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Abstract

We derive a necessary condition, called the chain dominance prop-

erty, for social choice correspondences to be admissibly implementable,

i.e., given whatever admissible actions the agents play in each state,

the outcomes always lie in the correspondence. The condition requires

that the correspondence has a selection that is “partially” dominant-

strategy incentive compatible in a certain sense. Applying the condi-

tion in worst-case expected welfare maximization problems in bilateral

trading, we show that (i) for a class of priors of the designer, no mech-

anism can improve over a posted-price mechanism of Hagerty and

Rogerson (1987), and (ii) for another class of priors, a non-dominant-

strategy mechanism, called a “two-price” mechanism, is optimal.
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1 Introduction

Mechanism design theory examines which social objectives (such as efficiency,

fairness, stability, and so on) can be achieved when agents have private in-

formation. To predict the possible outcomes of mechanisms, the standard

approach is to assume that the agents play a Bayesian-Nash equilibrium

(typically with a “common prior”).

This Bayesian-Nash approach is often criticized for the sensitivity of the

predicted outcomes of mechanisms to the assumptions about the agents’

beliefs.12 Namely, this approach relies on the mechanism designer’s knowl-

edge of the agents’ beliefs about each other’s private information, and their

(correct) beliefs about each other’s strategies. A mechanism that induces

“desirable” outcomes (given any objective of the mechanism designer) in a

Bayesian Nash equilibrium may induce undesirable outcomes if the agents

have different beliefs about each other’s private information or strategies.

Given these criticisms, some researchers have investigated more “robust”

1For example, in the context of game theory, Wilson (1987) argues:

Game theory has a great advantage in explicitly analysing the consequences

of trading rules that presumably are really common knowledge; it is deficient

to the extent it assumes other features to be common knowledge, such as one

agent’s probability assessment about another’s preferences or information. [.

. . ] I foresee the progress of game theory as depending on successive reduc-

tion in the base of common knowledge required to conduct useful analyses

of practical problems. Only by repeated weakening of common knowledge

assumptions will the theory approximate reality.

See also Neeman (2004) and Bergemann and Morris (2005).
2A related problem is that the optimal mechanism is sensitive to the assumptions on

the agents’ beliefs. For example, Crémer and McLean (1985) show that the first-best

efficiency with full-surplus extraction is possible if there is a commonly known correlated

prior over the agents’ valuations (see d’Aspremont, Cremer, and Gerard-Varet (2004) and

Kosenok and Severinov (2008) for similar first-best results under budget balance). Neeman

(2004) argues that this result crucially depends on the “beliefs-determine-preferences”

assumption, and Heifetz and Neeman (2006) show that this beliefs-determine-preferences

property is “non-generic” in a more general type space (see also Barelli (2009)).
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mechanisms. The standard approach is to restrict attention to mechanisms

that is dominant-strategy incentive compatible. This proves to be restrictive,

especially in settings that require a balanced budget.3

In this paper, we study admissible implementation, as an implementa-

tion concept that is robust to the agents’ “strategic uncertainty”. Namely,

we assume that each agent may play any admissible (i.e., not weakly domi-

nated) action given his private information. He may have multiple admissible

actions in a mechanism, and therefore, there could be multiple possible out-

comes depending on which admissible actions the agents play given their

types. We say that the mechanism admissibly implements a social choice

correspondence (SCC) if, given whatever admissible actions the agents play,

the induced outcome lies in this SCC.

In the literature, Jackson (1992) suggests that we should focus on “bounded”

mechanisms to study admissible implementation.4 He shows that an “un-

bounded” mechanism can admissibly implement essentially any social choice

correspondence, but he argues that implementation by unbounded mecha-

nisms does not seem reasonable, because an unbounded mechanism neces-

sarily has a “tail-chasing” or an “integer-game” structure. Following Jackson

(1992), in this paper, we focus on bounded mechanisms.

Jackson (1992) also shows that any social choice function that is admis-

sibly implementable (by bounded mechanisms) must be dominant-strategy

incentive compatible. Thus, as long as there is a unique desirable allocation

rule, our solution concept is equivalent to the dominant-strategy implemen-

tation.

However, if the objective of the mechanism designer is implementation of

social choice correspondences, or similarly, if the objective is maximization of

his “utility” (such as welfare or profit), then the restriction to the dominant-

strategy mechanisms could be unnecessary. In this problem, the mechanism

3See Laffont and Maskin (1980) and Hagerty and Rogerson (1987), for example.
4A bounded mechanism is such that, for any action that is weakly dominated for an

agent, there is an admissible action that weakly dominates it. For example, a mechanism

is bounded if its message spaces are finite.
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designer does not care which particular outcome is realized, as long as every

possible outcome is desirable. Thus, there may exist a non-dominant-strategy

mechanism that “robustly” achieves the objective, even if any dominant-

strategy mechanism cannot achieve it.

Indeed, in Section 2, we provide a bilateral-trading example in which a

non-dominant-strategy mechanism implements an SCC that is not imple-

mentable by any dominant-strategy mechanism.5 Moreover, if the designer’s

objective is to maximize expected welfare (or total surplus) based on his

prior over the agents’ types, then for some priors, we find a non-dominant-

strategy mechanism that always attains higher expected welfare than that

of any dominant-strategy mechanism, given whatever admissible actions the

agents play in the mechanism.

The main objective of the paper is to derive a necessary condition for ad-

missibly implementable SCCs. In Section 3, we show that any implementable

SCC must have the “chain dominance property”, which is described as fol-

lows: First, fix any sequence of types for each agent. If an SCC is imple-

mentable, then for any profile of such sequences, we can find a selection of

the SCC (i.e., an allocation rule that lies in the SCC) that satisfies dominant-

strategy incentive compatibility along the sequences: In this selection, each

agent prefers the truth-telling to pretending to be the type that is the immedi-

ate predecessor of the true type, given any types of the opponents. Thus, this

selection satisfies dominant-strategy incentive compatibility for some pairs of

types, but not necessarily for all pairs.6

In general, the chain dominance property may not be a sufficient condi-

tion for admissible implementation, even if we check all possible sequences of

types. However, in some cases, we can guess which incentive constraints im-

plied by the chain dominance property are binding, solve a relaxed problem

5By Hagerty and Rogerson (1987), a dominant-strategy mechanism in this example

must be a (randomized) posted price mechanism.
6This condition generalizes the “strategy resistance” condition shown by Jackson (1992)

as a necessary condition on implementable SCCs, which corresponds to the sequences with

only two elements.
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subject to these constraints, and verify that the allocation rule that solves

the relaxed problem implies a “revelation mechanism” that admissibly im-

plements the desired social choice correspondence. This is straightforward

if the allocation rule that solves the relaxed problem is dominant-strategy

incentive compatible, but this can also be true even if the solution is not

dominant-strategy incentive compatible, when any admissible “lies” by the

agents in the revelation mechanism induce desirable outcomes in any state.

As an application, in Section 4, we consider a one-dimensional single-

crossing environment. The mechanism designer has a prior over the agents’

types, and wants to maximize his expected “utility” (such as welfare or profit)

given his belief. He does not know which admissible actions the agents play

in a mechanism, and therefore, he evaluates a mechanism according to its

“worst-case” expected utility among all admissible strategies of the agents.

In this situation, we consider the “local downward incentive compatibility”

(LDIC) constraints, the incentive constraints implied by the natural chains

over the types. We show that, under certain conditions on the environment,

the allocation rule that maximizes the designer’s expected utility subject to

the LDIC constraints implies a revelation mechanism that is optimal among

all (bounded) mechanisms in the sense of the worst-case expected utility.

Specifically, we first study (balanced-budget) bilateral trading settings,

where there exist a seller and a buyer, and each agent’s value for trade is his

private information. The designer wants to maximize the worst-case expected

welfare based on his prior over the agents’ values. We show the following:

(i) For a class of priors, the optimal mechanism is a posted-price mechanism.

This class of priors includes any prior such that its density function is de-

creasing in the seller’s type, increasing in the buyer’s type, and continuous.

Because a posted-price mechanism is a dominant-strategy mechanism, this

result provides a foundation for dominant-strategy mechanisms. (ii) When

each agent’s type space is binary, then the optimal mechanism is a “two-

price” mechanism (except for trivial cases), which is not a dominant-strategy

mechanism. This means that our approach sometimes yields a mechanism
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that is strictly better than any dominant-strategy mechanism even if we eval-

uate this mechanism in its worst-case scenario.

In the second application, we consider a quasi-linear environment with-

out balanced budget, which includes expected revenue maximization in an

auction setting. We provide sufficient conditions under which the optimal

mechanism is a dominant-strategy mechanism.

1.1 Other robust implementation concepts

As a related concept to admissibility, some papers study implementation

with iterative elimination of weakly or strictly dominated actions, but in

complete-information settings. For example, see Moulin (1979), Srivastava

and Trick (1996), Bergemann, Morris, and Tercieux (2010), and Abreu and

Matsushima (1992). ? and Kunimoto and Serrano (2010) study incomplete-

information settings, but with a common prior over the agents’ types. In this

paper, we allow only one round of elimination of weakly dominated actions.

This is a more robust concept than theirs in the sense that we do not impose

any assumption on the agents beliefs about each other’s preference or their

mutual knowledge of rationality.

Another branch of the implementation literature studies implementation

concepts robust to “structural uncertainty”, i.e., agents know each other’s

strategies (and so they play a Bayesian Nash equilibrium), but they do not

know each other’s private information and beliefs (and higher-order beliefs)

about this information. Bergemann and Morris (2005) and Bergemann and

Morris (2010) study Bayesian Nash implementation with arbitrary beliefs

in general implementation settings. Bergemann and Morris (2005) show

that, in a “separable” environment, robustness to the structural uncertainty

implies strategy-proofness. Bergemann and Morris (2010) show that, un-

der certain conditions, their robust implementation concept is equivalent to

“rationalizable” implementation, which is based on iterative elimination of

strictly dominated actions in incomplete-information settings. Chung and

Ely (2007) study the worst-case expected revenue maximization in auction
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settings, where the worst case is among all beliefs of the agents. They show

that no mechanism can attain strictly higher expected revenue than the op-

timal dominant-strategy mechanism given any beliefs of the agents. Smith

(2010) studies (balanced-budget) cost sharing problems in public good pro-

vision, and offers a partial ranking of mechanisms based on the notion of im-

provement given arbitrary beliefs of the agents. He shows that any dominant-

strategy mechanism is weakly improvable in his criterion.

7



2 Example: Bilateral Trading

2.1 Environment

There is a pair of a seller (i = 1) and a buyer (i = 2). The seller has an

object, and c ∈ [0, 4] denotes his value for the object. v ∈ [3, 5] denotes

the buyer’s valuation for the object. We assume that c is the seller’s private

information, v is the buyer’s private information, and Θi ⊂ R+ is compact

for each i.

An allocation is denoted by (z, p) ∈ [0, 1]× R, where z is the probability

of trading,7 and p is the price, or the payment from the buyer to the seller

conditional on trading (i.e., in the event that the buyer receives the object

from the seller).8 Let (0, 0) denote the “no-trade” outcome.

The seller’s utility and the buyer’s utility at state (c, v) are given by u1 =

(p−c)z and u2 = (v−p)z, respectively, and the economic welfare at state (c, v)

is (v− c)z. The mechanism designer has a prior Φ over (c, v) ∈ Θ, and wants

to maximize the expected welfare. We also assume that, in any mechanism,

each agent has a message that corresponds to “non-participation” that always

induces the no-trade outcome regardless of the opponent’s message.

This problem is studied more extensively in Section 4. In this part, we

consider the following specific class of Φ, parametrized by ε ∈ [0, 1]: There are

two states with probability mass: Pr{(c, v) = (1, 3)} = Pr{(c, v) = (4, 5)} =
1
2
(1 − ε). All the other (c, v) ∈ [0, 4] × [3, 5] are uniformly likely (i.e., the

7Another interpretation is that z represents the time of trading in a continuous-time

dynamic bargaining setting where the agents’ types are persistent. Suppose that the

mechanism designer can specify the time of trading τ in a continuous-time model where

the agents have the same discount rate r. Then, by setting z so that z = e−rτ , an

allocation in this dynamic model is denoted by (z, p), and therefore, we can effectively

design the same mechanism. Copic and Ponsati (2008) provide a similar interpretation of

(randomized) posted-price mechanisms of Hagerty and Rogerson (1987) in such a dynamic

bargaining setting.
8Thus, the allocation satisfies balanced budget. There is no payment when they do not

trade.

8



density is 1
8
ε). Thus, if ε = 1, it is a uniform distribution, and if ε is close to

zero, then it is approximately a discrete and perfectly correlated case. The

mechanism designer knows the value of ε.

2.2 Dominant-strategy mechanisms

An optimal mechanism among all dominant-strategy mechanisms is a posted-

price mechanism (Hagerty and Rogerson (1987)): The mechanism designer

first chooses a price p, and a trade occurs (with probability one) if and only

if v > p and c < p. Thus, the expected welfare of a posted-price mechanism

is
∫

(c,v)∈[0,p)×(p,1]

(v − c) dΦ(c, v).

In this example, we observe that the optimal posted-price is p = 3 for

any ε.9

The expected welfare of this mechanism is

15

4
ε+ (

1

2
− ε) · 2 = 1 +

7ε

4
.

9Because the distribution is a convex combination of a uniform distribution on [0, 4]×

[3, 5] and a discrete, perfectly correlated types (i.e., Pr{(c, v) = (1, 3)} = Pr{(c, v) =

(4, 5)} = 1
2 ), it suffices to show that the optimal posted-price is p = 3 for each of these

distributions. First, with a uniform distribution on [0, 4] × [3, 5], the expected welfare

with price p is 5
16p(5 − p), which is maximized at p = 3. Second, if Pr{(c, v) = (1, 3)} =

Pr{(c, v) = (4, 5)} = 1
2 , then any p ∈ (1, 3) is optimal. Therefore, for any ε, the supremum

of the welfare among all posted-price mechanisms is achieved by a sequence of posted-price

mechanisms p ↑ 3. In this section, we informally say that p = 3 is the optimal posted

price.
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Figure 3: The optimal posted-price mechanism

The figure shows when the agents trade in the optimal posted-price mech-

anism: They trade whenever the seller’s cost is lower than 3. Observe that

there is a probability mass at (c, v) = (4, 5) who cannot trade in the posted-

price mechanism.

2.3 A two-price mechanism

This observation motivates us to consider the following “two-price” mecha-

nism (Table 1). In this mechanism, the seller chooses a price, either p = 3

or p = 4. Simultaneously, the buyer reports his “highest acceptable price”,

p = 3 or p = 4. If the seller chooses p = 3 and p ≥ 3, then they trade with

z = 1. If the seller chooses p = 4 and p = 4, then they trade with z = 2
3
. If

p < p, then they do not trade.

p = 3 p = 4

(z1, p1) = (2
3
, 4) (0, 0) (2

3
, 4)

(z2, p2) = (1, 3) (1, 3) (1, 3)

Table 1: A two-price mechanism

In this mechanism, the buyer has a dominant strategy: if v > 4, then

p = 4, and otherwise, p = 3. On the other hand, the seller’s best action

depends on c and “his belief about the buyer’s choice of p”. If c ≥ 3,

then it is weakly dominant to choose p = 4. If c ∈ (1, 3), then (i) if he is

“optimistic”, i.e., if he believes that the buyer chooses p = 4, then his best

action is to choose p = 4, because it yields a higher expected profit than

choosing p = 3 (i.e., 2
3
(4 − c) > 3− c for c ∈ (1, 3)). On the other hand, (ii)

if he is “pessimistic”, i.e., if he believes that the buyer chooses p = 3, then

his best action is to choose p = 3, because p = 4 would not be acceptable for

the buyer.

Finally, if c ≤ 1, then it is weakly dominant for the seller to choose p = 3,

because even if he believes that the buyer chooses p = 4, the expected profit
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of choosing p = 3 is higher than that of choosing p = 4 (i.e., 3− c ≥ 2
3
(4− c)

for c ≤ 1).

We now calculate the level of expected welfare “guaranteed” given what-

ever admissible strategies the agents play in the mechanism. Observe that

the worst-case expected welfare among all admissible strategies is attained

when the seller with c > 1 chooses p = 4, because then, the trade (and hence

the welfare) is smaller than when he chooses p = 3, regardless of the buyer’s

behavior (see Figure 4). Therefore, the worst-case expected welfare of this

two-price mechanism is

11

4
ε+ (

1

2
− ε) ·

8

3
=

4

3
+

ε

12
.

Figure 4: The worst-case welfare in the two-price mechanism

In this two-price mechanism, the seller with cost c ∈ (3, 4) can trade (if

v > 4), while he could not in the posted-price mechanism. Hence, the two-

price mechanism attains higher welfare in these states. On the other hand,

the seller with c ∈ (1, 3) may deviate to the high-price allocation, which

decreases the welfare in these states. Which mechanism guarantees a higher

expected welfare depends on the value of ε. Specifically, if ε < 1
5
, then the

two-price mechanism is better than the posted-price mechanism with p = 3.

If ε > 1
5
, then the posted-price mechanism is better.

Moreover, as we see in Section 4, if ε = 1 so that the distribution is

uniform over [0, 4] × [3, 5], then the posted-price with p = 3 is the optimal

mechanism (in the sense of the worst-case expected welfare). Similarly, if ε =

0 so that each agent has a binary type space, then the two-price mechanism

we examined is the optimal mechanism.
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It is also interesting to compare these worst-case expected welfares with

the expected welfare of the optimal Bayesian-Nash mechanism, where we

assume that Φ is common knowledge among the agents and the mechanism

designer. When ε = 1
2
, then the optimal Bayesian-Nash mechanism is a

double auction mechanism studied by Myerson and Satterthwaite (1983) and

Chatterjee and Samuelson (1983). This mechanism attains 96% of the first-

best expected welfare,10 while, the posted-price mechanism with p = 3 attains

93% of the first-best expected welfare. This 3% difference can be interpreted

as the “price of robustness”: To make a mechanism robust to the agents’

strategic uncertainty, we lose this amount of expected welfare.

On the other hand, if ε = 0, then the agents have perfectly correlated

types, and thus, the optimal Bayesian-Nash mechanism can achieve the first-

best welfare, as studied by Crémer and McLean (1985) and Kosenok and

Severinov (2008). For example, the following mechanism works.

v = 3 v = 5

c = 4 (0, 0) (1, 4)

c = 1 (1, 3) (1, 3)

We can interpret this mechanism as a two-price mechanism where the

seller chooses between p = 3 and p = 4, but regardless of the price chosen,

the probability of trading is always one. In a common-prior Bayesian-Nash

equilibrium, the seller with c = 1 reports his cost truthfully, because he

believes for sure that the buyer reports v = 3.

However, if the mechanism designer is concerned about the worst case

when the agents take any admissible strategies, z should be made smaller to

have the seller with sufficiently lower costs choose the low price. The highest

worst-case expected welfare is 89% of the first-best welfare, and therefore, the

“price of robustness” is 11%. Note that it would be 17% if we were restricted

10Specifically, we set the probability of trading is z(c, v) = 1 if v > c + 0.89 and zero

otherwise. This is derived by maximizing the weighted virtual surplus as in Myerson and

Satterthwaite (1983).
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only to dominant-strategy mechanisms. This 6% difference quantifies the

welfare loss due to the restriction to dominant-strategy mechanisms.

The discussion is summarized in Table 2.

Robust Welfare Guarantee Uniform (ε = 1
2
) Two-state (ε = 0)

Posted-price 93% 83%

Two-price 68% 89%

Optimal Mechanism 93% 89%

Common-prior, Bayesian-Nash 96%∗ 100%∗∗

Price of Robustness 3% 11%∗∗∗

∗ Myerson and Satterthwaite (1983), Chatterjee and Samuelson (1983).

∗∗ Kosenok and Severinov (2008), Crémer and McLean (1988).

∗∗∗ 17% if restricted to dominant-strategy mechanisms

Table 2: Summary of the example

In Section 4, we characterize the optimal mechanisms under more general

conditions. First, for a class of priors including uniform distributions, we

show that the optimal mechanism is a posted-price mechanism. Second,

if each agent has binary types, then the optimal mechanism is a two-price

mechanism.

13



3 Environment

There are N agents. Each agent i = 1, . . . , N has private information θi ∈ Θi,

where Θi is agent i’s type space. Let Θ =
∏

iΘi.

An allocation is denoted by x ∈ X . Agent i’s utility function is ui :

X ×Θi → R. We assume that ui does not depend on θ−i (private values).

The objective of the mechanism designer is to implement a social choice

correspondence (or SCC) F : Θ → 2X . For each state θ, F (θ) ⊆ X is

interpreted as the set of desirable outcomes in that state.

A mechanism is denoted by Γ = 〈M, g〉, where M =
∏

iMi, each Mi is a

set of messages for agent i, and g :M → X is called an outcome function.

We say that mi ∈ Mi weakly dominates m′
i ∈ Mi for θi, if for any m−i ∈

M−i,

ui(g(mi, m−i), θi) ≥ ui(g(m
′
i, m−i), θi),

and the inequality is strict for at least one m−i. mi is said to be admissible

for θi if mi is not weakly dominated for θi. Let MA
i (θi) denote the set of

admissible messages for θi.

In this paper, we only consider the following class of mechanisms, called

“bounded mechanisms” (Jackson (1992)).

Definition 1. Γ is bounded if the following is satisfied: For each i and θi,

if mi is weakly dominated for θi, then there is m′
i ∈ MA

i (θi) that weakly

dominates mi (i.e., m
′
i itself is not weakly dominated).

Note that, in a bounded mechanism, MA
i (θi) is nonempty.

The following are some examples of bounded mechanisms. First, a finite

mechanism (i.e., a mechanism such that every Mi is finite) is bounded. More

generally, a “compact and continuous mechanism” (i.e., a mechanism such

that Mi is a compact metric space for each i, and ui(g(m), θi) is continuous

in m ∈ M for each i and θi) is bounded. The third example is a dominant-

strategy mechanism, i.e., Mi = Θi for each i, and for each θi, θ
′
i ∈ Θi, θ−i ∈

14



Θ−i,

ui(g(θi, θ−i), θi) ≥ ui(g(θ
′
i, θ−i), θi).

We study admissible implementation (by bounded mechanisms), as a ro-

bust implementation concept to the agents’ strategic uncertainty. Admissible

implementation requires that, given whatever admissible actions the agents

take in any state, the induced outcome is desirable.

Definition 2. A mechanism Γ admissibly implements F if for each θ and

each m ∈MA(θ), g(m) ∈ F (θ).

4 The chain dominance property

In this section, we derive a necessary condition on admissibly implementable

SCCs, which we call the chain dominance property.

A chain on Θi is a finite sequence of agent i’s types, Ci = {θti}
Ti

t=0, such

that θsi 6= θti for s 6= t. Let C = (Ci)
N
i=1 denote a profile of such chains. An

allocation rule f : Θ → X is called a selection of an SCC F if for each θ,

f(θ) ∈ F (θ).

Definition 3. An SCC F has the chain dominance property if, for any profile

of chains C = (Ci)
N
i=1, there exists a selection f of F such that, for each i,

t = 1, . . . , Ti, and θ−i ∈ Θ−i,

ui(f(θ
t
i, θ−i), θ

t
i) ≥ ui(f(θ

t−1
i , θ−i), θ

t
i).

The condition means that we have the dominant-strategy incentive com-

patibility along the chains.11

11The chain dominance property generalizes the “strategy resistance” of Jackson (1992),

which can be interpreted as the chain dominance conditions stated only for the chains with

two elements (i.e., Ti = 1). As Jackson (1992) has shown, when F is a social choice function

(i.e., F (θ) = {f(θ)} for any θ), then f must be dominant-strategy incentive compatible.
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Theorem 1. If an SCC F is admissibly implementable, then F has the chain

dominance property.

Proof. We first show the following lemma, proved by Jackson (1992).

Lemma 1. Let Γ = 〈M, g〉 be a bounded mechanism. For any i,θi and θ
′
i,

suppose that mi ∈ MA
i (θi). Then, for any θ

′
i 6= θi, there exists m′

i ∈ MA
i (θ

′
i)

such that for any m−i ∈M−i,

ui(g(m
′
i, m−i), θ

′
i) ≥ ui(g(mi, m−i), θ

′
i),

Proof. (of Lemma 1)

For θ′i, either mi ∈MA
i (θ

′
i) or mi /∈MA

i (θ
′
i).

Ifmi ∈MA
i (θ

′
i), letm

′
i = mi. Then the inequality is satisfied with equality

for any m−i ∈M−i.

If mi /∈ MA
i (θ

′
i), then mi is weakly dominated by some m′

i ∈ MA
i (θ

′
i)

because Γ is bounded. Thus, m′
i satisfies the inequality for any m−i ∈ M−i.

Let Γ = 〈M, g〉 be a mechanism that admissibly implements F . For each

i, let Ci = {θti}
Ti

t=1 be an arbitrary chain on Θi.

For each i, we construct µi : Θi →Mi in the following procedure. For the

initial type θ0i , let µi(θ
0
i ) be an arbitrary element in MA

i (θ
0
i ). By induction,

for each t = 1, . . . , Ti, given µi(θ
t−1
i ) ∈ MA

i (θ
t−1
i ), Lemma 1 implies that

there is µi(θ
t
i) ∈MA

i (θ
t
i) such that, for any m−i ∈M−i,

ui(g(µi(θ
t
i), m−i), θ

t
i) ≥ ui(g(µi(θ

t−1
i ), m−i), θ

t−1
i ).

Let µ = (µi)
N
i=1. Define f : Θ → X so that f(θ) = g(µ(θ)) for θ ∈ Θ.

Because each µi(θi) ∈ MA
i (θi), we have f(θ) ∈ F (θ). Also, for each i,

t = 1, . . . , Ti, and θ−i ∈ Θ−i,

ui(f(θ
t
i, θ−i), θ

t
i) ≥ ui(f(θ

t−1
i , θ−i), θ

t
i).
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In general, the tree dominance property need not be a sufficient condi-

tion. However, as we see in Section 4, we can sometimes “guess” the chain

profile that induces a selection f such that a “revelation mechanism” 〈Θ, f〉

admissibly implements F . This is straightforward if f is dominant-strategy

incentive compatible. However, even if f is not dominant-strategy incen-

tive compatible, if any admissible lies of the agents in 〈Θ, f〉 always induce

desirable outcomes, then 〈Θ, f〉 admissibly implements F .

17



5 Local downward incentive compatibility

This section applies the findings in the previous section to some economic

environments. In the following, let X ⊆
∏N

i=1Xi be the set of allocations,

where (zi, ti) ∈ Xi ⊆ R
2 denotes the payoff relevant component for agent

i. Also, we assume that, for each i, Θi is a compact subset of R, and ui =

θizi+ti. For example, some trading settings with or without balanced budget

are included, as we see in Section 4.2 and 4.3.

In this one-dimensional, single-crossing environment, we study implica-

tions of some “natural” chain dominance conditions.

5.1 Finite type spaces

We first assume that each Θi is finite. For each i, consider a chain of types

Ci = (θti)
Ti

t=0 such that θsi < θti for s < t. Theorem 1 implies the following

result.

Theorem 2. If a mechanism Γ admissibly implements F , then there is a

selection f : Θ → X of F such that for each i, t = 1, . . . , Ti, and θ−i ∈ Θ−i,

θtizi(θ
t
i , θ−i) + ti(θ

t
i, θ−i) ≥ θtizi(θ

t−1
i , θ−i) + ti(θ

t−1
i , θ−i),

where f(θ) = (zi(θ), ti(θ))
N
i=1.

〈Θ, f〉 can be interpreted as a revelation mechanism that satisfies the

local downward incentive compatibility (LDIC): Each agent of each type has

no incentive to pretend to be the “locally” smaller type, because truth-telling

is always weakly better than such a deviation. Specifically, the truth-telling

either (i) weakly dominates pretending to be the adjacent smaller type, or

(ii) he is indifferent between the two.

5.2 Continuous type spaces with finite mechanisms

For simplicity, we assume that Θi = [0, 1] for each i. First, we consider

implementation by finite mechanisms. In a finite mechanism, each agent’s

18



type space is partitioned into finitely many “strategically equivalent” types

in the following sense.

Lemma 2. In a finite mechanism Γ = 〈M, g〉, each agent’s type space is

partitioned into finitely many connected subsets, {Θki
i }

Ti

ki=1 for each i, such

that any types in the same partition have the same ordinal preference on

g(M) = {g(m)|m ∈M}, i.e., for each x, x′ ∈ g(M), θi, θ
′
i ∈ Θki

i ,

ui(x, θi) ≥ ui(x
′, θi) ⇔ ui(x, θ

′
i) ≥ ui(x

′, θ′i).

As a corollary, we obtain MA
i (θi) =MA

i (θ
′
i) for θi, θ

′
i ∈ Θki

i . Without loss

of generality, we assume Θki
i < Θki+1

i in the following. Interpreting each Θki
i

as an ordinary preference type on g(M), we obtain an analogous result as

with finite type spaces.

Lemma 3. Suppose that a finite mechanism Γ admissibly implements F , and

for each i, let Pi = {Θki
i }

Ti

ki=1 denote the partitions of strategically equivalent

types induced by Γ. Let P =
∏

i Pi and k = (ki)
N
i=1. Then, there exist

f̃ : P → X such that (i) for each θ ∈ Θk =
∏

i Θ
ki
i , f̃(Θ

k) ∈ F (θ), and (ii)

for each i and k = (ki, k−i),

θkii z
k
i + tki ≥ θkii z

ki−1,k−i

i + t
ki−1,k−i

i ,

where f̃(Θk) = (zki , t
k
i )

N
i=1.

As in the case with finite type spaces, we can interpret 〈P, f〉 as a revela-

tion mechanism where each agent reports Θki
i as the set of equivalent types

in which his true type exists, and the inequalities mean the local downward

incentive compatibility (“local” in the sense of the equivalent types). We call

these inequalities the “ordinal LDIC condition”.

The ordinal LDIC condition implies the following, which is proved to be

useful in some applications.

Theorem 3. Suppose that an SCC F is admissibly implemented by a finite

mechanism. Then, there is a selection f = (z, t) : Θ → X of F that satisfies
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the following. For each i, θi, θ
′
i and θ−i,

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i) dt,

where Ui(θ) = θizi(θ) + ti(θ).

This is an integral form of the LDIC condition. It is well known that if

f is dominant-strategy incentive compatible, then the same condition holds,

but with equality (i.e., the change in each agent’s utility is exactly pinned

down by z(·)).12

The idea of the proof is the following. Let Pi = {Θki
i }

Ti

ki=1 denote the

partitions of strategically equivalent types induced by Γ, and f̃ : P → X be

the selection of F in Lemma 3.

For each i and ki, let θ
ki
i = inf Θki

i be the lower limit of the equivalent

types Θki
i . In the following, we assume that every Θki

i is left-closed (i.e.,

θkii ∈ Θki
i ). The proof for the general case is in the appendix.

Proof. By the ordinal LDIC condition:

θkii z
k
i + tki ≥ θkii z

ki−1,k−i

i + t
ki−1,k−i

i ,

where f̃(Θk) = (zki , t
k
i )

N
i=1.

Define an allocation rule f = (zi, ti)
N
i=1 so that, for each i and θ ∈ Θk,

(zi(θ), ti(θ)) = (zki , t
k
i ).

For each i and threshold types θk,

θkii (zki − z
ki−1,k−i

i ) + tki − t
ki−1,k−i

i ≥ 0.

Summing both sides for j = k′i + 1, . . . , ki,

ki
∑

j=k′i+1

θji (z
j,k−i

i − z
j−1,k−i

i ) + t
j,k−i

i − t
j−1,k−i

i ≥ 0.

12For example, see Hagerty and Rogerson (1987) for bilateral trading cases.
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and thus,

Ui(θ
k) ≡ θkii z

k
i + tki ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

ki
∑

j=k′
i
+1

(θji − θj−1
i )z

j−1,k−i

i .

Because (θji − θj−1
i )z

j−1,k−i

i =
∫ θ

j
i

θ
j−1

i

zi(t, θ
k−i

−i )dt, we obtain

Ui(θ
k) ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

∫ θ
ki
i

θ
k′
i

i

zi(t, θ
k−i

−i )dt.

Now, let θ ∈ Θk. Because (zi(θ), ti(θ)) = (zki , t
k
i ), we have

Ui(θ) = Ui(θ
k) + (θi − θkii )zki .

Therefore, for any θi, θ
′
i and θ−i,

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i)dt.

Sometimes, one may want to assume that any mechanism has an “opt-

out” or “non-participation” message for each i that assigns (zi, ti) = (0, 0)

to agent i regardless of the opponents’ actions. In that case, we assume

that there exists an “opt-out type” who strictly prefers (0, 0) than any other

allocations, so that the opt-out message is weakly dominant for this type in

any mechanism.

In this case, the LDIC condition obtained by letting this opt-out type to

be the initial type of the chain (i.e., θ0i in Ci) implies a lower bound on each

agent’s information rent: The integral form of the LDIC conditions

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i)dt,

and the LDIC condition for θi = 0

Ui(0, θ−i) ≥ 0,
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imply, by letting θ′i = 0,

Ui(θ) ≥

∫ θi

0

zi(t, θ−i)dt.

We call this inequality the information rent lower bound (IRLB). Again,

if f is dominant-strategy incentive compatible, then this holds with equality,

i.e., the agents’ information rents are exactly pinned down by z(·), but an

LDIC f bounds the information rents only from below.

5.3 Worst-case maximization problems

In this section, we assume that the mechanism designer has his own utility

function w(x, θ), prior Φ over Θ, and wants to maximize the worst-case

expected utility when the agents may play any admissible actions in each

state. Specifically, for admissibly implementable F , we define

W (F ) =

∫

θ

[

inf
x∈F (θ)

w(x, θ)
]

dΦ.

This W (F ) is the “guaranteed” level of the designer’s expected utility if

F is implemented, given whatever admissible actions the agents play in each

state.13

If every Θi is finite, then for any admissibly implementable F , there is an

LDIC selection f of F such that W (F ) ≤
∫

θ
w(f(θ), θ)dΦ. Thus, an upper

bound on the highest achievable guarantee of the designer’s expected utility

13In the following, we assume that W (F ) is well defined for any admissibly imple-

mentable F . If the worst-case selection of some F is not measurable, the guarantee may

be defined as follows, and we obtain the same result: Letting Ω be the set of all measurable

functions on Θ,

W (F ) = sup
ω∈Ω

∫

θ

ω(θ) dΦ

sub.to ω(θ) ≤ inf
x∈F (θ)

w(x, θ), ∀θ.
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is given by

supf

∫

θ

w(f(θ), θ)dΦ (1)

sub.to (LDIC) (2)

Even if some Θi is infinite, if a finite mechanism admissibly implements

F , then F has a selection f with the integral LDIC condition and W (F ) ≤
∫

θ
w(f(θ), θ)dΦ. One may wonder whether we can implement some SCC

that does not have an LDIC selection using infinite mechanisms. However,

the following result provides a sufficient condition on the environment under

which the integral LDIC condition yields a valid upper bound among all

bounded mechanisms (not only among finite mechanisms).

In the following, let Θi = [0, 1] for each i, and we define

W ∗ = sup
f

∫

θ

w(f(θ), θ)dΦ (3)

sub.to (integral LDIC). (4)

Theorem 4. Suppose that Φ is absolutely continuous with density function

φ, and there exists a Riemann integrable function b : Θ → R such that, for

each θ, θ′ and x,

|w(x, θ)φ(θ)− w(x, θ′)φ(θ′)| ≤ |b(θ)− b(θ′)|. (5)

Then, for any admissibly implementable F , we have W (F ) ≤W ∗.

Remark 1. In auction settings, the inequality is sometimes violated, be-

cause typically, the designer’s objective is revenue
∑

i ti and each ti can take

any real number. However, as we see in Section 4.3, the participation con-

straints may imply bounds on the transfers, and then, the boundedness of w

is satisfied.

Proof. In the proof, we assume φ(θ) ≡ 1 without loss of generality (otherwise,

we redefine w). Fix any mechanism Γ that implements F and K ∈ N.

For each i and αi ∈ [0, 1
K
], consider the chain dominance condition with
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Cαi

i = (θki,αi

i )Kki=0 where θ
ki,αi

i = αi +
ki
K
. Theorem 1 implies that there exists

a selection f̃ = (z̃i, t̃i)
N
i=1 of F such that, for each i, ki = 1, . . . , K, and θ−i,

θki,αi

i z̃i(θ
ki,αi

i , θ−i) + t̃i(θ
ki,αi

i , θ−i) ≥ θki,αi

i z̃i(θ
ki−1,αi

i , θ−i) + t̃i(θ
ki−1,αi

i , θ−i).

Denote α = (αi)
N
i=1, k = (ki)

N
i=1, and θk,α = (θki,αi

i )Ni=1. We define the

following “Problem (K,α)”:

maxf=(zi,ti)Ni=1

1

KN

∑

k

w(f(θk,α), θk,α)

sub.to θki,αi

i zi(θ
ki,αi

i , θ−i) + ti(θ
ki,αi

i , θ−i)

≥ θki,αi

i zi(θ
ki−1,αi

i , θ−i) + ti(θ
ki−1,αi

i , θ−i), ∀i, ki, θ−i.

Let W (K,α) be the value of this problem. Then,

W (K,α) ≥
1

KN

∑

k

w(f̃(θk,α), θk,α)

≥
1

KN

∑

k

[ inf
x∈F (θk,α)

w(x, θk,α)],

and thus, we obtain supαW (K,α) ≥W ∗ and supαW (K,α) ≥W (F ).

Now we show that, for any ε > 0, there exists K(ε) such that for any

K ≥ K(ε) and α ∈ [0, 1
K
]N , W ∗ + ε ≥ W (K,α). This implies W ∗ ≥ W (F )

for any admissibly implementable F , which completes the proof.

In the following, we fix arbitrary α ∈ [0, 1
K
]N , and let f ∗ be the solution

to Problem (K,α). Let Θk =
∏

l[θ
kl,αl

l , θkl+1,αl

l ) and define f̂ : Θ → X and

ŵ : Θ → R so that

f̂(θ) = f ∗(θk,α) if θ ∈ Θk,

ŵ(θ) = w(f ∗(θk,α), θk,α) if θ ∈ Θk.

Both are finite step functions (and so they are measurable), and by def-

inition,
∫

θ
ŵ(θ)dθ = W (K,α). Also, because f̂ is a finite-step function that

satisfies the integral LDIC condition,
∫

θ
w(f̂(θ), θ)dθ ≤W ∗.
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Observe that

∣

∣

∣

∫

θ

ŵ(θ)dθ −

∫

θ

w(f̂(θ), θ)dθ
∣

∣

∣

≤

∫

θ

|ŵ(θ)− w(f̂(θ), θ)|dθ

≤
1

KN

∑

k

| sup
θ∈Θk

w(f̂(θ), θ)− inf
θ∈Θk

w(f̂(θ), θ)|

≤
1

KN

∑

k

| sup
θ∈Θk

b(θ)− inf
θ∈Θk

b(θ)|,

which is o( 1
K
) because of the Riemann integrability of b. Therefore, W ∗ +

o( 1
K
) ≥ W (K,α).
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5.4 Balanced-budget bilateral trading

5.4.1 Environment

We consider the bilateral trading problem studied in Section 2. Recall that

an allocation is a pair (z, p), where z is the probability of trading, and p

is the price. The seller’s and the buyer’s utility in state (c, v) are given by

u1 = (p − c)z and u2 = (v − p)z, respectively, and the designer’s utility

is the total surplus, (v − c)z.14 We assume that any mechanism has an

“opt-out” message for each i, so that whenever agent i chooses the message,

(z, p) = (0, 0) is assigned.

The results in the previous section imply the following:

Corollary 1. Suppose Θ1 = {c1, . . . , cJ} and Θ2 = {v1, . . . , vK}. Then, the

highest achievable guarantee of the expected welfare is upper bounded by

W ∗ = sup
(z(·),p(·))

∫

c,v

(v − c)z(c, v) dΦ

sub.to (p(cj, vk)− cj)z(cj , vk) ≥ (p(cj+1, vk)− cj)z(cj+1, vk), ∀j, k,

(vk − p(cj , vk))z(cj , vk) ≥ (vk − p(cj, vk−1))z(cj , vk−1), ∀j, k,

(p(cJ , vk)− cJ)z(cJ , vk) ≥ 0, ∀k,

(v1 − p(cj, v1))z(cj , v1) ≥ 0, ∀j.

Corollary 2. Suppose that Θi = [0, 1] for each i. Then, the highest achiev-

able guarantee of the expected welfare among all finite mechanisms is upper

14In the notation in the previous section, z1 = z2 ≡ z, t1 = −t2 ≡ pz, c = −θ1 and

v = θ2.
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bounded by

W ∗ = sup
(z(·),p(·))

∫

c,v

(v − c)z(c, v) dΦ

sub.to (p(c, v)− c)z(c, v) ≥ (p(c′, v)− c)z(c′, v)

∫ c′

c

z(t, v) dt, ∀c < c′, v,

(v − p(c, v))z(c, v) ≥ (v − p(c, v′))z(c, v′)

∫ v

v′
z(c, t) dt, ∀c, v > v′,

(p(1, v)− 1)z(1, v) ≥ 0, ∀v,

(0− p(c, 0))z(c, 0) ≥ 0, ∀c.

Moreover, if Φ is absolutely continuous with density φ, and (v− c)φ(c, v)

is Riemann integral, then, W ∗ is the upper bound among all bounded mech-

anisms.

5.4.2 Optimality of posted-price mechanisms

In this section, we use the upper bound to show that, for a class of distribu-

tions, no mechanism can improve over the optimal posted-price mechanism.

Let Θi = [0, 1] and let φ be the density of Φ.

Theorem 5. Suppose that ψ(c, v) ≡ (v − c)φ(c, v) is strictly decreasing in

c, strictly increasing in v, and continuous in (c, v), for any c < v. Then

no mechanism guarantees expected welfare strictly higher than the wel-

fare guarantee of the posted-price mechanism with price p∗, where p∗ solves
∫ p∗

0
ψ(t, p∗) dt =

∫ 1

p∗
ψ(p∗, t) dt.15

An allocation rule (z(c, v), p(c, v))c,v induces expected welfare
∫

c,v
ψ(c, v)z(c, v) dvdc,

which is a weighted integral of z(c, v), where the weight is ψ(c, v). The mono-

tonicity of the weight function ψ means that more-efficient types have higher

weights. This condition is satisfied by independent uniform distributions

(i.e., φ(c, v) ≡ 1), and any distribution such that “more efficient types are

more likely” (i.e., φ(c, v) is non-increasing in c, non-decreasing in v).

15I thank Gabriel D. Carroll, who pointed out an error in the proof in the previous

version.
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As is shown in the previous section, no (possibly infinite, but bounded)

mechanism can achieve higher expected welfare than W ∗ under Riemann

integrability of ψ, which is satisfied because ψ is assumed to be continuous.

Proof. First, the integral LDIC condition and participation condition imply

the agents’ information rent lower bounds, as we discussed in the previous

section: For each c, v,

(p(c, v)− c)z(c, v) ≥

∫ 1

c

z(t, v) dt,

(v − p(c, v))z(c, v) ≥

∫ v

0

z(c, t) dt.

Adding up the agents’ information rent lower bounds, and because z(c, v) ≤

1, we obtain the following corollary.

Lemma 4. Let (z(c, v), p(c, v))c,v∈[0,1] be an allocation rule with the IRLB

condition. Then for any c, v,

v − c ≥

∫ 1

c

z(t, v) dt +

∫ v

0

z(c, t) dt (SC(c, v)).

This inequality means that the trading rule of an LDIC revelation mech-

anism is constrained by the surplus of a trade in state (c, v), i.e., v − c. We

call this inequality the surplus constraint in (c, v) (or SC(c, v)).

Obviously, c > v implies z(c, v) = 0.

Consider the following relaxed problem for W ∗:

sup
z(·)

∫

c,v

ψ(c, v)z(c, v) dvdc

sub.to SC(c, v), ∀c, v.

We guess which surplus constraints are binding. To give some intuition,

we consider a special case with φ(c, v) = 1 for (c, v) ∈ [0, 1]2 (i.e., a bivariate

uniform distribution), and hence the theorem yields p∗ = 1
2
. See the appendix
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for the general case. Our guess is that only the surplus constraints SC(1 −

q, q) for q ∈ [1
2
, 1] are binding:

2q − 1 ≥

∫ 1

1−q

z(t, q) dt+

∫ q

0

z(1 − q, t) dt (SC(1− q, q)),

and the other surplus constraints are ignored.

Notice that the objective can be decomposed as follows.
∫

c,v

ψ(c, v)z(c, v) dvdc

=

∫ 1

q=0

[

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt]dq

=

∫ 1

q= 1

2

[

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt]dq,

where the last equality obtains because z(c, v) = 0 for c > v.

For each q ∈ [1
2
, 1], we first solve the following decomposed problem sep-

arately, and show that the solutions to them also consist of the solution to

the original problem (i.e., W ∗):

max
z(·,q),z(1−q,·)∈[0,1]

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt

sub.to 2q − 1 ≥

∫ 1

1−q

z(t, q) dt+

∫ q

0

z(1− q, t) dt (SC(1− q, q)).
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Figure 6: A decomposed problem for q

Because the objective is linear in z, in the solution, there is a value ψ∗ such

that z(c, v) = 1 if and only if ψ(c, v) ≥ ψ∗, and zero otherwise. Because a

uniform distribution implies ψ(c, v) = v−c, (i) there is c∗ such that z(t, q) = 1

if and only if t ≤ c∗, (ii) there is v∗ such that z(1 − q, t) = 1 if and only if

t ≥ v∗, (iii) ψ∗ = q−c∗ = v∗−(1−q), and (iv) 2q−1 = [c∗−(1−q)]+[q−v∗]

by the surplus constraint at (1− q, q). These imply c∗ = v∗ = 1
2
.

Therefore, in the solution to the decomposed problem for any q ∈ [1
2
, 1],

the agents trade if and only if c < 1
2
< v. A posted-price mechanism with

p∗ = 1
2
induces this allocation rule, and therefore, no mechanism improves

over this posted-price mechanism.

Remark 2. Because of the symmetry of a uniform distribution, all the bind-

ing constraints are on the diagonal (i.e., (1−q, q) for q ∈ [1
2
, 1])). For a general

distribution, our proof constructs a downward-sloping curve (not necessarily

on the diagonal) that connects (p∗, p∗) to (0, 1) such that maximizing the de-

composed welfare functions subject to the surplus constraints for the points

on this curve yields the posted-price mechanism with price p∗.

Theorem 3 may be interpreted as giving a foundation for the use of

dominant-strategy mechanisms as the optimal robust mechanisms for some

distributions.
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5.4.3 Optimality of two-price mechanisms

In this section, we provide a sufficient condition on the environment where

the two-price mechanism we have examined in Section 2 is optimal. Thus, in

contrast to the previous section, the optimal mechanism guarantees strictly

higher expected welfare than any posted-price mechanism.

Recall that a two-price mechanism where the seller chooses a price is

characterized by (z1, p1), (z2, p2) ∈ X with z1 > z2 and p1 < p2 as follows:

The seller chooses p ∈ {p1, p2}, the buyer chooses p ∈ {p1, p2}, and (zk, pk)

is assigned if p = pk ≤ p (otherwise, no trade). That is, the trading price is

chosen by the seller, and the buyer essentially accepts or rejects each price.

In the following, this mechanism is called a “two-price-for-seller” mechanism

(with (z1, p1), (z2, p2)).

As discussed in Section 2, the buyer has a dominant strategy in this

mechanism, while the seller does not. In particular, for the seller with c ∈

(p1z1−p2z2
z1−z2

, p1), either price is admissible: If he believes that the buyer chooses

p = p2, then p = p2 yields is better, while if he believes that the buyer chooses

p = p1, then p = p1 is better.

Similarly, a “two-price-for-buyer” mechanism with (z1, p1), (z2, p2) (where

z1 > z2 and p1 > p2) is such that the buyer chooses p ∈ {p1, p2}, the seller

chooses p ∈ {p1, p2}, and (zk, pk) is assigned if p = pk ≥ p.

Theorem 6. Suppose that Φ is the following discrete distribution: There

exist C = {c1, c2} ⊆ Θ1 and V = {v1, v2} ⊆ Θ2 with c1 < v1 < c2 < v2 such

that Pr(c /∈ C) = Pr(v /∈ V ) = 0. Let Φjk = Pr((c, v) = (cj , vk)). Then,

• if Φ11

Φ22

≥ (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then a two-price-for-seller mechanism with (1, v1), (
v1−c1
c2−c1

, c2)

is optimal.

• if Φ11

Φ22

< (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then a two-price-for-buyer mechanism with (1, c2), (
v2−c2
v2−v1

, v1)

is optimal.

Proof. Treat C × V as the true type space. By Corollary 3, the highest
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achievable guarantee of the expected welfare is upper bounded by

W ∗ = sup
(zjk,pjk)j,k

∑

j,k

(vk − cj)zjkΦjk

sub.to (p1k − c1)z1k ≥ (p2k − c1)z2k, ∀k,

(v2 − pj2)zj2 ≥ (v2 − pj1)zj1, ∀j, k,

(p2k − c2)z2k ≥ 0, ∀k,

(v1 − pj1)zj1 ≥ 0, ∀j.

As in the case with continuous type spaces, these LDIC conditions induce

lower bounds for the agents’ information rents, which then induce the surplus

constraints:

W ∗ ≤ sup
(zjk)j,k

∑

j,k

(vk − cj)zjkΦjk

sub.to (v1 − c2)z21 ≥ 0,

(v2 − c2)z22 ≥ (v2 − v1)z21,

(v1 − c1)z11 ≥ (c2 − c1)z21,

(v2 − c1)z12 ≥ (c2 − c1)z22 + (v2 − v1)z11.

For this relaxed problem, first, because v1 < c2, z21 must be zero. Because

v2 − c1 > 0, z12 is not bounded from above except that z12 ≤ 1, we have

z12 = 1. For z11 and z22, because the problem is linear and both v1 − c1 and

v2− c2 are positive, one of them equals one, while the other is determined so

as to satisfy v2 − c1 = (c2 − c1)z22 + (v2 − v1)z11.

If we have z11 = 1, then z22 =
v1−c1
c2−c1

, and the objective is

(v2 − c1)Φ12 + (v1 − c1)Φ11 + (v2 − c2)
v1 − c1
c2 − c1

Φ22. (6)

If we have z22 = 1, then z11 =
v2−c2
v2−v1

, and the objective is

(v2 − c1)Φ12 + (v1 − c1)
v2 − c2
v2 − v1

Φ11 + (v2 − c2)Φ22. (7)
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Therefore, if φ11

φ22

≥ (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then the first way is better, and vice

versa.

The two-price mechanisms in the statements attain these upper bound

levels of expected welfare, and therefore, they are the optimal mechanisms.

Remark 3. We can extend the results to a more general case. For example,

under certain conditions on Φ, a K-price mechanism becomes optimal. In

the binary case, it turns out that it is a “probability zero event” (in terms

of Φ) that an agent does not have a dominant strategy, but with more than

two types, it is possible that with a positive probability, some types of an

agent have multiple admissible actions.

Also, Φ can be an atomless distribution, but in that case, for the present,

we could only show that a two-price mechanism can be approximately op-

timal (for example, when Φ converges to the two-by-two distribution in the

theorem). It is an open question if there is a class of continuous distributions

where a two-price (or K-price) mechanism is exactly optimal.

33



5.5 Without balanced budget

In this section, we consider an environment without balanced budget (e.g.,

auction). The mechanism designer’s utility function is w(z, t, θ), which is

decreasing in each ti. As in the balanced-budget case, we assume that any

mechanism has an “opt-out” message for each agent, and whenever agent i

chooses that message, (zi, ti) = 0 is assigned for him. In the following, we

consider the case with Θi = [0, 1] for each i, but the similar results hold for

the case with finite type spaces as well.

As in Theorem ??, under certain conditions on the environment, the high-

est achievable guarantee of the designer’s expected utility is upper bounded

by the following IRLB bound:

max
f(·)

∫

θ

w(f(θ), θ) dΦ

sub.to Ui(θ) ≥

∫ θi

0

zi(θ̃i, θ−i) dθ̃i, ∀i, θ.

Without balanced budget, all IRLBs are satisfied with equality:16

We call each constraint with equality ICFOCi(θ).

Suppose that the solution to the relaxed problem is a monotonic allocation

rule (z∗(θ), t∗(θ))θ. Then, the allocation rule is dominant-strategy incentive

compatible and ex post individually rational.17

As an example, suppose that w(z, t, θ) =
∑

i θizi − λ
∑

i ti for some con-

stant λ > 0. Then, the designer’s objective is a weighted sum of the agents’

total surplus and monetary residual.18 Then, the relaxed problem for W ∗ is

16Otherwise, we can decrease a transfer by a small amount without violating any other

constraints nor decreasing the objective. With the exact balanced budget, this logic does

not apply, because any decrease in the transfer to one of the agents implies an increase in

the transfer to the other agent.
17For example, see ?.
18A simple story would be that the mechanism designer can be a residual claimant for

the net transfers. In this case, the expected (not exact) budget balance may be the only

necessary requirement, and λ > 0 corresponds to the “shadow price” for the expected

budget balance constraint. An alternative situation is that the mechanism designer is a
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given as follows:

max
z(·),t(·)

∫

θ

∑

i

θizi − λ
∑

i

ti dΦ

sub.to Ui(θ) =

∫ θi

0

zi(θ̃i, θ−i) dθ̃i ∀i, θ.

Now, replacing ti(θ) in the objective by the ICFOCi(θ), and applying

integration by parts, the objective function becomes the following.

∫

θ

∑

i

θizi − λ
∑

i

[

∫ θi

θi

zi(θ̃i, θ−i) dθ̃i − θizi(θ)] dΦ

=

∫

θ

∑

i

[

((1 + λ)θi − λ
1− Φi(θi|θ−i)

φi(θi|θ−i)
)
]

zi(θ) dΦ,

where Φi(θi|θ−i) and φi(θi|θ−i) denote the conditional cdf and pdf of θi given

θ−i. Suppose that the monotone hazard rate conditions are satisfied for the

conditional distributions: 1−Φi(θi|θ−i)
φi(θi|θ−i)

is non-increasing in θi for any θ−i, then

we obtain a monotone trading rule as the solution to this expected welfare

maximization problem, which is dominant-strategy incentive compatible and

ex post individually rational. Thus, there is no improvement over the optimal

dominant-strategy mechanism.

This result provides a foundation to restrict attention to dominant-strategy

mechanisms in this setting.19 The result is also related to a result obtained

by Chung and Ely (2007). They show that the mechanism that maximizes

the worst-case expected revenue (corresponding to λ → ∞) is dominant-

strategy incentive compatible if Φ satisfies affiliation and monotone hazard

rate condition. Note that the “worst-case” in their definition is based on the

robust partial implementation of Bergemann and Morris (2005).

government who is concerned not only about the agents’ welfare, but also the “tax payers”.

Then, she may desire to maximize the weighed sum of the expected welfare of the agents

and the tax payers, as in Laffont and Tirole (1993). In this case, λ represents the shadow

price of the transfer from the tax payers to the agents. This becomes equivalent to a

revenue maximization problem, if 1
λ
→ 0.

19For example, see ?.
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Crémer, J., and R. McLean (1985): “Optimal selling strategies under

uncertainty for an discriminating monopolistwhen demands are interde-

pendent,” Econometrica, 53, 345–361.

(1988): “Full extraction of the surplus in Bayesian and dominant

strategy auctions,” Econometrica, 56, 1247–1258.

36



d’Aspremont, C., J. Cremer, and L.-A. Gerard-Varet (2004): “Bal-

anced Bayesian mechanisms,” Journal of Economic Theory, 115(2), 385–

396.

Hagerty, K. M., and W. P. Rogerson (1987): “Robust trading mech-

anisms,” Journal of Economic Theory, 42(1), 94–107.

Heifetz, A., and Z. Neeman (2006): “On the Generic (Im)Possibility

of Full Surplus Extraction in Mechanism Design,” Econometrica, 74(1),

213–233.

Jackson, M. O. (1992): “Implementation in undominated strategies: a

look at bounded mechanisms,” Review of Economic Studies, 59, 757–775.

Kosenok, G., and S. Severinov (2008): “Individually rational, budget-

balanced mechanisms and allocation of surplus,” Journal of Economic The-

ory, 140(1), 126–161.

Kunimoto, T., and R. Serrano (2010): “A New Necessary Condition for

Implementation in Iteratively Undominated Strategies,” Discussion paper.

Laffont, J.-J., and E. Maskin (1980): “A Differential Approach to Dom-

inant Strategy Mechanisms,” Econometrica, 48(6), 1507–20.

Laffont, J. J., and J. Tirole (1993): A Theory of Incentives in Regula-

tion and Procurement. MIT Press, Cambridge.

Moulin, H. (1979): “Dominance Solvable Voting Schemes,” Econometrica,

47(6), 1137–51.

Myerson, R., and M. Satterthwaite (1983): “Efficient mechanism for

bilateral trading,” Journal of Economic Theory, 28, 265–281.

Neeman, Z. (2004): “The relevance of private information in mechanism

design,” Journal of Economic Theory, 117(1), 55–77.

37



Smith, D. (2010): “A Prior Free Efficiency Comparison of Mechanisms for

the Public Good Problem,” mimeo, University of Michigan.

Srivastava, S., and M. A. Trick (1996): “Sophisticated voting rules:

the case of two tournaments,” Social Choice and Welfare, 13(3), 275–289.

Wilson, R. (1987): “Game-Theoretic Analyses of Trading Processes,” in

Advances in Economic Theory: Fifth World Congress, ed. by T. Bewley,

chap. 2, pp. 33–70. Cambridge University Press, Cambridge UK.

38


