound arising from
some distribution Λ, then ϕah is known to be close to optimal, as no substantially more
powerful test exists. The check is partial, though, as a large difference between the power
of ϕah and the bound can arise either because ϕah is inefficient, or because this specific Λ
yields a bound far above the least upper bound.
For this strategy to work, one must try to guess a Λ that yields a low power bound.

Intuitively, a low power bound arises if the density of Y under H0,Λ is close to the density h
under the alternative H1,F . This may suggest a suitable choice of Λ directly. Alternatively,
one can parametrize Λ in some suitable fashion, and numerically minimize some convenient
distance between

R
fθdΛ(θ) and h. For example, the testing problem of Müller and Watson

(2009) involves hypotheses about the covariance matrix of a mean zero multivariate normal,
which under the null hypothesis is a function of a high dimensional nuisance parameter
δ ∈ ∆. With Λ = Λδ restricted to put point mass at some δ, one can use the Kullback-
Leibler divergence between the null and alternative density as a convenient distance function,
and use numerical methods to find Λδ. In that application, the resulting power bound comes
close to the power of a particular ad hoc test, which shows that the ad hoc test is close to
efficient, and also that the power bound computed in this fashion is close to the least power
bound. As a second example, Andrews, Moreira, and Stock (2008) show that Moreira’s
(2003) CLR test almost achieves the power bound in a weak instrument IV testing problem,
and thus is nearly optimal in that context.

2.5 Approximately Least Favorable Distributions

The least favorable distribution Λ∗∗ has the property that the level α Neyman-Pearson test
ϕΛ∗∗ of the simple hypothesis H0,Λ∗∗ against H1,F also yields a level α test of the composite
null hypothesis H0 against H1,F . As noted above, for many problems it is very difficult to
analytically determine Λ∗∗. A natural reaction is then to try to numerically approximate
Λ∗∗. In general, though, such an approach lacks a criterion to determine when a candidate
approximation is "good enough".
Lemma 1 is very useful in this regard. Specifically, consider the following definition of an
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approximate least favorable distribution (ALFD).

Definition 1 An ε-ALFD is a probability distribution Λ∗ on Θ0 satisfying
(i) the Neyman-Pearson test (9) with Λ = Λ∗ and (cv, λ) = (cv∗, λ∗), ϕΛ∗, is of size α

under H0,Λ∗, and has power π̄ against H1,F ;
(ii) there exists (cv∗ε, λ∗ε) such that the test (9) with Λ = Λ∗ and (cv, λ) = (cv∗ε, λ∗ε),

ϕε
Λ∗, is of level α under H0, and has power of at least π̄ − ε against H1,F .

Suppose that a suitable ε-ALFD could be identified, where ε is small. By (ii), ϕε
Λ∗ is a

level α test under H0, and by (i), (ii) and Lemma 1, it has power that is within ε of the
power bound. Thus ϕε

Λ∗ is a nearly optimal test of H0 against H1,F .
Crucially, the demonstration of near optimality of ϕε

Λ∗ only requires the rejection proba-
bility of ϕε

Λ∗ underH0 and the rejection probabilities of ϕΛ∗ and ϕ
ε
Λ∗ underH1,F , respectively.

Thus, the argument is not based on the notion that Λ∗ is necessarily a good approximation
to the actual least favorable distribution Λ∗∗ (should it exists) in some direct sense. Rather,
any Λ∗ that satisfies the two parts of Definition 1 yields a demonstrably nearly optimal test
ϕε
Λ∗ of H0 against H1,F .

3 Numerical Determination of the ALFD

We now discuss a numerical algorithm that determines an approximately least favorable
distribution Λ∗. The basic idea is to discretize the problem by specifying a finite set of
base distributions Ψi on Θ0, i = 1, · · · ,M . The ALFD Λ∗ is then constructed as a mixture
of these M base distributions. An important special case for the base distributions Ψi are
point masses, but in many problems, it is useful to impose some continuity and to use
non-degenerate Ψi’s.
Any test that is of level α under the composite hypothesis H0 must have rejection proba-

bility of at most α when Y is drawn from fi =
R
fθdΨi(θ), i = 1, · · · ,M. Let JN be a subset

of N of the M baseline indices, J ⊂ {1, 2, · · · ,M}, and consider first the simpler problem
where it is known that Y is drawn from fi, i ∈ JN under the null. In this restricted set-up,
the least favorable distribution is described by an N dimensional multinomial distribution
P ∗N , that is by a point in the N dimensional simplex pi ≥ 0,

P
i∈JN pi = 1. Relative to this

restricted null, the best test, say ϕ∗N , is of the form ϕ∗N(y) = 1[h(y) > cvN
P

i∈JN p∗i fi(y)],
and can thus be characterized by the parameters (cvN , P ∗N).

2 By Theorem 3.8.1 of Lehmann

2We restrict attention to problems where no randomization is necessary.
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and Romano (2005), (cvN , P ∗N) yield a test with two key properties: (i)
R
ϕ∗Nfidν ≤ α for

i ∈ JN and (ii)
R
ϕ∗Nfidν < α only if p∗i = 0. When N is small (say, N ≤ 15), numerical

methods can be used to find (cvN , P ∗N) that satisfy these two properties. By construction,
the test ϕ∗N has rejection probability of at most α when Y is drawn from fi, i ∈ JN . The al-
gorithm now seeks to identify a set JN so that the corresponding test ϕε∗

N with slightly larger
critical value cv∗ε has null rejection probability below α under H0. The numberM and type
of base distributions that are required for this to be possible depends on the continuity of
the rejection probability of ϕε∗

N under the null as a function of θ. In general, with a large
set of point-mass like base distributions Ψi that evenly cover Θ0, the largest size under fi,
i = 1, · · · ,M is also close to the largest size under H0. For computational reasons, though,
it makes sense to pick M as small as possible.
Concretely, the algorithm consists of the following steps:

1. Pick an initial set of M base distributions. Set N = 1, and initialize JN = {1}.

2. Determine the least favorable distribution P ∗N and critical value cvN when it is known
that Y is drawn from fi, i ∈ JN by finding (cvN , P ∗N) that satisfy (i)

R
ϕ∗Nfidν ≤ α

for i ∈ JN and (ii)
R
ϕ∗Nfidν < α only if p∗i = 0. If some of the p

∗
i are zero, then the

corresponding elements of JN are dropped, and N reduced accordingly.

3. Determine the power bound π̄ =
R
ϕ∗Nhdν of the test ϕ∗N(y) = 1[h(y) >

cvN
P

i∈JN p∗i fi(y)].

4. Determine the critical value cvεN > cvN so that the test ϕε∗
N (y) = 1[h(y) >

cvεN
PN

i=1 p
∗
i fi(y)] has power

R
ϕε∗
Nhdν = π̄N − ε.

5. Compute the rejection probability of ϕε∗
N under fi, i = 1, · · · ,M . If the rejection

probability exceeds α under some fi, add this i to JN , and go to step 2.

6. Check if ϕε∗
N is of level α under H0. If it is not, add more concentrated base distribu-

tions, and go to step 5.

Appendix A contains details on the implementation of the various steps. Importantly,
Lemma 1 implies that the power bound computed from any distribution Λ is valid, so that
the algorithm achieves an ε-ALFDwith an approximate solution in Step 2 as long as rejection
frequencies in Steps 3, 4 and 6 are accurately computed.3

3Elliott and Müller (2009) develop a technique for checking size control of a given test for all values of
δ ∈ ∆, and not just on a fine grid, so that the usual Monte Carlo error is the only remaining numerical
approximation. For simplicity, we do not pursue this here, and instead work with a grid.
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4 Switching to Standard Tests

Nearly Standard Problem in Part of Parameter Space. For many nonstandard
testing problems involving a nuisance parameter δ ∈ Rkδ , one can choose a parameterization
in which the problem for large values of ||δ|| essentially reduces to a standard problem.
For example, in the weak instrument problem with concentration coefficient δ, a large |δ|
implies that the instruments are "almost" strong. Also, inference problems involving a local-
to-unity parameter δ ≥ 0, such as predictive regressions studied in Cavanagh, Elliott, and
Stock (1995) and Jansson and Moreira (2006), essentially reduce to standard stationary time
series problems as δ → ∞. This is well-recognized in practice, as non-standard asymptotic
arguments are only invoked if small to moderate values of δ are considered plausible. This
plausibility can usually be gauged by considering an estimator δ̂ of δ: if ||δ̂|| is large, then
the standard mode of inference is applied, whereas small realizations of ||δ̂|| are followed
by inference using the non-standard asymptotic embedding. In the instrumental variable
regression model, Staiger and Stock’s (1997) rule of thumb to revert to standard TSLS
inference if the first stage F statistic is larger than 10 is a prominent example of this approach.
In this section, we formalize this notion of switching to a standard test, and describe how

to numerically determine a (nearly) efficient test conditional on such switching. We focus
on tests of the form

ϕD,S,χ(y) = (1− χ(y))ϕD(y) + χ(y)ϕS(y) (10)

where χ 7→ {0, 1} is a "switching rule" (such as χ(y) = 1[||δ̂|| > K]), ϕS is a "Standard"
test and ϕD is the test for the "Difficult" part of the parameter space. With χ and ϕS given,
a restriction to tests of the form (10) can be viewed as a constraint on the critical region of
the overall test ϕD,S,χ: different functions ϕD 7→ {0, 1} only affect the critical region in the
subset {y : χ(y) = 0}.
Running example, ctd: With δ̂ = Yδ, a realization of δ̂ > 6 is extremely unlikely when

δ ≤ 0 because Var[δ̂] = 1. Thus, when δ̂ > 6, knowledge of the constraint δ ≥ 0 is not
valuable, and one might as well switch to the usual two-sided t-test ϕS(y) = 1[|yβ| > 1.96]

via χ(y) = 1[δ̂ > 6]. With ϕS and χ taken as given, the remaining task is to determine the
critical region for realizations where δ̂ ≤ 6. N
Choice of Weighting Function F. We implement switching to a standard test in

several of the applications discussed below. In this case, the properties of the weighting
function F are relevant only in the parts of the parameter space that do not lead to switch-
ing with high probability. Accordingly our choice of weighting function is guided by three
considerations: First, it makes sense to put weight on alternatives in a way that yields a
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smooth transition to the critical region of the standard test in the case of a switch. Typically,
this can be achieved by an approximately uniform weighting along the nuisance parameter
dimension in its natural parametrization. Second, for two-sided problems where ϕS is sym-
metric, we treat both directions symmetrically also in terms of the weighting function F ,
even if this yields an asymmetric power function of the WAP maximizing test. Finally, as ar-
gued by King (1988), it makes sense to focus on alternatives where good tests achieve power
of roughly 50%. This ensures that the power function is tangent to the power envelope at
that point, which will yield an overall good test also for more and less distant alternatives
in many well behaved problems. For two-sided problems with asymmetric power, the 50%
rule is applied to the simple average of the two directions.
Running example, ctd: In the example (where we switch to the standard test when δ̂ > 6)

these considerations lead us to construct weighted average power using an F in which δ is
uniformly distributed on [0, 8], and β takes on the values −2 and 2 with equal probability.
N
Power Bound under Switching. The following Lemma is the straightforward gener-

alization of the power bound Lemma 1 above to tests of the form (10).

Lemma 2 For given χ and ϕS, let SW be the set of tests of the form (10). Let ϕΛ,S,χ ∈ SW

be of size α under H0,Λ with ϕΛ of the Neyman-Pearson form

ϕΛ =

⎧⎪⎨⎪⎩
1 if h(y) > cv

R
fθ(y)dΛ(θ)

p if h(y) = cv
R
fθ(y)dΛ(θ)

0 if h(y) < cv
R
fθ(y)dΛ(θ)

for some cv ≥ 0 and p ∈ [0, 1]. Then for any test ϕ ∈ SW that is of level α under H0,R
ϕΛ,S,χhdν ≥

R
ϕhdν.

Proof. Note that by construction,
R
(ϕΛ,S,χ − ϕ)(h − cv

R
fθdΛ(θ))dν ≥ 0. Since

ϕ is of level α under H0,
R
ϕfθdν ≤ α for all θ ∈ Θ. Therefore,

R R
ϕfθdνdΛ(θ) =R

ϕ(
R
fθdΛ(θ))dν ≤ α, where the equality follows from Fubini’s Theorem. Thus

R
(ϕΛ,S,χ −

ϕ)(
R
fθdΛ(θ))dν ≥ 0, and the result follows.

Just like Lemma 1, Lemma 2 provides an explicit form of tests whose power constitutes
an upper bound for any test of the form (2). Note, however, that particular choices for ϕS

and χ can induce SW to be empty: reconsider the weak instrument problem, for instance,
where χ is Staiger-Stock’s rule of thumb and ϕS the TSLS-based test of nominal level α.
Since under weak instruments, the rejection probability of ϕS asymptotes to α from above
as δ → ∞, ϕD,S,χ will over-reject for large finite values of δ, even with ϕD = 0 in (10). In
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such a case, one can either rely on a slightly larger critical value for the standard test, or use
a critical value in ϕS that is an appropriate function of δ̂ (so that ϕS is only approximately
equal to the standard test).
Incorporating Switching into the Algorithm. The algorithm for numerically deter-

mining an approximately least favorable Λ∗, conditional on the switching rule to the standard
test, is a minor modification of the algorithm described in Section 3 above. Specifically, recall
that without the switching, tests were of the form ϕ∗N(y) = 1[h(y) > cvN

P
i∈JN p∗i fi(y)]. To

implement the switching in this convenient structure, replace h in the definition of ϕ∗N by

h̃(y) =

⎧⎪⎨⎪⎩
∞ if χ(y)ϕS(y) = 1

0 if χ(y)(1− ϕS(y)) = 1

h(y) otherwise

(11)

so that now ϕ∗N(y) = 1[h̃(y) > cvN
P

i∈JN p∗i fi(y)]. Intuitively, the replacement of h with h̃

ensures that in the case of a switch, χ(y) = 1, the ratio of the (modified) "density" h̃ to the
null density is such that the Neyman-Pearson test rejects if and only if the standard test ϕS

does. By Lemma 2, the power bound π̄ =
R
ϕ∗Nhdν of step 3 of the algorithm then provides

an upper bound on the power of all tests of the form (10).
Numerical Results for Running Example. Figure 1 summarizes the results for the

running example with ρ = 0.7 for tests of level α = 5%. As discussed above, weighted average
power was computed using an F that puts uniform weight on δ ∈ [0, 8] and β ∈ {−2, 2}.
The AFLD was computed using ε = 0.005, so that the power of the nearly optimal tests
differs from the power bound by less than 0.5 percentage points. Rejection frequencies were
approximated using 100,000 Monte Carlo draws. Panel A shows results for the test that
switches to the standard test ϕS(y) = 1[|yβ| > 1.96] if yδ ≥ 6. For comparison, panel B
shows results for the test that does not switch.
The white and light gray band in the center of panel A.1 is the acceptance region of the

nearly optimal test ϕε
Λ∗,S,χ, with the light gray indicating the acceptance region conditional

on switching (|yβ| ≤ 1.96 and yδ ≥ 6). The dark shades show the critical region, with the
darker shade indicating the critical region conditional on switching (|yβ| > 1.96 and yδ ≥ 6).
The critical region is seen to evolve smoothly as the test switches at yδ = 6, and essentially
coincides with the standard test ϕS for values of yδ as small as yδ = 3. As yδ becomes
negative the critical region is approximately |yβ− ρyδ| > 1.96(1− ρ2)1/2, which is recognized
as the critical region of the best test under the assumption δ = 0.
Panel A.2 shows power (plotted as a function of δ) for selected values of β. The solid

curves show the power of the nearly optimal test and the dashed lines shows the power of the
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Figure 1: Positive Nuisance Parameter

Notes: Darker shades for yδ ≥ 6 in panel A.1 indicate the part of the acceptance and critical region
imposed by the switching rule. In panels A.2 and B.2, solid lines are the rejection probability of

the nearly optimal tests ϕεΛ∗,S,χ (panel A) and ϕεΛ∗ (panel B), and dashed lines are for the usual

test that ignores Yδ, ϕS(y) = 1[|yβ| > 1.96].
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standard test ϕS. The figures show that power is asymmetric in β, with substantially lower
power for negative values of β when δ is small; this is is consistent with the critical region
shown in panel A.1 where negative values of β and small values of δ make it more likely that
y falls in the lower left quadrant of panel A.1. Because weighted average power is computed
for uniformly distributed β ∈ {−2, 2} and δ ∈ [0, 8], the optimal test maximizes the average
of the power curves for β = −2 and β = 2 in A.3 over δ ∈ [0, 8]. Weighted average power of
ϕε
Λ∗,S,χ is higher than the power of ϕS for all pairs of values for β shown in the figure.
Panels B show corresponding results for the nearly optimal test ϕε

Λ∗ that does not im-
pose switching to a standard test, computed using the algorithm in Section 3 without the
modification (11). Because F only places weight on values of δ that are less than 8, this test
sacrifices power for values of δ > 8 to achieve more power for values of δ ≤ 8. The differ-
ences between the power function for ϕε

Λ∗,S,χ (shown in panel A) and ϕε
Λ∗ (shown in panel

B) highlights the attractiveness of switching to a standard test: it allows F to be chosen to
yield high average power in the difficult portion of the parameter space (small values of δ)
while maintaining good power properties in other regions.
Panels A.3 and B.3 show the ALFDs underlying the two tests, which are mixtures of

uniform baseline densities fi used in the calculations. We emphasize that the ALFDs are
not direct approximations to the least favorable distributions, but rather are distributions
that produce tests with nearly maximal weighted average power.
Overall Optimality. By construction, the algorithm with h̃ in place of h determines a

test ϕε
Λ∗,S,χ ∈ SW whose weighted average power is within ε of the power bound conditional

on the switching rule. It can also be interesting to compare the power of the resulting test
with the unconditional power bound obtained from the original algorithm as described in
Section 3. Specifically, if the standard test ϕS has some optimality property for ||δ|| large,
then one can potentially make the stronger claim that ϕε

Λ∗,S,χ is (i) is close to maximizing
weighted average power for small ||δ||, and (ii) inherits the optimality property of ϕS for ||δ||
large.
Running example, ctd: Consider the running example with one-sided alternative β > 0

and the standard test ϕS(y) = 1[yβ > 1.645]. It is straightforward to show that this test
is the uniformly best test against alternatives A = {(β1, δ1) : δ1 − ρβ1 ≥ 0}, and is thus
the best test when δ is large.4 But, for δ large, the power of ϕε∗

N with χ(y) = 1[yδ > 6] is
almost identical to the power of ϕS, since χ(Y ) = 1 with very high probability. For instance,
for δ ≥ 10, P (χ(Y ) = 1) = P (N (δ, 1) ≥ 6) > 0.9999. Thus, for all δ1 ≥ 10, the power of

4Note that ϕS(y) is the Neyman-Pearson test for the two single hypotheses H
s
0 : β = 0, δ = δ1 − ρβ1

versus Hs
1 : β = β1, δ = δ1.
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ϕε∗
N is within 0.01 percentage points of the power of ϕS. Furthermore, an application of the
algorithm yields that for ρ = 0.9, the unconstrained power bound relative to a weighting
function F that is uniform on δ ∈ [0, 10] and β = 2 is π̄ = 0.675, and the weighted average
power of the 5% level switching test 0.669. Thus, the switching test is within 0.6 percentage
points of maximizing weighted average power relative to F that places all of its weight on
small values of δ, and at the same time, for large δ, it has essentially the same power as the
uniformly best test. N

5 Applications

In this section we apply the algorithm outlined above to construct the AFLD optimal test
for five non-standard problems. In all of these problems we set ε = 0.005 (so that the ALFD
test is with 0.5% of the power bound), and approximate rejection probabilities using 100,000
Monte Carlo draws. Appendix B contains further details on the computations in each of the
problems.
Most problems considered in this paper are indexed by a known, or at least consistently

estimable parameter (ρ in the running example). Appendix C contains tables that describe
a nearly optimal test for all practically relevant values of this parameter. Readers interested
in applications of the tests derived in this paper should thus consult Appendices B and C
after reading the relevant subsection below.

5.1 The Behrens-Fisher Problem

Suppose we observe i.i.d. samples from two normal populations x1,i ∼ N (μ1, σ21), i =
1, · · · , n1 and x2,i ∼ N (μ2, σ22), i = 1, · · · , n2, where 2 ≤ n1 ≤ n2. We are interested in
testing H0 : μ1 = μ2 without knowledge of σ

2
1 and σ

2
2. This is the "Behrens-Fisher" problem,

which has a long history in statistics.
Let x̄j = n−1j

Pnj
i=1 xj,i and s2j =

1
nj−1

Pnj
i=1(xj,i − x̄j)

2 be the sample mean and variances
for the two groups j = 1, 2, respectively. It is readily seen that the four dimensional statistic
(x̄1, x̄2, s1, s2) is sufficient for the four parameters (μ1, μ2, σ1, σ2). Imposing invariance to the
transformations (x̄1, x̄2, s1, s2) → (cx̄1 + cm, x̄2 + m, s1, s2) for m ∈ R and c > 0 further
reduces the problem to the two dimensional maximal invariant Y

Y = (Yβ, Yδ) =

Ã
x̄1 − x̄2p

s21/n1 + s22/n2
, log(

s1
s2
)

!
.
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Note that Yβ is the usual two-sample t-statistic which converges to N (0, 1) under the null
hypothesis as n1, n2 → ∞. The distribution of Y only depends on the two parameters
β = (μ1 − μ2)/

p
σ21/n1 + σ22/n2 and δ = log(σ1/σ2), and the hypothesis problem becomes

H0 : β = 0, δ ∈ R against H1 : β 6= 0, δ ∈ R. (12)

While the well-known two-sided test of Welch (1947) with "data dependent degrees of free-
dom" approximately controls size for moderate sample sizes (Wang (1971) and Lee and
Gurland (1975)), it is substantially over-sized when n1 and n2 are small; moreover, its effi-
ciency properties are unknown. Thus, we employ the algorithm described above to compute
nearly optimal tests for (n1, n2) = (3, 3) and (n1, n2) = (3, 6).
To implement the algorithm, we choose F as uniform on δ ∈ [−10, 10] and β = {−4, 4}

when (n1, n2) = (3, 3), and β = {−3, 3} when (n1, n2) = (3, 6), where these values of β yield
WAP of approximately 50% in the two cases. For extreme values of Yδ, we switch to the test
that treats one of the groups as having effectively zero variance for the sample mean: χ(y) =
1[|yδ| > 8], and ϕS(y) = 1[yδ > 0]1[|t| > Tn1−1(0.975)] +1[yδ < 0]1[|t| > Tn2−1(0.975)],
where Tn(x) is the xth quantile of a Student-t distribution with n degrees of freedom. We
compare the power of the resulting ϕε

Λ∗,S,χ test to the "conservative" test obtained by using
the 0.975 quantile of a student-t distribution with degrees of freedom equal to df = n1 − 1,
which is known be of level α (cf. Mickey and Brown (1966)).
Results are shown in Figure 2, where panel A shows results for (n1, n2) = (3, 3) and panel

B shows results for (n1, n2) = (3, 6). Looking first at panel A, the critical region transitions
smoothly across the switching boundary. In the non-standard part (|yδ| < 8) the critical
region is much like the critical region of the standard test (|yβ| > T2(0.975)) for values of
|yδ| > 2, but includes smaller values of |yβ| when yδ is close to zero. Evidently, small values
of |yδ| suggest that the values of σ1 and σ2 are close, essentially yielding more degrees of
freedom for the null distribution of yβ. This feature of the critical region translates in the
greater power for ϕε

Λ∗,S,χ than the conservative test when δ is close to zero. (See panel A.2).
Panel B shows results when n2 is increased to n2 = 6. Now, the critical region become
"pinched" around yδ ≈ −1 apparently capturing a trade-off between a relatively small value
of s1 and n1. Panel B.2 shows a power function that is asymmetric in δ, where the test
has more power when the larger group has larger variance. Finally, the conservative test
has a null rejection rejection frequency substantially less than 5% when δ < 0 and weighted
average power substantially below the nearly optimal test.

18



Figure 2: Behrens-Fisher Problem

Notes: Darker shades for |yδ| ≥ 8 in panels A.1 and B.1 indicate the part of the acceptance and
critical region imposed by the switching rule. In panels A.2 and B.2, solid lines are the rejection

probability of the nearly optimal test ϕεΛ∗,S,χ, and dashed lines are for the usual test t-test with

critical value computed from the Student-t distribution with n1 − 1 degrees of freedom.
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5.2 Inference about the Break Date in a Time Series Model

In this section we consider tests for the break date τ in the parameter of a time series model
with T observations. A leading example is a one-time shift by the amount d of the value of
a regression coefficient, as studied in Bai (1994, 1997). Bai’s asymptotic analysis focusses on
breaks that are large than parameter uncertainty by imposing T 1/2|d| → ∞. As discussed
in Elliott and Müller (2007), this "large break" assumption may lead to unreliable inference
in empirically relevant situations.
Under the alternative embedding for moderately sized breaks T 1/2d → δ ∈ R, the pa-

rameter δ becomes a nuisance parameter that remains relevant even asymptotically. As a
motivating example, suppose the mean of a Gaussian time series shifts at some date τ by
the amount d,

yt = μ+ 1[t ≥ τ ]d+ εt, εt ∼ iidN (0, 1)

and the aim is to conduct inference about the break date τ . As is standard in the structural
break literature, assume that the break does not happen close to the beginning and end of
the sample, that is with β = τ/T , β ∈ B = [0.15, 0.85]. Restricting attention to translation
invariant tests ({yt}→ {yt+m} for all m) requires that tests are a function of the demeaned
data yt − ȳ. Partial summing the observations yields

T−1/2
bsT cX
t=1

(yt − ȳ) ∼ G(s) =W (s)− sW (1)− δ(min(β, s)− βs) (13)

for s = j/T and integer 1 ≤ j ≤ T , where W is a standard Wiener process. This suggests
that asymptotically, the testing problem concerns the observation of the Gaussian process
G on the unit interval, and the hypothesis of interest concerns the location β of the kink in
its mean,

H0 : β = β0, δ ∈ R against H1 : β 6= β0, δ ∈ R

for some β0 ∈ B. Elliott and Müller (2009) formally show that this is indeed the relevant
asymptotic experiment for a moderate structural break in a well behaved parametric time
series model.
By Girsanov’s Theorem, the Radon-Nikodym derivative of the measure of G in (13)

relative to the measure ν of the standard Brownian Bridge, evaluated at G, is given by

fθ(G) = exp[−δG(β)− 1
2
δ2β(1− β)]. (14)

To construct the AFLD test we choose F so that β is uniform on B, and δ ∼ N (0, 100).
This places substantial weight on large values of δ and eliminates the need to switch to
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a standard test for large |δ|.5 Results are shown in Figure 3. Panel A shows results for
β0 = 0.2, where panel A.1 plots power as a function of β for five values of δ; panel B shows
analogous results for β0 = 0.4. (Since G is a continuous time stochastic process, the sample
space is of infinite dimension, so it is not possible to plot the critical region.) Rejection
probabilities for a break at β0 > 0.5 are identical to those at 1− β0.
Also shown in the figures are the corresponding power functions from the test derived in

Elliott and Müller (2007) that imposes the additional invariance

G(s)→ G(s) + c(min(β0, s)− β0s) for all c. (15)

This invariance requirement eliminates the nuisance parameter δ under the null, and thus
leads to a similar test. But the transformation (15) is not natural under the alternative,
leaving scope for reasonable and more powerful tests that are not invariant. Inspection of
Figure 3 shows that the near optimal test ϕε

Λ∗ has indeed substantially larger power for most
alternatives. Also, power is seen to be small when β is close to either β0 or the endpoints,
as this implies a mean function close to what is specified under the null hypothesis.

5.3 Predictive Regression with a Local-To-Unity Regressor

A number of macroeconomic and finance applications concern the coefficient b on a highly
persistent regressor xt in the model

yt = a+ bxt−1 + εy,t

xt = rxt−1 + εx,t, x0 = 0
(16)

where E(εy,t|{εx,t−j}t−1j=1) = 0, so that the first equation is a predictive regression. The
persistence in xt is often modelled as a local-to-unity process (in the sense of Bobkoski
(1983), Cavanagh (1985), Chan and Wei (1987) and Phillips (1987)) with r = rT = 1− δ/T .
Interest focuses on a particular value of b given by H0 : b = b0 (where typically b0 = 0).
When the long-run covariance between εy and εx is non-zero, the usual t-test on b is known
to severely overreject unless δ is very large.
After imposing invariance to translations of yt, {yt} → {yt + m}, and an appropriate

scaling by the (long-run) covariance matrix of (εy,t, εx,t)0, the asymptotic inference problem

5For |δ| > 20, the discretization of the break date β becomes an important factor, even with 1,000 step
approximations to Wiener processes. Since these discretizations errors are likely to dominate the analysis
with typical sample sizes for even larger δ, we restrict attention to δ ∈ ∆ = [−20, 20].
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Figure 3: Break Date

Notes: In panels A.1 and B.1, solid lines are the rejection probability of the nearly optimal test

ϕεΛ∗,S,χ, and dashed lines are for Elliott and Müller’s (2007) test that imposes an additional invari-

ance.
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concerns the likelihood ratio process fθ of a bivariate Gaussian continuous time process G,

fθ(G) = K(G) exp[βY1 − δY2 − 1
2

Ã
β +

ρp
1− ρ2

δ

!2
Y3 − 1

2
δ2Y4] (17)

where β is proportional to T (b−b0), ρ ∈ (−1, 1) is the known (long-run) correlation between
εx,t and εy,t, and θ = (β, δ)0 ∈ R2 is unknown.
With an upper bound on the root rT of xt, δ ≥ δ, the one-sided asymptotic inference

problem is
H0 : β = 0, δ ≥ δ against H1 : β > 0, δ ≥ δ (18)

and the four dimensional sufficient statistic Y = (Y1, Y2, Y3, Y4) has distribution

Y1 =

Z 1

0

W μ
x,δ(s)dWy(s) +

Ã
β +

ρp
1− ρ2

δ

!Z 1

0

Wμ
x,δ(s)

2ds

Y2 =

Z 1

0

Wx,δ(s)dWx,δ(s)−
ρp
1− ρ2

Y1

Y3 =

Z 1

0

W μ
x,δ(s)

2ds, Y4 =

Z 1

0

Wx,δ(s)
2ds

where Wx and Wy are independent standard Wiener processes, and the Ornstein-Uhlenbeck
process Wx,δ solves dWx,δ(s) = −δWx,δ(s)ds + dWx(s) with Wx,δ(0) = 0, and Wμ

x,δ(s) =

Wx,δ(s)−
R 1
0
Wx,δ(r)dr (cf. Jansson and Moreira (2006)).

While several methods have been developed that control size in (18) (leading examples
include Cavanagh, Elliott, and Stock (1995) and Campbell and Yogo (2006)), there are fewer
methods with demonstrable optimality. Stock and Watson (1996) numerically determine
a weighed average power maximizing test within a parametric class of functions R4 7→
{0, 1}, and Jansson and Moreira (2006) derive the best conditionally unbiased tests of (18),
conditional on the specific ancillary (Y3, Y4). However, Jansson and Moreira (2006) report
that Campbell and Yogo’s (2006) test has higher power for most alternatives. We therefore
compare the one-sided ALFD test to this more powerful benchmark. We set δ = −5, so that
very explosive roots are ruled out, although in contrast to Campbell and Yogo (2006), we
do not impose an upper bound on δ.
The maximum likelihood estimators (β̂, δ̂) derived from (17) are

β̂ =
Y1
Y3
− ρp

1− ρ2
δ̂, δ̂ = −

Y2 +
ρ√
1−ρ2

Y1

Y4
.
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For δ large (where Y3 ≈ Y4 ≈ T−1(1− r2T )
−1 ≈ (2δ)−1 and δ̂ ≈ N (δ, 2δ)), β̂ is approximately

distributed N (β, 2δ/(1 − ρ2)). Alternatives with fixed β thus become more difficult to
distinguish from the null hypothesis as δ increases. For moderate values of δ, alternatives
that are roughly equally difficult to distinguish from the null hypothesis are those where

β = β̃
1 + 0.07δp
1− ρ2

for fixed β̃.6 We choose F such that δ is uniform on [0, 40], and β̃ = 5. We further
impose switching to inference based on the maximum likelihood t-test (using the observed
information),

ϕS(Y ) = 1[
β̂q

Y −13 + ρ2

1−ρ2Y
−1
4

> cvS] (19)

whenever δ̂ ≥ 35, that is χ(Y ) = 1[δ̂ ≥ 35]. The critical value cvS equals the usual 5% level
value of 1.645 when ρ ≥ 0, but we choose cvS = 1.75 when ρ < 0. This slight adjustment
compensates for the heavier tail of the t-test statistic for moderate values of δ and negative
ρ.

Figure 4 shows that the resulting nearly optimal test has close to uniformly higher power
than the test developed by Campbell and Yogo (2006). Unreported results show a similar
picture when ρ = ±0.9.

5.4 Testing the Value of a Set-Identified Parameter

The asymptotic problem introduced by Imbens and Manski (2004) and further studied by
Woutersen (2006), Stoye (2009) and Hahn and Ridder (2011) involves a bivariate observation

Y =

Ã
Yl

Yu

!
∼ N

ÃÃ
μl
μu

!
,

Ã
σ2l ρσlσu

ρσlσu σ2u

!!
where μl ≤ μu, and the elements σl, σu > 0 and ρ ∈ (−1, 1) of the covariance matrix are
known. The object of interest is μ, which is only known to satisfy

μl ≤ μ ≤ μu. (20)

Without loss of generality, suppose we are interested in testing H0 : μ = 0 (the test of the
general hypothesis μ = μ0 is reduced to this case by subtracting μ0 from Yl and Yu). Whilst

6The linear relationship between β and δ is numerically convenient, since it enables analytical computation
of the alternative density h under a uniform distribution for δ.
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Figure 4: Predictive Regression with a Local-To-Unity Regressor

Notes: In panels A.1 and B.1, solid lines are the rejection probability of the nearly optimal test

ϕεΛ∗,S,χ, and dashed lines are for Campbell and Yogo’s (2006) test.
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under the null hypothesis the inequality (20) holds if and only if μl/σl ≤ 0 ≤ μu/σu, under
the alternative the normalized means μl/σl and μu/σu may not longer satisfy the ordering
μl/σl ≤ μu/σu. It is thus not possible to reduce this problem to a single known nuisance
parameter ρ without loss of generality. In the sequel, we demonstrate our approach when
σl = σu = 1 and various values of ρ.
It is useful to reparametrize (μl, μu) in terms of (β, δ, τ) ∈ R3 as follows: Let δ = μu−μl

be the length of the identified set [μl, μu], let β = min(|μl|, |μu|) if μlμu > 0, and β = 0

otherwise, so that β is the distance between zero and the identified set [μl, μu], and let
τ = −μl, so that under the null hypothesis τ is the distance between the lower bound μl and
zero. In this parametrization, the hypothesis testing problem becomes

H0 : β = 0, δ ≥ 0, τ ∈ [0, δ] against H1 : β > 0, δ ≥ 0. (21)

As emphasized by Imbens and Manski (2004), as δ → ∞, the natural 5% level test
is ϕS(y) = 1[yl > 1.645 or yu < −1.645]. We switch to this standard test according to
χ(y) = 1[δ̂ > 6], where δ̂ = Yu− Yl ∼ N (δ, 2(1− ρ)). The weighting function F is chosen to
be uniform on δ ∈ [0, 8], with equal mass on the two points β ∈ {−2, 2}.
Note that (21) has a two-dimensional nuisance parameter under the null hypothesis, as

neither the length δ = μu − μl nor the distance τ of μl from zero is specified under H0.
It is reasonable to guess, though, that the least favorable distribution only has mass at
τ ∈ {0, δ}, so that one of the endpoints of the interval coincides with the hypothesized value
of μ. Further, the problem is symmetric in these these two values for τ . In the computation
of the ALFD, we thus impose τ ∈ {0, δ} with equal probability, and then check that the
resulting test ϕε

Λ∗,S,χ does indeed control size also for τ ∈ (0, δ).
Figure 5 shows results for two values of ρ. Looking first at the critical regions, when yu

is sufficiently large (say yu > 2), the test rejects when yl > 1.645, and similarly when yl is
sufficiently negative. The upper left-hand quadrant of the figures in panels A.1 and B.1 show
the behavior of the test when the observations are inverted relative to their mean values,
yl > yu. In that case, the test rejects unless yl + yu is close to zero. Panels A.2 and B.2
compare the power of the AFLD test ϕε

Λ∗,S,χ to the test ϕST (y) = 1[yl > 1.96 or yu < −1.96],
which is large sample equivalent to Stoye’s (2009) suggestion under local asymptotics. Note
that this test has null rejection probability equal to 5% when δ = 0 and τ ∈ {0, δ}. Not
surprisingly ϕε

Λ∗,S,χ dominates ϕST when δ is large, but it also has higher power when δ is
small and ρ = 0.5 (because when δ is small, the mean of Yl and Yu is more informative about
μ than either Yl or Yu unless ρ is close to 1).
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Figure 5: Set-Identified Parameter

Notes: Darker shades for yu + yl ≥ 6 in panels A.1 and B1 indicate the part of the acceptance
and critical region imposed by the switching rule. In panels A.2 and B.2, solid lines are the

rejection probability of the nearly optimal tests ϕεΛ∗,S,χ, and dashed lines are for Stoye’s (2009) test

ϕST (y) = 1[yl > 1.96 or yu < −1.96].
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5.5 Regressor Selection

As in Leeb and Pötscher (2005), consider the bivariate linear regression

yi = bxi + dzi + εi, i = 1, · · · , n, εi ∼ N (0, σ2) (22)

where σ2 is known. We are interested in testing H0 : b = b0, and d is a nuisance para-
meter. Suppose there is substantial uncertainty whether the additional control zi needs to
be included in (22), that is d = 0 is deemed likely, but not certain. Let (b̂, d̂) denote the
OLS estimators from the "long" regression of yi on (xi, zi). Let β = n1/2(b− b0), δ = n1/2d,
(Yβ, Yδ) = n1/2(b̂ − b0, d̂), and for notational simplicity, assume that the regressors and σ2

have been scale normalized so that

Y =

Ã
Yβ

Yδ

!
∼ N

ÃÃ
β

δ

!
,

Ã
1 ρ

ρ 1

!!
(23)

where −ρ is the known sample correlation between xi and zi. Note that with the Gaussian
assumption about εi, Y is a sufficient statistic for the unknown parameters (β, δ).
For δ = 0 known, the statistic Yβ−ρYδ is more informative about β than is Yβ. Intuitively,

Yβ−ρYδ is the (rescaled) regression coefficient in the "short" regression of yi on xi, omitting
zi. Ideally, one would like to let the data decide whether indeed δ = 0, so that one can
appropriately base inference on Yβ − ρYδ, or on Yβ. As reviewed by Leeb and Pötscher
(2005), however, data-dependent model selection procedures do not perform uniformly well
for all values of d, even in large samples, so that no optimal inference is obtained in this
manner.
As one possible notion of optimality, suppose that we seek a test of H0 : β = 0 that is as

powerful as possible when δ = 0, but under the constraint that the test controls size for all
values of δ ∈ R. The idea is that we want to maximize power in the a priori likely case of
δ = 0, while at the same time controlling the null rejection probability even if δ 6= 0.
Consider first the one-sided problem. With F degenerate at β1 > 0, we obtain the

hypothesis test
H0 : β = 0, δ ∈ R against H1,F : β = β1, δ = 0. (24)

Just as in footnote 4, note that rejecting for large values of Yβ is the Neyman-Pearson test
of H1,F against the single null hypothesis Hs

0 : (β, δ) = (0, δ0), where δ0 = −ρβ1. Since any
level α test of (24) is also of level α under Hs

0 , the uniformly most powerful one-sided test of
(24) thus rejects for large values of Yβ. Thus, as long as one insists on uniform size control,
the question of best one-sided inference about β has a straightforward answer: simply rely
on the coefficient estimate of the long regression.
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Now consider the two-sided problem. It is known that rejecting for large values of |Yβ|
yields the uniformly most powerful test among all tests that are unbiased for all values of
δ ∈ R (cf. problem 1 on page 226 of van der Vaart (1998)). But with a focus on the power at
the point δ = 0, this might be considered a too restrictive class of tests. Thus, we consider
the unconstrained problem of maximizing weighted average power in the hypothesis testing
problem

H0 : β = 0, δ ∈ R against H1 : β 6= 0, δ = 0 (25)

and choose a weighting function F that puts equal mass at the two points {−2, 2}. For
large |Yδ| we switch to the standard test ϕS(y) = 1[|yβ| > 1.96] via χ(y) = 1[|yδ| > 6].
Unreported results show that imposing this switching rule leads to no discernible loss in
power when δ = 0. At the same time, this switching rule leads to much higher power when
|δ| is large.
Figure 6 shows the resulting critical region, power functions, and AFLDs for two values

of ρ. Looking first at the critical regions, they are now discontinuous at the switching
boundary. This discontinuity arises because ϕε

Λ∗,S,χ is constructed to maximize power at
δ = 0 and achieves this by sacrificing power for nonzero values of δ. On the other hand, the
power of ϕS does not depend on δ. This is evident in panels A.2 and B.2. The ϕε

Λ∗,S,χ test
dominates ϕS when |δ| is small, the roles are reversed for moderate values of |δ|, and the
power curves coincide for large |δ|, where χ(Y ) = 1 with high probability.
By construction, the weighted average power at δ = 0 of ϕε

Λ∗,S,χ in Figure 6 is nearly the
largest possible among all 5% valid tests. To get a more comprehensive view of the potential
gains in power as a function of ρ, Figure 7 depicts the power bound, the power of ϕε

Λ∗,S,χ and
the power of ϕS.

7 The experiment (23) becomes more informative about β as ρ increases,
and correspondingly, the power bound is an increasing function of ρ.8 It is striking, though,
how flat the power bound becomes once ρ ≥ 0.75. The gains in power at δ = 0 over the
standard test ϕS are never larger than 12 percentage points, and the test ϕ

ε
Λ∗,S,χ described

in Appendix C comes very close to fully exploiting the available information.

7The power bound is constructed from the ALFDs that underlie the family of tests described in Appendix
C.

8Adding mean-zero Gaussian noise to Yδ and an appropriate rescaling yields an equivalent experiment
with smaller |ρ|.
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Figure 6: Regressor Selection

Notes: Darker shade for |yδ| ≥ 6 in panels A.1 and B.1 is the part of the critical region imposed
by the switching rule. In panels A.2 and B.2, solid lines are the rejection probability of the nearly

optimal tests ϕεΛ∗,S,χ, and dashed lines are for the usual test that ignores Yδ, ϕS(y) = 1[|yβ| > 1.96].
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Figure 7: Weighted Average Power in Regressor Selection Problem as Function of ρ

Notes: Thick solid line is power bound, thin solid line is power of 5% level test, and dashed line is

power of usual test that ignores Yδ, ϕS(y) = 1[|yβ| > 1.96].

6 Additional Remarks

From a decision theoretic perspective, the approximate least favorable distribution is related
to the minimax value in the problem of distinguishing between H0 against H1,F : Suppose
a false rejection of H0 induces loss 1, a false rejection of H1,F induces loss LF > 0, and a
correct decision has loss 0. Then risk for a given θ and decision rule ϕ is given by

R(θ, ϕ) = 1[θ ∈ Θ0]

Z
ϕfθdν + LF1[θ ∈ Θ1](1−

Z
ϕhdν). (26)

As above, let Λ∗∗ denote the least favorable distribution, ϕΛ∗∗ denote the test based on
Λ∗∗, and let Λ∗ and ϕε

Λ∗ denote the ALFD and test as defined in Definition 1. Let α and
π∗∗ denote the size and power of ϕΛ∗∗. For arbitrary ϕ, let αϕ = supθ∈Θ0

R
ϕfθdν and

πϕ =
R
ϕhdν denote size and power. Suppose that LF = α/(1 − π∗∗), so that the relative

loss associated with a false rejection of H1 is equal to the ratio of rejection probabilities of
the test associated with Λ∗∗. Then, for this value of LF , ϕΛ∗∗ is the minimax decision rule
and ϕε

Λ∗ has maximum risk that is only slightly larger than the minimax value. To see why
ϕΛ∗∗ is the minimax decision rule, notice that supθ∈ΘR(θ, ϕΛ∗∗) = α (by a direct calculation)
and supθ∈ΘR(θ, ϕ) ≥ α (noting that πϕ ≤ π∗∗ if αϕ ≤ α and supθ∈ΘR(θ, ϕ) ≥ αϕ if αϕ ≥ α).
Because ϕε

Λ∗ has power within ε of π
∗∗ and has size α, supθ∈ΘR(θ, ϕ

ε
Λ∗)−supθ∈ΘR(θ, ϕΛ∗∗) ≤

αε/(1− π∗∗), so that ϕε
Λ∗ approximately achieves the minimax risk.

Minimax rules are inherently pessimistic, and they might be considered unattractive if
they are rationalized by an unreasonable distribution for δ. In the context of the algorithm
suggested here, this judgement can be made by inspecting the ALFD. Note that a Bayesian
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would decide between H0 and H1 by computing posterior odds, which is proportional to the
nearly optimal likelihood ratio statistic for a prior of F on Θ1, and a prior of Λ∗ on Θ0.
In this context, the algorithm suggested here might be used as a prior selection device for
the prior under H0, which guarantees attractive frequentist properties of the resulting Bayes
rule.
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A Details on the Algorithm of Section 3
Note that the test ϕ∗N with critical value cv can equivalently be written as ϕ∗N(y) =
1[
P

i∈JN p∗i fi(y)/h(y) < 1/ cv]. In case of switching, replace 1/h by 1/h̃, and set 1/h̃(y) = 0

for h̃(y) =∞ and 1/h̃(y) =∞ for h̃(y) = 0. We numerically approximate rejection probabilities of
this test under "Y has density f" by

π̂(P ∗N , cv; f) =
1

m

mX
j=1

⎛⎝1 +
⎛⎝cvX

i∈JN

p∗i
fi(Y

f
j )

h(Y f
j )

⎞⎠10⎞⎠−1 (27)

where Y f
j , j = 1, · · · ,m, are i.i.d. pseudo random draws with probability density f relative to

ν. For all f , the Y f
j are suitable transformations of one set of m = 105 i.i.d. pseudo-random

vectors. In contrast to the standard Monte Carlo estimator based on averaging ϕ∗N directly, the
numerically close analogue (27) is a differentiable function of (P ∗N , cv), which facilitates numerical
computations.

Step 2 of the algorithm is performed by numerically minimizing the objective functionX
l∈JN

(100p∗l + exp[8000(π̂(P
∗
N , cv; fl)− α)])(π̂(P ∗N , cv; fl)− α)2. (28)

As a function of (P ∗N , cv), (28) is continuous with known derivatives, so that a standard quasi-
Newton optimizer can be employed. Also, the N2m numbers fi(Y

fl
j )/h(Y

fl
j ) for i = 1, · · · , N ,

l = 1, · · · , N and j = 1, · · · ,m can be computed and stored once to speed up the the evaluation of
(28) and its partial derivatives. After a satisfactory solution to (28) has been found, indices i ∈ JN
where p∗i < 10

−4 are dropped from JN , and N reduced accordingly.
The order of the computations in Step 5 are randomized to avoid cycling behavior of the

algorithm.
In Steps 5 and 6, we consider estimated null rejection probabilities of π̂ ≤ 0.0515 as within

Monte Carlo error of controlling size (with m = 105, the Monte Carlo standard error of π̂ in (27)
is approximately 0.0007).

B Details on Computations for the Applications
The following Lemma is useful for obtaining closed form expressions in many of the applications.

Lemma 3 For c > 0,
R a
−∞ exp[sd−

1
2s
2c2]ds =

√
2πc−1 exp[12d

2/c2]Φ(ac− d/c), where Φ is the cdf
of a standard normal.

Proof. Follows from "completing the square".

In all applications, we consider first a coarse set ofM =Mc base distributions, and then perform
Step 6 by enlarging the initial set by a set of Mf fine base distributions.
Positive Nuisance Parameter:
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The coarse set contains uniform distributions on {[0, 8], [0, 0.1], [0, 1], [1, 2], [2, 4], [4, 6],
[6, 8], [8, 10], [10, 12], [12, 14]}, and the fine set contains uniform distributions on [(j−1)/2, j/2], j =
1, · · · , 25.
Behrens Fisher:

An alternative maximal invariant is given by (t, r) = ((x̄1 − x̄2)/s2, s1/s2) =

(
q

e2Yδ
n1

+ 1
n2
Yβ, e

Yδ). In the parameterization η = μ1 − μ2 and ω = σ1/σ2, straightforward but
tedious calculations yield for the density of (t, r)

(n1 − 1)n1/2(n2 − 1)n2/2ω
r2Γ(1+n12 )Γ(1+n22 )

r
n1n2

π(n1 + ω2n2)

³ r
ω

´n1
2(1−n1−n2)/2 exp[−12

η2n1n2
n1 + n2ω2

]

×
Z ∞

0
sn1+n2−2 exp[

2ηn1n2st− s2((n2 − 1)n2ω4 + n21r
2 − n2ω

2 + n1(n2ω
2(1 + r2 + t2)− ω2 − r2))/ω2

2(n1 + n2ω2)
]ds

where Γ denotes the Gamma function. The integral is recognized as being proportional to the
(n1 + n2 − 2)th absolute moment of a half normal. In particular, for c > 0,

R∞
0 exp[−12s2c2]snds =

2
n−1
2 Γ(1+n2 )c

−(n+1), andZ ∞

0
exp[sd− 1

2s
2c2]snds = exp[12

d2

c2
]
√
2πΦ(d/c2)

dn

c2n+1

nX
l=0

µ
n

l

¶
(− c

d
)lIl(d/c

2)

where Il(h) =
1

Φ(h)

R h
−∞ φ(z)zldz, and φ and Φ are the pdf and cdf of a standard normal. The

iterative relations I0(h) = 1, I1(h) = −φ(h)/Φ(h) and Il(h) = −hl−1φ(h)/Φ(h) + (l − 1)Il−2(h)
allow the fast numerical evaluation of Il(h), as suggested by Dhrymes (2005).

The base distributions are uniform distributions for δ. The corresponding integrals are com-
puted via Gaussian quadrature using 10 nodes (for this purpose the integral under the alter-
native is split up in 8 intervals of length 2). The coarse set contains uniform distributions on
[2(j − 1) − 10, 2j − 10] for j = 1, · · · , 10, and the fine set contains uniform distributions on
[(j − 1)/2 − 15.5, j/2 − 15.5] for j = 1, · · · , 61. When n1 = n2, symmetry around zero is im-
posed on the ALFD.
Break Date:

Wiener processes are approximated with 1,000 steps. Symmetry around zero is imposed on
the ALFD, and the coarse set of baseline distribution for |δ| contains uniform distributions on
{[0, 8], [0, 0.1], [0, 1], [1, 2], [2, 4], [4, 6], [6, 8], [8, 10], [10, 12], [12, 14]}, and the fine set contains uniform
distributions on [(j − 1)/2, j/2], j = 1, · · · , 25.
Predictive Regression:

Ornstein-Uhlenbeck and stochastic integrals are approximated with 1,000
steps. The coarse set of baseline distributions contains uniform distributions on
{[−5,−3], [−3,−1], [−1, 1], [0, 5], [5, 10], [10, 15], [15, 10], [20, 30], [30, 40], [40, 50], [50, 60]}, and
the fine set contains uniform distributions on all intervals of the form [−6+ j,−5+ j], j = 1, · · · , 8
and [2.5(j − 1), 2.5j], j = 1, · · · , 25.
Partially Identified Parameter:

The coarse set of baseline distribution for δ are uniform distributions on
{[0, 10], [0, 2], [2, 4], [4, 6], [6, 8], [8, 10], [10, 12], [12, 14]}, and the fine set contains uniform dis-
tributions on [(j − 1)/2, j/2], j = 1, · · · , 26.
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Table 1: Polynomial Coefficients for the Positive Nuisance Parameter Problem
0 ≤ ρ ≤ 0.8 0.8 ≤ ρ ≤ 0.99

i δi δi a0,i a1,i a2,i δi δi a0,i a1,i a2,i
0 NA NA 1.274 0.026 −0.037 NA NA −1.056 5.650 −3.430
1 0 8 3.002 −3.396 −2.882 0 8 9.531 −3.374 −3.382
2 0 0.1 −1.362 2.411 −0.698 0 0.1 −5.250 24.378 −16.931
3 6 8 −0.006 −0.144 1.233 6 8 6.656 −6.800 3.859
4 2 4 −0.256 0.901 0.304 2 4 9.550 −13.216 7.400
5 4 6 −0.576 1.241 0.254 4 6 7.677 −9.778 5.822
6 1 2 −0.802 −1.013 1.788 1 2 −1.052 4.539 −1.135
7 1 2 −3.095 4.627 −1.752 0.5 1 −6.574 4.250 4.367

Regressor Selection:
Symmetry around zero is imposed on the ALFD. The coarse set of baseline distribution for |δ|

are point masses on j/2, j = 1, · · · , 6, and the fine set contains point masses on j/10, j = 1, · · · , 80.

C Families of Nearly Optimal Tests
This appendix describes nearly optimal tests for the problems indexed by ρ considered in this paper,
and also for the break date problem (indexed by β0). Call the indexing parameter κ. The nearly
optimal tests are of the form ϕκ(y) = 1[h(y) ≥ cv(κ)

PN
i=1 pi(κ)fi(y)], that is the critical value cv

and the pi’s are functions of κ, but not the set of base densities fi, i = 1, · · · , N that enter the
ALFD.

Specifically, cv(κ) = exp[a0,0 + a1,0κ + a2,0κ
2], and pi(κ) = p̃i(κ)/

PN
l=1 p̃l(κ), where p̃i(κ) =

exp[a0,i + a1,iκ + a2,iκ
2]. The ALFD is thus described by 3(N + 1) polynomial coefficients aj,i,

j = 0, 1, 2, i = 0, · · · ,N .
In the regressor selection problem, the base distributions with density fi have δ uniformly

distributed on the two points {−δi, δi}. In the break date problem, fi has δ uniformly distributed
on [δi, δi] ∪ [−δi,−δi]. In all other problems, fi has δ uniformly distributed on [δi, δi]. In all cases,
fi can be computed in closed form via Lemma 3. Similarly, also h can be computed in closed form
for all problems.

Tables 1-5 contain the coefficients aj,i for the various problems. Negative values of ρ in the
running example and the regressor selection problem are not reported, as the transformation Yβ →
−Yβ yield the equivalent problem with correlation −ρ, respectively. Also, the problem of testing
the null hypothesis of a break fraction β0 > 1/2 is transformed into the equivalent problem with
break fraction 1− β0 by reversing the time series, i.e. by the transformation G(s)→ G(1− s). In
the predictive regression problem, tests against the alternative H1 : β < 0, δ ≥ δ are obtained by
transforming {xt}→ {−xt} and ρ→ −ρ.

The coefficients were computed by applying the algorithm of Section 3 to a range of values for
κ simultaneously, that is in Step 3, the objective function is a sum of (28) over various values of κ,
and this function is numerically minimized with respect to all aj,i.
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Table 2: Polynomial Coefficients for the Break Date Problem
0.15 ≤ β0 ≤ 0.3 0.3 ≤ β0 ≤ 0.5

i δi δi a0,i a1,i a2,i δi δi a0,i a1,i a2,i
0 NA NA 0.471 0.285 0.817 NA NA 0.378 1.117 −0.977
1 0 10 6.795 −0.926 7.253 0 10 4.541 0.448 −0.209
2 12 16 3.420 8.245 −13.577 12 16 1.916 0.041 0.180
3 0 4 8.610 −11.065 13.858 0 4 4.353 −1.439 −0.422
4 19 20 2.899 3.746 −7.533 3 4 3.329 1.191 0.412
5 12 13 1.635 −0.215 −0.085
6 19 20 1.039 −0.026 0.123
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Table 3: Polynomial Coefficients for the Predictive Regression Problem
0 ≤ ρ ≤ 0.8 0.8 ≤ ρ ≤ 0.99

i δi δi a0,i a1,i a2,i δi δi a0,i a1,i a2,i
0 NA NA 1.413 0.087 0.078 NA NA 1.211 0.842 −0.524
1 0 40 2.064 −0.745 −1.837 30 40 8.152 −3.016 3.176
2 30 40 0.541 2.031 −1.154 10 15 7.264 −3.221 3.425
3 10 15 −0.377 −0.525 1.970 15 20 7.124 −2.681 3.087
4 20 30 0.579 −1.027 2.305 40 50 5.339 1.750 1.197
5 40 50 −2.608 3.928 0.887 5 10 2.261 7.993 −2.995
6 1 3 −0.817 −4.889 −1.912 20 30 7.601 −2.392 3.073
7 5 10 0.094 −0.532 1.063 2.5 5 7.473 3.517 −7.360
8 15 20 0.164 0.498 −0.001 1 2 4.497 −1.950 −3.604
9 2.5 5 −1.559 1.261 −1.321

0 ≥ ρ ≥ −0.8 −0.8 ≥ ρ ≥ −0.95
0 NA NA 1.373 0.316 −0.098 NA NA 4.961 9.590 5.801
1 0 40 11.15 4.252 −4.137 0 40 16.756 −2.845 5.646
2 5 10 9.454 3.008 1.917 −1 1 27.790 −0.073 −5.964
3 −1 1 4.733 −5.307 −0.867 −3 −1 16.863 −4.919 1.976
4 1 3 8.062 −1.426 −2.793 10 15 19.773 −1.138 2.184
5 −3 −1 −1.150 −2.353 2.836 0 5 22.098 0.650 1.597
6 10 15 5.093 −2.615 1.618 15 20 28.876 1.435 −5.106
7 15 20 8.673 −1.472 −2.749 5 10 29.923 6.889 −0.332
8 20 30 10.178 5.914 4.175 −5 −4 −1.620 0 0

−0.95 ≥ ρ ≥ −0.995
0 NA NA 0.954 −0.254 −0.163
1 −5 −3 −0.583 −0.047 0.092
2 −1 1 4.223 −0.385 0.718
3 −3 −1 14.229 1.833 −4.878
4 10 15 10.736 1.136 −1.687
5 5 10 10.450 0.956 −1.488
6 15 20 9.787 0.821 −1.126
7 0 5 10.474 0.798 −1.570
8 20 30 8.761 0.177 −0.148
9 −1 0 5.118 −0.489 0.813
10 −4 −3 −7.494 −4.800 9.274
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Table 4: Polynomial Coefficients for the Partially Identified Parameter Problem
0 ≤ ρ ≤ 0.8 0.8 ≤ ρ ≤ 0.99

i δi δi a0,i a1,i a2,i δi δi a0,i a1,i a2,i
0 NA NA 1.125 0.290 0.133 NA NA 0.251 1.948 −0.657
1 0 10 −0.955 3.516 −0.262 0 10 −1.558 1.748 3.442
2 2 4 1.176 −1.561 −0.445 4 6 0.682 −0.389 −0.663
3 4 6 1.163 −3.054 1.669 2 4 0.473 −0.220 −0.605
4 6 8 1.432 −2.758 0.909 6 6.5 0.102 −0.535 −0.854
5 1.5 2 −2.814 3.857 −1.871 1.5 2 0.518 −0.603 −1.320

Table 5: Polynomial Coefficients for the Regressor Selection Problem
0 ≤ ρ ≤ 0.8 0.8 ≤ ρ ≤ 0.99

i δi a0,i a1,i a2,i δi a0,i a1,i a2,i
0 NA 1.260 0.019 0.055 NA 0.316 2.183 −1.174
1 2 −10.215 6.175 8.264 2 2.341 −3.038 10.425
2 0.5 6.927 −6.617 −6.360 1.6 13.802 3.038 −10.425
3 1.5 1.959 0.443 −1.904
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