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How we react to humanitarian crises, epidemics, and other tragic
events involving the loss of human lives depends largely on the
extent to which we are moved by the size of their associated death
tolls. Many studies have demonstrated that people generally
exhibit a diminishing sensitivity to the number of human fatalities
and, equivalently, a preference for risky (vs. sure) alternatives in
decisions under risk involving human losses. However, the reason
for this tendency remains unknown. Here we show that the
distributions of event-related death tolls that people observe
govern their evaluations of, and risk preferences concerning,
human fatalities. In particular, we show that our diminishing
sensitivity to human fatalities follows from the fact that these
death tolls are approximately power-law distributed. We further
show that, by manipulating the distribution of mortality-related
events that people observe, we can alter their risk preferences in
decisions involving fatalities. Finally, we show that the tendency to
be risk-seeking in mortality-related decisions is lower in countries
in which high-mortality events are more frequently observed. Our
results support a model of magnitude evaluation based on memory
sampling and relative judgment. This model departs from the
utility-based approaches typically encountered in psychology and
economics in that it does not rely on stable, underlying value
representations to explain valuation and choice, or on choice
behavior to derive value functions. Instead, preferences concern-
ing human fatalities emerge spontaneously from the distributions
of sampled events and the relative nature of the evaluation
process.

decision-making � psychophysics � risk preferences � value of human
lives � decision by sampling

Every year, millions of human lives are lost to accidents,
disasters, armed conflicts, and other deadly causes. Our

reactions to these tragic events—including our willingness to
provide aid and demand that our governments intervene—
depend largely on the extent to which we are moved by the size
of their associated death tolls (1). Research in psychology (1–4)
and economics (5–7) has demonstrated that people tend to show
a diminishing sensitivity to the number of human fatalities and,
equivalently, a preference for risky (vs. sure) alternatives in
decisions under risk involving human losses. As a result, policy
makers charged with responding to humanitarian crises or
preventing unnecessary deaths may inadvertently fail to maxi-
mize the number of lives saved (1). Although well documented,
and despite its grave implications, the reason for this tendency
is not well understood.

The standard way of explaining valuation and choice, even for
human fatalities, has been to assume the existence of underlying
utility functions (i.e., stable representations of value) that drive
observed preferences (8). Although utility-based approaches
have provided important constraints on the set of possible
theories that can describe people’s preferences, they are none-
theless limited in several ways. Most importantly, utility func-
tions do not really explain preferences but merely redescribe
them in mathematical terms (unless one assumes that such

functions are directly represented in our mental architecture,
which seems computationally implausible). Our understanding
of valuation and choice concerning human fatalities would
therefore greatly benefit from a process-level theory, which
moves past the limitations of utility-based theories while still
being able to accurately predict people’s preferences.

In this article, we provide such an account and report empir-
ical evidence to support it. Our account capitalizes on parallels
between perception and decision-making (2, 9, 10). In particular,
sensitivity to changes in a perceptual stimulus (e.g., brightness)
or decision outcome (e.g., wealth) generally diminishes as the
stimulus’s initial magnitude increases (2, 9). This diminishing
sensitivity implies that, in perception and decision-making alike,
the relationship between objective magnitude and subjective
evaluation is often a concave function that is monotonically
increasing but marginally decreasing. As we noted earlier, a
number of studies have shown that this psychophysical relation-
ship even extends to evaluations of human fatalities: as an event’s
death toll increases, our sensitivity to the loss of life decreases,
so that each additional death has a diminishing affective impact
(1, 3, 4). Other studies have shown a general preference for risky
alternatives in decisions under risk involving human losses (2),
which also implies a concave disutility function for human
fatalities (2, 8, 9).

Model Description. The model we describe builds on a recently
developed theoretical framework (11–13) that uses fundamental
psychological principles to explain how we evaluate relatively
abstract magnitudes such as money (11, 12), time (11), proba-
bility (11, 12), color (14), and luminance (15). According to this
framework, the evaluation process is governed by a few simple
cognitive operations (11, 12): To evaluate the death toll associ-
ated with a specific target event (or ‘‘event-associated death-
toll’’; EADT), people first draw upon a sample of comparable
events from their memory. Specifically, they sample from a
mixture of previously observed events (i.e., long-term memory
sampling) and events in their recent or immediate context (i.e.,
short-term memory or working memory sampling) to obtain a
set of comparison death tolls. Then they compare the target
EADT with all those in the sampled set. For example, a person
might compare a target EADT with other EADTs that he or she
has recently learned about from watching the news, reading a
newspaper, or conversing with family, friends, or colleagues. The
disutility or ‘‘shock’’ associated with a target EADT is simply the
proportion of pair-wise comparisons in which it dominates or
ties, which is its percentile rank among the sampled events (i.e.,
the proportion of sampled EADTs that are smaller than or equal
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to the target). (A formal description of the model is provided in
the SI Text.) Thus, a target EADT is considered large if it ranks
above most sampled EADTs (and small if it ranks below most of
them) regardless of its absolute magnitude. The sampling pro-
cess is psychologically plausible given evidence that humans and
other animals efficiently encode and recall frequencies (16). And
the relative nature of the evaluation process is supported by
extensive evidence that people are much better able to provide
relative, rather than absolute, judgments (17, 18). For our
current purposes, this model can remain agnostic about whether
the memory sampling and pair-wise comparison operations are
fast, unconscious, and automatic or slow, conscious, and delib-
erate processes (future research will be needed to answer this
question). For simplicity, we start by assuming that the sampling
process is uniformly random, so that every EADT in memory is
equally likely to be selected for comparison.

This model implies that the disutility associated with a target
EADT will be determined by the distribution of comparison
EADTs from which a person can draw, which will be a function
of his or her accumulated experiences and the recent or imme-
diate context surrounding the evaluation. This allows the model
to parsimoniously explain individual and contextual differences
in reactions to human fatalities. Specifically, as an EADT’s
disutility is equal to the probability that it is larger than or equal
to another randomly sampled EADT, the psychophysical (or
disutility) function relating human fatalities to their associated
shock values is equivalent to the cumulative probability distri-
bution of EADTs that one has observed (see SI Text). And
because risk preferences follow from these disutility functions (2,
8, 9, 19) (see SI Text), the model should be able to predict
people’s choices in decisions under risk involving human losses,

as long as the distribution of sampled EADTs is approximately
known.

This led us to make three predictions. First, diminishing
sensitivity to human fatalities and risk-seeking preferences in the
domain of human losses should be reflected in the distribution
of EADTs that people generally observe. Specifically, for the
model to explain existing results, the cumulative probability
distribution of observed EADTs must be concave. In addition,
the model makes two unique predictions: (i) that altering the
distribution of observed EADTs will lead to predictable changes
in people’s risk-preferences and (ii) that risk preferences will
vary between countries with different EADT distributions. We
tested these predictions in three separate studies.

Study 1. First, we hypothesized that the cumulative probability
distribution of EADTs that people typically observe is concave.
To test this prediction, we analyzed data from three sources: (i)
a global survey of disasters and their associated death tolls (Study
1A), (ii) a measure of the frequency with which EADTs are
mentioned in the media (Study 1B), and (iii) the examples
provided by a sample of respondents who were asked to recall
EADTs from memory (Study 1C). This first prediction is well
supported: all three cumulative probability distributions are
monotonically increasing and marginally decreasing (Fig. 1
A–C). This concavity is a direct result of the fact that EADT
frequencies are reasonably well approximated by a power-law
distribution (Fig. 1 A–C). Power-laws are characterized by a
number of interesting properties, such as scale invariance (20,
21), and may provide important clues about the underlying
generation process (22, 23). With regard to the psychophysics of
human life valuation, they have one particularly useful property:
integrating over them yields cumulative probability functions

Fig. 1. Log-log plots of EADT frequency distributions (Top) and their corresponding cumulative probability distributions shown up to 100 deaths (Bottom). Solid
lines (Top) are best-fitting power-functions of the frequency data, with the associated power parameter estimate (�) and model fit (R2) displayed (Top Right).
(A) Fatalities from natural and industrial disasters occurring in 2003 through 2007. The power-law function is fitted to events involving 10 or more deaths (dots)
because frequencies are underestimated for events involving fewer than 10 deaths (triangles; see SI Text). The cumulative probability distribution plot is based
on all of the data (triangles and dots). (B) Media attention (in 2000–2007) to mortality-related events. The power-law function is fitted to events involving two
or more deaths (dots) because media attention to events involving a single death (triangle) is likely underestimated (see SI Text). The cumulative probability
distribution plot is based on all the data (triangle and dots), as well as estimated frequencies for events involving more than 1,000 deaths (see SI Text). (C) Mean
recalled EADTs occurring in a person’s lifetime. Mean frequencies and mean percentile-ranks were obtained by repeatedly and randomly sampling the events
that respondents recalled (see SI Text).
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that are equivalent to the constant relative risk aversion (CRRA)
utility functions often used in economics to describe preferences
(19, 24) (see SI Text). In fact, one result of the model we describe
is that the best-fitting power-law parameter provides a reason-
ably good measure of disutility curvature, which quantifies both
the rate at which sensitivity to human life decreases and the
resulting level of risk preference (see SI Text). The best fitting
estimate of the power-law parameter for each dataset is negative
(Fig. 1 A–C) and therefore implies a concave disutility function
and a preference for risky alternatives (see SI Text). Further-
more, an examination of media attention to the number of
human lives that are saved (rather than lost) reveals that the
cumulative distribution of human ‘‘gains’’ is also concave but less
steep than the cumulative distribution of lives lost (Fig. 2). We
would therefore predict that the utility associated with lives
saved is concave, leading to risk-averse choices (2, 9), and that

human losses receive more weight than equivalent gains (9). In
fact, both predictions are empirically supported (2, 25, 26).

Study 2. Second, we hypothesized that altering the distribution of
EADTs that people observe would lead to predictable changes
in their risk preferences. Although we have assumed, for sim-
plification, that comparison EADTs are uniformly sampled from
memory, a more realistic assumption is that recently observed
EADTs are sampled with higher likelihood (27). This would
allow them to have a nonnegligible impact on risk preferences
even though they represent a tiny fraction of all of the EADTs
in memory. We therefore predicted that exposing decision-
makers to a highly concave cumulative distribution of EADTs
would increase the appeal of risky options whereas exposing
them to an S-shaped cumulative distribution of EADTs would
have the opposite effect (see Methods). To test this prediction,
we conducted an experiment in which we had some human
participants read about a set of EADTs and rate how negatively
they felt about each one. These EADTs were selected to form
either a concave or S-shaped cumulative distribution (Fig. 3A).
Following this subtle manipulation, participants were asked to
choose between a risky option and a sure option in a hypothetical
decision scenario involving human lives at risk (2). The rating
task had a significant impact on participants’ risk preferences
(Fig. 3B). Participants who first rated a concave cumulative
distribution of EADTs were subsequently more likely to choose
the risky alternative than those who first rated an S-shaped
cumulative distribution of EADTs [n � 101, �2(1) � 3.94, P �
0.047, � � 0.20].

Study 3. Finally, we hypothesized that risk preferences would vary
between countries with different EADT distributions (we as-
sume that people are especially likely to observe and sample
EADTs occurring in their own country). In particular, we
predicted that a preference for risky options would be more
prevalent in countries in which the cumulative distribution of
EADTs is highly concave than in countries in which it is less
concave. To test this prediction, we measured risk preferences in
four countries that differ substantially in terms of their EADT
distributions: Japan, the United States, India, and Indonesia.
High-magnitude EADTs are relatively rare in Japan and the
United States, but much more frequent in India and Indonesia
[Emergency Events Database (EM-DAT); see www.em-dat.net].
As a result, the cumulative distributions of EADTs are more
concave for the former two countries than for the latter two (Fig.

Fig. 2. Black dots represent the cumulative probability distributions of
media attention (in 2000–2007) to events involving human lives saved (Top
Right) and lives lost (Bottom Left). The gray dots (Top Right) represent a 180°
rotation of the data for lives lost (Bottom Left) obtained by multiplying the
coordinates by �1, and show that the curve is steeper for lives lost than for
lives saved.

Fig. 3. Experimental manipulation and results for Study 2. (A) Cumulative probability distributions of EADTs (diamonds) obtained by ranking the EADTs that
participants rated and the decision scenario’s two target EADTs (circled). The S-shaped distribution curve (dashed black line) is superimposed on the concave
distribution curve (gray line). (B) The proportion of participants in each condition who chose the risky option (program B). Numbers below the bars are sample
sizes.
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4A). We therefore predicted that a large majority of American
and Japanese respondents would prefer the riskier option in a
decision under risk involving human fatalities, but that Indian
and Indonesian respondents would be less inclined to choose it.
To test this prediction, we gave respondents in each country a
hypothetical decision scenario similar to the one we used in our
previous experiment and measured the proportion of risky
option choices (Fig. 4B). The tendency to select the risky
alternative differed across countries [n � 225, �2(3) � 15.69, P �
0.0013, � � 0.26]. Specifically, Indian respondents were less
likely to prefer the risky option than American respondents [n �
112, �2(1) � 12.87, P � 0.00033, � � 0.34] and Japanese
respondents [n � 114, �2(1) � 6.73, P � 0.0095, � � 0.24].
Similarly, Indonesian respondents were less likely to choose the
risky option than American respondents [n � 111, �2(1) � 7.32,
P � 0.0068, � � 0.26] and Japanese respondents [n � 113,
�2(1) � 2.79, 1-tailed P � 0.047, � � 0.16]. By contrast, Indian
and Indonesian respondents did not significantly differ in terms
of their risk preferences [n � 107, �2(1) � 0.82, P � 0.36], nor
did American and Japanese respondents [n � 118, �2(1) � 1.25,
P � 0.26]. In line with our prediction, we found that Indian and
Indonesian respondents were less likely to choose the risky
alternative than Japanese and American respondents (Fig. 4B).
In fact, the relative prevalence of risk-seeking choices across
countries (Fig. 4B) is perfectly predicted by the relative size of
their EADT frequency distribution power parameter estimates
(Fig. 4A; also see SI Text), which further supports the model we
are testing. The possibility that these results reflect a domain-
general tendency for Indian and Indonesian respondents to be
less risk-seeking (or more risk-neutral) than American and
Japanese respondents seems unlikely in light of evidence that
Indian and American respondents have comparable risk prefer-
ences in the financial domain (24, 28), that risk preferences are
highly domain-specific (29), and that the existence of cross-national
differences in risk preferences is domain-dependent (30).

Discussion
In summary, we find support for a model of human life valuation
based on memory sampling and relative judgment (11–13). This
model departs from the utility-based approaches typically en-
countered in psychology (8) and economics (19) in that it does
not rely on stable, underlying value representations to explain
valuation and choice, or on choice behavior to derive value
functions. Instead, preferences concerning human fatalities

emerge spontaneously from the distributions of sampled events
and the relative nature of the evaluation process. The model
successfully explains a variety of findings in the existing literature
(Study 1) and makes unique predictions that were also supported
(Studies 2 and 3). Our results suggest that reactions to fatalities
are fundamentally relative and dependent on personal history
and context. These studies also provide support for the general
idea that the distributional properties of our environment are
reflected in our cognitive system (31–34), and that some appar-
ent cross-cultural differences may actually reflect cross-national
variations in these distributions (35).

The diminishing sensitivity we show to losses of human life
could have a number of functional purposes. For example, if our
capacity to distinguish EADTs is limited, it might make sense for
this ability to be concentrated (i.e., sharpest) around high-
frequency, low-death toll events, as these tend to be packed
together in time and in magnitude, making them otherwise very
difficult to distinguish. Unfortunately, this comes at the cost of
blurring our ability to distinguish low-frequency, high-death toll
events. Alternatively, and given evidence that people have
limited resources for coping with negative events (36), a dimin-
ishing sensitivity to increasing fatalities may protect us from
being emotionally overwhelmed by large death tolls. The notion
that there is an upper bound on the disutility (or shock)
experienced by a person who observes a tragic event is captured
in our theoretical account by the asymptotic nature of cumula-
tive probability functions.

Regardless of its possible functions, understanding the factors
responsible for our diminishing sensitivity to human fatalities has
the potential to save many lives by increasing public reactions to
distant disasters, epidemics, and genocides, while also helping
policy makers correctly prioritize their efforts to prevent and
respond to these humanitarian crises and other deadly risks.

Methods
Study 1A: Centre for Research on the Epidemiology of Disasters/EM-DAT Data.
Data on the occurrence of disasters and their associated death tolls were
obtained from the EM-DAT (www.em-dat.net) maintained by the Centre for
Research on the Epidemiology of Disasters (CRED) at Université Catholique de
Louvain in Brussels, Belgium. The EM-DAT is the only publicly available global
database on the occurrences and impacts of natural and industrial disasters.
The EM-DAT data were also used to produce the country-specific disaster-
mortality distributions in Study 3 (see Fig. 4A). See SI Text for details of Study
1A data collection.

Fig. 4. Cross-national disaster deaths and risk preferences in Study 3. (A) Cumulative probability distributions of disaster-related fatalities in 2003 through 2007
(shown up to 100 deaths) experienced by India (best-fitting power parameter for �10 deaths, � � �0.59, R2 � 0.33), Indonesia (� � �3.07, R2 � 0.78), Japan (� �
�4.56, R2 � 0.91), and the United States (� � �6.64, R2 � 0.78). (B) The proportion of respondents in each country who chose the risky option (program B).
Numbers below the bars are sample sizes.
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Study 1B: Google News Archive Data. Data on media attention to events
involving human deaths (i.e., EADTs) were obtained by iterative search of the
Google News Archives (GNA; see http://news.google.com/archivesearch) for
news articles whose titles contained keywords related to losses (e.g., ‘‘10
people died’’) or ‘‘gains’’ (e.g., ‘‘10 people survived’’) in human lives. For each
search, the number of relevant articles returned (i.e., the number of ‘‘hits’’)
was recorded, thus providing a measure of the total media attention allocated
to events associated with a given loss (or gain) in human lives. See SI Text for
details of Study 1B data collection.

Study 1C: Recalled EADTs. Data on recalled EADTs were obtained by adminis-
tering a survey that asked respondents to recall events involving human
deaths. We then repeatedly sampled these events to estimate the average
frequency and cumulative probability distribution of recalled EADTs. See SI
Text for details of Study 1C data collection.

This study and all future studies reported in this paper were approved by
Princeton University’s Institutional Review Panel for Human Subjects and/or
the University of Oregon’s Office for Protection of Human Subjects (in Study
3, we also obtained approval from the overseas institutions where we admin-
istered surveys). Written or oral consent was also obtained from all our
participants.

Study 2: Experimental Manipulation of Observed EADTs. Participants were 157
adults (56% female; age range, 18–77 y) recruited from a large shopping mall
in the northeastern United States, who were paid for their participation.

The entire experiment was conducted using a paper questionnaire that
participants read and completed on their own. The questionnaire’s cover page
contained written instructions and the final page asked participants to report
various demographic characteristics. The manipulation and the decision sce-
nario were presented on separate pages (with the former directly preceding
the latter).

To manipulate the distribution of comparison EADTs from which they
would sample, participants were alternately assigned to one of three condi-
tions (concave distribution, S-shaped distribution, and control). Participants in
the two treatment groups were first presented with eight randomly ordered
single-sentence descriptions of disasters and accidents whose death tolls
ranged from two to 1,000 (see Table S2). The top of the page containing the
manipulation explained that these events represented a random sample of all
of the natural and industrial disasters that had occurred in the past year (in
reality, these events were all fictional). Participants were instructed to first
read all the event descriptions carefully, and then to indicate how each event
made them feel, using a 10-point rating scale that ranged from ‘‘neutral’’ to
‘‘very negative.’’ The purpose of this exercise was to provide a subtle channel
through which participants would encode these EADTs. The two distributions
of EADTs were selected so that, if sampled, they would either increase or
decrease the distance (relative to baseline), in percentile-ranks, between the
two key magnitudes that participants had to evaluate in the subsequent
decision scenario (400 deaths and 600 deaths; as discussed later).

Participants in the concave distribution condition were presented with
eight EADTs that, if used as comparison magnitudes, would decrease the
distance between the percentile-ranks of the two options presented in the
subsequent decision scenario, thereby making the risky option more appeal-
ing (according to the model we are testing). Specifically, these EADTs were all
selected to be either less than 400 or greater than 600, thus reducing the
difference in ranks between the two target EADTs (Fig. 3A). Participants in the
S-shaped distribution condition were presented with eight EADTs that, if used
as comparison magnitudes, would increase the distance between the percen-
tile-ranks of the two options presented in the subsequent decision scenario,
thereby reducing the appeal of the risky option (according to the model we
are testing). Specifically, these EADTs were selected so that many of them fell
between 400 and 600, thus increasing the difference in ranks between the two
target EADTs (Fig. 3A).

Following this manipulation, participants in both treatment conditions
advanced to the decision scenario, which was presented on the next page of
the questionnaire. To establish a baseline, a third, control group of partici-
pants was not exposed to either distribution manipulation and instead ad-
vanced directly to the decision scenario.

The decision scenario used to measure risk preferences was a modification
of the ‘‘loss frame’’ version of the ‘‘Asian disease’’ problem (2, 8), which asks
respondents to imagine a choice between two programs for combating the
outbreak of a disease that is expected to kill 600 people. One program (the
sure option) leads to 400 deaths with certainty, whereas the other (the risky
option) offers a one-third chance that no one will die, but a two-thirds chance
that all 600 will die. Our scenario referred to a real disease (the West Nile virus)
rather than an imaginary ‘‘Asian disease,’’ but this was the only notable

modification. One respondent did not provide a response to the disease
scenario and was therefore excluded from the analysis. We also excluded data
from five respondents who recognized the disease scenario (all five were
university students). The exact scenario is presented in Fig. S1.

Although both programs have the same expected value (both lead to 400
deaths, on average), previous research (2) found that the majority (78%) of
respondents preferred the risky option when these choices were framed in
terms of lives lost, implying a diminishing sensitivity (i.e., marginally dimin-
ishing disutility) for the loss of human lives (a result that we replicated with our
control group; see Fig. 3B). In particular, people seem to perceive the disutility
associated with a sure loss of 400 lives to be greater than the expected
disutility associated with a two-thirds probability of 600 deaths. In other
words, for most respondents, the subjective shock produced by the knowl-
edge that 400 people will die (or have died) seems to be greater than two
thirds of the subjective shock associated with 600 deaths.

However, we expected that the share of respondents preferring the risky
option in this scenario would decrease as the subjective distance (in terms of
psychological shock) between 400 deaths and 600 deaths increased. Similarly,
the share of respondents preferring the risky option was expected to increase
as this subjective distance decreased. According to the model we are testing,
participants assigned to the concave distribution condition would therefore
be more likely to choose the risky alternative than participants assigned to the
S-shaped distribution condition, which is what we found (Fig. 3B).

We should note that, strictly speaking, our manipulation varied not only
the relative ranks of the target EADTs within the distributions that partici-
pants were exposed to, but also the means of these distributions. One might
therefore attribute our results to a difference in means rather than ranks. This
alternative explanation, however, is unlikely for at least three reasons. First, it
seems implausible that participants calculated the means of these EADT
distributions, let alone used this information to inform their subsequent
choices. Second, research shows that rank-based accounts are better able to
explain the effects of observed distributions on people’s attitudes and pref-
erences compared with mean-based accounts (37). Finally, an account based
on differences between means fails to explain the results of Study 3 as, for
example, Indonesia experienced a much higher mean EADT (1,813 deaths, on
average, between 2003 and 2007) than the other three countries (including
India, which was second with an average of 153 deaths), yet Indonesian
respondents were neither the least, nor the most, likely to choose the risky
alternative.

Study 3: Cross-National Differences in Risk-Preferences. Data on EADT frequen-
cies in each country were obtained from the EM-DAT (www.em-dat.net), as
described earlier (Study 1A in Methods). Responses to the risky-decision
scenario were collected from 249 university students in four countries. The
Indian sample consisted of students at the University of Delhi (n � 60; 55%
female). The Indonesian sample consisted of students at Pelita Harapan
University and Ciputra University (n � 56; 73% female). The Japanese sample
consisted of students at Rissyo University (n � 62; 65% female). The American
sample consisted of students at the University of Oregon (n � 71; 61% female).

The procedure was similar across countries: paper questionnaires contain-
ing the decision scenario were administered to respondents who were re-
cruited in their classrooms (some American respondents instead completed a
Web-based version of the questionnaire in exchange for course credit). The
questionnaire’s cover page contained written instructions and the final page
asked participants to report various demographic characteristics, including
whether they had lived their entire life in the country where they were
recruited. Those respondents who reported having lived outside the country
in which the data were collected (n � 24) were excluded from the analysis.

The decision scenario was similar to the one used in Study 2 except for three
modifications: First, the disease in question was not a specific epidemic but
was simply described as ‘‘an unusual disease.’’ Second, the disease was spe-
cifically described as affecting the country in which the data were collected
(this was the only feature that differed across countries). Third, the outbreak
in the scenario was expected to kill 40 people, and the sure option led to 20
deaths with certainty whereas the risky option offered a 50% probability that
all 40 would die and a 50% chance that none would die. These numbers were
chosen because they represented values for which the four countries differed
strongly in terms of EADT percentile-ranks (Fig. 4A) and because a 50%
probability is easier to understand and compute than the one-third and
two-thirds probabilities used in the original scenario. A 50% probability can,
for example, be conceptualized as equivalent to flipping a fair coin to deter-
mine the outcome of the risky option. As before, the expected value, in terms
of lives lost, was the same for both programs (20 deaths on average). English,
Indonesian, and Japanese versions of the scenario are presented in Figs. S2–S4.
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The survey was written in English for the American and Indian samples and
translated for the Japanese and Indonesian samples. Two steps were taken to
ensure that translations were as similar as possible in terms of the information
conveyed: First, the survey was translated into Japanese and Indonesian by
one pair of translators, then back-translated into English by a separate pair of
translators. This was done to identify any meaningful distortions produced by
the translation process. In addition, the three versions (English, Japanese, and
Indonesian) of the survey were iteratively modified to accommodate each
language’s unique constraints until they converged on a shared meaning.
These steps were repeated until we were satisfied that the three versions were
as semantically similar as possible, and that they properly communicated the
scenario.
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SI Text
Formal Theoretical Framework. The theoretical framework that
underlies our account of the diminishing sensitivity to human
fatalities proposes that people evaluate a target ‘‘event-
associated death-toll’’ (EADT) by comparing it with other
EADTs sampled from memory. The final subjective value as-
signed to the target EADT is simply the proportion of pair-wise
comparisons in which it dominates or ties.

Formally, this can be expressed as follows: consider a standard
ranking system that ranks all the EADTs in a set by assigning a
rank of 1 to the largest EADT, the same rank-values to identical
EADTs, and progressively larger ranks to smaller EADTs.
Within this ranking system, if the rank of the target EADT is rt
when it is compared with the ns other EADTs that were sampled,
its subjective value �t will be:

�t �
ns � 2 � rt

ns � 1
[S1]

Thus, a target EADT is considered large if it ranks above most
sampled EADTs (small if it ranks below most of them), regard-
less of its absolute magnitude.

The proportion of pair-wise comparisons in which a target
EADT (xt) dominates or ties is equivalent to its percentile-rank,
which is the proportion of sampled EADTs that are smaller than
or equal to the target. Equivalently, this can be expressed as the
probability that xt is larger than or equal to a randomly drawn
comparison EADT: p(xt � Xs). Mathematically, this is repre-
sented by the cumulative distribution function F(xt).

The sampling process implies that the value assigned to a
target EADT will be determined by the distribution of compar-
ison EADTs from which a person can draw, which will be a
function of the EADTs (s)he has previously observed. If we
assume, for simplification, that people draw uniformly random
samples from the entire set of events they have observed, the
sample of events under consideration will be a representative
subset of all events in memory, and an EADT’s expected
percentile-rank within the sample will be equal to its percentile-
rank within the entire population of observed events (1, 2). This
implies that the psychophysical function relating an EADT’s
magnitude to its subjective evaluation can be approximated by
the cumulative distribution function of all relevant EADTs that
one has observed.

Mathematically, the cumulative distribution function is ob-
tained by integrating the probability density function. The
probability density function is simply the frequency distribution
function divided by the total number of EADTs in the sampled
population:

f�x� �
freq.�x�

N
[S2]

Because EADTs seem to roughly follow a power-law distribution
(see Study 1), their frequency distribution is reasonably well
approximated by a power function:

freq.�x� � qx� [S3]

with power �. Combining Eqs. S2 and S3, we obtain the
probability density function:

f�x� � bx� �where b �
q
N� [S4]

By integrating Eq. S4, we obtain the cumulative distribution
function:

F�x� � b� x1��

1 � �
� [S5]

As b is simply a normalizing constant with no real empirical
meaning, we can simplify Eq. S5 by setting b � 1 while still
conserving the main features of the relationship between an
EADT’s magnitude (x) and its cumulative frequency (or per-
centile):

��x� �
x1��

1 � �
[S6]

According to our account of the way people evaluate human
fatalities, Eq. S6 approximately describes the relationship be-
tween an event’s death toll and its associated disutility or shock
value. In fact, a common assumption in economics is that
preferences follow a utility function characterized by constant
relative risk aversion (CRRA) (3, 4). CRRA utility functions
often take the form:

U�x� �
x1��

1 � �
[S7]

where � describes the degree of concavity of the utility function.
[Note that when � � 1, U(x) � ln(x).] When x represents a
desirable gain, the CRRA parameter � describes the degree of
relative risk aversion for an individual. Here, however, x repre-
sents the number of human deaths and U(x) the disutility (i.e.,
negative utility) associated with this undesirable loss, so the
relationship is reversed (5–7): � describes the degree of relative
risk-seeking for an individual (i.e., the tendency to prefer risky
choice options). An individual is risk-averse if � � 0, risk-neutral
if � � 0, and risk-seeking if � � 0.

Notice that Eq. S7 is obtained from Eq. S6 simply by setting
� as ��. Thus, according to our account, the curvature (�) of the
disutility function for human deaths is approximately equal to
the negative value of the power parameter (�) that governs the
distribution of EADTs.

A potential issue with the framework we present concerns the
treatment of ties between EADTs. In the current account, a
target EADT’s disutility is equal to the proportion of pair-wise
comparisons in which it dominates or ties. One advantage of
having ties counted in favor of the target EADT is that it allows
individual deaths (X � 1) to produce relatively large amounts of
disutility, in line with the empirical evidence (8). Conversely, this
specification could also generate some counterintuitive predic-
tions in certain cases, notably when the target EADT is equal to
comparison EADTs in the middle of the sampled range. For
example, a target event involving 5 deaths would, in the current
framework, obtain a disutility value of 0.8 when compared with
the set [1, 5, 5, 10], whereas 0.5 might seem like a more intuitive
value as the target event falls in the middle of the distribution in
this case. However, the likelihood of drawing a sample of this sort
is extremely small, given the distribution of EADTs we observe.
In these power-law-like distributions, only the very lowest
EADTs have a nonnegligible probability of being sampled more
than once (or at all, for that matter). Therefore, it is highly
unlikely that ties will occur in the middle of the sampled range
(ties occurring in the very beginning or very end of the sampled
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range do not pose such an issue). Nevertheless, we examined how
different specifications concerning the treatment of ties might
impact our results. We found that our predictions and results are
qualitatively unchanged if we adopt specifications that separate
ties from inequalities between EADTs. In fact, even adopting a
‘‘strictly-greater-than’’ definition of percentile ranks, whereby a
target EADT’s disutility is equal to the proportion of pair-wise
comparisons that it strictly dominates,* was found to have a
negligible impact on the shapes of the cumulative probability
distributions reported in this article.

Methods
Study 1A: Centre for Research on the Epidemiology of Disasters (CRED)/
Emergency Events Database (EM-DAT) Data. Data on the occurrence of disasters
and their associated death tolls were obtained from the EM-DAT (www.em-
dat.net) maintained by CRED at Université Catholique de Louvain in Brussels,
Belgium. The EM-DAT is the only publicly available global database on the
occurrences and impacts of natural and industrial disasters. EM-DAT data are
compiled from a variety of reliable sources, including United Nations agencies,
governments, nongovernmental organizations, insurance companies, re-
search institutes, and press agencies. When new data are added to the dataset,
they undergo a validation process to minimize error before they become
public.

The types of disasters included in the EM-DAT dataset mostly fall into two
broad groups: natural disasters, which include droughts, earthquakes, epi-
demics, extreme temperatures, floods, insect infestations, slides, volcanoes,
waves/surges, wildfires, and windstorms; and industrial disasters, which in-
clude industrial accidents, miscellaneous accidents, and transport accidents.
Only events that meet specific criteria are classified as disasters and recorded
in the EM-DAT dataset: an event is added to the dataset if at least one of the
following conditions is met: (i) at least 10 people were killed; (ii) at least 100
people were affected, injured, or homeless; (iii) considerable damage was
incurred; (iv) a declaration of a state of emergency and/or an appeal for
international assistance was made; or (v) the event is considered noteworthy
for some other reason. One consequence of the first selection criterion is that
the frequency of events involving fewer than 10 deaths is underestimated.
Conversely, low-impact events are generally less salient and less likely to be
reported in the media than high-impact events. As a result, they may be rarely
observed, encoded in memory, or sampled during the evaluation process.

In the raw data we consider, the unit of analysis is a disaster. The EM-DAT
dataset contains a number of useful variables associated with each disaster,
including the country or countries affected, the number of people killed, and
the starting and ending dates of the event.

Starting in 2003, the CRED decided to alter the process for entering disasters
into the EM-DAT database, in an effort to improve its methodology. As a result
of this shift, there is a discontinuity in the way disasters are compiled before
and after 2003. We therefore only considered disasters that occurred between
2003 and the time the data were downloaded.

The data were downloaded on October 24, 2007, from the EM-DAT Web
site. Only disasters that caused at least one (human) death were considered in
our analyses. Disasters for which there was a mistake in the recording of the
start date and/or end date (e.g., the recorded end date occurred before the
recorded start date) were removed. Disasters for which no starting month or
ending month was available were removed. Disasters for which the classifi-
cation year did not correspond to the starting and/or ending year were
removed. As the deaths associated with a disaster that unfolds over an
extended period are spread out in time, it is unclear whether this loss of life
is coded as a single, high-mortality event or as a series of multiple, low-
mortality events. To avoid this potential ambiguity, we considered only events
that occurred over a period of 10 d or fewer (events lasting �10 d represented
12% of the sample). Finally, when the same disaster affected multiple coun-
tries, the death toll was aggregated across those countries and the resulting
total was coded as a single event. Overall, we selected 2,282 individual events.

The EM-DAT data were also used to produce the country-specific disaster-
mortality distributions in Study 3 (see Fig. 4A and Study 3 in Methods). For that
analysis, however, the death tolls were not aggregated when multiple coun-
tries were affected by the same disaster. In addition, only disasters affecting

India, Indonesia, Japan, and/or the United States were considered, and sepa-
rate analyses were carried out for each country. The data selection process was
identical in every other respect. Of the 2,282 disasters that were selected (as
detailed earlier), 153 affected India, 98 affected Indonesia, 28 affected Japan,
and 86 affected the United States.

Study 1B: Google News Archives (GNA) Data. Data on media attention to events
involving human deaths (i.e., EADTs) were obtained by iteratively searching
the GNA (http://news.google.com/archivesearch). The GNA allows users to
search for news articles (using key words) across a large collection of historical
archives from many countries, including major newspapers and magazines,
news archives, and legal archives. GNA searches draw from a large variety of
different sources, and include content that is publicly accessible as well as
content that requires a fee.

We searched the GNA for news articles whose titles contained keywords
related to losses (e.g., ‘‘10 people died’’) or gains (e.g., ‘‘10 people survived’’)
in human lives. For each search, the number of relevant articles returned (i.e.,
the number of hits) was recorded, thus providing a measure of the total media
attention allocated to events associated with a given loss (or gain) in human
lives. The search process was limited to English-language pages only and to
articles published between 2000 and 2007 (all searches were conducted in
2008). To minimize the number of articles about nonhuman losses (or gains),
stories were not counted if the keyword ‘‘animal’’ appeared anywhere in the
article. An iterative search process was carried out by an automated search
algorithm, which sequentially implemented searches and recorded the num-
ber of hits produced by each one.

Two general types of searches were carried out:
(I) ‘‘X [keyword],’’ where ‘‘X’’ represents the number of lives lost or saved

and ‘‘[keyword]’’ represents the specific word used to signify a loss or gain.
This search yielded articles with titles of the form ‘‘3 killed in car crash,’’ in
which no words appear between the number ‘‘X’’ and the keyword.

(II) ‘‘X * [keyword],’’ where the asterisk is used to signify any words
appearing between the number ‘‘X’’ and the keyword. This search yielded
articles with titles of the form ‘‘3 people killed in car crash.’’ Because this
approach also counts titles of the form ‘‘3 million killed’’ (thus yielding false
alarms), the search was designed to ignore articles with titles containing the
words ‘‘X hundred,’’ ‘‘X thousand,’’ or ‘‘X million.’’

Articles on events related to losses in human lives were counted using the
following keywords: ‘‘die,’’ ‘‘died,’’ ‘‘dead,’’ ‘‘deaths,’’ ‘‘killed,’’ ‘‘fatalities,’’
‘‘homicides,’’ ‘‘murders,’’ ‘‘murdered,’’ and ‘‘massacred.’’ Articles on events
related to gains in human lives were counted using the following keywords:
‘‘saved,’’ ‘‘rescued,’’ and ‘‘survive.’’ Keywords were adjusted to the singular
form for X � 1 whenever appropriate (e.g., ‘‘deaths’’ was replaced with
‘‘death’’). These key words were specifically chosen because test searches
showed that they seemed to yield the largest ratio of correct hits (i.e., relevant
stories) to false alarms (i.e., irrelevant stories). As GNA allows only a limited
number of words to be used in each search, we were required to divide the
search process into multiple search strings. However, keywords were grouped
(using the ‘‘OR’’ operator) to produce the fewest strings possible. This yielded
seven search strings for loss-events and two search strings for gain-events.
These search strings are provided in Table S1.

Searches were carried out for every integer-value of X between 1 and 1,000.
Beyond X � 1,000, numbers were sampled up to 1,000,000 in a different
manner: for each order of magnitude, 10m (with m � 3, 4, 5), the first 10 values
were sampled in increments of 10m�1 (e.g., 1,100; 1,200; […]; 2,000), and the
next 16 values were sampled in increments of 5 � 10m�1 (e.g., 2,500; 3,000; […];
10,000). This led to the selection of 78 salient integers: values yielding larger
numbers of GNA hits, as, for high death tolls, news articles are much more
likely to report approximate values (e.g., ‘‘3,000 dead following attack’’) than
exact values (e.g., ‘‘3,147 dead following attack’’).

To account for hits produced by nonsalient values of X, we randomly
sampled 10 integers between each of the 78 salient values. If an integer
appeared more than once, one of its occurrences was replaced with another
randomly sampled value from the same range (eight replacements were made
in total). The resulting 780 additional integers were then used as search values
for X. For each range, we calculated the average number of hits returned by
its 10 nonsalient values (based on a given search string). We then multiplied
this average by the size of the range [either (10m�1 � 1) or (5 � 10m�1 �1)], to
yield an estimate of the total number of hits contained within that range. The
resulting 78 estimates were added to the 78 salient values to produce, for each
search string, an approximation of the total number of hits that GNA would
produce for all values of X between 1,001 and 1,000,000. We also conducted
a few searches (by hand) using values beyond 1,000,000, but these failed to
produce any relevant hits (even for salient integers), suggesting that few if any

*Notice that any reasonable specification that explicitly accounts for ties must fall some-
where between a ‘‘greater-than-or-equal-to’’ [p(xt � Xs)] and a ‘‘strictly-greater-than’’ [p(xt

� Xs)] definition of percentile ranks, in terms of the subjective value it assigns to EADTs. The
‘‘strictly-greater-than’’ specification, in which ties do not contribute to disutility, therefore
provides the most stringent test of robustness to the treatment of ties that we could use.
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events reported in 2000 through 2007 were associated with more than 1
million deaths. We therefore decided to stop searching beyond this point.

The number of hits from each search string were added up, separately for
losses and gains, to produce the total number of hits associated with each
value of X � 1,000, as well as the estimated total number of hits for larger
values of X (up to 1,000,000). For events involving lives lost, we counted a total
of 119,769 search hits (X � 1,000) and estimated another 2,776 hits (1,000 �
X). For events involving lives saved, we counted a total of 3,160 search hits (X �

1,000) and estimated another 144 hits (1,000 � X).
It is worth noting that the number of hits obtained for X � 1 was likely

underestimated. Articles in which a single person dies are more likely to have
titles such as ‘‘man dies in car accident’’ than ‘‘1 man dies in car accident.’’ In
addition, the deaths of famous persons, although also constituting an indi-
vidual death, are likely to be missed as the relevant article titles usually refer
to the person by name, without a quantity indicator. However, single-death
events are probably less memorable, on average, than higher death toll
events, and thus less likely to be sampled during the evaluation process. It is
also possible that certain types of single-death events (e.g., the death of a
friend, family member, or celebrity) are categorized differently from events
typically encountered in the news, which involve the deaths of strangers.
These types of single-death events might not, therefore, be sampled in the
evaluation process.

Study 1C: Recalled EADTs. Data on recalled EADTs were obtained by adminis-
tering a survey that asked respondents to recall events involving human
deaths. We then repeatedly sampled these events to estimate the average
frequency and cumulative probability distribution of recalled EADTs.

Respondents were 160 university students in the United States (43% fe-
male) who participated for course credit.

The survey asked respondents to recall specific nonfictional events involv-
ing human deaths, and to report the first eight examples that came to mind.
They were encouraged to use real events that they had previously heard
about, read about, or seen on television, as long as these events had occurred
in their lifetime. They were asked to provide a brief description of each event

and their best estimate of the number of deaths involved (as a single number
rather than a range of values). Respondents were given the option of com-
pleting an alternate questionnaire of similar length (about recalling temper-
atures) if they felt uncomfortable with the survey’s topic. Only one respondent
requested this option. Another respondent who was noticeably distracted was
also removed from the sample. Many respondents reported fewer than eight
events and, of those reported, some events were excluded from the analysis
because they occurred before the respondent’s lifetime, referred to general
causes of death rather than specific events (e.g., ‘‘all deaths from cancer’’), or
referred to nonhuman deaths. Finally, events were excluded if their estimated
death tolls were missing, equal to zero, or reported as a range of numbers or
some other ambiguous indicator of quantity (e.g., ‘‘thousands’’). Using data
from those respondents who recalled at least 6 valid events (n � 108), we
randomly sampled one recalled event from each person and calculated the
frequency and percentile-rank distributions based on these 108 sampled
death tolls. This sampling process was repeated 1,000 times (with replace-
ment), and the resulting output was used to calculate mean frequencies and
percentiles for each death toll (Fig. 1C). Including all participants and events
with unambiguous, nonzero death tolls into our analyses produced qualita-
tively similar results.

It should be noted that explicitly asking participants to recall events involv-
ing human deaths could have generated a memory search process that differs
somewhat from how they might spontaneously recall EADTs when trying to
evaluate a target event. In particular, our task may have led them to focus
heavily on the loss of a close other (thereby producing many single-person
death tolls) and on extremely large death tolls. They might, for example, have
considered these two classes of events to be especially worth reporting, even
if they initially sampled more broadly. This tendency could have been further
reinforced by the instructions, which required respondents to not only recall
the number of deaths associated with each event but also to provide brief
descriptions. This may help to explain why the distribution of recalled EADTs
differs somewhat from the other two distributions we obtained in Study 1 (see
Fig. 1). Despite this potential limitation, however, the distribution of recalled
EADTs still makes qualitatively similar predictions concerning sensitivity to
human fatalities and risk preferences concerning human losses.
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Fig. S1. The decision scenario presented in Study 2.
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Fig. S2. The English-language version of the decision scenario presented in Study 3 (to American and Indian respondents).
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Fig. S3. The Indonesian version of the decision scenario presented in Study 3.
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Fig. S4. The Japanese version of the decision scenario presented in Study 3.
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Table S1. GNA search strings (Study 1B)

Search no. String

Losses (lives lost)
1 -animal intitle:	X (die OR dead OR died OR deaths OR killed OR fatalities)	
2 -animal intitle:	X (homicides OR murders OR murdered OR massacred)	
3 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (die OR dead)	
4 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (died OR deaths)	
5 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (killed OR fatalities)	
6 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (homicides OR murders)	
7 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (murdered OR massacred)	

Gains (lives saved)
1 -animal intitle:	X (saved OR rescued OR survive)	
2 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (saved OR rescued)	

X represents an integer value. The keywords were adjusted to the singular form for X � 1 whenever appropriate (e.g., 	deaths	 was replaced with 	death	).
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Table S2. Experimental manipulation used in Study 2

Scenario

How does this event make you feel?
Please circle a number for each event,

indicating how it makes you feel.

776 people died following an earthquake in Central Asia. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A week-long heat wave in Mexico led to 9 
283� deaths. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Mudslides in Guyana left 175 
475� dead. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

An industrial chemical explosion killed 39 
426� people in China. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A typhoon in the Pacific killed 1,000 people. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A flash flood in Bangladesh killed 283 
519� people. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

2 people were killed in a car accident in Poland. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Continuous droughts in Niger were responsible for 94 
448� deaths. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Numbers outside the brackets represent the death toll magnitudes (i.e., EADTs) that were presented to participants in the concave distribution condition.
Italicized numbers inside the brackets represent the death toll magnitudes that were presented to participants in the S-shaped distribution condition. Events
without numbers in brackets were those for which the death toll was the same across conditions. In both treatment conditions, the death toll numbers that
participants saw (but not the rest of the sentence) were in bold (but not in brackets nor italicized).

Olivola and Sagara www.pnas.org/cgi/content/short/0908980106 9 of 9

http://www.pnas.org/cgi/content/short/0908980106

