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Abstract
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In this paper we prove the existence of Pareto optimal allocations of integrable random
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ences.

Variational preferences were recently introduced and axiomatically characterized by

Maccheroni, Marinacci, and Rustichini (2006). This broad class of preferences allows

to model ambiguity aversion and includes several subclasses of preferences that have

been extensively studied in the economic literature. Our study focuses on variational

preferences that are in addition assumed to be probabilistic sophisticated. Probabilistic

sophisticated preferences were introduced by Machina and Schmeidler (1992), further

studied by Marinacci (2002) and by Maccheroni, Marinacci, and Rustichini (2006)

and Strzalecki (2011b) for the case of variational preferences. A decision maker with

probabilistic sophisticated preferences sees any two random endowments that have the

same distribution under a reference probability measure as equivalent. Note that when

dropping probabilistic sophistication there are simple examples in which Pareto optimal

allocations do not exist; see Section 4.3.

The class of choice criteria which we consider represent probabilistic sophisticated

variational preferences and are of the following type:

(1.1) U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

where u : R→ R∪{−∞} is a (not necessarily strictly) concave (not necessarily strictly)

increasing utility function, Q is a rearrangement invariant set of probability measures

and α(Q) is a suited rearrangement invariant penalization on Q ∈ Q; see Definition 2.1

for the details, and Remark 2.2 for the relation to variational preferences on Markov

kernels. This broad class nests many well-known choice criteria studied in the economic

and finance literature, in particular, the von Neumann and Morgenstern (1947) expected

utility, the probabilistic sophisticated maxmin expected utility preferences introduced by

Gilboa and Schmeidler (1989), and the probabilistic sophisticated multiplier preferences

introduced by Hansen and Sargent (2000, 2001).

We assume that the decision makers have preferences on a space of future random

payoff profiles which we identify with L1 := L1(Ω,F ,P), i.e. the space of P-integrable

random variables on a fixed non-atomic probability space (Ω,F ,P) modulo P-almost
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sure equality, where P is the reference probability measure. So far, most of the existing

literature makes the assumption that payoff profiles are bounded, i.e. in L∞, or even

that the state space is finite. These assumptions are justified in many settings such

as economies with finitely many commodities. However, there are many situations in

which these boundedness assumptions are not appropriate. For instance, nearly all

financial models involve unbounded distributions. This suggests the model space L1

and the probabilistic sophistication of the preferences allows for that; see Remark 2.2.

In this paper we consider n ≥ 2 decision makers with probabilistic sophisticated

variational preferences on L1 represented by choice criteria in (1.1). Given the initial

endowments Wi ∈ L1, i = 1, . . . , n, of the decision makers, we establish the existence

of Pareto optimal allocations of the aggregate endowment W = W1 + . . .+Wn within

sets of acceptable reallocations of W . A reallocation of W is defined as acceptable if

it satisfies the individual (rationality) constraints (see inequalities (3.3)) of all decision

makers. Individual constraints specify which payoff profiles the decision maker i is

willing to accept in a reallocation of W in terms of an accepted utility loss or a required

utility gain. We allow for any kind of individual constraints. For instance, a decision

maker may only accept allocations which allot her an endowment which is at least

as good as her initial one, while another decision maker may be willing to accept a

worsening as compared to her initial endowment, or requires an improvement in order

to take part in the re-sharing of W . The interest in investigating the existence of

Pareto optimal allocations under such a variety of individual constraints is that the

notion of acceptability might be quite different from one decision maker to another.

These differences may for instance be due to outer factors, such as being a member

of a society with its own rules and regulations, or having specific interests which are

related to but not directly part of the reallocating problem and which do impact on

the individual’s behavior in the reallocating process.

Our main result is that when the decision makers’ choice criteria are in the class

(1.1), there always exists a comonotone Pareto optimal allocation of W within the set of
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acceptable reallocations. Comonotonicity means that the endowments in the allocation

are continuous increasing functions of the aggregate endowment W .1 In particular

we prove the following. We establish the existence of comonotone Pareto optimal

allocations for any choice of individual constraints when among the n ≥ 2 decision

makers there are no, or there is at most one cash additive choice criterion where cash

additivity means that the choice criterion is affine if restricted to R. If more than one

choice criterion is cash additive, then the lack of sensitivity to comonotone re-sharings

of sure payoffs amongst the cash additive decision makers poses some problems. In that

case we show the existence of comonotone Pareto optimal allocations requiring that

the utility of −W− is finite for those cash additive decision makers with non-trivial

constraints. Moreover, if the domains of all utilities in (1.1) are bounded from below,

we establish the existence of comonotone Pareto optimal allocations for any choice of

individual constraints, without imposing any further requirements on the cash additive

choice criteria amongst the n considered.

The existence of Pareto optimal allocations has so far only been established for a

few subclasses of choice criteria of type (1.1). In case that all decision makers have

von Neumann–Morgenstern expected utilities, existence results were already proved

in the sixties by Borch (1962), Arrow (1963) and Wilson (1968). More recent is the

proof of the existence of Pareto optimal allocations when all decision makers apply

probabilistic sophisticated cash additive choice criteria on L∞ (also called law invariant

convex risk measures); see Jouini, Schachermayer, and Touzi (2008) and references

therein. Filipović and Svindland (2008) extend this result to integrable (not necessarily

1Since probabilistic sophistication implies that the decision makers’ preferences satisfy second-

order stochastic dominance (Lemma 2.3), it is well understood that if there exists a Pareto optimal

allocation, then there is a comonotone Pareto optimal allocation and that under strict concavity every

Pareto optimum is necessarily comonotone, see Landsberger and Meilijson (1994) for the finite state

space case. This is also linked to the fact that in our setting all decision makers have the common

prior P; see e.g. Billot, Chateauneuf, Gilboa, and Tallon (2000), Rigotti, Shannon, and Strzalecki

(2008), Strzalecki and Werner (2011) and the references therein.
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bounded) aggregate endowments. Even more recently, Dana (2011) proves the existence

of Pareto optimal allocations when the decision makers have choice criteria within a

class of probabilistic sophisticated, finitely valued, continuous, concave utility functions

on L∞ not necessarily representing variational preferences. In Dana (2011) at least one

utility function is required to be cash additive and the others are assumed to be strictly

concave. Rigotti, Shannon, and Strzalecki (2008) prove the existence of Pareto optimal

allocations for variational preferences on the positive cone of L∞ under the assumption

of mutual absolute continuity. See Section 3.4 for a discussion of the positioning of our

results in the known literature.

The paper is organized as follows. In Section 2 we introduce probabilistic sophisti-

cated variational preferences on L1, we recall some well-known subclasses of these pref-

erences and some useful properties. The Pareto optimal allocations problem is studied

throughout Section 3. After introducing the problem we recall the well-know char-

acterization of Pareto optimal allocations as solutions to a weighted sup-convolution

optimization problem. Then we state our main result on the existence of Pareto op-

timal allocations and the underlying theorems which prove the existence of solutions

to the weighted sup-convolution optimization problem. In particular, we give bounds

which specify a non-empty set of possible choices of weights for which the associated

optimization problem admits solutions. Knowing this set is useful to derive Pareto

optimal allocations explicitly. In Section 4 we illustrate our results by means of some

examples. The first set of examples (Section 4.1) illustrates that the given bounds on

the weights cannot be dropped. We also present a case study (Section 4.2) in which

we explicitly characterize the Pareto optimal allocations between two decision makers,

one with a Yaari (1987) type choice criterion and the other one with a choice criterion

in a specific class containing, for instance, the probabilistic sophisticated multiplier

preferences mentioned above. Finally, we give an example (Section 4.3) of decision

makers with expected utility choice criteria under different subjective probabilities in

which Pareto optimal allocations may or may not exist depending on the deviation
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of the subjective probabilities from each other and on the concavity of the respective

utility functions.

2 Setup

Throughout this paper (Ω,F ,P) is an atom-less probability space, i.e. a probability

space supporting a random variable with continuous distribution. Here Ω represents

the states of the world, F is the σ-algebra of events, and P is the reference probability

measure which resembles the decision makers’ (reference) estimates of the likeliness of

events. The decision makers have preferences on payoff profiles. A payoff profile is

a real number (payoff) on each state of the world which is supposed to be consistent

with the possible events F . Hence, the set of payoff profiles is given by the set of

random variables, i.e. F -measurable functions X : Ω → R, where X(ω) is the payoff

given the state of the world ω ∈ Ω. The payoff profiles are assumed to be integrable

with respect to P, and we identify those payoff profiles which only deviate on an event

of zero probability under P. Therefore, the set of payoff profiles considered by the

decision makers can be identified with the space L1 := L1(Ω,F ,P) of P-integrable

random variables modulo P-almost sure (a.s.) equality. For a justification of the model

space L1 see Remark 2.2.

In this paper all equalities and inequalities between random variables are under-

stood in the P-a.s. sense. Given two random variables X and Y we write X
d
= Y to

indicate that both random variables have the same distribution under the reference

probability measure P. The expectation (if well-defined) of a random variable X under

a probability measure Q on (Ω,F) will be denoted by EQ[X]. In case Q = P we also

write E[X] := EP[X].
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2.1 Probabilistic Sophisticated Variational Preferences on L1

In this section we define probabilistic sophisticated variational preferences on L1. In

Remark 2.2 we briefly discuss how our setting, in particular our definition of proba-

bilistic sophisticated variational preferences on L1, fits into the existing literature on

variational preferences.

Variational preferences were introduced by Maccheroni, Marinacci, and Rustichini

(2006). In the same paper the authors also study the subclass of probabilistic sophis-

ticated variational preferences. Probabilistic sophistication means that X
d
= Y implies

X ∼ Y in the preference order.

Definition 2.1. (i) A function u : R → R ∪ {−∞} is a utility function (on R) if

it is concave, right-continuous, increasing, dom u := {x ∈ R | u(x) > −∞} 6= ∅,

and not constant in the sense that there exist x, y ∈ dom u such that u(x) 6= u(y).

(ii) Let ∆ denote the set of all probability measures Q on (Ω,F) which are absolutely

continuous and have bounded densities with respect to P, i.e. ∀A ∈ F , P(A) =

0 ⇒ Q(A) = 0, and there exists K > 0 such that P
(
dQ
dP < K

)
= 1. A set of

probability measures Q ⊂ ∆ is rearrangement invariant if Q ∈ Q and Q̂ ∈ ∆

with dQ̂
dP

d
= dQ

dP implies that Q̂ ∈ Q.

(iii) A decision maker has probabilistic sophisticated variational preferences � if for

all X, Y ∈ L1:

X � Y ⇔ inf
Q∈Q

(EQ[u(X)] + α(Q)) ≥ inf
Q∈Q

(EQ[u(Y )] + α(Q))

where u is a utility function, ∅ 6= Q ⊂ ∆ is convex and rearrangement invariant,

and α : Q → R is a convex and rearrangement invariant function on Q in the

sense that Q, Q̂ ∈ Q with dQ̂
dP

d
= dQ

dP implies α(Q̂) = α(Q). In addition α satisfies

infQ∈Q α(Q) > −∞. The numerical representation

(2.1) U : L1 → R ∪ {−∞}, X 7→ inf
Q∈Q

(EQ[u(X)] + α(Q)) ,
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is the choice criterion used by the decision maker to quantify the utility of a payoff

profile X ∈ L1.

In the mathematical finance literature choice criteria of type (2.1) are also called law

invariant robust utilities ; see e.g. Föllmer, Schied, and Weber (2009) and the references

therein.

The choice criterion U in (2.1) is, clearly, rearrangement invariant (probabilistic

sophisticated) and posses some other useful properties which are collected in Lemma 2.3

below. Due to Jensen’s inequality for concave functions, the expectations in (2.1) are

all well-defined, possibly taking the value −∞. Note that U(X) = −∞ is possible for

some X ∈ L1. The interpretation is that the payoff profiles with utility −∞ are totally

unacceptable.

We remark that what we call a utility function in Definition 2.1 (i) satisfies relatively

weak requirements and nests the vast majority of utilities proposed in the economic,

finance, and insurance literature, including extreme cases such as increasing linear or

affine functions. Moreover, by allowing u to take the value −∞ we also incorporate

the cases when the domain of the utility function u is bounded from below, as e.g. for

the power utilities or the logarithmic utilities.

Remark 2.2. A standard approach to modeling preferences in presence of model

ambiguity (Knightian uncertainty) is to consider preference orders on the set M of

all Markov kernels X (ω, dy) from (Ω,F) to (R,B(R)) (where B(R) denotes the Borel-

σ-algebra) for which there exists a k > 0 such that X (ω, [−k, k]) = 1 for all ω ∈ Ω.

It can then be shown under some mild additional assumptions that a preference order

on M is in the class of variational preferences if and only if it admits a numerical

representation of the form

(2.2) U(X ) = inf
Q∈C

(∫ ∫
u(y)X (ω, dy) dQ(ω) + α(Q)

)
, X ∈M.

Here u is a utility function on R, and without loss of generality we may assume that C

is the set of all finitely additive normalized measures, and α : C → R∪{∞} is a convex
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rearrangement invariant function with the additional property of being the minimal

function for which U can be represented as in (2.2). For an axiomatic definition of

variational preferences on Markov kernels and the details on their numerical represen-

tation (2.2) we refer to Föllmer, Schied, and Weber (2009). Notice that the space of

all bounded payoff profiles L∞ is naturally embedded into the spaceM by identifying

each X ∈ L∞ with the associated kernel X (ω, dy) = δX(ω)(dy) where δx denotes the

Dirac measure given x ∈ R. The restriction of U to L∞ then takes the form

(2.3) U(X) = inf
Q∈C

(∫
u(X) dQ+ α(Q)

)
, X ∈ L∞.

In case of probabilistic sophistication, using results in Svindland (2010a), it follows

that U is σ(L∞, L∞)-upper semi continuous and thus we obtain a representation of U

as an infimum over σ-additive probability measures in ∆:

(2.4) U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L∞,

where Q := dom α ∩∆.

Hence, these preferences on L∞ are indeed consistent with our definition of prob-

abilistic sophisticated variational preferences on L1; see Definition 2.1. Moreover, the

representation (2.4) shows that the choice criterion U and thus the corresponding pref-

erence order is canonically extended from L∞ to L1. ♦

2.2 Special Cases

In this section we list some well-known subclasses of choice criteria that are special

cases of the class of choice criteria (2.1) considered in this paper.

(i) Expected utility. If in (2.1) Q = {P} and α(P) = 0, then U is the classi-

cal expected utility criterion corresponding to von Neumann-Morgenstern type

preferences : see von Neumann and Morgenstern (1947).

(ii) Probabilistic sophisticated maxmin expected utility. If α ≡ 0 in (2.1),

then the choice criterion U represents probabilistic sophisticated maxmin expected
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utility preferences (also called probabilistic sophisticated multiple prior prefer-

ences) axiomatized by Gilboa and Schmeidler (1989). This choice criterion has

been largely used in the economic literature to model ambiguity aversion; see,

e.g., Epstein and Wang (1994), Chen and Epstein (2002) and Yaari (1987). For

the connection between maxmin expected utility and variational preferences see

Maccheroni, Marinacci, and Rustichini (2006).

(iii) Probabilistic sophisticated multiplier preferences criterion. If the func-

tion α in (2.1) is the relative entropy of Q ∈ Q with respect to P, i.e. α(Q) =

γH(Q | P) = γE[dQ
dP log dQ

dP ] for some γ > 0, then the choice criterion U repre-

sents the probabilistic sophisticated multiplier preferences introduced by Hansen

and Sargent (2000, 2001). Like the maxmin expected utility, this choice cri-

terion models the uncertainty of the decision maker on the reference model P.

For the connection between multiplier preferences and variational preferences see

Strzalecki (2011a).

(iv) Law invariant monetary utility. If in (2.1) u = idR (or more in general if

u = α idR + β with α, β ∈ R, α ≥ 0), then the choice criterion U is known as

law invariant monetary utility function. Monetary utilities (called convex risk

measures when multiplied by −1) were introduced in order to assess the risk of

future random endowments. In particular, monetary utilities are cash additive

in the sense that U(X + a) = U(X) + a for all a ∈ R (or more in general

U(X + a) = U(X) + αa + β). These functions have been largely investigated in

the mathematical finance literature; see for instance Föllmer and Schied (2004)

and the references therein.

2.3 Properties of the Choice Criterion (2.1)

In Lemma 2.3 we collect some properties of the choice criteria (2.1) which we will make

frequently use of. Some of them are well-known, and proofs can be partly found for
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instance in Dana (2005), Föllmer and Schied (2004) and Maccheroni, Marinacci, and

Rustichini (2006). References and proofs of the parts of Lemma 2.3 which we believe

are not well-known are provided in Appendix A.

Lemma 2.3. Consider a choice criterion U in (2.1). Then U has the following prop-

erties:

(i) properness: U < ∞ and the domain dom U := {X ∈ L1 | U(X) > −∞} is not

empty.

(ii) concavity: U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y ) for all λ ∈ [0, 1].

(iii) monotonicity: X ≥ Y implies U(X) ≥ U(Y ).

(iv) rearrangement invariance (probabilistic sophistication): X
d
= Y implies U(X) =

U(Y ).

(v) �ssd-monotonicity: X �ssd Y implies U(X) ≥ U(Y ), where

X �ssd Y ⇔ E[u(X)] ≥ E[u(Y )], for all utility functions u : R→ R,

is the second order stochastic dominance order.

(vi) upper semi-continuity: for all k ∈ R the level sets Ek := {X ∈ L1 | U(X) ≥ k}

are closed in L1 with respect to the topology induced by the norm ‖ · ‖1 := E[| · |].

Equivalently, if (Xn) ⊂ L1 converges to X ∈ L1 (with respect to ‖ · ‖1), then

U(X) ≥ lim supn→∞ U(Xn).

Probabilistic sophisticated variational preferences do not only preserve second order

stochastic dominance (Lemma 2.3 (v)) but consequently also the concave order, i.e.

X �c Y implies U(X) ≥ U(Y ), where �c denotes the concave order, that is

X �c Y ⇔ E[u(X)] ≥ E[u(Y )] for all concave functions u : R→ R.(2.5)

Clearly, X �c Y implies X �ssd Y . The property of preserving �c is referred to

as Schur concavity of U . Indeed in case of monotone concave upper semi-continuous
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functions �ssd-monotonicity is equivalent to Schur concavity. See Dana (2005) for more

details on concave order, second order stochastic dominance and functions preserving

the concave order and the second order stochastic dominance; see also Rothschild and

Stiglitz (1970), Föllmer and Schied (2004), and Maccheroni, Marinacci, and Rustichini

(2006).

3 Pareto Optimal Allocations for Probabilistic So-

phisticated Variational Preferences

Consider n ≥ 2 decision makers with initial endowments Wi ∈ L1. All decision mak-

ers are assumed to have probabilistic sophisticated variational preferences on L1 and

corresponding choice criteria

(3.1) Ui(X) = inf
Q∈Qi

(EQ[ui(X)] + αi(Q)) , X ∈ L1, i = 1, . . . , n,

as defined in (2.1). We assume that Ui(Wi) > −∞ for all i = 1, . . . , n, and let W :=

W1 + . . . + Wn be the aggregate endowment. The aim of this section is to prove the

existence of Pareto optimal allocations of W amongst the n agents within the set of

reallocations of the aggregate endowment W that are accepted by all agents. The set

A(W ) of all acceptable allocations of W is

A(W ) := {(X1, . . . , Xn) ∈ (L1)n |
n∑
i=1

Xi = W,(3.2)

Ui(Xi) > −∞ and Ui(Xi) ≥ Ui(Wi)− ci for all i ∈ {1, . . . , n}},

where ci ∈ R ∪ {∞}, i = 1, . . . , n. The constraint

Ui(Xi) ≥ Ui(Wi)− ci(3.3)

expresses the individual (rationality) constraint of the decision maker i, specifying which

payoff profiles Xi in a new re-allocation of W she is willing to accept. Indeed, the con-

stant ci measures to which extent the decision maker i is willing to accept a worsening
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of her situation as compared to her initial endowment or demands an improvement in

order to take part in the re-sharing of the aggregate endowment W . Clearly, ci = 0

represents the (classical) case when the decision maker will not accept any allocation

which allots her an endowment which is not as least as good as her initial one. An

extreme is ci = ∞ which means that the decision maker is willing to accept any al-

location with finite utility.2 We also allow for situations in which the decision maker

is to some bounded extent willing to accept a worsening as compared to her initial

endowment (ci > 0), or requires an improvement (ci < 0).

Note that if ci ≥ 0 for all i ∈ {1, . . . , n}, then the initial allocation (W1, . . . ,Wn)

is acceptable, so in particular A(W ) 6= ∅. However, if some agents demand a strict

improvement, it is in general not clear whether the set of acceptable allocations is

non-empty. Hence, we make the following assumption.

Assumption 3.1. A(W ) 6= ∅.

We are interested in those reallocations of W that are Pareto optimal within A(W ).

Definition 3.2. An allocation (X1, . . . , Xn) ∈ A(W ) is Pareto optimal if (Y1, . . . , Yn) ∈

A(W ) and Ui(Yi) ≥ Ui(Xi) for i = 1, . . . , n implies that Ui(Yi) = Ui(Xi) for all i =

1, . . . , n.

3.1 Characterization of Pareto Optimal Allocations

To prove the existence of Pareto optimal allocations in the set A(W ) we use a well-

known result that characterizes Pareto optimal allocations as solutions to the following

weighted sup-convolution optimization problem

(3.4) Maximize
n∑
i=1

λiUi(Xi) subject to (X1, . . . , Xn) ∈ A(W ),

where λi ≥ 0, i = 1, . . . , n, are positive or zero weights. Note that under Assumption

3.1 the optimization problem (3.4) is well-posed.

2ci =∞ is understood as the restriction Ui(Xi) ≥ Ui(Wi)−∞ := −∞ being redundant.
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Proposition 3.3. If (X1, . . . , Xn) ∈ A(W ) is Pareto optimal, then there exist weights

λi ≥ 0, i = 1, . . . , n, not all equal to zero, such that the allocation (X1, . . . , Xn) solves

(3.4) with these weights. Conversely, if (X1, . . . , Xn) solves (3.4) for some strictly

positive weights λi > 0, i = 1, . . . , n, then (X1, . . . , Xn) is Pareto optimal.

For the sake of completeness a proof of Proposition 3.3 is given in Appendix B. As

we will see in Section 3.3, our techniques allow us to prove the existence of solutions

to (3.4) only in case all weights are strictly positive, i.e. λi > 0 for all i ∈ {1, . . . , n};

see Theorems 3.9 and 3.10. Anyhow, we think that Pareto optimal allocations that

are associated to strictly positive weights are the most interesting ones. Indeed λj = 0

implies that the decision maker j is not considered in the social welfare maximization

problem (3.4), whereas λj > 0 in many cases will lead to a social welfare that is strictly

higher than in case λj = 0. Moreover, in the following Lemma 3.4 we give conditions

under which all Pareto optimal allocations correspond to solutions to (3.4) for strictly

positive weights λi.

Lemma 3.4. Suppose that ci = ∞ for all i = 1, . . . , n and that the Ui satisfy the

following conditions for all i = 1, . . . , n:

• dom Ui = dom Ui + R,

• non-satiation: limm→∞ Ui(X +m) =∞ for all X ∈ dom Ui.

Then (X1, . . . , Xn) ∈ A(W ) is Pareto optimal if and only if it solves (3.4) for some

strictly positive weights λi > 0, i = 1 . . . , n.

Proof. Let (X1, . . . , Xn) ∈ A(W ) be Pareto optimal and let λi ≥ 0 be the corresponding

weights from Proposition 3.3. The stated conditions ensure that (X1 + m1, . . . , Xn +

mn) ∈ A(W ) for all mi ∈ R such that
∑n

i=1mi = 0. Hence, if λj = 0 for some

j ∈ {1, . . . , n}, then for any k ∈ {1, . . . , n} such that λk > 0 we obtain
n∑
i=1

λiUi(Xi) = sup
(Y1,...,Yn)∈A(W )

n∑
i=1

λiUi(Yi)

≥ sup
m≥0

∑
i 6=j,k

λiUi(Xi) + λkUk(Xk +m) + 0 · Uj(Xj −m) =∞
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which is a contradiction to Pareto optimality of (X1, . . . , Xn). The rest follows from

Proposition 3.3.

3.2 Comonotone Pareto Optimal Allocations

In this section we introduce the class of comonotone allocations which play a major role

in the search for Pareto optima in case of probabilistic sophistication. It is known that

if there exists a Pareto optimal allocation, then in particular there is also a comonotone

one. This follows from Proposition 3.6 below.

Definition 3.5. We denote by CF the set of all n-tuples (f1, . . . , fn) of increasing

functions fi : R → R, i = 1, . . . , n, such that
∑n

i=1 fi = IdR. These functions fi

are necessarily 1-Lipschitz-continuous. An allocation (Y1, . . . , Yn) ∈ (L1)n of W , i.e.∑n
i=1 Yi = W , is comonotone if there exists (fi)

n
i=1 ∈ CF such that Yi = fi(W ) for all

i = 1, . . . , n.

Proposition 3.6. For any (X1, . . . , Xn) ∈ A(W ) there exists a comonotone allocation

(Y1, . . . , Yn) ∈ A(W ) such that Yi �c Xi (and thus Yi �ssd Xi) for all i = 1, . . . , n.

Proof. First of all we recall a result that is often referred to as comonotone improve-

ment: for any allocation (X1, . . . , Xn) ∈ (L1)n of W there exists a comonotone alloca-

tion (Y1, . . . , Yn) ∈ (L1)n of W such that Yi �c Xi for all i = 1, . . . , n. The proof for

the case when W is supported by a finite set goes back to Landsberger and Meilijson

(1994). This has been further extended to aggregate endowments W ∈ L1 by Filipović

and Svindland (2008), Dana and Meilijson (2011), and Ludkovski and Rüschendorf

(2008). Finally, by �ssd-monotonicity of the Ui (see Lemma 2.3 (v)) it follows that if

(X1, . . . , Xn) ∈ A(W ), then any comonotone improvement (Y1, . . . , Yn) of (X1, . . . , Xn)

is acceptable as well, i.e. (Y1, . . . , Yn) ∈ A(W ).

Hence, if there exists a solution to (3.4) for some non-negative weights λi ≥ 0, then

by �ssd-monotonicity of the Ui (see Lemma 2.3 (v)) and by virtue of Proposition 3.6
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there must also exists a comonotone one. Indeed, when proving the existence of so-

lutions to (3.4), and thus of Pareto optimal allocations, we will profit from the fact

that we may restrict our attention to the set of comonotone acceptable allocations; see

proofs of Theorems 3.9 and 3.10 in Appendix C.

Remark 3.7. The comonotone allocations have another desirable property. Suppose

that W ∈ Lp ⊂ L1 for some p ∈ [1,∞], and let (fi(W ))ni=1 be a comonotone allocation

of W , i.e. (fi)
n
i=1 ∈ CF. Then, by the 1-Lipschitz continuity of the fi, it is easily verified

that (fi(W ))ni=1 ∈ (Lp)n. Hence, any comonotone Pareto optimal allocation will posses

the same integrability/boundedness properties as the aggregate endowment W . In

that sense, further restricting the set of acceptable allocations by imposing additional

integrability or even boundedness constraints in the formulation of problem (3.4) will

yield the same comonotone solutions as solving the unrestricted problem. ♦

3.3 Main Results

Let si := inf dom ui ∈ R ∪ {−∞}, i = 1, . . . , n, and diH := limx→si u
′
i(x) (which

may be ∞) and diL := limx→∞ u
′
i(x)(≥ 0) where u′ denotes the right-hand-derivative

of u. Finally, let N ⊂ {1, . . . , n} be the set of all indices such that diH = diL, and

M := {1, . . . , n} \ N the set of all indices such that diL < diH . Note that N = ∅ or

M = ∅ is possible.

When diL = diH and si = −∞ (i.e. dom ui = R), then the corresponding choice

criterion Ui is cash additive in the sense that Ui(X+m) = Ui(X) +diHm, for all m ∈ R

and X ∈ L1; see Section 2.2 item (iii). In the case diL = diH but si >∞ (i.e. when the

dom ui  R is bounded from below), we say that the choice criterion Ui is quasi-cash

additive.

Theorem 3.8.

(i) If si > −∞ for all i = 1, . . . , n, then for any individual constraints (c1, c2, . . . , cn) ∈

(R∪ {∞})n in A(W ) there exists a comonotone Pareto optimal allocation of W .
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(ii) If |N | ≤ 1, then for any (c1, c2, . . . , cn) ∈ (R ∪ {∞})n in A(W ) there exists a

comonotone Pareto optimal allocation of W .

(iii) Suppose that |N | ≥ 2. Given any choice of individual constraints (c1, c2, . . . , cn)

in A(W ), if si = −∞ for all i ∈ N , and Uj(−W−) > −∞ for all j ∈ N such

that cj ∈ R then there exists a comonotone Pareto optimal allocation of W .

Moreover, in the situation of (iii), if |N | = n (i.e. all choice criteria are cash

additive) the Pareto optimal allocations have the property of being up to a reallocation

of cash, that is if (X1, . . . , Xn) is a Pareto optimal allocation of W , then also (X1 +

m1, . . . , Xn +mn) is a Pareto optimal allocation whenever the numbers mi ∈ R satisfy∑n
i=1mi = 0 and (X1 +m1, . . . , Xn +mn) ∈ A(W ).

Proof. The proof follows immediately from Proposition 3.3, Theorem 3.9 and Theo-

rem 3.10.

Note that in Theorem 3.8 (i) the bounds si > −∞ can be different among the n

decision makers, and in Theorem 3.8 (ii) the domains of the ui can be either bounded

from below with arbitrary bounds or equal R.

In the following we give the two theorems that jointly with Proposition 3.3 prove

the existence of Pareto optimal allocations as stated in Theorem 3.8. In particular,

these theorems specify a non-empty set of possible choices of weights λ1, . . . , λn for

which the associated optimization problem (3.4) has a solution. Notice that knowing

this set is useful when Pareto optimal allocations need to be derived explicitly.

The first theorem treats the case when the domain of ui is bounded from below for

all i = 1, . . . , n.

Theorem 3.9. Suppose that si > −∞, i = 1, . . . , n. Then for any set of individual

constraints ci ∈ R∪ {∞} and every set of strictly positive weights λi > 0, i = 1, . . . , n,

(3.4) admits a comonotone solution.
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The next theorem treats the general case in which the domains of the utilities ui

can be either unbounded or bounded from below. To ensure the existence of a solution

to (3.4) in this setting, the strictly positive weights need to be chosen within certain

bounds that depend on the extreme slopes djL and djH and thereby on the risk aversion

of the decision makers.

Theorem 3.10. Consider the following bounds on the weights λi, i = 1, . . . , n, and

some δ > 0:

(3.5)

λi = δ
diH

for all i ∈ N,

λid
i
L < δ < λid

i
H for all i ∈M,

λi
λj
<

djH
diL

for all i, j ∈M ,

where for every b > 0 we set b
0

:= ∞, b
∞ := 0, and ∞

0
:= ∞ whereas 0

∞ := 0. We

consider two cases:

(i) Suppose that N = ∅ or |N | = 1. Then (3.4) admits a comonotone solution for

every set of individual constraints ci ∈ R ∪ {∞}, i = 1, . . . , n, and any set of

weights λi > 0, i = 1, . . . , n, satisfying the constraints (3.5).

(ii) Suppose that |N | ≥ 2. If si = −∞ for all i ∈ N , and Uj(−W−) > −∞ for all

j ∈ N such that cj ∈ R, then (3.4) admits a comonotone solution for every set

of weights λi > 0, i = 1, . . . , n, satisfying the constraints (3.5). In particular, if

|N | = n, the solutions have the property of being up to a reallocation of cash in

the sense that if (X1, . . . , Xn) is a solution to (3.4) for some given weights, then

also (X1 +m1, . . . , Xn+mn) is a solution to (3.4) with that weights whenever the

numbers mi ∈ R satisfy
∑n

i=1mi = 0 and (X1 +m1, . . . , Xn +mn) ∈ A(W ).

We remark that when N = ∅ the three conditions in (3.5) reduce to the last one.

The proofs of Theorems 3.9 and 3.10 are provided in Appendix C. Theorem 3.10

is discussed in Examples 4.2, 4.3 and 4.4 where we illustrate that if we drop one of the

conditions on the weights stated in (3.5) we cannot in general expect the existence of

solutions to (3.4) any longer.
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Remark 3.11. If diH = ∞ and diL = 0 for all i = 1, . . . , n, as for instance when

the decision makers’ utilities ui are chosen amongst the exponential, logarithmic or

power utilities, then the bounds in (3.5) are void. Hence, Theorem 3.10 (i) implies

the existence of a solution to (3.4) for any set of strictly positive weights λi > 0,

i = 1, . . . , n. ♦

As regards the uniqueness of Pareto optimal allocations, we have the following

result. To this end we recall that a function U : L1 → R ∪ {−∞} is strictly concave if

U(λX + (1− λ)Y ) > λU(X) + (1− λ)U(Y ) whenever λ ∈ (0, 1) and X 6= Y .

Corollary 3.12. Suppose that under the conditions stated in Theorem 3.9 (and The-

orem 3.10, respectively) (n − 1) among the n choice criteria Ui are strictly concave.

Then, for any given set of weights λi > 0, i = 1, . . . , n, (and satisfying the bounds (3.5),

respectively), the Pareto optimal allocation which solves the optimization problem (3.4)

associated to (λ1, . . . , λn) is unique and comonotone.

Proof. For any given vector of positive weights (λ1, . . . , λn) the set of solutions to the

associated optimization problem (3.4) is convex because the Ui are concave. This to-

gether with the strict concavity of (n − 1) choice criteria implies that the solution to

(3.4), if it exists, is unique. The comonotonicity of the solution follows from Theo-

rem 3.9 (and from Theorem 3.10, respectively).

3.4 Positioning of the Main Results in the Known Literature

There is an extensive literature covering the existence of Pareto optimal allocations for

(subclasses of) variational preferences when the state space is assumed to be finite; see

e.g. Rigotti and Shannon (2005) and the references therein. However, it is well-know

that in an infinite dimensional setting the standard analytical tools used in the finite

dimensional framework do not work any longer.

The version of Theorem 3.10 when all the choice criteria are cash additive (i.e.

when |N | = n) is known and proved in Jouini, Schachermayer, and Touzi (2008) for
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bounded aggregate endowments and in Filipović and Svindland (2008) for integrable

(not necessarily bounded) aggregate endowments. Dana (2011) proves a version of

Theorem 3.10 for a class of finitely valued, continuous, concave, rearrangement invari-

ant utilities Ui : L∞ → R on bounded endowments of which at least one utility is

required to be cash additive, i.e. to be a monetary utility function, and the others are

assumed to be strictly concave. In her setting, the Ui do not necessarily correspond

to variational preferences. Dana (2011) derives similar bounds on the weights λi given

in (3.5) in her setting. Theorem 3.10 for |N | < n and unbounded merely integrable

endowments is to our knowledge new.

Theorem 3.9 is well-known in case all choice criteria are expected utilities; see e.g.

Lemma 3.57 in Föllmer and Schied (2004). Rigotti, Shannon, and Strzalecki (2008)

prove the existence of Pareto optimal allocations for variational preferences on L∞+ ,

which corresponds to the case si = 0 for all i = 1, . . . , n, without requiring probabilis-

tic sophistication but under the additional assumption of mutual absolute continuity.

Apart from these results, we think Theorem 3.9 is new.

4 Examples

This section collects our examples. In Subsection 4.1 we show that dropping the condi-

tions stated in (3.5) we cannot expect the existence of solutions to (3.4) any longer. In

Subsection 4.2 we characterize the Pareto optimal allocations in the case of two decision

makers, one with Yaari type preferences and the other one with preferences in a class

of probabilistic sophisticated preferences that contains the probabilistic sophisticated

multiplier preferences as an example. In Subsection 4.3 we show that if the decision

makers’ preferences are not probabilistic sophisticated with respect to the same refer-

ence probability measure, then there are cases in which Pareto optimal allocations do

not exist. Since our examples will only involve two decision makers, in the following

we give a version of Theorem 3.10 for two decision makers.
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Theorem 4.1. Suppose n = 2. We consider two cases:

(i) Suppose that diL < diH for at least one i ∈ {1, 2}. If the weights λ1 > 0 and λ2 > 0

satisfy

(4.1)
λ2
λ1
∈
(
d1L
d2H

,
d1H
d2L

)
,

then for any c1, c2 ∈ R ∪ {∞} there exists a comonotone solution to (3.4).

(ii) Suppose that d1H = d1L, d2H = d2L, s1 = s2 = −∞ and Ui(−W−) > −∞ for any

i = 1, 2 such that ci ∈ R. If λi = δ
diH

, i = 1, 2, for some δ > 0, then there exists

a comonotone solution to (3.4).

4.1 Examples Illustrating the Bounds (3.5)

Example 4.2. Illustration of Theorem 4.1 (i): Let U1(X) = E[dLX
+ − dHX

−] and

U2(X) := E[X], X ∈ L1, where 0 < dL < 1 < dH . Moreover, suppose that c1 = c2 =∞

and that W ≥ 0. If λ2
λ1
< dL, consider the allocations (W + k,−k) ∈ A(W ), k ∈ R+.

Then

λ1U1(W + k) + λ2U2(−k) = λ1E[dL(W + k)]− λ2k

= λ1E[dLW ] + (λ1dL − λ2)k →∞ for k →∞

because λ1dL − λ2 > 0. Hence, (3.4) admits no solution. Analogously, (3.4) admits

no solution in case λ2
λ1
> dH . However for λ2

λ1
∈ [dL, dH ] we have that (3.4) admits a

solution which is the comonotone allocation (0,W ). ♦

Notice that in Example 4.2 there exists a solution to (3.4) even if λ1
λ2

equals one of

the bounds given in (4.1). However, if the choice criterion of one of the decision makers

is strictly concave, then often (3.4) admits no solution at the interval bounds of (4.1)

either. This is illustrated by the following example.

Example 4.3. Illustration of Theorem 4.1 (i): Let W = 0, c1 = c2 =∞ and consider

two utility functions u1 and u2 with diH < ∞ and diL > 0, i = 1, 2. Let Ui(X) :=
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E[ui(X)], X ∈ L1. Suppose that u′2(a) = d2L+ 1
2
√
a

for large a > 0 (in particular u′2 does

not attain d2L) and that u′1(−a) = d1H for a > 0. Then for λ2
λ1

=
d1H
d2L

and some constant

k > 0 we have

sup
a∈R

λ1U1(−a) + λ2U2(a) = sup
a∈R

λ1u1(−a) + λ2u2(a) ≥ sup
a≥0

λ2
√
a+ k =∞.

Similar arguments show that in general we cannot expect the existence solutions to

(3.4) in case λ2
λ1

equals the lower bound
d1L
d2H

either. ♦

Example 4.4. Illustration of Theorem 4.1 (ii): Suppose that u1(x) = d1x and u2(x) =

d2x for some d1, d2 > 0 and suppose that c1 = c2 =∞. If λ2
λ1
6= d1

d2
, then (λ1d

1−λ2d2) 6=

0 and considering the allocations of type (W + k,−k) ∈ A(W ) for some constant k

yields

sup
k∈R

λ1U1(W + k) + λ2U2(−k) = λ1U1(W ) + λ2U2(0) + sup
k∈R

(λ1d
1 − λ2d2)k =∞.

Hence, (3.4) admits no solution. ♦

4.2 Yaari Preferences Versus Multiplier Preferences

In the following we characterize the Pareto optimal allocations between two decision

makers endowed with two different probabilistic sophisticated variational preferences

when c1 = c2 = ∞. In particular we assume that decision maker 1 has Yaari (1987)

type preferences represented by the choice criterion

(4.2) U1(X) =
1

α

∫ α

0

qX(s) ds, X ∈ L1,

where α ∈ (0, 1) and qX(s) := inf{x : P(X ≤ x) ≥ s}, s ∈ (0, 1), is the quantile

function of X. Note that the choice criterion −U1 is the well-known Average Value at

Risk (AVaR) coherent risk measure, that is

U1(X) = −AVaRα(X) = min
Q∈Q1

EQ[X] = min
Q∈Q1

∫ 1

0

qX(s)q dQ
dP

(1− s) ds
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where Q1 := {Q� P | dQ
dP ≤

1
α
}; see e.g. Föllmer and Schied (2004) Theorems 4.47 and

4.54. The latter representation of U1 in particular reveals that, as a support function

over the σ(L∞, L1)-compact set Q1, U1 is concave, upper semi-continuous, and finite-

valued and hence continuous on the Banach space (L1, ‖ · ‖1); see Ekeland and Téman

(1999), Part I, Corollary 2.5. As for decision maker 2, her probabilistic sophisticated

variational preferences are represented by a choice criterion U2 as in (2.1) satisfying

some additional properties which are listed in Proposition 4.6. Examples of choice

criteria for decision maker 2 are the probabilistic sophisticated multiplier preferences

(see Section 2.2) with any strictly increasing utility u2 : R → R. Other examples are

obtained choosing U2(·) = U2(u2(·)), where

U2(X) := E[X]− βE [(X − E[X])p−]
1
p , X ∈ L1,

for some β ∈ [0, 1] and p ∈ [1,∞], is a semi-deviation utility and u2 is the same as

above.

Our case study is inspired by and extends an example in Jouini, Schachermayer, and

Touzi (2008), Proposition 3.2. In Jouini, Schachermayer, and Touzi (2008) the choice

criterion U2 is required to be cash additive, that is u2 ≡ IdR. Proposition 4.6 below

shows that the functional form of the Pareto optimal allocations obtained in Jouini,

Schachermayer, and Touzi (2008) stays the same also when, dropping the requirement

u2 ≡ IdR, we allow for a larger class of preferences for the second agent.

Before giving the result, we recall the definition of strict risk aversion conditional

on lower-tail events.

Definition 4.5. (i) Let X ∈ L1 and A ∈ F with P(A) > 0. The set A is a lower

tail-event for X if ess infAX < ess supAX ≤ ess infAc X where ess infAX :=

sup{m ∈ R | P(X > m | A) = 1} (sup ∅ := −∞) and ess supAX := inf{m ∈ R |

P(X ≤ m | A) = 1} (inf ∅ :=∞).

(ii) A function U : L1 → R ∪ {−∞} is strictly risk averse conditional on lower tail-

events if U(X) < U(X1Ac + E[X | A]1A) for every X ∈ dom U and any set A
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which is a lower tail-event for X.

Proposition 4.6. Suppose that c1 = c2 = ∞. Let decision maker 1 be represented by

(4.2) and decision maker 2 by a choice criterion U2 = infQ∈Q (EQ[u2(X)] + α2(Q)) as

in (2.1) with the following additional properties

• dom U2 = dom U2 + R,

• non-satiation: limm→∞ U2(X +m) =∞,

• U2 is strictly monotone, i.e. X ≥ Y and P(X > Y ) > 0 implies U2(X) > U2(Y ),

• U2 is strictly risk averse conditionally on lower-tail events.

Given any initial endowments Wi ∈ dom Ui, i = 1, 2, the comonotone Pareto optimal

allocations of the aggregate endowment W = W1+W2 exist and take the following form

(4.3) (X1, X2) = (−(W−l)−+k,W∨l−k) for some l ∈ R∪{−∞} and k = k(l) ∈ R.

If U2 is in addition strictly concave then according to Corollary 3.12 all Pareto

optimal allocations are comonotone and take the form in (4.3). The proof of Propo-

sition 4.6 is essentially the same as in Jouini, Schachermayer, and Touzi (2008), the

differences come from the facts that u2 is not necessarily the identity on R and W is

not necessarily bounded. For the sake of readability we provide the main ideas of the

proof in Appendix D.

4.3 (Non-)Existence of Pareto Optima Outside the Subclass

of Probabilistic Sophisticated Variational Preferences

Consider two decision makers with expected utility choice criteria U1(X) = EP[u1(X)]

and U2(X) = EP̃[u2(X)], X ∈ L∞, where the probability measures P̃ and P are equiv-

alent but not equal, and ui : R → R are utility functions with ui(0) = 0, i = 1, 2.

Notice that the decision makers are probabilistic sophisticated in different worlds, i.e.

24



with respect to different reference probabilities. Hence there is ε > 0 such that the sets

A := {dP̃
dP ≥ 1 + ε} and B := {dP̃

dP ≤ 1− ε} have positive probability (under P). Suppose

that c1 = c2 = ∞ and that (Y1, Y2) ∈ A(0) is a Pareto optimal allocation. According

to Lemma 3.4 - which does not rely on probabilistic sophistication - if the ui are ‘nice’,

then (Y1, Y2) is the solution to

λ1U1(Y1) + λ2U2(Y2) = sup
Y ∈L1

λ1U1(−Y ) + λ2U2(Y )

for some weights λi > 0, i = 1, 2. However,

λ1U1(Y1) + λ2U2(Y2) ≥ sup
t>0

λ1EP[u1(−t1A)] + λ2EP

[
u2(t1A)

dP̃
dP

]
≥ sup

t>0
(λ1u1(−t) + λ2(1 + ε)u2(t))P(A)(4.4)

and similarly

λ1U1(Y1) + λ2U2(Y2) ≥ sup
t>0

λ1EP[u1(t1B)] + λ2EP

[
u2(−t1B)

dP̃
dP

]
≥ sup

t>0
(λ1u1(t) + λ2(1− ε)u2(−t))P(B).(4.5)

Now it is easy to construct situations in which (4.4) or (4.5) explode and thus contradict

the Pareto optimality of (Y1, Y2). If for instance diL > 0 and diH <∞ for i = 1, 2, then

(4.6) (4.4) ≥ sup
t>0

(λ2(1 + ε)d2L − λ1d1H)P(A)t

and

(4.7) (4.5) ≥ sup
t>0

(λ1d
1
L − λ2(1− ε)d2H)P(B)t.

(4.6) or (4.7) explode apart from the case3

(4.8)
(1 + ε)d2L

d1H
≤ λ1
λ2
≤ (1− ε)d2H

d1L
.

So in particular we must have that

(4.9)
(1 + ε)d2L

d1H
≤ (1− ε)d2H

d1L
.

3Note the similarity between the bounds in (4.8) and the bounds in (4.1).
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However, if e.g. 1− ε/2 < diL ≤ diH < 1 + ε/2, i = 1, 2, then (4.9) is not satisfied which

in the end contradicts the Pareto optimality of (Y1, Y2).

But there are also cases in which Pareto optimal allocations exists. Suppose that there

are constants K > 1 > k > 0 such that k ≤ dP̃/dP ≤ K and suppose that u2 is such

that
d2H
d2L
≥ K

k
. The latter condition implies that u2 is concave enough in the sense that

there is a utility function ũ2 which dominates v(x) := ku2(x)1{x<0} + Ku2(x)1{x≥0},

x ∈ R. Indeed, as v is concave on the half axises x < 0 and x ≥ 0 respectively, and by

the requirement on the concavity of u2, there are x0 < 0 and x1 > 0 and a joint constant

L > 0 such that ku′2(x0) > Ku′2(x1) and x 7→ ku′2(x0)x+ L dominates v on x < 0 and

x 7→ Ku′2(x1)x + L dominates v on x ≥ 0, so ũ2(x) := Ku′2(x1)x
+ − ku′2(x0)x− + L

does the job. Consequently for all W ∈ L1 and for any λ1, λ2 > 0 we have

sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2U2(X2) = sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP

[
u2(X2)

dP̃
dP

]
(4.10)

≤ sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP [v(X2)]

≤ sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP [ũ2(X2)] .(4.11)

Since Ũ2(·) := EP [ũ2(·)] is of type (2.1) we know that (4.11) is bounded and admits

a comonotone solution if λ1, λ2 satisfy the conditions stated in Theorem 4.1. Now it

is easy to construct situations in which the above inequalities are indeed equalities,

and solutions to (4.11) thus coincide with solutions to the left hand side of (4.10).

Suppose for instance that dP̃
dP = k1B +K1Bc for some set B ∈ F with P(B) = K−1

K−k , and

that u2(x) = d2Lx
+ − d2Hx−. Then we may choose ũ2(x) = v(x) = Kd2Lx

+ − kd2Hx−.

Depending on u1, any situation in which the extreme allocation (W, 0) is a solution

to (4.11) (like in Example 4.2), this allocation obviously also solves the left hand

side of (4.10). Furthermore, whenever there is a solution (Y1, Y2) to (4.11) such that

B = {Y2 ≤ 0}, the allocation (Y1, Y2) solves (4.10) too, because then u2(Y2)
dP̃
dP = ũ2(Y2).

Apparently, if P̃ 6= P, the existence of Pareto optima depends on parameters such

as the deviation of the measures P and P̃ from each other relative to the concavity
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of the utilities ui. Hence, if the decision makers are not probabilistic sophisticated

with respect to the same reference probability measure, then existence results like

Theorem 3.8 do not hold in general any longer.

A Proof of Lemma 2.3

The following lemma is crucial for the proofs of Lemma 2.3 and Theorems 3.9 and 3.10.

Lemma A.1. Let

U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

be a choice criterion as (2.1). Define

(A.1) U(X) := inf
Q∈Q

(EQ [X] + α(Q)) , X ∈ L1,

so that U(·) = U(u(·)). Then, U is a proper, rearrangement invariant, �ssd-monotone,

upper semi-continuous, monotone, cash additive (U(X+m) = U(X)+m for all m ∈ R),

and concave function. Moreover, we have that

(A.2) U(X) ≤ E[X] + U(0) for all X ∈ L1.

Proof. We give a brief version of the proof since many of the presented arguments

are standard and can for instance be found in Föllmer and Schied (2004). Cash ad-

ditivity and monotonicity are obvious by definition of U and properness follows from

infQ∈Q α(Q) > −∞. Concavity and upper semi-continuity follow from the fact that U

is a point-wise infimum over continuous affine functions. To see that U is rearrangement

invariant we note that for X ∈ L1 and Z ∈ L∞ we have

(A.3) sup
Z̃
d
=Z

E[XZ̃] =

∫ 1

0

qX(s)qZ(s) ds

where qY (s) := inf{x | P(Y ≤ x) ≥ s} denotes the (left-continuous) quantile func-

tion of a random variable Y . The relation (A.3) is a consequence of the (upper)
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Hardy-Littlewood inequality and some analysis. A proof can be found in Föllmer and

Schied (2004), Lemma 4.55, or in a slightly more general version in Svindland (2010b),

Lemma C.2. As e.g. in the proof of Föllmer and Schied (2004), Theorem 4.54, by (A.3)

and rearrangement invariance of Q and α we obtain that

U(X) = inf
Q∈Q

(
E
[
dQ
dP

X

]
+ α(Q)

)
= inf

Q∈Q
inf
Q̃ d=Q

(
E

[
dQ̃
dP

X

]
+ α(Q̃)

)

= inf
Q∈Q

(
−

(
sup
Q̃ d=Q

E

[
−dQ̃
dP

X

])
+ α(Q)

)

= inf
Q∈Q

(∫ 1

0

−q−X(s)q dQ
dP

(s) ds+ α(Q)

)
= inf

Q∈Q

(∫ 1

0

qX(1− s)q dQ
dP

(s) ds+ α(Q)

)
in which, with some abuse of notation, we write Q̃ d

= Q instead of dQ̃
dP

d
= dQ

dP and

use the fact that qX(1 − s) = −q−X(s) for almost all s ∈ (0, 1). Clearly, the last

term in the equations only depends on the distribution of X under P. Hence, the

rearrangement invariance follows. According to Dana (2005), Theorem 4.1, an upper

semi-continuous monotone concave function is rearrangement invariant if and only if

it is �ssd-monotone as defined in Lemma 2.3 (v). The final statement follows from

the fact that E[X] �ssd X by Jensen’s inequality for concave functions. Thus �ssd-

monotonicity and cash additivity imply that U(X) ≤ U(E[X]) = E[X] + U(0).

Proof of Lemma 2.3. Let

U(X) := inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

as in (2.1) and let U be defined as in Lemma A.1 such that U(·) = U(u(·)).

(i): This follows from Jensen’s inequality for concave functions and the fact that by

definition dom u 6= ∅ and infQ∈Q α(Q) > −∞.

(ii): is obvious.

(iii): This follows from the concavity of u and the monotonicity and concavity of U .
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(iv): Since U is rearrangement invariant (Lemma A.1), U(·) = U(u(·)) is rearrangement

invariant too.

(v): According Dana (2005), Theorem 4.1, an upper semi-continuous monotone concave

function is rearrangement invariant if and only if it is �ssd-monotone. The upper semi-

continuity of U is proved in the next item.

(vi): Let k ∈ R and (Xn)n∈N ⊂ Ek := {X ∈ L1 | U(X) ≥ k} be a sequence converging

in (L1, ‖ · ‖1) to some X. Then we may choose a subsequence which we also denote by

(Xn)n∈N which converges P-a.s. to X too. We consider the following two cases: either

the right-hand derivative u′ of u is bounded on the domain of u or it is unbounded.

In the first case, if the right-hand derivative u′ of u is bounded on the domain of u,

let C > 0 such that u′(x) ≤ C for all x ∈ dom u. The right continuity of u implies

that in this case dom u is closed in R. Since Xn ∈ dom U for all n ∈ N, we must

have that Xn ∈ dom u P-a.s. for all n ∈ N (see (A.2)) and therefore X ∈ dom u P-a.s.

Monotonicity and concavity of u imply that

|u(Xn)− u(X)| ≤ (u′(X) ∨ u′(Xn))|Xn −X| ≤ C|Xn −X|.

Hence, we conclude that the sequence u(Xn) converges to u(X) in L1, and by upper

semi-continuity of U we infer that

U(X) = U(u(X)) ≥ lim sup
n→∞

U(u(Xn)) ≥ k,

so Ek is closed. Now suppose that u′ is unbounded on the domain of u. Then there

exists a strictly decreasing sequence (ar)r∈N ⊂ dom u such that u′(a1) > 0, u′(ar) <∞,

and limr→∞ u
′(ar) = ∞. By the same arguments as presented in the first case the

sequence u(Xn ∨ ar) converges in L1 to u(X ∨ ar), because u′ is bounded on [ar,∞]

and (Xn ∨ ar)n∈N converges P-a.s. and in (L1, ‖ · ‖1) to X ∨ ar. Hence, by upper

semi-continuity and monotonicity of U (Lemma A.1) as well as monotonicity of u we

obtain

U(X ∨ ar) = U(u(X ∨ ar)) ≥ lim sup
n→∞

U(u(Xn ∨ ar)) ≥ lim sup
n→∞

U(u(Xn)) ≥ k.
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Now let a := limr→∞ ar ≥ −∞. Then dom u ⊂ [a,∞), and Xn ≥ a P-a.s., because

Xn ∈ dom U . Hence, X = limn→∞Xn ≥ a P-a.s. too and thus limr→∞X ∨ ar = X.

Moreover, by right-continuity and monotonicity of u we have limr→∞ u(X∨ar) = u(X)

monotonously. Therefore, we infer from applying the monotone convergence theorem

that

U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) = inf
Q∈Q

lim
r→∞

(EQ[u(X ∨ ar)] + α(Q))

≥ lim sup
r→∞

inf
Q∈Q

(EQ[u(X ∨ ar)] + α(Q)) = lim sup
r→∞

U(X ∨ ar)

≥ k.

Hence, also in this case Ek is closed, so U is upper semi-continuous.

B Proof of Proposition 3.3

Let (X1, . . . , Xn) ∈ A(W ) be Pareto Optimal. Then the non-empty convex sets C :=

{(U1(X1), . . . ,Un(Xn))} and V = {(U1(Y1), . . . ,Un(Yn)) | (Y1, . . . , Yn) ∈ A(W )} − Rn++

in Rn, where Rn++ := {(y1, . . . , yn) ∈ Rn | yi > 0, i = 1, . . . , n}, have empty intersection

due to the Pareto optimality of (X1, . . . , Xn). Hence, there exists a non-trivial linear

functional (λ1, . . . , λn) ∈ Rn such that

(B.1)
n∑
i=1

λiUi(Xi) ≥
n∑
i=1

λi(Ui(Y1)− yi)

for all (Y1, . . . , Yn) ∈ A(W ) and (y1, . . . , yn) ∈ Rn++; see Rockafellar (1974), Theo-

rem 11.2. We infer that λi ≥ 0 for all i because otherwise choosing yi >> 0 would

yield a contradiction. The last assertion of Proposition 3.3 is obvious.

C Proofs of Theorems 3.9 and 3.10

The following Lemma C.1 is an Arzela-Ascoli type argument which will be crucial in

the proof of Theorem 3.10. It can be derived from Tychonoff’s compactness theorem or
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by a diagonal sequence argument. For a proof see e.g. Filipović and Svindland (2008).

Lemma C.1. Let fn : R → R, n ∈ N, be a sequence of increasing 1-Lipschitz-

continuous functions such that fn(0) ∈ [−K,K] for all n ∈ N where K ≥ 0 is a con-

stant. Then there is a subsequence (fnk)k∈N of (fn)n∈N and an increasing 1-Lipschitz-

continuous function f : R→ R such that limk→∞ fnk(x) = f(x) for all x ∈ R.

Let CFN := {(fi)ni=1 ∈ CF | f1(0) = . . . = fn(0) = 0}. Note that

CF = {(fi + ai)
n
i=1 | (fi)ni=1 ∈ CFN, ai ∈ R,

n∑
i=1

ai = 0}.

According to Proposition 3.6 there exists a solution to (3.4) for some given weights

(λ1, . . . , λn) if and only if there is a solution to

Maximize
n∑
i=1

λiUi(fi(W ) + ai) subject to (fi)
n
i=1 ∈ CFN, ai ∈ R,(C.1)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ A(W ).

Proof of Theorem 3.10. We will prove the existence of a solution to (C.1). Fix a set of

weights (λ1, . . . , λn) satisfying the conditions (3.5). First of all, we observe that if for

some j ∈M the right-hand-derivative u′j does not attain the values djH and/or djL, we

can always find non-negative numbers d̃jH and/or d̃jL in the image of u′j such that, for

the already given set of weights (λ1, . . . , λn), the conditions (3.5) still hold true if we

replace the djH and/or djL by d̃jH and/or d̃jH . We assume that all djH and/or djL which

are not attained by the corresponding u′j are replaced as in the described manner, and

for the sake of simplicity we keep the notation djH and djL. By concavity of the ui there

is a constant k such that for all i = 1, . . . , n the affine functions R 3 x 7→ diLx+ k and

R 3 x 7→ diHx+ k both dominate ui. Using this, we will show that

P := sup
{ n∑

i=1

λiUi(fi(W ) + ai) | (fi)ni=1 ∈ CFN, ai ∈ R,(C.2)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ A(W )

}
<∞,
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and that this supremum is realized over a bounded set of comonotone allocations where

the bound is given by W . More precisely, we will prove that there exists some constant

K > 0 depending on W such that

P = sup
{ n∑

i=1

λiUi(fi(W ) + ai) | (fi)ni=1 ∈ CFN, ai ∈ [−K,K],(C.3)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ A(W )

}
.

To this end, we define the functions

Ui(X) := inf
Q∈Qi

(EQ[X] + αi(Q)) , X ∈ L1, i = 1, . . . , n,

as in Lemma A.1. Consider (fi)
n
i=1 ∈ CFN and ai ∈ R such that

∑n
i=1 ai = 0 and

(fi(W ) + ai)
n
i=1 ∈ A(W ). Let I := {i ∈ {1, . . . , n} | ai < 0} and J := {1, . . . , n} \ I.

By applying monotonicity, cash additivity and finally property (A.2) of the Ui (see

Lemma A.1) we obtain:

n∑
i=1

λiUi(fi(W ) + ai) =
n∑
i=1

λiUi(ui(fi(W ) + ai))

≤
∑
i∈I∩M

λiUi(d
i
H(fi(W ) + ai) + k) +∑

j∈J∩M

λjUj(d
j
L(fj(W ) + aj) + k) +∑

l∈N

λlUl(d
l
H(fl(W ) + al) + k)

≤ k

n∑
i=1

λi +
∑
i∈I∩M

λiUi(d
i
Hfi(W )) +∑

j∈J∩M

λjUj(d
j
L(fj(W )) +

∑
l∈N

λlUl(d
l
H(fl(W ))) +(

min
i∈I∩M

λid
i
H

) ∑
i∈I∩M

ai +

(
max
j∈J∩M

λjd
j
L

) ∑
j∈J∩M

aj + δ
∑
l∈N

al

≤ k

n∑
i=1

λi + E[W+]
n∑
i=1

λid
i
H +

n∑
i=1

λiUi(0) +(
min
i∈I∩M

λid
i
H

) ∑
i∈I∩M

ai +

(
max
j∈J∩M

λjd
j
L

) ∑
j∈J∩M

aj + δ
∑
l∈N

al.(C.4)
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Suppose that N = ∅, then we further estimate

(C.5) (C.4) ≤ E[W+]
n∑
i=1

λid
i
H + k

n∑
i=1

λi +
n∑
i=1

λiUi(0)−
(

min
i∈I

λid
i
H −max

j∈J
λjd

j
L

)
a

where a :=
∑

i∈J ai (≥ 0). If N 6= ∅ and
∑

l∈N al < 0, then we estimate

(C.6) (C.4) ≤ E[W+]
n∑
i=1

λid
i
H + k

n∑
i=1

λi +
n∑
i=1

λiUi(0)−
(
δ − max

j∈J∩M
λjd

j
L

)
ã

for ã :=
∑

i∈J∩M ai (≥ 0) using (3.5). And similarly, if N 6= ∅ and
∑

l∈N al ≥ 0, then

we estimate

(C.7) (C.4) ≤ E[W+]
n∑
i=1

λid
i
H + k

n∑
i=1

λi +
n∑
i=1

λiUi(0)−
(

min
i∈I∩M

λid
i
H − δ

)
â

for â :=
∑

i∈J∪N ai (≥ 0). Consequently we infer that

P ≤ E[W+]
n∑
i=1

λid
i
H + k

n∑
i=1

λi +
n∑
i=1

λiUi(0) <∞.

Choose any allocation (X1, . . . , Xn) ∈ A(W ). Then we have that P ≥
∑n

i=1 λiUi(Xi) =:

k̃. Letting

A := min
i=1,...,n

λid
i
H − max

j=1,...,n
λjd

j
L

if N = ∅, or

A := min

{(
δ −max

j∈M
λjd

j
L

)
,

(
min
i∈M

λid
i
H − δ

)}
if N 6= ∅, we infer from (C.5), (C.6), and (C.7) that the supremum in (C.2) is realized

over allocations such that

|ai| ≤
|k̃|+ E[W+]

∑n
i=1 λid

i
H + k

∑n
i=1 λi + |

∑n
i=1 λiUi(0)|

A
=: K

for all i ∈ M , and |
∑

i∈N ai| ≤ K too. Note that A > 0 due to the conditions (3.5)

on the weights λi. In the following we argue that in case |N | > 1 we may also assume

that the ai belonging to i ∈ N are bounded due to the insensitivity of the cash additive

33



Ui, i ∈ N , to constant re-sharings of 0 amongst themselves. To this end note that the

choice of the λi and the requirement si = −∞ for i ∈ N implies

(C.8)∑
i∈N

λiUi(fi(W ) + ai +mi) =
∑
i∈N

λiUi(fi(W ) + ai) + δ
∑
i∈N

mi =
∑
i∈N

λiUi(fi(W ) + ai),

whenever mi ∈ R such that
∑

i∈N mi = 0. Hence, adding constants mi such that∑
i∈N mi = 0 to the endowments of the decision makers in N does not affect the

contribution of the allocation to P which immediately implies that we may assume

|ai| ≤ K for all i ∈ N if ci = ∞ for all i ∈ N . If the latter condition does not hold,

that is, if the set Nb ⊂ N of indices i ∈ N such that ci ∈ R is not empty, we also need

to consider cash amounts that might be needed to make the endowment fi(W ) + ai

acceptable. This is the point where the assumption Ui(−W−) > −∞ for all i ∈ Nb

enters (whenever |N | > 1). Using the linearity and monotonicity of Ui we obtain that

fi(W ) + z is acceptable for decision maker i ∈ Nb whenever

z ≥ Ui(Wi)− Ui(−W−)− ci
diH

.

Moreover, acceptability of fi(W ) + ai implies (again using linearity and monotonicity

of Ui) for all i ∈ Nb:

ai ≥
Ui(Wi)− ci − Ui(0)

diH
− E[W+].

Therefore we may assume that there exists a constant K̂ > 0 such that |ai| ≤ K̂

for all i ∈ Nb and thus |
∑

i∈Nu ai| ≤ K + |Nb|K̂ =: K where Nu := N \ Nb. Since

ci = ∞ for all i ∈ Nu we are back to the already treated situation and may by cash

invariance assume that indeed |ai| ≤ K for all i ∈ Nu, and finally that |ai| ≤ K for all

i = 1, . . . , n. Hence, (C.2) and (C.3) are proved. By virtue of (C.3) we may choose a

sequence ((fpi )ni=1)p∈N ⊂ CF with fpi (0) ∈ [−K,K] for all i = 1, . . . , n and p ∈ N such

that (fpi (W ))ni=1 ∈ A(W ) for all p ∈ N and

P = lim
p→∞

n∑
i=1

λiUi(fpi (W )).
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According to Lemma C.1 there exists a subsequence, which we for the sake of simplicity

also denote by (fpi )ni=1, which converges pointwise to some (fi)
n
i=1 ∈ CF. As |fpi (W )| ≤

|W | + K for all i = 1, . . . , n and p ∈ N, we may apply the dominated convergence

theorem which yields fi(W ) ∈ L1, and limp→∞ E[|fi(W ) − fpi (W )|] = 0 for all i =

1, . . . , n. By upper semi-continuity of the Ui (Lemma 2.3) we have

Ui(Wi)− ci ≤ lim sup
p→∞

Ui(fpi (W )) ≤ Ui(fi(W )),

and

P = lim
p→∞

n∑
i=1

λiUi(fpi (W )) ≤
n∑
i=1

λi lim sup
p→∞

Ui(fpi (W ))

≤
n∑
i=1

λiUi(fi(W )).

Hence, we infer that (fi(W ))ni=1 ∈ A(W ) (since P > −∞) and

P =
n∑
i=1

λiUi(fi(W )).

For the last part of (ii) suppose that |N | = n, and let (X1, . . . , Xn) be a solution to (3.4)

for the given weights. If mi ∈ R such that
∑n

i=1mi = 0, then the same computation

as in (C.8) yields
∑n

i=1 λiUi(Xi +mi) =
∑n

i=1 λiUi(Xi).

Proof of Theorem 3.9. Recall (C.1) and let (fi)
n
i=1 ∈ CFN, ai ∈ R with

∑n
i=1 ai = 0

such that (fi(W ) + ai)
n
i=1 ∈ A(W ). Since in particuar Ui(fi(W ) + ai) > −∞, we must

have that fi(W ) + ai ≥ si for all i = 1, . . . , n. Let K̃ :=
∑n

i=1 |si|. Then

−(|W |+ K̃) ≤ fi(W ) + ai = W − (
∑
j 6=i

fj(W ) + aj) ≤ |W |+ K̃.

Hence, we deduce that (C.3) holds with K := 2 essinf |W | + K̃. The rest of the proof

now follows the lines of the proof of Theorem 3.10.
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D Proof of Proposition 4.6

For the proof of Proposition 4.6 we will need some (additional) tools from convex

duality theory which we briefly introduce in the following. The details and proofs of

the statements can e.g. be found in Ekeland and Téman (1999). Let U be a choice

criterion as in (2.1). The dual function of U is

U∗(Z) := sup
Y ∈L1

U(Y )− E[Y Z], Z ∈ L∞,

which is convex and σ(L∞, L1)-lower semi-continuous, i.e. the level sets Ek := {Z ∈

L∞ | U∗(Z) ≤ k} are closed in the σ(L∞, L1)-topology for all k ∈ R. Moreover, U∗ is

rearrangement invariant by the same arguments as applied in the proof of Lemma A.1

(−U∗ is concave and upper semi-continuous) and therefore U∗ is �c-antitone accord-

ing to Dana (2005), Theorem 4.1. Since U is concave and upper semi-continuous

(Lemma 2.3), it follows from the Fenchel-Moreau theorem that

(D.1) U(X) = U∗∗(X) := inf
Z∈L∞

E[ZX] + U∗(Z), X ∈ L1.

Again the very same techniques as in the proof of Lemma A.1 show that U is rear-

rangement invariant if and only if U∗ is rearrangement invariant. The superdifferential

of U at some X ∈ L1 is

∂U(X) := {Z ∈ L∞ | U(Y ) ≤ U(X) + E[Z(Y −X)]∀Y ∈ L1}.

Notice that

(D.2) Z ∈ ∂U(X) ⇔ U(X) = E[ZX] + U∗(Z)

and that monotonicity of U implies ∂U(X) ⊂ dom U∗ ⊂ L∞+ .

Lemma D.1. Let U be a choice criterion as in (2.1) and let X ∈ L1 such that ∂U(X) 6=

∅. Then there exists a decreasing function h : R→ [0,∞) such that h(X) ∈ ∂U(X).
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Proof. Let Z ∈ ∂U(X) and h : R → R+ be a measurable function such that h(X) =

E[Z | X]. By (D.2), E[Z | X] �c Z (Jensen’s inequality), �c-antitonicity of U∗ and

finally (D.1) it follows that

U(X) = E[ZX] + U∗(Z) ≥ E[E[Z | X]X] + U∗(E[Z | X]) ≥ U(X).

Thus h(X) ∈ ∂U(X) too. Note that (A.3) and rearrangement invariance of U∗ imply

U(X) ≤
∫ 1

0

qh(X)(1− t)qX(t) dt+ U∗(h(X))

in the same way as the similar argument presented in the proof of Lemma A.1. Hence

we obtain that

U(X) ≤
∫ 1

0

qh(X)(1− t)qX(t) dt+ U∗(h(X))

≤ E[h(X)X] + U∗(h(X)) = U(X)

where we applied the Hardy-Littlewood inequalities in the second step; see Föllmer

and Schied (2004) Theorem A.24. Consequently E[h(X)X] =
∫ 1

0
qh(X)(1 − t)qX(t) dt

which guarantees that h might be chosen as to be decreasing; see again Föllmer and

Schied (2004) Theorem A.24.

Lemma D.2. Let U be a choice criterion as in (2.1) which is strictly risk averse

conditional on lower-tail events. Let (X,Z) ∈ L1 × L∞ be such that Z ∈ ∂U(X) and

X = f(W ), Z = h(W ) for some W ∈ L1 and an increasing function f : R→ R and a

decreasing function h : R→ R+. Consider the set A := {Z = ess supZ}. If P(A) > 0,

then X is constant on the set A.

Proof. Assume that P(A) > 0 and, by contradiction, that X is not constant on A.

Since f is increasing and h is decreasing A is a lower tail-event of X. As U is strictly

risk averse conditional on lower-tail events it follows that

(D.3) U(X) < U(X)

where X = X1Ac + E[X | A]1A. But E[ZX] = E[ZX] and Z ∈ ∂U(X) imply U(X) ≤

U(X) + E[Z(X −X)] = U(X) which contradicts (D.3).
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Lemma D.3. Let U be a choice criterion as in (2.1) which is in addition strictly

monotone and let (X,Z) ∈ L1 × L∞ such that Z ∈ ∂U(X). Then Z > 0 a.s.

Proof. Let A := {Z = 0}. As U(X+1A) ≤ U(X)+E[Z1A] = U(X), strict monotonicity

of U implies P(A) = 0.

Proof of Proposition 4.6. Let (X1, X2) ∈ A(W ) be a comonotone Pareto optimal allo-

cation of W , and let f, g : R → R be increasing functions such that f + g = IdR and

(X1, X2) = (f(W ), g(W )). According to Lemma 3.4 there exists λ1 > 0 and λ2 > 0

such that

(D.4) λ1U1(X1) + λ2U2(X2) = max
(Y1,Y2)∈A(W )

λ1U1(Y1) + λ2U2(Y2).

Note that the function

Uλ1,λ2(Y ) := sup
(Y1,Y2)∈A(Y )

λ1U1(Y1) + λ2U2(Y2), Y ∈ L1,

is concave, increasing and

dom Uλ1,λ2 = dom U1 + dom U2 = L1 + dom U2 = L1.

Moreover Uλ1,λ2(·) ≥ λ1U1(·) + λ2U2(0) implies that there exists an open set in L1 on

which Uλ1,λ2 is bounded from below, because λ1U1 as a continuous concave function has

this property; see Ekeland and Téman (1999) Proposition 2.5. Hence Uλ1,λ2 is contin-

uous on L1 and therefore everywhere superdifferentiable; see e.g. Ekeland and Téman

(1999) Proposition 2.5 and Proposition 5.2. Uλ1,λ2 is also rearrangement invariant.

This can be deduced by verifying that the dual

U∗λ1,λ2 = (λ1U1)∗ + (λ2U2)∗

is rearrangement invariant as a sum of rearrangement invariant functions; see also the

introductory remarks of this section. According to Lemma D.1 there exists a decreasing

function h : R→ R+ such that

(D.5) Z := h(W ) ∈ ∂Uλ1,λ2(W ) = ∂λ1U1(X1) ∩ ∂λ2U2(X2).
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The inclusion ⊂ in (D.5) is due to the fact that for all Z ∈ ∂Uλ1,λ2(W ) we have that

Uλ1,λ2(Y ) ≤ Uλ1,λ2(W ) + E[Z(Y −W )] for all Y ∈ L1

and thus by (D.4) and definition of Uλ1,λ2 that

λ1U1(Y1) + λ2U2(Y2) ≤ λ1U1(X1) + λ2U2(X2) + E[Z̃(Y1 + Y2 − (X1 +X2))]

for all Y1, Y2 ∈ L1. Now Z ∈ ∂λiUi(Xi), i = 1, 2, follows. The converse inclusion

in (D.5) follows similarly. By definition of the supergradient, this implies that Z
λ1
∈

∂U1(X1) and Z
λ2
∈ ∂U2(X2). From Z

λ2
∈ ∂U2(X2) and the strict monotonicity of U2 it

follows that P (Z = 0) = 0; see Lemma D.3. Note that

U1(Y ) =

∫ 1

0

qY (t) dϕ(t), Y ∈ L1,

where ϕ(t) := t
α
∧ 1 for t ∈ [0, 1] is an increasing continuous (on (0, 1)) function. Since

Z
λ1
∈ ∂U1(X1) we have also that

U1(X1) =

∫ 1

0

qX1(t)q Z
λ1

(1− t) dt =

∫ 1

0

qX1(t) dψ(t)

where ψ(t) := 1
λ1

∫ t
0
qZ(1 − s) ds, t ∈ [0, 1], is another increasing continuous function.

Hence, we obtain that∫ 1

0

qX1(t) dϕ(t)−
∫ 1

0

qX1(t) dψ(t) = U1(X1)− U1(X1) = 0

and integration by parts (Dunford and Schwartz 1976, III.6.21, Theorem 22) of each

integral in combination with a limiting argument by means of Xn
1 := −n ∨ X1 ∧ n,

n ∈ N, yields

(D.6)

∫ 1

0

(ψ(t)− ϕ(t)) dqX1(t) = 0.

As Z
λ1
∈ Q1, we observe that ψ ≤ ϕ. Hence (D.6) can only be satisfied if qX1 is constant

on {ψ < ϕ}.
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Since P(Z = 0) = 0, we have qZ(1 − s) > 0 for any s ∈ (0, 1), so in particular

ψ(t) < 1 for all t < 1. Moreover, ψ(0) = 0 and the slope of ψ is at most 1
α

. Therefore

we have β := inf{t | ψ(t) < ϕ(t)} ∈ [0, 1) and

(D.7) qX1 is constant on (β, 1) ⊂ {ψ < ϕ}.

If β > 0, it follows for any t ∈ [0, β] that t
α

= ψ(t) =
∫ 1

1−t
1
λ1
qZ(s)ds. As q Z

λ1

≤ 1
α

, we

deduce that

(D.8) qZ(s) =
λ1
α

= ess supZ for all s ∈ (1− β, 1].

Since Z
λ2
∈ ∂U2(X2) and as U2 is strictly risk averse conditionally on lower tail-events,

X2 is constant on {Z = ess supZ}; see Lemma D.2. Recall that X1 = f(W ), X2 =

g(W ) and Z = h(W ) for increasing functions g and f and a decreasing function h.

Consequently (D.7) implies that f(W ) is constant on W−1(l,∞) whereas (D.8) implies

that h(W ) and thus g(W ) are constant on W−1(−∞, l) for l := qW (β) (:= −∞ if

β = 0). In conjunction with the fact that f, g are continuous we deduce that X1 and

X2 ought to be of the following form

X1 = (W − l)1{W≤l} + k, X2 = l1{W≤l} +W1{l≤W} − k, where k ∈ R.
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Filipović, D., and G. Svindland, 2008, “Optimal capital and risk allocations for law-

and cash-invariant convex functions,” Finance and Stochastics, 12, 423–439.
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Ludkovski, M., and L. Rüschendorf, 2008, “On comonotonicity of Pareto optimal risk

sharing,” Statistics and Probability Letters, 78, 1181–1188.

Maccheroni, F., M. Marinacci, and A. Rustichini, 2006, “Ambiguity aversion, robust-

ness, and the variational representation of preferences,” Econometrica, 74, 1447–

1498.

Machina, M. J., and D. Schmeidler, 1992, “A more robust definition of subjective

probability,” Econometrica, 60, 745–780.

Marinacci, M., 2002, “Probabilistic sophistication and multiple priors,” Econometrica,

70, 755–764.

Rigotti, L., and C. Shannon, 2005, “Uncertainty and risk in financial markets,” Econo-

metrica, 73, 203–243.

Rigotti, L., C. Shannon, and T. Strzalecki, 2008, “Subjective beliefs and ex ante trade,”

Econometrica, 76, 1167–1190.

Rockafellar, R., 1974, “Conjugate duality and optimization,” in Regional conference

series in applied Mathematics. SIAM, Philadelphia.

42



Rothschild, M., and J. E. Stiglitz, 1970, “Increasing risk I: A definition,” Journal of

Economic Theory, 2, 225–243.

Strzalecki, T., 2011a, “Axiomatic foundations of multiplier preferences,” Econometrica,

79, 47–73.

, 2011b, “Probabilistic sophistication and variational preferences,” Journal of

Economic Theory, to appear.

Strzalecki, T., and J. Werner, 2011, “Efficient allocations under ambiguity,” Journal

of Economic Theory, 146, 1173–1194.

Svindland, G., 2010a, “Continuity properties of law-invariant (quasi-)convex risk func-

tions,” Mathematics and Financial Economics, 3, 39–43.

, 2010b, “Subgradients of law-invariant convex risk measures on L1,” Statistics

& Decisions, 27, 169–199.

von Neumann, J., and O. Morgenstern, 1947, Theory of games and economic behaviour.

Princeton: Princeton university press, 2nd Edition.

Wilson, R., 1968, “The theory of syndicates,” Econometrica, 36, 119–132.

Yaari, M., 1987, “The dual theory of choice under risk,” Econometrica, 55, 95–115.

43


