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1 Introduction

We evaluate the optimal monetary policy in an economy where agents face oscillations in their

production opportunities which fluctuate randomly between productive and unproductive

periods. The economy is populated by agents of two types, defining their productive state.

Types are assumed to be perfectly negatively correlated, so that at each point in time only

one type is productive. As in the seminal work of Scheinkman and Weiss (1986) agents face

a borrowing constraint: since the state is not observable agents cannot issue private debt.

Because of this market incompleteness, money (an intrinsically useless object) may serve a

fundamental insurance role and be valued.

We extend Scheinkman and Weiss’s analysis, which assumes a constant money supply,

by letting the government choose the monetary growth rate, implemented through lump-

sum money transfers. As in Levine (1991) we assume that the government does not know

which agent is productive, so that the transfers are equal across agents.1 In this economy

money is the only savings instrument: an unproductive agent consumes exchanging money

for goods with the productive agent. As the state can be reversed, the value of money is

positive for productive agents too, who are hence willing to trade. A known feature of the

Scheinkman-Weiss economy is that rich productive agents will be relatively less interested in

trading goods for money. It follows that trade volumes, aggregate production, and the price

of money depend on the distribution of wealth (i.e. shares of money holdings) which evolves

through time following the history of shocks.

We provide an analytical characterization of the price of money and aggregate production,

as functions of the money growth rate parameter and the wealth distribution. Moreover, we

characterize the dynamics of the wealth distribution as a function of money growth and

the history of shocks, as well as the invariant distribution of wealth. These objects give a

complete analytical description of the dynamics of this economy.

1See Kehoe, Levine and Woodford (1990) for a thorough discussion of this assumption and in particular
Levine (1991) for a careful derivation of the equal-treatment restriction from first principles.
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Since the money growth rate affects the distribution of wealth, monetary policy has

real effects and the choice of the optimal anticipated policy involves a tradeoff between two

margins: the first one is that a monetary expansion provides insurance to agents who incur

in a long spell of unproductive periods, and end-up having low money holdings and little

consumption. The second margin is the classic cost of inflation: an expansionary policy

lowers the return on money, lowering productive agents’ incentives to save and produce. The

optimal money growth rate trades off insurance vs. production incentives. We show that

the insurance motive outweighs the production incentives when the utility function is CRRA

with a risk aversion not smaller than log. In this case the optimal money growth rate is

positive.

We further explore the tradeoff between insurance and production incentives by allowing

the government to use a state dependent policy.2 We show that a policy which ties the

monetary emissions to the distribution of money balances is able to decouple these two

margins by expanding the monetary base when unproductive agents are sufficiently poor,

and by contracting it when they are richer. This policy provides insurance when needed

and maximizes production otherwise. This policy provides some rationale for “quantitative

easing”: it expands the monetary base only during contractions.

Related literature

A few previous contributions discuss environments where a flat monetary expansion is effi-

cient in an economy with incomplete markets and where money serves an essential role (an

extensive review appears in Appendix A). Levine’s (1991) seminal paper considers an en-

dowment economy where the agents’ (bounded) utility functions change randomly according

to whether they are “buyers” or “sellers”, a state that follows an exogenous Markov process.

In Levine’s model sellers sell their entire endowment, which amounts to a restriction on the

agents’ marginal utilities over the set of feasible trades. Because of this assumption mone-

2 This involves changing the government observation capabilities.
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tary policy can provide insurance at no cost since altering the relative price has no effect on

welfare in the corner solution. Kehoe, Levine and Woodford (1990) extend Levine’s setting

to allow for internal solutions where sellers do not necessarily sell all their endowment. For

reasons of tractability, they restrict attention to equilibria in which what happens in each

period is independent of history (two-state markov equilibria). Compared to these papers,

our contribution is to analyze the question of the optimal policy in the context of a produc-

tion economy, and to focus on equilibria in which the decisions in each period depend on the

whole history of shocks, as summarized by the distribution of money holdings.

In a broader sense the mechanism that we study is related to a recent strand of literature

dealing with the interplay between the agents’ liquidity and the business cycle, these include

Kiyotaki and Moore (2008), Guerrieri and Lorenzoni (2009), Chamley (2010), Brunnermeier

and Sannikov (2011). Our results are also related to Aiyagari (1995) who studies a neoclassical

growth model with borrowing constraints, as in Bewley (1977). Aiyagari shows that a positive

capital tax rate is optimal because agents are over-saving due to precautionary motives and

therefore the capital stock is too high. Because the government faces no incomplete markets,

an optimal policy involves taxing capital and using the proceedings to produce a public

good that all consumers enjoy, independently of their idiosyncratic shock. Our finding that

the optimal policy involves an expansionary policy is reminiscent of Aiyagari’s result that

the return on savings should be taxed. However the mechanism underlying these results is

different: in Aiyagari’s it is assumed that the government observes the distribution of capital

(or observes the investments made by the agents) and therefore is able to tax capital and

use the proceeds to provide insurance to the agents, while in our model the government

does not observe transactions nor the distribution of wealth and therefore is not able to tax

agents.3 In other words, Aiyagari’s government has higher powers and therefore can resort

to a wider set of policies. Another difference with Aiyagari is that the economy we consider

has cycles: aggregate production, the real interest rate, and the value of money fluctuate

3We discuss in Section C how the government might actually support first best through taxation if it had
the ability to commit to trigger policies. That is, we vary the power of the government
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through time. Because of these features, the method that we use to characterize the optimal

policy is different.

Overview of the analysis

Section 2 defines the economic environment: the agent’s utility functions, production possi-

bilities, and the monetary transfer scheme. With fluctuating productive opportunities, the

agents face an insurance problem. It is shown that without uncertainty the Townsend (1980),

Bewley (1980) result on the optimality of the “Friedman rule” holds: agents are fully insured

and the efficient complete markets allocation can be sustained.

Section 3 defines an equilibrium and the agent’s optimality conditions, in the stochastic

environment. In a similar fashion to Bewley (1983), it is shown in Section 3.1 that under

a contractionary monetary policy, the unique ergodic set of money holdings is such that

markets shut down and therefore there is no monetary equilibrium. The reasoning behind

the result is simple: due to the individual uncertainty, the agents need to hold large amounts

of money to satisfy their tax needs. If an agent is relatively poor, she will fail to comply

her tax obligations with positive probability, as her relative wealth will decrease as long as

she is unproductive. We show that the there is no stationary monetary equilibrium where

tax obligation are always met. Under a contractionary policy, the wealth distribution is

degenerate at a single value and consumption allocations are those of autarky. In Section 3.3

we discuss the second best nature of the monetary policy. That is, we show that there is

no policy able to complete the markets so that agents enjoy the consumption level of the

complete markets allocation. We also show that generalizing the monetary policy rule to

depend on the measure of wealth, which encompasses the history of shocks and transactions,

does not affect this result.

To prove that an expansionary policy is optimal, Section 4 characterizes analytically the

equilibrium quantities and prices as a function of the growth rate of money and the distribu-

tion of money holdings. Section 4.1 derives the invariant distribution of money holdings. The
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optimality of an expansionary policy is discussed in Section 5, introducing an ex-ante welfare

measure. It is assumed throughout that Inada conditions hold and that money is the only

asset. Noting that the consumption of unproductive agents is zero under autarky implies that

the ex-ante expected utility of contractionary policy, as well as that of an hyper-expansionary

policy, approaches minus infinity as the unconditional probability of being unproductive is

strictly positive.4 To show that positive money growth rates dominates the constant money

case we resort to numerical analysis. For strictly positive discount rates, the model is charac-

terized by a single parameter which governs the length of unproductive spells. We vary this

parameter and show that in every case the optimal money growth rate is strictly positive.

In Section 6 we depart from the assumption of constant money growth rate to allow the

government to follow a state dependent policy. To do this we assume that the government

observes the amount of money in the hands of unproductive agents but does not observe

transactions nor identities. We find that the optimal policy expands the monetary base

when unproductive agents are poor and contracts the monetary base otherwise. Interestingly,

there is a bound to the size of the expansions as given by a strong connection of policy in

the corners.

Section 7 summarizes the main findings and discusses key differences with respect to

related papers.

2 The model

This section describes the model economy: agents’ preferences, production possibilities, and

markets. Two useful benchmarks are presented: the (efficient) allocation with complete

markets and the optimal monetary policy with no uncertainty.

We consider two infinitely lived agents, indexed by i = 1, 2, and assume that at each point

in time only one agent can produce. The productive agent transforms labor into consumption

one for one, the unproductive agents cannot produce. The productivity of labor is state

4It is easily seen that the equilibrium allocation converges to autarky as inflation diverges to infinity.
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dependent: the duration of productivity spells is random, exponentially distributed, with

mean duration 1/λ > 0. Money, an intrinsically useless piece of paper, is distributed at each

time t between the two agents so that m1
t +m2

t = mt. The constant growth rate of the money

supply is µ, so that the money supply follows mt = m0e
µt with m0 given.

Let ρ > 0 denote the time discount rate, ω denote a history of shocks and money supply

levels, and s(t, ω) = {1, 2} be an indicator function denoting which agent is productive for

a given history ω and current time t. Agent i chooses consumption ci, labor supply li,

and depletion of money balances ṁi, in order to maximize her (time-separable) expected

discounted utility,

max
{ci(t,ω),li(t,ω),ṁi(t,ω)}∞t=0

E0

{∫ ∞
0

e−ρt
[
u
(
ci(t, ω)

)
− li(t, ω)

]
dt

}
(1)

subject to the constraints

ṁi(t, ω) ≤
[
li(t, ω) + τ(t, ω)− ci(t, ω)

]
/q̃(t, ω) if s(t, ω) = i (2)

ṁi(t, ω) ≤
[
τ(t, ω)− ci(t, ω)

]
/q̃(t, ω) and li(t, ω) = 0 if s(t, ω) 6= i (3)

mi(t, ω) ≥ 0 , li(t, ω) ≥ 0 , ci(t, ω) ≥ 0 (4)

where q̃(t, ω) denotes the price of money, i.e. the inverse of the consumption price level,

τ(t, ω) denotes a government lump-sum transfer to each agent, and expectations are taken

with respect to the processes s and m conditional on time t = 0.

A monetary policy with µ > 0 is called expansionary, a policy with µ < 0 is called

contractionary. It is immediate that when the money supply is constant (µ = 0) the economy

is the one analyzed by Scheinkman and Weiss (1986). For any history ω the monetary policy

µ determines the transfers to the agents τt through the government budget constraint,

q̃t µ mt = 2τt (5)

6



which states that transfers are financed by printing money. The government transfer scheme

implies that in the case of a contractionary policy agents must use their money holdings to

pay taxes (i.e. τ < 0). The next “tax solvency” constraint imposes this restriction

mi
t ≥ −

µ

2
mt ∀ t, i = 1, 2 . (6)

Notice that the government cannot differentiate transfers across agent-types. This follows

from the assumption that the identity of the productive type is not known to the government.

Levine (1991) shows in a similar setup that, because of the hidden information assumption,

the best mechanism is linear and can be understood as monetary policy. We extend on

this in Appendix C where we explore the type of allocations that can be achieved using tax

policy by changing government powers (commitment vs. no commitment), types of available

taxes (lump-sum vs. distortionary), and government knowledge about the state (agent’s type

observable vs. not observable).

Next we state two important remarks. The first one characterizes a symmetric efficient

allocation with complete markets (the proof is standard so we omit it):

Remark 1 Assuming complete markets and an ex-ante equal probability of each state (s =

1, 2), the symmetric efficient allocation prescribes the same constant level of consumption, c̄,

for both agents, where c̄ solves u′(c̄) = 1.

Thus without borrowing constraints the efficient allocation solves a static problem, and it

encodes full insurance: agents consume a constant amount (equal since we assume ex-ante

identity) and the aggregate output is constant.

The next remark characterizes the optimal monetary policy in the case of no uncertainty.

This helps highlighting the essential role of uncertainty in our problem. In particular, consider

the case where each agent is productive for T periods, and then becomes unproductive for

the next T periods. Without loss of generality, for the characterization of the stationary

equilibria, let us assume that the economy starts in period t = 1 with agent 1 being productive
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and agent 2 owning all the money, so that m1
t=1 = 0. We have

Remark 2 Let u(ci) = ci
1−θ

/(1−θ). The Euler equation for ṁi
t gives ρ = q̇t

qt
−θ ċit

cit
−µ which

is solved by the “Friedman rule”: µ = −ρ, and cit = c̄ for i = 1, 2 and all t.

See Appendix B for the proof. This remark, together with the efficient allocation described in

Remark 1, shows that without uncertainty this economy replicates Townsend (1980), Bewley

(1980) result on the optimality of the “Friedman rule”.

3 Monetary policy in the stochastic model

This section defines the monetary equilibrium in the original model with stochastic produc-

tion opportunities. We look for a markovian equilibrium where q̃(t, ω) = q̃(m(t, ω),mi(t, ω), s(t, ω)).

With a slight abuse of notation this implies ci(t, ω) = ci(m(t, ω), mi(t, ω), s(t, ω)), and

li(t, ω) = li(m(t, ω),mi(t, ω), s(t, ω)), and ṁi(t, ω) = ṁi(m(t, ω),mi(t, ω), s(t, ω)). In other

words, we are looking for an equilibrium that depends solely on three states: the level of the

money supply, the distribution of money holdings, and the current state.

By a simple quantity theory argument, it is easily seen that the real variables of this

economy are homogenous of degree one in the level of money, which acts as a numeraire.

Hence we simplify the state space using that the nominal price of money is homogenous of

degree minus one in the level of the money supply, i.e. q̃(m,mi, s) = 1
m
q(xi, s), where x ≡ mi

m

with i = 1, 2 and s = 1, 2. The variable x ∈ [0, 1] is the share of total money balances in the

hands of agent i, i.e. a measure of the wealth distribution. Likewise the consumption rule is

homogeneous of degree zero in the level of the money supply ci(m,mi, s) = ci(xi, s).

Without loss of generality, because of the symmetry of the environment, we will look at

the equilibrium objects from the perspective of agent 1. We focus on equilibria where the

relative price of money q (x, 1) = q (1− x, 2) depends on the share of money in the hands

of the productive agent (but not on the identity of this agent). Next we define a monetary

equilibrium.
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Definition 1 A monetary equilibrium is a price function q̃(m,x, s) = 1
m
q(x, s), with q :

[0, 1]×{1, 2} → R+ with q (x, 1) = q (1− x, 2), and a stochastic process x(t, ω) with values in

[0, 1], such that a consumer i maximizes expected discounted utility (equation (1)) subject to

the budget constraints (2) and (3) with q(t, ω) = q(x, s), non-negativity (4), the government

budget constraint (5) and the tax solvency constraint (6).

3.1 No monetary equilibrium with contractionary policy

This section shows that with uncertainty there is no monetary equilibrium for any con-

tractionary monetary policy. This result relates to Bewley (1983) who showed that in a

neoclassical growth model with incomplete markets there is no monetary equilibrium if the

interest rate is lower than the discount rate.5

A contractionary policy requires agents to pay lump sum taxes (τ < 0). Hence agents

commit to pay taxes which implies that xt ≥ −µ
2

must be satisfied for all histories, as stated

by equation (6). Consider the case where agent 1 has fraction of money balances xt and the

current state of the economy is s(t, ω) = 2, which means that she is unproductive. If xt is

low enough, given that λ > 0 and finite, the agent will fail to comply with the monetary

authorities with non-zero probability. On the other hand, consider the case where xt = 1.

In this case the agent is able to comply with her tax obligations with certainty. This implies

that there exists a threshold x̄ such that for x ≥ x̄ the agent is able to cover her lifetime tax

needs with probability one. Note that the threshold must be independent of the current state

st as with positive probability the states are reversed. In the next lemma we characterize

this threshold.

Lemma 1 If µ < 0, for any state of the world s(t, ω), there is a unique threshold: x̄ = 1/2.

Moreover, there is a unique ergodic set where xt = 1
2
, ∀ t.

5In his model agents face idiosyncratic shocks and there is a lump sum tax obligation that has to be
covered by the agents.
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See Appendix F for the proof. Intuitively, given the uncertain duration of the productivity

spell, the only value of money holdings that ensures compliance with tax obligations is

x = 1/2. At this point, for any history of shocks, the identical lump-sum (negative) transfers

reduce the money holdings of both agents proportionally, leaving the wealth distribution

unaffected. This leads us to

Proposition 1 Let µ < 0: In the ergodic set there is no stationary monetary equilibrium

and consumption allocations are autarkic.

The proof of Proposition 1 follows from noting that Lemma 1 implies no trade in the

ergodic set. Productive agents have an unsatisfied demand for money and unproductive ones

have an unsatisfied demand for consumption goods.

3.2 The marginal value of money

Solving the model requires characterizing the marginal value of money, given by the lagrange

multiplier for ṁi in the problem defined in (1): γ̃(m,x, s). In particular, let γ̃(m,x, 1) and

γ̃(m,x, 2) be the (un-discounted) multipliers associated to the constraints in equation (2)

and (3), respectively, so that e.g. γ̃(m,x, 2) measures the marginal value of money when the

money supply is m, agent 1 holds a share x of it and she is unproductive. Likewise, the

multiplier γ̃(m,x, 1) measures the marginal value of money when the money supply is m,

agent 1 holds a share x of it and she is productive. The first order conditions with respect

to l(t, ω) and c(t, ω) give

γ̃(m,x, 1) = q̃(m,x, 1) and γ̃(m,x, 2) = q̃(m,x, 2) u′
(
c1(x, 2)

)
As usual, these conditions equate marginal costs and benefits of an additional unit of money.

For a productive agent the marginal benefit, γ̃(m,x, 1), equals the cost of obtaining that unit,

i.e. the disutility of work to produce and sell a consumption amount q̃(m,x, 1), in nominal

terms. For an unproductive agent the marginal cost is the value of the forgone unit of money
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γ̃(m,x, 2), while the benefit is the additional units of consumption that can be bought with

it, given by the product of the price q (consumption per unit of money) times the marginal

utility of consumption. The homogeneity of q̃(m,x, 1) with respect to m implies that the

lagrange multiplier γ̃ is also homogenous, i.e. γ̃(m,x, 1) = γ(x, 1)/m. We can then rewrite

the first order conditions in real terms as

γ(x, 1) = q(x, 1) and γ(x, 2) = q(x, 2) u′
(
c1(x, 2)

)
(7)

Notice that if s(t, ω) = 1, then c1(t, ω) = c̄, where c̄ solves u′(c̄) = 1. It is shown in Ap-

pendix D that for x ∈ (0, 1) the lagrange multipliers γ(x, s) solve the following system of

differential equations, which we present following the Hamilton-Jacobi-Bellman representa-

tion,

ργ(x, 1) = −µγ(x, 1) + λ(γ(x, 2)− γ(x, 1)) + γx(x, 1)ẋ(x, 1) (8)

ργ(x, 2) = −µγ(x, 2) + λ(γ(x, 1)− γ(x, 2)) + γx(x, 2)ẋ(x, 2) (9)

To provide some intuition consider the first equation. It states that the flow marginal value

for a productive agent of holding share of money x is equal to change in marginal value due to

monetary policy (−µγ(x, 1)), plus the change in marginal value due to changes in her money

holdings (γx(x, 1)ẋ(x, 1)), and to the jump in marginal value that occurs when the aggregate

state changes (λ(γ(x, 2)− γ(x, 1))). For the second ODE the intuition is analogous.

The next lemma characterizes the functions γ(x, 1) and γ(x, 2) that solve this system:

Lemma 2 Consider x ∈ (0, 1) and µ ≥ 0, then 0 ≤ γ(x, 1) ≤ γ(x, 2), γx(x, 2) < 0, ẋ(x, 2) <

0, and limx↓0 ẋ(x, 2) = 0. Moreover ∂c1(x,2)
∂x

> 0.

See Appendix E for the proof. The lemma characterizes the functions γ(x, 1), γ(x, 2) in

a monetary equilibrium, which happens for µ ≥ 0.6 Intuitively, given the wealth share x,

6In Section 3.1 we show that no monetary equilibrium exists if µ < 0.
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money is more valuable to unproductive than to productive agents. Moreover, since γ(x, 2)

is decreasing, the value of money for an unproductive agent is decreasing in wealth. Notice

also that the consumption of an unproductive agent is increasing in his wealth x; as the agent

gets poorer he tries to avoid running out of resources by reducing her consumption.

3.3 The second best nature of monetary policy

In this section we show that there is no monetary policy µ where both types of agents consume

the allocation of the complete markets economy. We state this in the next proposition.

Proposition 2 If ρ > 0 and λ is finite, there is no value of µ such that c1(x, s) = c2(x, s) =

c̄ ∀ s, x.

See Appendix G for a proof. In order to prove the proposition we start by noting that the

complete markets allocation sustains constant price and marginal value of money. We then

use this result to show that no monetary equilibrium in the economy with uncertainty can be

supported. When no monetary equilibrium exists, agents do not trade and therefore are not

able to insure at all. This implies that they cannot attain constant consumption prescribed

in the complete markets allocation which completes the proof.

To prove that no monetary equilibrium can be supported with a constant marginal value

of money we note that this requires either a zero marginal value of money, and a zero price

of money, or a contractionary policy at the discount rate −ρ. The first trivially cannot

constitute a monetary equilibrium as one of the conditions for a monetary equilibrium is

positive price level and marginal value of money (see Definition 1 and Lemma 2). When

µ = −ρ we know from Section 3.1 that this cannot constitute a monetary equilibrium as

we restricted the discount rate ρ to be positive.7 This last result contrasts with the optimal

policy under known fluctuations (see Remark 2) where the complete markets allocation can

be attained by deflating at the Friedman rate. The difference, as discussed in Section 3.1,

7If ρ = 0 the Friedman rule is attainable.
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is that the length of unproductive spells is random here and therefore agents cannot trade

in order to comply with their tax obligations. Both cases imply a collapse of the monetary

economy resulting in no trade, money is valueless, and as a result there is no monetary

equilibrium.

The state reversal parameter λ being finite is also important for the result to hold. Note

that if λ ↑ ∞, equation (8) provides that γ(x, 1) = γ(x, 2), or that the marginal value of

money is independent on whether the agent is productive or not. Furthermore, we can use

this condition together with the first order conditions (see equation (7)) to obtain c1(x, 2) = 1,

and therefore the complete markets allocation is attained. Intuitively, this follows because

insurance motives decrease to zero as agents are certain that their states are going to be

reversed.

Interestingly, this result does not hinge on µ being constant, as we state in the next

corollary.

Corollary 1 Let µ = µ(x). If ρ > 0 and λ is finite there is no function µ(x) such that

c1(x, s) = c2(x, s) = c̄ ∀ s, x.

The proof of the corollary is discussed in Appendix G.

4 Expansionary monetary policy

In this section we study the case where µ > 0. As in Scheinkman and Weiss (1986) we spe-

cialize to the case with logarithmic utility function, u(c) = ln(c), that will let us characterize

analytically many results.8 We begin by completing the model solution by imposing the

boundary conditions to the system of differential equations for the marginal value of money

γ(x, s), and describing a sufficient condition for a monetary equilibrium to exist. We also

8Scheinkman and Weiss prove equilibrium existence and uniqueness for the log utility case. Hayek (1996)
presents equilibrium existence and uniqueness results for the more general case of CRRA utility preferences
with risk aversion greater than the log case.
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characterize some properties of the optimal consumption rule and we describe its local be-

havior when money growth and current money holdings x are sufficiently small: these results

are useful for the main claim of the paper developed in Section 5. With the same purpose, we

characterize the invariant distribution of money holdings and explore some of its qualitative

properties. Among them, we note that the density of money holdings has an asymptote as x

approaches zero and we produce an approximation for the local behavior of the density for

x “small enough”.

We start by discussing the boundary conditions for this problem. The boundaries concern

the state in which the unproductive agent has no money. In this case unproductive agent

spends the whole money transfer to finance her consumption. Appendix E gives a formal

proof of this statement. The budget constraint gives c1
t = τt = q(0, 2)µ/2. Using equation (7)

for the case of log utility gives

γ(0, 2) =
2

µ
with lim

µ↓0
γ(0, 2) =∞ (10)

where the limit obtains because of Inada conditions. This is an important result in our

analysis. An expansionary policy provides an upper bound to the marginal utility of money

holdings because the price of money is always finite in an equilibrium and therefore the agent

enjoys positive consumption even when she is very poor. When there is no money growth

(i.e. as µ ↓ 0), the agent is not able to consume in poverty and therefore Inada conditions

imply that the marginal utility of money approaches infinity.

The second boundary condition is also associated to the state in which the unproductive

agent has no money and the productive agent has it all. Evaluating equation (8) at x = 1

with ẋ(x, 1) = 0 gives

λ γ(1, 2) = (ρ+ λ+ µ) γ(1, 1) (11)

The reason that x remains constant in this state is the following. The unproductive agent,

who has a zero share of money, will spend all the money she receives from the government
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transfer in consumption goods. Intuitively, as the unproductive agent is impatient and there

is a positive probability of becoming productive, saving a part of the transfer when x = 0

would be optimal if she expected to remain unproductive and that the value of money will go

up in the future. In a rational expectations equilibrium, however, conditional on remaining

unproductive this agent expects the value of money to go down. The amount of consumption

goods bought by a unit if money, measured by q(1 − x, 1), is increasing in x, the money

holdings of the unproductive agent. Hence as x ↓ 0, i.e. as the unproductive agent runs out

of money, the real value of money falls.

We want to find expressions for the evolution of the share of outstanding money balances

x over time. Consider the law of motion for the share of money held by type 1 when

unproductive:

ẋ(x, 2) =
ṁ1

m
− m1

(m)2
ṁ = µ

(
1

2
− x
)
− c1(x, 2)

q(x, 2)
= µ

(
1

2
− x
)
− 1

γ(x, 2)
(12)

where we used the budget constraint of the unproductive agent, equation (3), the government

budget constraint, equation (5), and the first order condition in equation (7). Because there

are two types of agents and shocks are perfectly negatively correlated it is obvious that

for any type of agents with money holdings x the other type is holding 1 − x. Therefore,

ẋ(1−x, 1)+ẋ(x, 2) = 0 so that the accumulation rate of money holdings is perfectly negatively

correlated across agent’s types. This condition, together with equation (12) can be used to

produce the evolution of money holdings for productive agents.

The equation describing the evolution of money holdings for unproductive agents, i.e.

equation (12), shows that the optimal change of real money holdings, on top of the government

transfer, depends on the value of money for the unproductive agent relative to the value of

money for the productive agent: γ(x, 2)/q(x, 2) = γ(x, 2)/q(1 − x, 1). Notice from the first

order conditions that the smaller is the consumption level of the unproductive agent, the

higher is the value of γ(x, 2)/q(x, 2), hence the smaller will be the (absolute) real value of

money transfers.
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For expositional purposes we rewrite the system of ODEs as a function of the aggregate

state and we substitute in for ẋ(x, s) the corresponding expressions from equation (8) and

(9),

γx(1− x, 1)

[
µ

(
x− 1

2

)
+

1

γ(x, 2)

]
= (ρ+ λ+ µ)γ(1− x, 1)− λγ(1− x, 2) (13)

γx(x, 2)

[
µ

(
1

2
− x
)
− 1

γ(x, 2)

]
= (ρ+ λ+ µ)γ(x, 2)− λγ(x, 1) (14)

where for each unproductive agent with money holdings x there is a productive agent with

money holdings 1−x. The system’s boundary conditions is given in equations (10) and (11).

Note that this is a system of delay differential equations.9 See equation (13). It can be seen

that the derivative of the marginal value of money for productive agents γx(1−x, 1) depends

on the marginal value of money for this agent in past times, γ(x, 2).

To illustrate the solution we present a few plots of the important objects in this economy.

Throughout the paper we assume that the baseline case uses λ = 0.1 and ρ = 0.05. The

parameter choices, and the graphical analysis, is solely for expositional purposes. In Figure 1

we present the numerical solution to the system of delay ODEs that provide the marginal

value of money. The left panel plots these values assuming µ = 0 and the right panel assumes

µ = 0.05. The properties listed in Lemma 2 are clearly seen and satisfied. Also, the value of

money when unproductive when wealth approaches zero (i.e. x ↓ 0) is much higher for the

case where µ = 0, as prescribed by equation (10).

We now discuss the optimal consumption when unproductive. This is an important object

because unproductive agents need to spend money to consume and therefore monetary policy

will have a strong impact on their consumption behavior. Notice that

c1(x, 2) =
γ(1− x, 1)

γ(x, 2)
with

∂c1(x, 2)

∂x
> 0 (15)

9Notice in particular that the delay is non-constant, which prevents an analytical solution in closed
form. Notice however that the functions γ(x, 1), γ(x, 2) are analytical, and that the above system allows to
completely characterize these functions given initial values for γ( 1

2 , 1), γ( 1
2 , 2).
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Figure 1: The value of money as function of the wealth distribution x: γ(x, 1), γ(x, 2)
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which follows from Lemma 2. The fact that consumption when unproductive is increasing in

money holdings, implies that for any given money growth rate µ > 0 consumption is smallest

when the agent money holdings are zero, in particular at x = 0 we have

c1(0, 2) =
µ

2
γ(1, 1) , with lim

µ↓0

µ

2
γ(1, 1) = 0 (16)

where the limit obtains from the agent’s budget constraint. This is important for the welfare

analysis that will follow because it shows that monetary transfers provide the unproductive

agent with a lower bound to the consumption level. Without transfers, an agent with no

money cannot consume.

A plot of the consumption function is given in Figure 2. For µ = 0, it can be seen that

consumption when unproductive goes to zero as x ↓ 0. Note also that the consumption when

unproductive may be above the consumption when productive (i.e. c = 1) for a high enough

wealth. The economics of this result is that as x ↑ 1 the productive agent owns almost

zero money, and is eager to accumulate money to insure against the possibility of a switch

of the state. So the price of money is high (i.e. the price of consumption is low), and the
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productive agent is willing to produce a lot to refill his low money holdings.10 A comparison of

the consumption function at zero and positive money growth (the two curves in the picture)

illustrates the tradeoff of inflation: increasing the money growth rate (from 0 to 5 percent in

the figure) provides higher consumption to relatively poor unproductive agents but decreases

the consumption of unproductive agents with “high” wealth. An optimal choice of the money

growth rate trades off these effects.

Figure 2: Consumption when unproductive as function of the wealth distribution x
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We are also interested in understanding how consumption behaves when the unproductive

agent is very poor. The next lemma addresses this issue.

Lemma 3 limx↓0
c1x(x,2)x
c1(x,2)

= Q1, where Q1 = 1 + ρ
µ

+ λ
µ

(
1− γ(0,1)

γ(0,2)

)
> 1 and finite ∀ µ > 0.

10If we let x be the wealth in the hands of the unproductive agent, the relative price of money in terms
of consumption units is given by γ(1 − x, 1), which is increasing in x (see Figure 1 for a plot of the γ(x, 1)
function). It can be obtained that c1(1, 2) = γ(0,1)

γ(1,1)
λ

ρ+λ+µ . As γ(0,1)
γ(1,1) > 1, this equation implies that there

are values of λ
ρ+λ+µ such that c1(1, 2) > 1.
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See Appendix H for the proof. Lemma 3 states that when money holdings x is “small”, the

unproductive agent’s elasticity of consumption with respect to money holdings approaches a

value that is larger than one. This implies that for an unproductive agent that is sufficiently

poor, her level of consumption decreases at a higher rate than her share of money holdings

x.

4.1 The invariant distribution of money holdings

Let F (x, s) denote the CDF for the share of money holdings in state s with density f(x, s) =

∂F (x,s)
∂x

. The density function of the invariant distribution is derived from the usual Kol-

mogorov Forward Equation (KFE) after imposing for stationarity. Appendix I derives the

KFE for our model with poisson jumps in the state, which gives

0 = fx(x, si)ẋ(x, si) + f(x, si)
∂ẋ(x, si)

∂x
+ λ [f(x, si)− f(x, s−i)] (17)

where si = 1, 2 denotes the current state and s−i the other state. It is immediate that the

densities satisfy f(x, 2) = f(1 − x, 1) since, given the assumed symmetry of the shocks, for

each agent with money x = x′ and s = 2 there is another agent with money 1−x′ and s = 1.

This allows us to concentrate the analysis on only one density: f(x, 2). Using the expression

for ẋ(x, 2) derived in equation (12) and ẋ(x, 2) + ẋ(1− x, 1) = 0 gives

fx(x, 2)

f(x, 2)
=
γ(x, 2) (λ− µ)− (ρ+λ+µ)γ(x,2)−λγ(x,1)

1+µ(x− 1
2)γ(x,2)

1 + µ
(
x− 1

2

)
γ(x, 2)

− λ

µ
(

1
2
− x
)

+ 1
γ(1−x,2)

≡ Ω(x) (18)

It follows that

f(x, 2) = Ce
R x
1/2 Ω(z) dz where C =

[∫ 1

0

e
R x
1/2 Ω(z) dz dx

]−1

(19)

where the constant C ensures that
∫ 1

0
f(x, 2) dx = 1.

The next lemma establishes useful properties of the density function for money holdings:
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Lemma 4 Properties of the invariant density function f(x, 2) for x ∈ (0, 1): (i) continuous

and differentiable in x, (ii) limx↓0 f(x, 2) = +∞, and (iii) limx↓0 fx(x, 2) = −∞.

The details of the proof can be found in Appendix J. Figure 3 plots the density function

f(x, 2) for two parametrization, one with zero money growth rate and one with positive money

growth rate. In both cases it can be seen that, as shown in Lemma 4, the density function

has an asymptote as the share of wealth in hands of an unproductive agent approaches

zero. Moreover, the plot shows what happens with the mass “near” zero as we change the

money growth rate. As expected, increasing the money growth rate µ increases the amount

of histories where unproductive agents have little money. This follows because a higher µ

implies higher insurance, and therefore a lower cost of running out of money.

Figure 3: Invariant distribution of wealth f(x, 2)
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Remark 3 The density f(x, 2) is continuous in µ.
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Remark 3 follows as from equation (18) we can see that fx(x,2)
f(x,2)

is a continuous function

of growth rate of money µ because it is a composition of continuous functions on µ. This

remark, together with Lemma 4, implies that, for any µ the density of unproductive agents

has an asymptote at infinity as x converges to zero from above. This asymptote plays

an important role in providing the grounds for the optimality of expansionary monetary

policies. Note that the asymptote at 0 shows that unproductive agents, unless being hit

by a shock that reverse their productive state, deplete their money holdings to the point

of almost exhaustion. As positive money growth rates provide a floor to consumption (see

equation (16)), the asymptote at 0 provides the basis for the optimal money growth rate

being positive.

In Figure 4 we explore the effect of λ on shaping the density function. We do so by

analyzing the case where there is no money growth rate (i.e. µ = 0).11 The figure shows

that increasing λ makes the mass close to x = 0 lower and the mass at average values of x

larger. Intuitively, because the higher is λ the shorter the unproductive state, the probability

that money holdings of unproductive agents gets depleted for high λ is lower. This will be

important later on in understanding the effect of λ on the optimal monetary policy.

5 On the optimality of monetary policy

In this section we show that a finite expansionary policy is optimal. We do this by a com-

bination of analytical an numerical analysis. We show analytically that both contractions

and extreme expansions (i.e. µ ↑ ∞) are not optimal from an ex-ante perspective. Then,

using numerical methods, we show that a strictly positive and finite inflation rate maximizes

ex-ante welfare.

We view the problem of the optimal policy from an ex-ante perspective and we let the

monetary authority choose the growth rate of money µ to maximize the ex-ante expected

11The same qualitative results hold for positive money growth rates.
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Figure 4: Effect of changing λ on the invariant distribution of wealth f(x, 2) with µ = 0
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utility measure

W(µ) = Ex

{
u
(
c1(x, 2;µ)

)
+ u

(
c2(1− x, 2;µ)

)
− l2(1− x, 2;µ)

∣∣µ}
=

∫ 1

0

f(x, 2;µ)
[
ln
(
c1(x, 2;µ)

)
+ ln(1)−

(
1 + c1(x, 2;µ)

)]
dx

where the notation emphasizes that the consumption paths and the probability density of

money holdings depend on the money growth rate µ, c2(1 − x, 2;µ) = 1 because of linear

utility of labor, and l2(1 − x, 2;µ) = 1 + c1(x, 2;µ). The expression for W(µ) measures the

stationary ex-ante (expected) utility, i.e. the welfare of any given agent before her initial

state is realized. Types are given equal weights because the symmetry of the Markov process

for the shocks implies that agents are productive 1/2 of the time. It is assumed that initial

money holdings x are drawn from the invariant distribution f(x, 2).12

12Other arguments in favor of this criterion can be found in Aiyagari and McGrattan (1998).
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The next lemma shows that ex-ante expected utility diverges as the money growth rate

approaches infinity or when a contractionary monetary policy is followed.

Lemma 5 limµ↑∞W(µ) = −∞. Also, for µ < 0, W(µ) ↓ −∞.

The proof of the lemma is given in Appendix K. The intuition behind the lemma is that when

money grows really fast (i.e. µ ↑ ∞) the marginal value of a unit of money becomes zero

because the monetary policy wipes out completely the value of accumulated money holdings:

such a policy destroys all the incentives for a productive agent to accept money in exchange

for goods. In fact, independently of the distribution of outstanding money holdings at the

beginning of the period x, this policy is such that the distribution of money holdings across

agents is constant at x = 1/2, with all the mass concentrated on this point. In this case, as

it is also true for the contractionary case where µ < 0, the economy is in autarky and no

trade occurs. Therefore, because ex-ante agents are unproductive 1/2 of the time and in this

state their consumption is zero, the ex ante utility diverges to −∞ in both of these cases.

For finite non-negative values of money growth rate µ the ex-ante expected welfareW(µ) is

finite.13 To show that the optimal policy is expansionary relative to the constant money case

we resort to numerical analysis. Note that as long as the discount rate ρ is positive14, it does

not play any particular role in the choice of the optimal policy.15 Therefore, numerically the

model can be understood as a single parameter model, λ. Then, we will look at the optimal

choice of µ as we vary λ.

We show that the optimal µ is positive in two different ways. First, we show that for a

given value λ, the objective function W(µ) is single peaked at positive values of µ. Second,

we look at the derivative of the objective function W(µ) evaluated at µ = 0 and we show

that as we vary λ this derivative is always positive. This result, together with Lemma 5

13That W(0) is finite follows immediately from Scheinkman and Weiss (1986). For µ > 0 note that
W(µ) > ln

(
µ
2 γ(1, 1)

) ∫ 0

1
f(y, 2)dy > −∞ ∀ 0 < µ <∞, where µ

2 γ(1, 1) = c1(0, 2).
14ρ = 0 implies that the Friedman rule is attainable.
15It will, of course, affect the level of the policy but it does not affect the comparison between zero and

positive money growth rates.
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which can be read as stating that the derivative of the objective function W(µ) is negative

for µ ↑ ∞, shows that the optimal level of money growth rate is strictly positive and finite.

In Figure 5 we show that, once we fix λ, ex-ante expected welfareW(µ) is a concave func-

tion of the money growth parameter µ, attaining its peak at positive values of µ. Moreover,

it can be seen that increasing λ makes the optimal value of the money growth rate µ to de-

crease. Intuitively, an increase in λ implies a decrease in the expected length of unproductive

spells, 1/λ, so that insurance motives become less relevant relative to production incentives,

therefore providing a rationale for lowering the production distortion.16

We want to show that the the optimal money growth rate is positive for a wide range of

values of λ. We do this by analyzing the first derivative of the objective function with respect

to money growth rate parameter µ, ∂W(µ)
∂µ

, which is possible becauseW(µ) is continuous and

differentiable in µ for all 0 < µ <∞. Lemma 5 provides that limµ↑∞
∂W(µ)
∂µ

< 0. This result,

together with differentiability, implies that if ∂W(0)
∂µ

> 0 the optimal inflation rate is strictly

positive and finite. In other words, the ex-ante expected utility W(µ) attains its maximum

at some 0 < µ <∞.

In the left panel of Figure 6 we present the derivative of the ex-ante expected welfare

W(µ) evaluated at µ = 0 as a function of λ. It can be seen in the plot that the derivative

is positive for every value of λ so that the optimal money growth rate is strictly positive.17

In the right panel we present the level of ex-ante expected utility W(0). This plot os useful

because it shows that, as we increase λ, W(0) approaches the ex-ante expected utility that

can be attained under complete market (which provides ex-ante expected utility of −2),

result that suggests that the incentives for expansionary policies decrease as λ increases.

The economics behind the optimal money growth rate being positive are simple: in an

economy with borrowing constraints agents will occasionally incur into histories, i.e. long

spells of low-productivity, in which they ”almost” run out of money. The positive money

16In Section 3.3 we show that the complete markets allocation can be attained as λ ↑ ∞ because insurance
motives vanishes completely.

17This result is robust to different values for ρ > 0.
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Figure 5: Ex-ante expected welfare W(µ)
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Figure 6: Derivative and level of ex-ante expected welfare W(µ) at µ = 0
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transfers the government distributes provide a floor to how bad consumption looks in these

states. But this provision of insurance comes with a cost as productive agents are less willing

to accept money balances in exchange for goods as monetary expansions decrease the return

of money. The optimal finite money growth rate strikes a balance between these opposing

forces.

6 State dependent policy

The analysis of the optimal policy assumed that money growth µ was constant. This section

explores the consequences of allowing the government to use a state dependent policy. We

let the government tie the monetary policy to the distribution of wealth. In particular, we

allow the policy to be dependent on the share of current money held by unproductive agents,

µ = µ[x]

this policy is such that the government observes the share of wealth held by unproductive

agents, but cannot identify individual agents nor observes transactions. This implies that
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the complete markets allocation, where both types of agents consume c̄ for every value of

wealth x and state of nature s, cannot be attained (see Section C and Section 3.3).

When we allow the monetary policy to depend on the distribution of wealth we need

to update the system of ODEs governing the marginal values of money γ(x, s) ∀ x, s, the

boundary conditions, and the stationary density of money holdings f(x, 2). The system of

ODEs, presented in equations (13) and (14), become

γx[x, 1]ẋ[x, 1] = (ρ+ λ+ µ[1− x])γ[x, 1]− λγ[x, 2]

γx[x, 2]ẋ[x, 2] = (ρ+ λ+ µ[x])γ[x, 2]− λγ[x, 1]

where

ẋ[x, 1] = µ[1− x]

(
1

2
− x
)

+
1

γ[1− x, 2]

ẋ[x, 2] = µ[x]

(
1

2
− x
)
− 1

γ[x, 2]

and boundary conditions

γ[0, 2] =
2

µ[0]

λγ[1, 2] = (ρ+ λ+ µ[0])γ[1, 1] .

The tax-solvency constraint in equation (6) implies that the money rule must satisfy

µ[x] ≥ −2x .
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The inverse of the ratio of the density function f [x, 2] to its first derivative also changes,

fx[x, 2]

f [x, 2]
=

γ[x, 2]
(
λ− µ[x] +

(
1
2
− x
)
µx[x]

)
− (ρ+λ+µ[x])γ[x,2]−λγ[x,1]

1+µ[x](x− 1
2)γ[x,2]

1 + µ[x]
(
x− 1

2

)
γ[x, 2]

− λ

µ[1− x]
(

1
2
− x
)

+ 1
γ[1−x,2]

The optimal policy trades off insurance motives and production incentives. Making the

policy to depend on the distribution of wealth provides some degree of freedom to the govern-

ment as it is able to decouple these two forces. Note that the decoupling cannot be complete.

This can be seen in the boundary conditions where the marginal values of money at both

corners depend on the policy when the unproductive agent is very poor µ[0]. To make this

point clear we explore numerically a case where

µ[x] = µ1 + (µ0 − µ1)
(
e−κx − xe−κ

)
(20)

with µ[0] = µ0, µ[1] = µ1, and µ[x] non increasing and convex. Note also that if κ = 0 then

µ[x] is linear, and if κ = 0 and µ0 = µ1 then µ[x] is constant in the whole range.

We compare the best constant, and therefore state independent, anticipated policy µ with

the best state dependent policy µ[x] that satisfies equation (20).18 In Table 1 we present the

best state independent and state dependent policies µ and µ[x] and we provide some statistics

to aid in the comparison of these policies. As it can be seen in the first row of the table,

the state dependent policy µ[x] provides higher welfare than the state dependent policy µ

(the policy µ[x] provides welfare that is 8% away from that one attained under complete

markets while the state independent policy µ is 33% away). The last three rows in the table

present the coefficients of the policies that maximize ex-ante welfare W(µ) in both cases.

Because the insurance motives outweighs the production incentives the state independent

18To find the best policy µ[x] we maximize ex-ante expected welfare by searching on a tri-dimensional grid
on µ0, µ1, and κ. For numerical reasons we assume that µ0 and µ1 cannot be very large or very low. Still,
the maximum of W(µ) is attained at the interior of the set.
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policy µ provides that money growth rate is positive, at a 3% rate. The state independent

policy µ[x] provides some degree of freedom that the government can exploit to decouple,

at least partially, these two opposing forces. Therefore, when the unproductive agent is

very poor the money growth rate is positive in order to provide insurance, but it is negative

almost everywhere else to maximize the production incentives. As it can be seen in the table,

and in Figure 7 where we plot the different policy rules and the tax solvency constraint

that needs to be satisfied, the state dependent policy µ[x] provides higher insurance to poor

unproductive agents through higher money emission than the constant, state independent,

policy µ. Moreover, the state dependent policy µ[x] provides high production incentives

everywhere else by taxing agents above the Friedman rate (µ1 < −0.05 = −ρ). In fact,

because there will be times where the government will be printing money heavily, the average

money growth rate is below the Friedman rate. That is, E[µ[x]] < −ρ.

Table 1: Statistics for different policy rules

State independent state dependent
µ µ[x]

E[W]
E[Wcm]

1.3352 1.0804

E[µ] 3% -5.65%
E[x] 0.335 0.552

E[c1(x, 2)] 0.3225 0.78875
V (c1(x, 2)) 0.04519 0.14992
E[c1(x,2)]√
V (c1(x,2))

1.5159 2.0371

µ0 0.03 0.073684
µ1 0.03 -0.0575
κ 0 75.2

To compute expected values we used the density of money holdings f [x, 2]. x: share of
money in hands of unproductive agent. The functional form for the money growth rate
is µ[x] = µ1 + (µ0 − µ1) (e−κx − xe−κ). E[Wcm]: ex-ante expected utility under complete
markets assumption (under complete markets E[Wcm] = 2).

To understand in which way does the state dependent policy µ[x] increases welfare we

look at the consumption of an unproductive agent c1(x, 2). In Figure 8 we plot this con-

sumption profile for both type of policies. The figure shows that, for every value of wealth,
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an unproductive agent enjoys higher consumption. Note that this does not imply that un-

productive agents actually consume more under the state dependent policy µ[x] because this

plot is silent about the transition dynamics. To look at this we evaluate some measures of

consumption that include the dynamics aspects of the model, values which we present in

Table 1. As it can be seen in the table, the state dependent policy µ[x] provides higher aver-

age consumption but also higher variance. Still, per unit of standard deviation the average

consumption is higher under the state dependent policy µ[x].

This section shows that a state dependent policy that ties the money emission to the share

of wealth on the hands of unproductive agents is able to increase welfare substantially. The

government does so by printing money only when it is required; this is when the unproductive

agent is very poor and expansionary monetary policies provide a floor to her consumption. In

other instances printing money reduces the incentives to trade because reduces the return to

outstanding money balances. Therefore, away from the case where the unproductive agent is

very poor, the government chooses a monetary policy that induces trading, that is, it follows a

contractionary monetary policy. Interestingly, the average money growth rate, or the average

inflation rate, is below the negative of discount rate ρ, and the average inflation rate is below

Friedman’s prescribed rule. The decoupling of insurance motives and production incentives

is partial as the policy at x = 0 connects the marginal value of money at both corners (see

the boundary conditions) and therefore providing to much insurance when the unproductive

agent is very poor implies distorting the economy when she is also very rich.

The results of this section can also be used to connect monetary policy to business cycles.

Note that aggregate production is just c1(x, 2)+c1(1−x, 1) = c1(x, 2)+1. It is straightforward

to see that the state dependent policy µ[x] is such that monetary expansions happen when

aggregate production is low and monetary contractions when it is high. In other words, the

policy is expansionary during recessions and contractionary during expansions.
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Figure 7: Different policy rules
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Figure 8: Consumption for unproductive agent for different policy rules
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7 Concluding remarks

This paper analyzed the optimal anticipated money growth rule in the Scheinkman and

Weiss (1986) economy. The choice involves a tradeoff between insuring agents who are hit

by long sequences of bad shocks vs. minimizing the distortion that the inflation tax induces

on production decisions. We showed that a monetary policy involving deflation, such as the

Friedman rule, or an infinite inflation, do not support a monetary equilibrium, and leads to

autarky. With a constant money supply the government provides no insurance: we showed

that this corner solution is not optimal; from an ex-ante perspective, agents are better off

with strictly positive money growth. The presence of uninsurable risk is key to this result:

in the non-stochastic of our economy the Friedman rule is optimal.

Two important assumptions behind the optimality of the expansionary monetary policy

are that the marginal utility of consumption approaches infinity as consumption approaches

zero (Inada conditions) and that unproductive agents can only consume if their money bal-

ances are not zero (e.g. no home production is allowed). Under these assumptions, the

expansion of the money supply is good because the precautionary savings motive that follow

from the unboundedness of the utility function dominates the cost of expansions (decrease

in production). In other words, providing some extra cash to poor agents is always optimal

even though it implies a decrease in aggregate production. If we relax either assumption, e.g.

assume that the utility function is bounded or extend the model to allow for positive endow-

ments, an expansionary monetary policy might not be optimal anymore as the precautionary

savings motive can be dominated by the inflation effect on production. Kehoe, Levine and

Woodford (1990) explore a particular case of these economies, one where there are constant

endowments, no production, and where agents differ in their marginal utility of consumption.

Because agents can trade any fraction of their endowment, they can always overcome Inada

conditions by simply keeping a fraction of their endowment for personal consumption. They

show numerically that the optimality of an expansionary policy depends on parameter values

and therefore is not guaranteed.
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What would happen to optimality in our model if we modify either of the assumptions is

not clear. But we conjecture that our results are robust to the introduction of small endow-

ments. We argue that this is the case as our proof hinges on showing that an expansionary

monetary policy dominates constant and contractionary monetary policies. Note that in

our benchmark model endowments are zero. Because of continuity this implies that small

endowments should not reverse the result, even though they provide some insurance

We also investigate what happens under state dependent policies. We allow the govern-

ment to tie the monetary policy to the share of wealth on the hands on unproductive agents.

This allows to partially decouple the insurance motives and production incentives, which

implies an increase in average consumption and welfare. This generates that the optimal

policy is to print money when the unproductive agent is poor and to deflate otherwise. In

other words, the optimal policy is one where there is money emission during recessions and

monetary contractions during booms. Because the provision of insurance when unproduc-

tive agents are sufficiently poor also affects the production incentives when an unproductive

agent is rich (through the boundary conditions) the decoupling is not complete. As so, the

monetary expansions and contractions are not that large. Interestingly, the average money

growth rate, and also the average inflation, are below the prescribed Friedman rate.
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Appendix

A Related Literature

A few previous contributions discuss environments where a flat monetary expansion is efficient
in an economy with incomplete markets and where money serves an essential role. The
seminal paper in this line is Levine (1991), who considers an endowment economy where
the agents’ utility function change randomly according to whether they are “buyers” or
“sellers”, a state that follows an exogenous Markov process. Levine’s develops an analytical
argument which shows that an expansionary monetary policy can attain the first best. Three
assumptions are crucial for this result: uncertainty, constant individual endowment, and
bounded utility functions. Uncertainty is key because, as in Scheinkman and Weiss and
our model, it creates a demand for insurance on the part of “unlucky” agents. Constant
endowment implies that monetary policy, through either inflation or deflation, cannot affect
productions decisions, which simplifies the analysis. In Levine’s model sellers sell their entire
endowment, which amounts to a restriction on the agents marginal utilities of the set of
feasible trades. Because of this assumption monetary policy can provide insurance at no cost
since altering the relative price has no effect on welfare in the corner solution.

Kehoe, Levine and Woodford (1990) extend Levine’s setting to allow for internal solu-
tions where sellers do not necessarily sell all their endowment. For reasons of tractability,
they restrict attention to equilibria in which what happens in each period is independent of
history (two state markov equilibria). Under these assumptions the distribution of money
is degenerate: “sellers” always end the period owning the whole money stock. In this setup
optimal monetary policy has a cost (it distorts the sellers’ choices) and a benefit, namely that
it provides some insurance. Optimal monetary policy can be either expansionary or contrac-
tionary. They use numerical solutions of the model to study how the optimal inflation varies
with parameters’ values.19

Compared to these papers, our contribution is to analyze the question of the optimal
policy in the context of a production economy, and to focus, as Scheinkman and Weiss, on
equilibria in which the decisions in each period depend on the whole history of shocks, as
summarized by the distribution of money holdings. We analytically characterize the non-
degenerate distribution of money holdings, and provide a characterization of the the ex-ante
efficient anticipated monetary policy. The concluding section of our paper discusses some
key assumptions that explain the differences in results between these papers.

Our work is also related to Imrohoroglu (1992) who evaluates the welfare costs of inflation
in an economy with borrowing constraints and where money is essential for trading. In
the model a continuum of agents are faced with idiosyncratic shocks with no aggregate
uncertainty that define if agents are employed, getting goods y, or unemployed, getting θy
with θ < 1. The consumption goods are homogeneous and therefore agents want to trade

19 Green and Zhou (2005) also study a Bewley-type setup using mechanism design theory. They restrict the
feasible set of policies to model monetary equilibria and compare the allocations obtained under alternative
“institutional mechanisms”. One of their examples features agents who differ in their marginal utilities and
endowments which vary randomly, as in Levine’s. It is shown that, because utility functions are bounded,
the optimal allocation is to assign all the consumption to agents with high marginal utility, which can be
done through an expansionary monetary policy.
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to smooth consumption. In order to do so, they are endowed with some fraction of money
and trade in a centralized market. For a calibration of the model, Imrohoroglu estimates
that an expansionary monetary policy is costly. The calibrated value for θ is crucial for this
result (θ is calibrated to be 1/4 from previous work by her on the topic). For small enough
values for θ the marginal utility of consumption when unemployed would become arbitrarily
large and therefore inflations, that serve as a transfer to poor agents, would become optimal
(in Section L we discuss a similar model and show that a strictly positive inflation rate
is optimal). Our model departs from Imrohoroglu’s in several ways. First, she has an
endowment economy while we deal with a production economy which adds an extra margin
where inflation plays a role. Moreover, in her model when an agent is unemployed receives
some endowment that overturns Inada conditions, while in our model an unproductive agent
receives nothing so Inada conditions become of first order importance. It follows that in our
setup a monetary expansion, that among other implies a transfer from rich to poor agents,
provides insurance to unproductive agents. That is, an expansion can be understood as the
provision of some endowment to the unlucky agents. Second, her assumption that shocks are
idiosyncratic together with a centralized market for goods implies that the price of money is
independent of the distribution of money holdings. In our model, because we are dealing with
agents which shocks are correlated, the price of money is not orthogonal to the distribution
of money holdings. Therefore, even though both economies face no aggregate uncertainty,
her economy exhibits a constant steady state while ours has a stationary distribution with
cycles.

A related question on an optimal scheme for monetary transfers in a search theoretic
framework is evaluated in Berentsen, Camera and Waller (2005), who show that a one-time
money injection may increase ex-ante welfare. Their analysis is done in the search model of
money of Lagos and Wright (2005), where a non-degenerate distribution of money holdings
within a period provides a role for monetary policy. An important difference with our setup is
that here the distribution of wealth at the end of the period is degenerate at a single value and
therefore the monetary policy has no effect on the dynamics of the economy. This difference
is important if we want to allow the monetary authority to choose the money growth. As
noted by Berensten, Camera, and Waller, in the long run money is neutral in their model
and therefore the optimal money growth is to deflate following Friedman’s prescription.20

In a broad sense the mechanism that we study is related to a recent strand of literature
dealing with the interplay between the agents’ liquidity and the business cycle, these include
Kiyotaki and Moore (2008), Guerrieri and Lorenzoni (2009), Chamley (2010), Brunnermeier
and Sannikov (2011). Our results are also related to Aiyagari (1995) who studies a neoclassical

20 Another related papers is Bhattacharya, Haslag and Martin (2005), which studies several environments
where the monetary policy can have redistributive effects and show that the Friedman rule might not be
ex-post optimal. In particular, related to our work, they show that in an example of Townsend (1980)
deterministic Turnpike model ex-post optimality is not attained by the Friedman rule. The different welfare
criterion (ex-post versus ex-ante) is key here: Remark 2 in the next section shows that the Friedman rule is
ex-ante optimal in a deterministic version of our economy. Edmond (2002) and Akyol (2004) also discuss the
possibility of an efficient expansionary policy. Both papers study an endowment economy and use numerical
simulations to show that positive inflation may be optimal. A main difference between these papers and ours
(and Levine’s) is that money in these papers serves no essential role, it is valued only because it enters the
utility function of agents. This difference is important because, as explained by Kehoe, Levine and Woodford
(1990), it does not allow the redistributional consequences of monetary policy to be analyzed.
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growth model with borrowing constraints, as in Bewley (1977). Aiyagari shows that a positive
capital tax rate is optimal because agents are over-saving due to precautionary motives and
therefore the capital stock is too high. Because the government faces no incomplete markets,
an optimal policy involves taxing capital and using the proceedings to produce a public good
that all consumers enjoy, independently of their idiosyncratic shock. Our finding that the
optimal policy involves an expansionary policy is reminiscent of Aiyagari’s result that the
return on the savings should be taxed. However, the model and the mechanism underlying
these results are different. In our setup there is no public good through which the government
can “insure” the agents. This is important because under our maintained assumption the
government does not know who is productive, and hence it has no ability to tax productive
agents to redistribute to unproductive agents.21 Another difference with Aiyagari is that
the economy we consider has cycles: aggregate production, the real interest rate, and the
value of money fluctuate through time. Because of these features, the method that we use
to characterize the optimal policy is different.

B Proof of Remark 2

Let i = 1 be the index for the unproductive agent, and consider her decision problem. The
money supply growth is µ = ṁt

mt
and let ξ̃1

t denote the lagrange multiplier of the money flow

constraint in equation (3). The first order condition with respect to c1
t gives: ξ1

t = qt u
′(c1

t ),
where we used the homogeneity of degree -1 in the aggregate money supply mt for both

ξ̃1
t and q̃t, namely: ξ̃1

t = 1
mt
ξ1
t and q̃t = 1

mt
qt. The Euler equation for ṁ1

t gives
˙̃γ1
t

γ̃1
t

= ρ or

ρ =
ξ̇1
t

ξ1
t
− ṁt

mt
= q̇t

qt
− θ ċ1t

c1t
− µ where the last equality uses ξ1

t = qtu
′(c1

t ) and that u′′c/u′ = −θ.
Notice that this is solved by c1

t = c̄ , ċ1
t = q̇t = 0, µ = −ρ and the constant level of q is

pinned down by the unproductive agent budget constraint,

m1
0 +

∫ T

0

ṁ1
t dt =

∫ T

0

c̄

q̃t
dt which gives q = 2 c̄

eρT − 1

ρ
.

It is immediate to verify that this allocation also solves the Euler equation of the problem of
the productive agent.

C Fiscal policy under alternative government powers

A central assumption in our analysis is that the government does not know s(t, ω), i.e. the
identity of the productive type. It is useful to explore the consequences of relaxing this
assumption to better understand the nature of the monetary policy problem. Without loss
of generality, given the symmetry of the states, let us assume that type 1 is productive and
type 2 is not productive. Also, for simplicity, let us set the money supply equal to zero in
what follows.

21We discuss in Section C how the government might actually support first best through taxation if it had
the ability to commit to trigger policies.
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We begin by assuming that the government observes the identity of the productive type
and is able to tax productive agents and transfer resources to unproductive agents. We con-
sider two taxing technologies. The first one is lump sum taxes: in this case the productive
agent pays a flat tax φ̄ = c̄, and the government uses the proceedings to finance the consump-
tion of the unproductive agent. It is immediate that under these assumptions the complete
markets allocation can be replicated. Alternatively, consider a setup where the only available
taxes are distortionary, say proportional to production: then the transfer to the unproductive
agent is τ = φl. For a generic tax rate φ ∈ (0, 1) the consumption of the two agents solves
u′(c1) = 1

1−φ , u
′(c2) = 1

φ
. An ex-ante optimal policy, maximizing the expected utility of the

two types with equal weights, gives φ = 1/2. Under this setting the government fiscal policy
provides insurance, consumption is constant through time, though the level of consumption
is smaller than under complete markets.

Table 2: Welfare (marginal utilities) under alternative fiscal policy powers

type known type not known
lump-sum-tax distortionary tax Gvt. commitment No commitment

u′(c̄1) = u′(c̄2) = 1 u′(c̃1) = u′(c̃2) = 2 u′(c̄1) = u′(c̄2) = 1 u′(c̄1) = 1 , u′(c2) =∞

Let us next consider a government who does not know the type’s identities. In this case
the efficient stationary allocation with c = c̄ at all times for all types can be sustained if the
government has the ability to commit to a trigger policy. Suppose the government credibly
announces: “productive types must pay a tax c̄ to the government, who will then transfer it
to the other types. If at any point in time the tax is not enough to pay for the transfer, the
scheme will be shut down and the economy will be left in autarky forever”. Assuming the
threat is credible (and discounting is finite) then it is in the interest of every individual agent
to comply, because deviating implies that the agent consumption is zero when unproductive
which, due to Inada conditions, delivers an expected utility of −∞ (since, on average, agents
are unproductive for half of the times). The various outcomes sustainable under alternative
fiscal policy assumptions are summarized in Table 2.

In what follows, we consider a less powerful government than the one depicted above. We
assume the government does not know the identity of productive types, and that it cannot
commit to trigger policies. In such a situation fiscal policy, i.e. direct taxation, is powerless.
Absent a liquid asset, the resource allocation is autarkic, and individuals experience inefficient
fluctuations in utility. We next study the powers of monetary policy, under the maintained
assumptions of type-ignorance and no-commitment.
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D The Euler equation for the marginal utility of money

The maximum principle implies that the lagrange multiplier γ̃ follows22

E
{
e−ρ(t+dt)γ̃(m(t+ dt, ω), x(t+ dt, ω), s(t+ dt, ω))

∣∣m(t, ω) = m,x(t, ω) = x, s(t, ω) = 1
}

≈ e−ρt [−ργ̃(mt, xt, 1)dt+ γ̃x(mt, xt, 1)ẋtdt+ γ̃m(mt, xt, 1)ṁtdt+ γ̃(mt, xt, 1)(1− λdt)]
+ e−ρtγ̃(mt, xt, 2)λdt

=
e−ρt

mt

[
−ργ(xt, 1)dt+ γx(xt, 1)ẋtdt− γ(xt, 1)

ṁt

mt

dt+ γ(xt, 1)(1− λdt) + γ(xt, 2)λdt

]
=
e−ρt

mt

[γ(xt, 1) + γx(xt, 1)ẋtdt− γ(xt, 1)(ρ+ λ+ µ)dt+ γ(xt, 2)λdt]

Subtracting e−ρtγ(xt, 1)/mt from both sides, dividing by dt, taking the limit for dt ↓ 0,
and using equation (12) to replace ẋ with its law of motion, gives the delay differential
equation (8). An identical logic gives equation (9).

E Proof of Lemma 2

That γ(x, s) > 0 for s = 1, 2 is implied for all internal solutions from the Khun-Tucker
theorem and increasing utility. Now we show that

γ(x, 1) ≤ γ(x, 2) . (21)

Note that at any point in a history, (t, ω), these two multipliers differ only because of the
production possibility, i.e. li = 0 when the agent is unproductive (s = 2). Recall the first or-
der condition with respect to ci in equation (7): γ(x, 2) = q(x, 2) u′ (ci(x, 2)). Differentiating
this condition with respect to li gives

∂γ(x, 2)

∂ li
= q(x, 2) u′′

(
ci(x, 2)

) ∂ci(x, 2)

∂ li
= q(x, 2) u′′

(
ci(x, 2)

)
≤ 0 .

This shows that, at any given level of x, the multiplier is decreasing in li, hence γ(x, 1) ≤
γ(x, 2) since li = 0 when the agent is not productive. The interpretation is immediate:
the multipliers γ(x, 2) and γ(x, 1) describe a problem that only differs with respect to the
constraint on the labor supply. Since the agent has less “resources”, it follows that an
additional unit of money (or “resources”) is more valuable when s = 2.

Next we show that ẋ(x, 2) < 0 and γx(x, 2) < 0 for x ∈ (0, 1). Note that the right hand
side of equation (9) and the inequality in equation (21) imply that these terms have the
same sign. We now argue that the sign must be negative, otherwise the optimality of the
consumption plan is violated. Differentiating the unproductive agent first order condition
(equation (7)) gives

γ̇(x, 2)

γ(x, 2)
=

q̇(x, 2)

q(x, 2)
+
u
′′

(c1(x, 2))

u′ (c1(x, 2))
ċ1(x, 2)

22The variable γ̃ is a costate. This condition is equivalent to the first order condition ˙̃γ − ργ̃ = 0 in the
current value Hamiltonian program.
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or, using that q(x, 2) = γ(1− x, 1) and ċ = cx ẋ,

c1
x(x, 2) ẋ(x, 2) =

[
γ̇(x, 2)

γ(x, 2)
− γ̇(1− x, 1)

γ(1− x, 1)

]
u
′
(c1(x, 2))

u′′ (c1(x, 2))

Using equation (8) and equation (9) to replace the terms in the square parenthesis gives

c1
x(x, 2) ẋ(x, 2) = λ

[
γ(1− x, 2)

γ(1− x, 1)
− γ(x, 1)

γ(x, 2)

]
u
′
(c1(x, 2))

u′′ (c1(x, 2))
< 0 (22)

where the inequality follows since the term in the square parenthesis is positive, as implied by
equation (21). The right hand side of equation (22) implies that consumption is decreasing,
i.e. ċ1(x, 2) < 0. This could happen in one of two ways. First, with ẋ(x, 2) > 0 and
c1
x(x, 2) < 0. But this violates optimality: consumption is decreasing in the agent’s wealth

share. The agent could deviate from this plan and increase her welfare. The other possibility,
consistent with optimality, is that ẋ(x, 2) < 0 and c1

x(x, 2) > 0.
Finally we show that limx↓0 ẋ(x, 2) = 0. The right hand side of equation (22) is strictly

negative at all x, including the boundary x = 0. Since x cannot be negative, this implies
that c1

x(x, 2) ↑ +∞ and ẋ(x, 2) ↑ 0 as x ↓ 0. Equation (24) in Appendix H can be used to
verify that limx↓0 c

1
x(x, 2) = +∞.

F Proof of Lemma 1

We will first prove by contradiction that x̄ 6∈ [0, 1/2). Then we will show that x̄ = 1/2
it is enough to cover the lifetime tax obligations. Suppose that x̄ < 1/2. Without loss of
generality assume that xt ∈ (x̄, 1/2) and agent 1 is unproductive. Conditional on no reversal
of the state, it follows that xt+dt < xt. Then for a given ∆ ∈ R+, Pr [xt+∆ < x̄] > 0 and
therefore the agent will fail to comply with her tax obligations with positive probability.
Then, x̄ 6∈ [0, 1/2). Consider now the case where xt = x̄ = 1/2. As the agent can decide
not to trade she can always keep her share of outstanding money balances x above 1/2 and
therefore for any µ ∈ (0, 1) she will be able to cover her tax needs. That x = 1/2 is the
ergodic set is trivial. If x0 < 1/2 there is a positive probability that an agent fails to pay
for her lifetime taxes. An unproductive agent with money holdings x > 1/2 is willing to buy
goods (and the productive one with x < 1/2 willing to take the money) until x reaches 1/2.

G Proof of Proposition 2

Conjecture that c1(x, s) = c2(x, s) = c̄ ∀ x, s. From the first order conditions in equation (7),

γ(x, 2) = q(x, 2) = q(1− x, 1) = γ(1− x, 1) ∀ x

as u′(c̄) = 1. When x = 0 we have that

γ(0, 2) = γ(1, 1) ≡ γa
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and when x = 1 we get
γ(1, 2) = γ(0, 1) ≡ γb

There are three possibilities: (i) γa < γb, (ii) γa > γb, and (iii) γa = γb. In case (i) we have
that γ(0, 1) > γ(0, 2) which contradicts Lemma 2. In case (ii) we have that γ(1, 1) > γ(1, 2)
which again contradicts Lemma 2. The only remaining possibility is (iii) where the marginal
value of money is constant for every pair {x, s}. Let γ̄ denote this value. From equation (8),
after imposing the constant value γ̄ for the marginal value of money, we obtain

(ρ+ µ)γ̄ = 0 (23)

which is satisfied if µ = −ρ or when γ̄ = 0. When γ̄ = 0 note that the price level has to be
constant and equal to the marginal value of money γ̄ which follows from direct inspection of
the first order conditions presented in equation (7). Let q̄ denote this constant level. Because
γ̄ = 0, q̄ = 0 which cannot constitute an equilibrium as one of the conditions for a monetary
equilibrium is positive price q̄ (see Definition 1). When µ = −ρ we know from Section 3.1
that it cannot constitute a monetary equilibrium. This implies that agents do not trade,
money is valueless, and as a result there is no monetary equilibrium. This completes the
proof of Proposition 2.

This result does not hinge on µ being constant. Let µ = µ(x). Note that equation (23)
has to hold for every value of x. This again implies that solution requires either γ̄ = 0 or
µ(x) = −ρ ∀ x, which we know does not constitute an equilibrium.

H Proof of Lemma 3

That Q1 > 1 follows since γ(0, 2) > γ(0, 1). Using equation (15) we write

c1
x(x, 2)

c1(x, 2)
= −γx(1− x, 1)

γ(1− x, 1)
− γx(x, 2)

γ(x, 2)

From equation (13) (evaluated at 1− x) and equation (14) (evaluated at x) we get

γx(1− x, 1)

γ(1− x, 1)
=
ρ+ λ+ µ− λγ(1−x,2)

γ(1−x,1)

µ
(
x− 1

2

)
+ 1

γ(x,2)

,
γx(x, 2)

γ(x, 2)
=
ρ+ λ+ µ− λγ(x,1)

γ(x,2)

µ
(

1
2
− x
)
− 1

γ(x,2)

.

Then, noting that γ(0, 2) = 2
µ
, some algebra gives that

lim
x↓0

c1
x(x, 2)x

c1(x, 2)
= 1 +

ρ

µ
+
λ

µ

(
1− γ(0, 1)

γ(0, 2)

)
≡ Q1 (24)

which proves the lemma.
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I Derivation of the invariant wealth distribution

The CDF for the money holdings, F (x, s, t), with density f(x, s, t) in states s = 1, 2 follows

F (x, 1, t+ dt) = (1− λ dt)F (x− ẋ(x, 1) dt, 1, t) + λ dt F (x− ẋ(x, 2) dt, 2, t)

F (x, 2, t+ dt) = (1− λ dt)F (x− ẋ(x, 2) dt, 2, t) + λ dt F (x− ẋ(x, 1) dt, 1, t)

Expanding F (x, s, t) around x gives (we only report the one for s = 2)

F (x, 2, t+ dt) = (1− λ dt) [F (x, 2, t)− f (x, 2, t) ẋ(x, 2)dt] + λdt [F (x, 1, t)− f (x, 1, t) ẋ(x, 1)dt]

Subtracting F (x, 2, t) from both sides and dividing by dt and taking the limit for dt ↓ 0

lim
dt↓0

F (x, 2, t+ dt)− F (x, 2, t)

dt
=
∂F (x, 2, t)

∂t
= −f (x, 2, t) ẋ(x, 2)− λ (F (x, 2, t)− F (x, 1, t))

Using this equation together with the corresponding one for state s = 1 and imposing invari-
ance give

0 = f (x, 2) ẋ(x, 2) + f (x, 1) ẋ(x, 1) (25)

Taking the derivative w.r.t. x delivers the Kolmogorov forward equation

∂ ∂F (x, 2, t)

∂x ∂t
=
∂f(x, 2, t)

∂t
=
∂ [−f (x, 2, t) ẋ(x, 2)− λ (F (x, 2, t)− F (x, 1, t))]

∂x

which, equated to zero (imposing invariance) gives equation (17).

I.1 Application to model with correlated shocks

Using the expression in equation (12), together with ẋ(x, 2)+ẋ(1−x, 1) = 0 to replace ẋ(x, 1)
and ẋ(x, 2) into equation (17) gives

fx(x, 2)

f(x, 2)
=

(λ− µ)γ(x, 2) + γx(x,2)
γ(x,2)

− λγ(x, 2)f(x,1)
f(x,2)

1 + µ
(
x− 1

2

)
γ(x, 2)

Using equation (25) to replace the ratio f(x, 2)/f(x, 1) in the above expression gives equa-
tion (18).

I.2 Application to model with uncorrelated shocks

For x ∈ [0, x̄) we have f(x, 1) = 0. Using equation (27) to replace ẋ(x, 2) in equation (17)

fx(x, 2)

f(x, 2)
=

(λ− µ)γ(x, 2) + γx(x,2)
γ(x,2)

1 + µ (x− 1) γ(x, 2)

Using equation (29) to replace for γx(x,2)
γ(x,2)

in the above expression gives equation (32).
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J Proof of Lemma 4

See Ω(x) in equation (18). Because γ(x, 1) and γ(x, 2 are continuous and differentiable
functions of x in (0, 1), by inspection we know that Ω(x) is continuous and differentiable in
x for any x ∈ (0, 1).

Note that f(x, 2) = Ce
R x
1/2 Ω(z)dz, which follows from integrating the ODE in equation (18).

Because Ω(x) is continuous and differentiable for every x ∈ (0, 1), it follows immediately
that f(x, 2) is continuous and differentiable for every x ∈ (0, 1).

We now turn to show that limx↓0 f(x, 2) = +∞ and limx↓0 fx(x, 2) = −∞. We will do
this by looking at the behavior of a different function that is proportional to f(x, 2) close to
0.

Because Ω(x) is continuous as a function of γ(x, 1) and γ(x, 2) there exists a positive
constant kx such that for any x

d

(
Ω(x),−

(ρ+ λ+ µ) 2
µ
− λγ(0, 1)

4x2
− λ

µ(1
2
− x) + 1

γ(1,2)

)
< kx , µ > 0

where we used that γ(0, 2) = 2
µ
. Let k ≡ max kx, and Ω̂(x) ≡ − (ρ+λ+µ) 2

µ
−λγ(0,1)

4x2 − λ
µ( 1

2
−x)+ 1

γ(1,2)

.

This implies that

d
(

Ω(x), Ω̂(x)
)
< k ∀ x ∈ (0, 1), µ > 0

in other words, the distance of these two functions is uniformly bounded.

Let f̂(x, 2) ≡ Ĉe
R x
1/2 Ω̂(z)dz. Note that

0 < lim
x↓0

f(x, 2)

f̂(x, 2)
=
C

Ĉ
elimx↓0

R x
1/2[Ω(z)−Ω̂(z)]dz < K

where K is a positive constant. This result follows because the distance of Ω(x) − Ω̂(x)
is uniformly bounded. Then, the limiting behavior of f̂(x, 2) is the same as the limiting
behavior of f(x, 2).

Consider the expression for Ω̂(x). When x ↓ 0 the last term λ

µ( 1
2
−x)+ 1

γ(1,2)

converges to

Q2 ≡ λ
µ
2

+ 1
γ(1,2)

so

lim
x↓0

Ω̂(x) = lim
x↓0
− Q1

2x2
−Q2

where Q1 = 1 + ρ
µ

+ λ
µ

(
1− γ(0,1)

γ(0,2)

)
> 1 as described in Lemma 3.

Note that then we have the following equation for x in the neighborhood of 0,

lim
x↓0

f̂x(x, 2)

f̂(x, 2)
= lim

x↓0
− Q1

2x2
−Q2

which is an ordinary differential equation. Solving the ODE and noting that the constant of
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integration is a constant Ĉ > 0 gives

lim
x↓0

f̂(x, 2) = lim
x↓0

Ĉe(
Q1
2x
−Q2x)

with limx↓ f̂(x, 2) = +∞ and limx↓0 f̂x(x, 2) = −∞. Therefore, limx↓ f(x, 2) = +∞ and
limx↓0 fx(x, 2) = −∞.

K Proof of Lemma 5

First we show that a policy with µ ↑ ∞ implies that trade approaches zero. From equa-
tion (10) we have that γ (0, 2) = 2/µ and from Lemma 2 that γx (x, 2) < 0 and γ (x, 1) <
γ (x, 2) for all x. As µ ↑ ∞, these imply that γ (x, s) ↓ 0 for all x and s.

From equation (18) we can rewrite fx (x, 2) /f (x, 2) as

fx (x, 2)

f (x, 2)
=

γ (x, 2)
(
λ
µ
− 1
)

1
µ

+
(
x− 1

2

)
γ (x, 2)

−
γ (x, 2)

(
ρ+λ
µ

+ 1
)

µ
(

1
µ

+
(
x− 1

2

)
γ (x, 2)

)2

+
λγ (x, 1)[

1 + µ
(
x− 1

2

)
γ (x, 2)

]2 − λ

µ
(

1
2
− x
)

+ 1
γ(1−x,2)

taking the limit as µ ↑ ∞,

lim
µ→∞

fx (x, 2)

f (x, 2)
=

1
1
2
− x for x > 0

which is an ODE with solutionf (x, 2) = C0
1
2
−x . For x > 0 the only consistent solution is C0 = 0

(otherwise f (x, 2) < 0 for some values of x). This implies that f (x, 2) is discontinuous.

Notice that limµ→∞
fx(x,2)
f(x,2)

is negative for x > 1
2

and positive for x < 1
2
. In particular

lim
x↑ 1

2

(
lim
µ→∞

fx (x, 2)

f (x, 2)

)
= +∞ , lim

x↓ 1
2

(
lim
µ→∞

fx (x, 2)

f (x, 2)

)
= −∞

which tells us that there is a mass point at 1
2
. Also note that limµ→∞

fx(0,2)
f(0,2)

= 0 so there

cannot be a mass point at x = 0. Then, there exists a unique mass point at x = 1
2
,

f (x, 2) =

{
1 for x = 1/2
0 otherwise

Because f (1/2, 2) = f (1/2, 1) = 1, a productive agent has no incentives to sell goods to
an unproductive agent because she cannot affect the ex-post distribution of money holdings,
and therefore the economy approaches autarky.

Recall that Proposition 1 showed that any policy with µ < 0 also implies that in the
ergodic set the economy is in autarky.
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Hence, the expected utility W(µ) diverges to −∞ for both of these cases: the reason is
that ex-ante agents are unproductive 1/2 of the times, and in this state their consumption
is zero.

L Uncorrelated productivity shocks (Bewley economy)

In this section we study an economy where the productivity shocks are uncorrelated across
agents. Assume a unit mass of agents, indexed by i, over the [0, 1] interval. As before, the
productivity state of each agent, si follows a Markov process, where λ denotes the rate at
which the state switches.

Let mi
t be the money holdings of agent i at time t, so that the total money supply is

mt =
∫ 1

0
mi
t di. Let τt denote the per capita transfer from the government. The government

budget constraint is

τt = q̃t

∫ 1

0

ṁi
t di = µ mt q̃t = µ qt (26)

where the last equality uses the homogeneity of q̃ with respect to m. In what follows we let
µ ≥ 0. The same argument developed in Section 3.1 shows that no monetary equilibrium
exists for µ < 0.

Obviously
∫ 1

0
xit di = 1 where xit = mi

t/mt. Notice that in this model with a continuum
of agents xi ∈ [0,+∞), where xi = 1 denotes the situation in which a single agent money
balances equal the economy’s average money, and xi ↑ ∞ denotes the situation in which one
agent holds all of the money. Simple algebra gives that ẋ(x, s) = ṁi

t/mt−xµ, where we omit
the time and agent i indices for notation simplicity.

The agent’s first order conditions of this model are unchanged compared to the previous
model (equation (7)). The unproductive agent budget constraint and Euler equation (i.e.
when s = 2) give

ẋ(x, 2) = µ (1− x)− 1

γ(x, 2)
(27)

This equation shows that money growth has no effect on the money share in the case where
the agent’s money holding equal the average money per capita in the economy, i.e. the ratio
is xi = 1.23

We assume the economy has a centralized competitive market where one unit of money
buys q̃ = 1

m
q units of consumption. This implies that all productive agents are willing to

produce in exchange for money as long as γ(x, 1) > q, and that there is a level of money
holdings x̄ where productive agents are satiated with money balances: γ(x̄, 1) = q.

Every agent works to save money balances x̄ as soon as he gets productive. So the wealth
share jumps from x to x̄ as soon as the agent become productive (this implies that ẋ is infinite
at the time of a jump).24 A productive agent aims to maintain the wealth share constant at
x so that ẋ(x̄) = 0, which implies that for x = x̄ then ṁi

t/mt = µx̄.

23Note that the same property holds in the model with two agents, in which the total mass is 2, the index
xi ∈ [0, 1] and an equal distribution of money holdings implies that the ratio of the agent money to the
average (per capita) money holdings is 1/2, so that µ does not affect ẋ when x = 1/2.

24The assumption of linear disutility of labor is important for this result, as it implies that the productive
agent immediately refills his money balances up to x̄.
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Before moving on with solving the model we define an equilibrium for this economy.

Definition 2 A monetary equilibrium is a price function q̃(m) = 1
m
q, with q ∈ R+, and

a stochastic process x(t, ω) with values in [0, 1], such that a consumer i maximizes expected
discounted utility (1) subject to the budget constraints (2) and (3) with q(t, ω) = q(s), non-
negativity (4)), the government budget constraint constraint (26), and tax solvency constraint
mi
t ≥ −µ ∀ t.

In an internal solution the lagrange multipliers γ(x, 1), γ(x, 2) solve the system of differen-
tial equations that we determined before (equation (8) and (9)), which under the assumptions
of this section (using equation (27)) gives

γx(x, 1)ẋ(x, 1) = (ρ+ µ)γ(x, 1)− λ (γ(x̄, 2)− γ(x̄, 1))

γx(x, 2)

[
µ (1− x)− 1

γ(x, 2)

]
= (ρ+ µ)γ(x, 2)− λ (γ(x, 1)− γ(x, 2))

The system decouples in two ODEs which we discuss next.
Internal solution always applies for x ∈ (0, 1) for the unproductive agent. For the pro-

ductive agent the solution is internal only at x = x̄, otherwise the state x records a jump
from x to x̄. At the replenishment level x̄ the equation for the productive agent gives

q = γ(x̄, 1) =
λ

λ+ µ+ ρ
γ(x̄, 2) (28)

Since the disutility of labor is linear, the marginal utility of money for a productive agent is
constant at the level γ(x̄, 1) = γ(x, 1) for x ∈ (0, x̄).25 The ODE for γ(x, 2) can be rewritten
as

γx(x, 2) =
(ρ+ λ+ µ)γ(x, 2)2 − λqγ(x, 2)

γ(x, 2)µ (1− x)− 1
(29)

with the following boundary conditions at x = 0:

γ(0, 2) =
1

µ
(30)

where the boundary stems from the unproductive agent’s Euler equation and budget con-
straint at x = 0.

Next we impose that at every t demand equals supply in the asset market where money
is exchanged for the consumption good. The asset demand originates from the productive
agents who aim to hold an amount of money x̄. The supply comes from unproductive agents
who exchange money for consumption. Let f(x, 2) be the density function for the mass of
unproductive agents with

∫ x̄
0
f(x, 2)dx = 1, so that f(x, 2) is the measure of unproductive

agent, who account for 1/2 of the total population under the invariant. The market clearing
equation is (see below)

(µ+ 2λ) (x̄− 1) =

∫ x̄

0

f(x, 2)

γ(x, 2)
dx (31)

25Hence the value (i.e. the utility level) for an unproductive agent with x ∈ (0, x̄) is linear in x.
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Finally note that the density function for unproductive agents is obtained from the usual
Kolmogorov forward equation. Using f(x, 1) = 0 and equation (27) to replace ẋ(x, 2) into
equation (17) gives

fx(x, 2)

f(x, 2)
=

(λ− µ)γ(x, 2)− (ρ+λ+µ)γ(x,2)−λq
1+µ(x−1)γ(x,2)

1 + µ (x− 1) γ(x, 2)
(32)

Notice that this problem has four unknowns: q, x̄, and two constant of integration, one
for the solution of equation (29) and one for the density function in equation (32). The
four equations to solve for the four unknowns are: the boundary conditions in equation (28)
and equation (30), the market clearing condition in equation (31), and the density function
integrating to a unit mass.

Derivation of market clearing equation

We derive equation (31) as the limit of a discrete time model. Recall that each productive
agent is aiming to keep his money balances at mi/m = x̄. Consider a time interval of length
∆. In each period there is a fraction ∆λ of the mass of unproductive agents who become
productive. The asset demand for one of these agents with wealth x is given by a change in
the stock, x̄ − x, and by a flow component that offsets the effect of money growth given by
µ∆(x̄−1).The complementary fraction of productive agents, 1−λ∆, is formed by agents who
were already productive in the previous period and held assets x̄. The asset demand for these
agents is the flow component that offsets the effect of money growth, given by µ∆(x̄ − 1).
This gives

(1−∆λ)µ∆(x̄− 1) + λ∆

∫ x̄

0

[x̄− x+ µ∆(x̄− 1)] f(x, 2) dx =

(1−∆λ)

∫ x̄

0

c1(x, 2)∆

q
f(x, 2) dx+ λ∆

c1(x̄, 2)∆

q

Dividing by ∆ and taking the limit as ∆ ↓ 0 gives

µ(x̄− 1) + λ

∫ x̄

0

(x̄− x) f(x, 2) dx =

∫ x̄

0

c1(x, 2)

q
f(x, 2) dx

Using
∫ x̄

0
f(x, 2)dx = 1 and c1(x, 2) = q/γ(x, 2) gives

µ(x̄− 1) + λx̄− λ
∫ x̄

0

x f(x, 2) dx =

∫ x̄

0

1

γ(x, 2)
f(x, 2) dx

Using that
∫
i
xidi = 1 or, equivalently, 1

2

∫ x̄
0
x f(x, 2)dx+ x̄

2
= 1 gives

µ(x̄− 1) + λx̄− λ (2− x̄) =

∫ x̄

0

1

γ(x, 2)
f(x, 2) dx
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or

µ(x̄− 1) + 2λ (x̄− 1) =

∫ x̄

0

1

γ(x, 2)
f(x, 2) dx

which gives equation (31).

L.1 The case with constant money (µ = 0)

It is interesting to analyze the case with µ = 0 for the model with uncorrelated shocks because
of its simplicity. We provide a characterization of the equilibrium and we prove existence.

After setting µ = 0 equation (29) reduces to the following ODE: γx(x, 2) = λqγ(x, 2)−(ρ+
λ)γ(x, 2)2, with boundary conditions that reduce to limx↓0γ(x, 2) = ∞ and γ(x̄, 2) = q ρ+λ

λ
.

Using the ODE and the first boundary provides an expression for the marginal value of money
for an unproductive agent as a function of the price level q,

γ(x, 2) =
qλ

ρ+ λ

eqλx

eqλx − 1

which is strictly positive for every q > 0. This implies that the expected utility for an
unproductive agent with wealth x, denoted by v(x, 2), is given by the integral of γ(x, 2), i.e.

v(x, 2) =
1

ρ+ λ
log
(
eqλx − 1

)
+ v̄

where v̄ is a finite constant.
Using the expression for γ(x, 2) and equation (28) gives an equation that relates x̄ and q,

x̄ =
1

λq
log

(
(λ+ ρ)2

(λ+ ρ)2 − λ2

)
(33)

which implies a unit elasticity of x̄ with respect to the price level q.
Now we turn to evaluate the density of money holdings f(x, 2). Setting µ = 0 in equa-

tion (32) reduces to
fx(x, 2)

f(x, 2)
= λq

(
1− ρ

λ+ ρ

eqλx

eqλx − 1

)
where we used the expression we found for γ(x, 2). This expression is an ODE with solution

f(x, 2) = Q7e
qλx
(
eqλx − 1

)− ρ
ρ+λ , where Q7 is a constant to be determined next. We have

that ∫ x̄

0

f(y, 2)dy = 1

We can use this equation to obtain Q7. Therefore, the density f(x, 2) is

f(x, 2) =
qλ2

(ρ+ λ) (eqλx̄ − 1)
λ
ρ+λ

eqλx

(eqλx − 1)
ρ

ρ+λ

which is readily evaluated using equation (33).
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An equilibrium exists if there exists a finite price level q such that the market clearing
condition (see equation (31)) is satisfied. Using that µ = 0 and by substituting the expressions
we found for the marginal value of money γ(x, 2), density function f(x, 2), and that x̄ = x̄(q),
the market clearing condition reduces to

Υ1(q) = Υ2(q)

where Υ1(q) ≡ (x̄(q)− 1) 2
(

λ2

(ρ+λ)2−λ2

) λ
ρ+λ

and Υ2(q) ≡
∫ x̄(q)

0

(
eqλx − 1

) λ
ρ+λ dx, where both

Υ1(q) and Υ2(q) are continuous and differentiable functions on q. In order to check for
existence and uniqueness of solution we do some analysis on these functions. Properties of
Υ1(q): (i) limq↓0 Υ1(q) = +∞, (ii) limq↑∞Υ1(q) < 0 and finite, (iii) strictly decreasing, (iv)
strictly convex. With respect to Υ2(q) note that it is a function involving the hypergeometric
function,

Υ2(q) = λ+ρ
λq

(
eqλx̄(q)−1

1−e−λqx̄(q)

) λ
ρ+λ

2F1

(
− λ
ρ+λ

,− λ
ρ+λ

; ρ
ρ+λ

; e−qλx̄(q)
)

− limy↓0
λ+ρ
λq

(
eqλy−1

1−e−λqy

) λ
ρ+λ

2F1

(
− λ
ρ+λ

,− λ
ρ+λ

; ρ
ρ+λ

; e−qλy
)

which, using equation (33) and that limy↓0

(
eqλy−1

1−e−λqy

) λ
ρ+λ

= 1, reduces to

Υ2(q) = ρ+λ
λq

((
(ρ+λ)2

(ρ+λ)2−λ2

) λ
ρ+λ

2F1

(
− λ
ρ+λ

,− λ
ρ+λ

; ρ
ρ+λ

; (ρ+λ)2−λ2

(ρ+λ)2

)
− 2F1

(
− λ
ρ+λ

,− λ
ρ+λ

; ρ
ρ+λ

; 1
))

with the following properties: (i) Υ2(q) < 0, (ii) limq↓0 Υ2(q) = −∞, (iii) limq↑∞Υ2(q) = 0,
(iv) Υ2(q) strictly increasing, and (v) Υ2(q) strictly concave.

Note now that given the listed properties of Υ1(q) and Υ2(q), there exists a unique value
q such that Υ1(q) = Υ2(q), so that the market clearing condition is satisfied. This implies
that when there is constant money in the economy, i.e. µ = 0, there exists a unique monetary
equilibrium.
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A-13 The optimal level of money when µ = µ(x)

Let V 1(x) and V 2(x) denote the value functions of agents of type 1 and 2 with money
holdings x. Using that from the budget constraint of a productive agent we get ẋ(x, 1) =
l1−c1
q(x,1)

+µ
(

1
2
− x
)
, and that ẋ(x, 2) = − c1

q(1−x,1)
+µ

(
1
2
− x
)
, we can write the problem of both

types of agents in its Bellman form,

ρV 1(x) = max
c1,l1

ln c1 − l1 + V 1
x (x)

(
l1 − c1

q(x, 1)
+ µ

(
1

2
− x
))

+ λ
(
V 2(x)− V 1(x)

)
ρV 2(x) = max

c2
ln c2 + V 2

x (x)

(
− c1

q(1− x, 1)
+ µ

(
1

2
− x
))

+ λ
(
V 1(x)− V 2(x)

)
We can obtain the derivatives of the value functions with respect to the money growth

rate parameter µ by applying the envelope theorem,

V 1
µ (x)(ρ+ λ) = V 1

x (x)

(
1

2
− x
)

+ λV 2
µ (x)

V 2
µ (x)(ρ+ λ) = V 2

x (x)

(
1

2
− x
)

+ λV 1
µ (x)

which can be solved to obtain

V 1
µ (x) =

( 1
2
− x
ρ

)
(ρ+ λ)V 1

x (x) + λV 2
x (x)

ρ+ 2λ

V 2
µ (x) =

( 1
2
− x
ρ

)
(ρ+ λ)V 2

x (x) + λV 1
x (x)

ρ+ 2λ

taking the ratio,
V 2
µ (x)

V 1
µ (x)

=
(ρ+ λ)V 2

x (x) + λV 1
x (x)

(ρ+ λ)V 1
x (x) + λV 2

x (x)
> 1

as V 1
x (x) = γ(x, 1), V 2

x (x) = γ(x, 2), and γ(x, 2) > γ(x, 1) from Lemma 2.
The social planner wishes to maximize a weighted average of the discounted utilities,

V = max
µ

∫ 1

0

(
θV 1(1− x) + (1− θ)V 2(x)

)
f(x, 2)dx

where θ ∈ (0, 1) and f(x, 2) is the stationary density of money holdings. The first order
condition of the social planner’s problem is

∂V

∂µ
=

∫ 1

0

(
θV 1(1− x) + (1− θ)V 2(x)

)
fµ(x, 2)dx+

∫ 1

0

(
θV 1

µ (1− x) + (1− θ)V 2
µ (x)

)
f(x, 2)dx

Let µ̂ be the optimal level of money growth rate. Then, µ̂ = 0 if ∂V
∂µ

< 0 ∀µ > 0,

µ̂ ↑ ∞ if ∂V
∂µ

> 0 ∀µ > 0, and 0 < µ̂ <∞ if ∂V
∂µ

= 0 for some µ > 0. Also, as there might be
local maxima, one way to know that the optimal money growth rate is not 0 is to check that

1



∂V
∂µ

at 0 is positive.

A-14 The control problem to the optimum quantity of

money

In this section we evaluate the optimal monetary policy by treating the money growth rate
parameter as a control at every point in time. This is closely related to Chang (1998) and
Phelan and Stacchetti (2001).

We cast the model in discrete time where ∆ is the length of the period length. There two
types of agents, 1 and 2, and let j ∈ {1, 2} denote which agent is productive.

The system of difference equations for the marginal value of money is

(1 + ∆µ)(1 + ρ∆)γ1 = (1− λ∆)γ′1 + λ∆γ′′1 (A-1)

(1 + ∆µ)(1 + ρ∆)γ2 = (1− λ∆)γ′2 + λ∆γ′′2 (A-2)

See equation (A-1). The equation reads as follows. The agent enters the period with marginal
utility of money γ1. If the productive state does not reverse she gets promised utility γ′1 and
if it does reverse she gets γ′′1 . Note that this is a more general characterization of what we
done before as here we are not restricting the marginal value of money to depend directly on
the money holdings x.

The evolution of money holdings is (from agent 1’s perspective)

x′1(1 + ∆µ) = x1 +
∆µ

2
+

∆

γ2

if j = 1 (A-3)

x′1(1 + ∆µ) = x1 +
∆µ

2
− ∆

γ1

if j = 2 (A-4)

Let V (γ1, γ2, x1, j) denote the value function at the beginning of the period with state
given by the marginal value of money for both agents, the share of money in the hands of
agent 1, and the index which indicates who is productive.

V (γ1, γ2, x1, 1) = max
µ,γ′1,γ

′
2,γ
′′
1 ,γ
′′
2

θ1

(
ln 1− 1− γ1

γ2

)
∆ + θ2 ln

γ1

γ2

∆

+ (1− ρ∆)(1− λ∆)V (γ′1, γ
′
2, x
′
1, 1)

+ (1− ρ∆)λ∆V (γ′′1 , γ
′′
2 , x

′
1, 2)

subject to

equation (A− 1), equation (A− 2)

equation (A− 3)

non-negativity
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and

V (γ1, γ2, x1, 2) = max
µ,γ′1,γ

′
2,γ
′′
1 ,γ
′′
2

θ1 ln
γ2

γ1

∆ + θ2

(
ln 1− 1− γ2

γ1

)
∆

+ (1− ρ∆)(1− λ∆)V (γ′1, γ
′
2, x
′
1, 2)

+ (1− ρ∆)λ∆V (γ′′1 , γ
′′
2 , x

′
1, 1)

subject to

equation (A− 1), equation (A− 2)

equation (A− 4)

non-negativity

Note that this is silent about the initial values for γ1 and γ2. The way to solve this is
in two stages. First this two Bellman equations can be solved for the sequences of γ and µ
given initial values for the productive state, distribution of money holdings, and marginal
values of money γ. We can do this for any arbitrary pair of initial γ. Then we can maximize
for these initial marginal values of money.

A-15 Expected time until depletion of money holdings

Let ε ∈ (0, 1) and T (x, s) denote, for an agent type 1 with money holdings x in state s,
the expected time until x = ε. We want to derive a system of differential equations for the
function T (x, s). We will do so by casting the problem in discrete time for a period of length
∆ and then taking the limit as ∆ approaches zero.

Consider the problem for agent 1 with money holdings x when current state is s,

T (x, 2) = ∆ + (1− ρ∆) ((1− λ∆)T (x+ ẋ(x, 2)∆, 2) + λ∆T (x+ ẋ(x, 1)∆, 1))

taking a first order Taylor expansion on both T (x + ẋ(x, 1)∆, 1) and T (x + ẋ(x, 2)∆, 2),
subtracting T (x, 2), dividing by ∆ and taking the limit as ∆ approaches 0 provides,

(ρ+ λ)T (x, 2) = 1 + Tx(x, 2)ẋ(x, 2) + λT (x, 1)

Therefore,

(ρ+ λ)T (x, 1) = 1 + Tx(x, 1)ẋ(x, 1) + λT (x, 2)

(ρ+ λ)T (x, 2) = 1 + Tx(x, 2)ẋ(x, 2) + λT (x, 1)

with boundary conditions
T (ε, 1) = 0, T (ε, 2) = 0 .
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