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Abstract

We introduce a post-entry liquidity constraint to the classic real option

model of a �rm with serially correlated pro�tability and an irreversible exit

decision. We assume that a �rm with no cash holdings and negative cash �ow

is forced to exit regardless of its future prospects. This creates a precautionary

motive for holding cash, which must be traded o¤ against the liquidity cost of

holding cash. We characterize the optimal exit and dividend policy and analyze

numerically its comparative statics properties. The �rm pays dividends when

it is in a su¢ ciently strong position in terms of cash �ow and cash holdings,

and the �rm almost surely exits before running out of cash. The direct e¤ect of

the liquidity constraint is to impose ine¢ cient exit, but in industry equilibrium

it also creates a price distortion that leads to ine¢ cient survival. (D81, D92,

G35)
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1 Introduction

We analyze how �nancial frictions a¤ect the optimal policy and survival prospects

of a �rm that operates under persistent cash �ow uncertainty. The persistence in

pro�tability implies that a �rm should exit if the current cash �ow falls su¢ ciently

low. Financial frictions imply that a �rm may also exit due to insu¢ cient liquidity

even when continuation would be economically e¢ cient. Our model captures the

interaction of these two dimensions� pro�tability and liquidity� underlying �rm exit,

and shows how the �rm should optimally manage its cash reserves to cope with the

liquidity constraint. The solution is a policy for exit and payouts that depends on the

current levels of both pro�tability and cash holdings. We also analyze the associated

steady state distribution of �rms in a competitive industry, and show how it can

involve either too much or too little exit, the latter case being a type of "survival of

the fattest."

Our starting point is a standard real option model of a �rm with serially correlated

pro�tability and an irreversible exit decision.1 In this setup the potential for future

pro�ts and the irreversibility of exit make it optimal for a �rm to continue even

when facing expected losses. Cash holdings are irrelevant in the absence of �nancial

constraints and the optimal policy is simply a (negative) threshold level of pro�tability

below which the �rm exits. The optimal exit policy thus requires the ability to sustain

negative cash �ows inde�nitely. It seems realistic in many contexts that a �rm with

a long history of losses would �nd it di¢ cult to keep raising more funds. But as soon

as there is a limit to a �rm�s ability to sustain losses the �rm�s problem changes in a

fundamental way.

In our basic case we model the liquidity constraint as the complete inability to

raise new funds. The �rm has an initial stock of cash that can only be augmented with

retained earnings. A �rm without cash and with a negative cash �ow is forced to exit

immediately regardless of its future prospects, so �rms have an incentive to hoard cash

in order to avoid ine¢ cient exit in the future. This precautionary saving is costly due

to the liquidity premium: cash holdings earn interest at a rate below the discount rate.

Therefore, if the �rm is su¢ ciently safe from forced exit� with a su¢ ciently benign

combination of cash �ow and cash holdings� it is strictly optimal to pay out some

of the cash to the owners. Thus, besides a¤ecting the optimal exit policy, the model

1See e.g. Chapter 7 in Dixit and Pindyck (1994).
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also generates the optimal dividend policy. At the same time, if the �rm is currently

unpro�table and the remaining cash holdings are relatively small, it can be optimal

to pay out the remaining cash and close down operations rather than run the risk of

forced exit later on. We call this feature of the optimal policy "precautionary exit."

We characterize the optimal policy and analyze its dependence on the properties of

the cash �ow process. Our model leads to a free boundary partial di¤erential equation

problem that does not have an analytical solution. Instead of attempting to solve the

�rm�s problem directly we formulate it as a recursive dynamic programming problem

and show how it can be easily solved by value function iteration. The solution has an

intuitive interpretation and we illustrate its comparative statics properties graphically.

Our numerical results show that even a small liquidity premium has a large impact

on optimal �rm behavior.

We do not explicitly model the causes behind the liquidity constraint. One natural

cause is asymmetric information: it can be di¢ cult for a �rm or a manager to credibly

convey to investors the potential for pro�ts.2 Aside from the liquidity constraint, our

model has no other imperfections such as agency problems.

The literal interpretation of the decision-maker in our basic model is a risk neutral

owner-entrepreneur who can increase cash holdings only through retained earnings.

Nevertheless, we believe our �ndings have relevance in the wider context. In an

extension we assume that part of the �xed operating cost of the �rm is due to debt

service. We show that the main insights continue to hold even if the exit decision

is made by the debtholders. Our model implies an endogenous negative relation

between economic performance and balance sheet liquidity for distressed �rms, which

is consistent with recent empirical �ndings by Davydenko (2010) and by Acharya,

Davydenko and Strebulaev (2011). In another extension we show that our results are

robust to allowing the owners to raise new funds at a transaction cost; in e¤ect the

basic model assumes that this cost is prohibitive.

We also analyze the impact of the liquidity constraint at the level of an indus-

try. Our concept of competitive industry equilibrium with entry and exit of �rms is

2For evidence on the importance of liquidity constraints for �rms, see, for example, Evans and

Jovanovic (1989), Holtz-Eakin, Joulfaian and Rosen (1994), and Zingales (1998). There is also

a literature on endogenous borrowing constraints, e.g., Albuquerque and Hopenhayn (2004), and

DeMarzo and Sannikov (2006). Holmström and Tirole (2011, esp. Chapters 1-2) discuss why agency

problems may cause a �rm to face a liquidity constraint.
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essentially that of Hopenhayn (1992), and we assume that the uncertainty faced by

individual �rms is due to idiosyncratic productivity shocks. In this setup the liquidity

constraint causes an obvious overselectivity e¤ect in terms of productivity: some mar-

ginally productive �rms that should survive a temporary loss exit due to insu¢ cient

funds (or, more accurately, in order to preempt forced exit). This e¤ect tends to make

the remaining industry on average more productive by weeding out marginally pro-

ductive �rms that would need �nancing to survive. However, the liquidity constraint

also induces some formerly productive �rms with su¢ cient cash holdings to stay on

even when their productivity falls below the socially e¢ cient exit threshold. This is

a type of �survival of the fattest�as coined by Zingales (1998). More speci�cally, we

show that when the entry cost is su¢ ciently low the liquidity constraint in fact lowers

the average productivity of �rms in the industry.

Related literature

Our model builds on elements from the literature on the optimal exercise of options,

where the seminal papers are by McDonald and Siegel (1986) who model the optimal

timing of investment under uncertain cash �ow, and by Dixit (1989) who analyzes

the �rm�s optimal entry and exit decisions in the same framework. A large number

of extensions to various directions is summarized by Dixit and Pindyck (1994). Our

paper extends this line of research to another direction by adding a liquidity constraint

that may prevent the �rm from covering operating losses.

One paper that address the e¤ects of liquidity constraints on the optimal exer-

cise of real options is by Boyle and Guthrie (2003), who analyze the optimal timing

of investment when uncertain wealth prior to the investment a¤ects the �rm�s abil-

ity to �nance the investment. Our paper, by contrast, focuses on post-investment

uncertainty and its e¤ects on optimal payouts and exit.

A special case of our model, where we assume away the liquidity premium, bears

close resemblance to the problem of a �nancially constrained �rm in Mello and Par-

sons (2000), who analyze the optimal hedging policy for a �rm that faces persistent

cash �ow risk and cannot raise new funds. Gryglewicz (2011) presents a model of a

�nancially constrained start-up �rm, where the mean level of a stochastic cash �ow

is learned over time. Eventually, as �rms mature, they either go bankrupt, or their

con�dence of being high type converges to certainty, in which case they face only i.i.d.
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risk and their cash holdings increase without limit. In these models the �rm has to

choose the optimal exit policy, but it has no reason to ever pay out dividends.

It is important to make a clear distinction between our model and an ostensibly

similar stream of literature that considers the problem of a liquidity constrained �rm

under non-persistent cash �ow risk. This other literature models cumulative earnings

as a Markovian stochastic process, which leads to independently distributed earnings

across periods, whereas we model the level of earnings as the state variable which

results in serially correlated earnings. Milne and Robertson (1996) is a representative

model of a �rm facing a memoryless pro�t stream under a �nancial constraint, where

the �rm faces exogenous liquidation if cash balance falls below a given threshold. The

optimal policy is to accumulate a bu¤er stock of savings up to a point and pay out

as dividends all income above that level. A number of other papers analyze various

additional features in a similar framework: Radner and Shepp (1996) and Dutta and

Radner (1999) add an operation policy that controls risk-return properties of the

earnings process, Décamps and Villeneuve (2007) analyze the optimal exercise of a

growth option, Peura and Keppo (2006) introduce a delay time to recapitalization,

and Rochet and Villeneuve (2005) allow �exible allocation of reserves in risky and

safe alternatives. Décamps, Mariotti, Rochet, and Villeneuve (2011) assume costly

recapitalization, and analyze the implications of such �nancing frictions on the �rm�s

cash management and stock price dynamics.

The attraction of modeling the level of pro�ts as a memoryless process is that it re-

sults in one-dimensional state-space, which yields analytical solutions. The drawback

is that the liquidity constraint is then the only reason why the �rm would ever exit,

because the future always looks equally pro�table. This is reasonable for a �rm that

consists of �nancial assets whose prices react to news in an e¢ cient market but is less

suited as a model of a �rm facing uncertainty over real (non-�nancial) operations.

In our setup, the �rm�s pro�tability (the level of expected pro�t �ow) �uctuates,

making entry and exit natural features of the economy irrespective of whether there

are liquidity constraints or not. Having a �rst-best benchmark that involves �rm exit

allows us to analyze how the liquidity constraint a¤ects �rm survival, and how, at

industry level, it impacts �rm selection.

There are also a few papers on the macroeconomic e¤ects of �nancial frictions that

are related to ours. Cooley and Quadrini (2001), Gomes (2001), and Jones (2003)

use as building blocks models of �rm dynamics with serially correlated productivity.
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In Gomes�s and Jones�s papers �rms also face an exit decision, and in the latter

paper the �nancial constraint may force the �rm to exit in states where it would be

socially e¢ cient to continue. However, due to di¤erent focus, none of these papers

characterize the joint exit-payout policy of the �rm.

Our setup is also to some extent related to the models of precautionary saving. The

seminal papers on precautionary saving by Zeldes (1989) and Deaton (1991) analyze

the problem of optimal lifetime consumption. Under serially correlated income shocks

the state space is two-dimensional (savings and expected income) as in our model;

the key di¤erence is that consumers do not face an exit decision. For consumers,

precautionary saving results from the convexity of marginal utility, whereas in our

model it results from the threat of forced exit.

In the next section we characterize the problem of the �rm, and then in section

3 we solve the �rm�s optimal policy under the liquidity constraint and analyze its

comparative statics. Extensions to debt and recapitalization are analyzed in sections

4 and 5 respectively. The implications of the liquidity constraint for a competitive

industry are analyzed in section 6.

2 The Problem of the Firm

The �rm faces a stochastic revenue �ow xt that follows geometric Brownian motion

dxt = �xtdt+ �xtdwt, (1)

where dwt is the increment of a standardized Wiener process (i.e., with mean zero

and variance dt). The �rm earns a pro�t �ow �t = xt � c where the �xed cost c is
a positive constant. Exit is irreversible and without an additional exit cost or scrap

value. (The entry decision will only show up in industry equilibrium.) The objective

is to maximize the expected present value of the income to the owners, discounted at

rate � > �.

There are two fundamentally di¤erent cases. An unconstrained �rm can accumu-

late negative pro�ts inde�nitely if needed. The problem of an unconstrained �rm is

described by the standard real option model of optimal exit. The sole decision is to

choose the exit threshold for xt, so there is no meaningful decision for when (if at all)

to retain cash or pay dividends.
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A constrained �rm has to worry about its ability to cover negative pro�ts, because

it is forced to exit if it has no cash while it faces a negative cash �ow. The optimal

exit policy depends both on revenue xt and cash holdings st. The �rm�s cash holdings

are augmented by the pro�t �ow and by the interest earned on the cash holdings at

an exogenous rate r � �. The di¤erence �� r is the liquidity premium. If r < � then
the cash held inside the �rm incurs a cost to the owners, so they face a meaningful

decision of how to pay dividends.3 The downside of payouts is that reduced cash

holdings lower the capability to cover any future losses. We start by assuming that

the liquidity constraint is very stark in the sense that it is not possible to inject more

cash into the �rm. We later extend the model to the case where new funds may be

raised at some transaction cost; the basic version can be thought of as a special case

in which such transaction costs are prohibitive.

2.1 Unconstrained Firm

The unconstrained �rm will exit if the cash �ow becomes too negative. The value

function V � (x) gives the expected discounted future cash �ows for a �rm with current

revenue level xt = x, and it is de�ned by the familiar di¤erential equation:

�V � (x) = x� c+ �xV �x (x) +
�2

2
x2V �xx (x) (2)

(see e.g. Dixit and Pindyck 1994, Chapter 7) with the constraints that V �x be con-

tinuous ("smooth pasting") and have a �nite limit. This ODE has a well-known

closed-form solution. The �rm exits when xt falls to x� given by

x� =
� (�� �)
� � 1

c

�
, (3)

where � =
1

2
� �

�2
�

s�
�

�2
� 1
2

�2
+
2�

�2
< 0. (4)

The unconstrained value function is

V �(x) =

( �
c
�
� x�

���

� �
x
x�

��
+ x

��� �
c
�

for x � x�;
0 for x < x�:

(5)

3Another literal interpretation is that the owner-manager is risk neutral but discounts consump-

tion by more than the return on cash. Decamps et al (2008) interpret �� r as a reduced form of an

agency cost, caused by the manager engaging in wasteful activities with the �rm�s liquid assets.
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2.2 Constrained Firm

The constrained �rm has an initial cash balance s0 that is exogenous to the problem.

Cash earns interest at rate r � �. At any moment t, the �rm can run down its cash

balance by paying dividends. Paying dividends is costless and instantaneous. The

objective of the �rm is to maximize the expected discounted stream of dividend pay-

ments. We denote by D := fDtgt�0 the cumulative dividend process. The restrictions
that we impose on this process are the following. First, since we allow only positive

dividend payments, the process must be increasing. Second, the dividend payment

dDt at time t can only be conditioned on past history of cash-�ows. Stated in tech-

nical terms, D must be adapted to the �ltration generated by the Brownian motion

fwtgt�0. Third, we assume that D is right-continuous (upward jumps in D represent

lumpy dividend payments). Finally, D must satisfy the liquidity constraint, which

requires that st � 0 for all t, where the dynamics of the cash balance st are given by:

dst = (xt � c+ rst) dt� dDt: (6)

The �rm is forced to exit if xt � c and st = 0, so the exit time � is given by

� := inf ft � 0 : xt � c and st = 0g : (7)

The objective of the �rm is to choose a dividend process to maximize:

sup
D
E
Z �

t=0

e��tdDt (8)

subject to (6), (7), and st � 0 for all t 2 [0; � ]. Note that this formulation allows
voluntary exit when xt < c and st > 0 by paying out the remaining cash as the

liquidation value: dDt = st.4

The �rm�s problem becomes much more intuitive once recast as a Markovian

control problem with suitably chosen state variables. Note that the history at time

t consists of past cash �ows fxt0g0�t0�t, past dividends fDt0g0�t0�t, and the initial
cash balance s0. Since the cash �ow process is Markovian, the part of the history

that de�nes the probability distribution for future incomes is summarized in the

current cash �ow level xt. Similarly, the part of the history that de�nes the �rm�s

capacity to satisfy the liquidity constraint is summarized as the current cash holdings

4We allow voluntary exit when xt > c, but this would never be optimal.
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st, as derived from past cash �ows and dividend payments through equation (6).

Therefore, the pair (xt; st) summarizes the history part that is payo¤ relevant for the

future, and is su¢ cient for deciding the optimal policy at t by the Bellman�s Principle

of Optimality. Consequently, we may denote by V (x; s) the value of the �rm that

solves (8) starting from an arbitrary state point (x0; s0) = (x; s).

In e¤ect, the problem of the �rm is to choose between three policy options at each

point of the state space. First, the �rm may exit, which is irreversible, and results in

the exit value st. Second, the �rm may pay a positive dividend dDt to the owners,

which shifts the �rm in the state space to cash balance level st � dDt. Third, the

�rm can continue without paying dividends, in which case the cash balance evolves

according to
dst
dt
= xt � c+ rst. (9)

The solution to the �rm�s problem is a division of the (x; s)�space into regions in
each of which one of the three policy options is optimal. The following Proposition

characterizes the solution in the case where r < � (the special case r = � will be

discussed later). For illustration, see Figure 1.

Figure 1: Optimal policy regions of a liquidity constrained �rm.
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Proposition 1 (Optimal policy when 0 � r < �) There are constants xmin 2 (x�; c),
xmax > c, and smax > 0 such that the optimal policy has the following features:

1. If xt � xmin, it is optimal to exit immediately irrespective of st.

2. If xmin < xt < c, then there is a cut-o¤ value es (xt) > 0 such that it is optimal
to exit if and only if st � es (xt). es (xt) is decreasing in xt and limxt!c es (xt) = 0.

3. If xt � c, it is optimal not to exit, irrespective of st.

4. If xt > xmax or st > smax, it is strictly optimal to pay out some dividends (and

continue thereafter, if xt > xmin).

The proof is in Appendix A. Figure 1 illustrates the optimal policy. This is the

key �gure of our paper. The life span of a �rm is a stochastic path in the (x; s)�
space. While the �rm stays inside the continuation region its law of motion is given

by equations (1) and (9). The gray area inside the continuation region is a transitory

region: after leaving it, a �rm that follows the optimal policy cannot return there.

The �rm never ventures inside the dividend region, because payouts (which move the

�rm down along s-axis) keep it from crossing the boundary of that region. When

revenue x is su¢ ciently high, the dividend region reaches all the way to the s = 0

line, where the �rm operates with zero cash holdings and continually pays out all of

the pro�t �ow as dividends. The �rm�s life span ends when it hits the boundary of

the exit region for the �rst time.

We will next explain the intuition for why the optimal policy takes the form

depicted in Figure 1.

Continuation Region

The point of accumulating cash is to use it as a bu¤er that prevents ine¢ cient exit.

To see this, consider a situation where the �rm�s current cash holding st is small but

strictly positive, and where the pro�t �ow is exactly zero, i.e. xt = c. The �rm

is not currently making losses and there is a positive option value associated with

future pro�ts, so it cannot be optimal to exit. Neither can it be optimal to pay

out st as dividends, because this would cause the �rm to immediately move down

to the point (x = c; s = 0), which means that the �rm is forced to exit within the

"next instant" thus losing the option value. Therefore, there must be a non-empty
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continuation region, where it is optimal to retain cash inside the �rm despite the

di¤erence between the discount rate and the rate of return on cash holdings.

Now let�s consider the properties of the value function in the continuation region.

De�ne the value of the constrained �rm V (x; s) as gross of the cash holdings, so

the value at the time of exit is V (x; s) = s. Using Ito�s lemma, we can write the

di¤erential dV as:

dV (x; s) = Vs (x; s) ds+ Vx (x; s) dx+
1

2
Vxx (x; s) (dx)

2 . (10)

Taking the expectation and letting dt be small yields:

E (dV ) = Vs (x; s) ds+ Vx (x; s)�xdt+
1

2
Vxx (x; s)�

2x2dt,

where ds is from (9). The Bellman equation is V (x; s) = E (V + dV ) = (1 + �dt),

which can be solved for �V dt = E (dV ), leading to the following PDE:

�V (x; s) = (x� c+ rs)Vs (x; s) + �xVx (x; s) +
�2

2
x2Vxx (x; s) . (11)

Note that this PDE does not contain a cash �ow term. The reason is that, in the

continuation region, the cash �ow between the �rm and its owners is zero: Positive

cash �ow adds to the cash balance and negative �ow subtracts from it.

The PDE (11) does not have a closed-form solution. Further, it is valid only in the

continuation region, the boundaries of which must be optimally chosen as part of the

solution. We will next discuss the properties of these boundaries, which constitute

the optimal exit and dividend policies. The numerical solution of the problem is

discussed in Section 3.1.

Exit Policy

The liquidity constraint can only reduce the continuation value of the �rm, so the

constrained �rm should certainly exit whenever the unconstrained would, i.e., when

xt � x�. In addition, the �rm is forced to exit when it has no cash to cover the

current loss, i.e., when (xt � c; st = 0). This gives a �xed boundary for the value of
the �rm:

V (x; 0) = 0 for x � c. (12)

The �rm should clearly never exit while current pro�ts are positive (xt > c). Now

consider a �rm with a very small st and with xt < c. This �rm is depleting its cash
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but could in principle still continue. However, it is very likely to be forced to exit in

the near future. For any xt < c, and for su¢ ciently small st, the �rm is so unlikely

to bounce back to a positive cash �ow before s hits zero that the owners are better

o¤ exiting immediately and just taking the remaining st.5 Thus, there must be a

boundary between exit and continuation regions that lies strictly above s = 0 for

x < c. We call exiting when xt > x� and st > 0 precautionary exit.

We denote the exit threshold by ~s (x), de�ned in x 2 [xmin; c] where xmin is, in
practical terms, the lowest revenue at which the �rm ever operates. The lower is xt,

the less valuable the continuation value of the �rm, and thus the higher the s required

for continuation to be optimal, so ~s0 (x) < 0 in x 2 (xmin; c).
Inside the continuation region the value of the �rm must exceed the exit value s.

At the exit boundary the �rm is indi¤erent between taking the exit value and the

continuation value, so

V (x; ~s (x)) = s. (13)

Inside the continuation region the marginal value of cash must be at least unity,

else the owners would be better o¤ by paying out cash. Smooth pasting at the exit

boundary requires

Vs (x; ~s (x)) = 1, (14)

Vx (x; ~s (x)) = 0. (15)

It may seem unintuitive that the exit boundary is strictly above zero for all x < c.

To see this point more formally, suppose, by contrast, that the continuation region in

fact reached all the way down to s = 0 for some interval [x0; c], where x0 < c. Since a

cashless �rm is forced to exit at s = 0, the boundary value V (x; 0) = 0 is �xed for all

x � c. This implies that the �rst and second derivatives with respect to x must also
be zero within this interval: Vx (x; 0) = Vxx (x; 0) = 0 for all x 2 (x0; c). Substituting
these into the PDE (11) that holds in the continuation region yields Vs (x; 0) = 0

within this interval. But this leads to a contradiction, because Vs � 1 must hold in
the continuation region, or else cash would be more valuable outside than inside the

�rm. It follows that the continuation region cannot reach down to s = 0 for x < c.

The only way in which a �rm following the optimal policy can extinguish all funds

is to hit exactly the zero-�ow-zero-stock point for cash, fxt; stg = fc; 0g. Thus the
5It can be shown that the probability with which the �rm bounces up to positive pro�ts before

running out of cash goes to zero at a rate faster than s.
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constrained �rm will experience a forced exit with probability 0.6 Practically all exit

by liquidity constrained �rms is precautionary.

We assume that the scrap value of the �rm is zero, so the exit value of the �rm is

simply equal to its cash holdings. In the unconstrained case, adding a positive scrap

value would be equivalent to adding the rental opportunity cost of the scrap value to

the �ow cost. However, in the presence of a liquidity constraint an opportunity cost is

not equivalent to an operating cost as only the latter requires liquidity. In the extreme,

having a scrap value so high that the optimal exit threshold of an unconstrained �rm

is positive, the �rm cannot face negative cash �ows during its lifetime so the liquidity

constraint is redundant. Apart from this extreme case, the problem would not be

qualitatively changed by a positive scrap value.

Dividend Policy

When r < �, holding cash is costly. The bene�t of holding cash is that it may allow

the �rm to avoid a forced exit in the future when the option value of continuation

would still be positive. This bene�t is bounded above by V � (c), the unconstrained

continuation value at the zero pro�t �ow. Since the cost of holding cash increases

without bound in s, there exists, for any x, some s high enough such that it is better

to stop accumulating cash. This threshold value, denoted ŝ(x), de�nes the boundary

between the continuation region and the dividend region. It can be interpreted as a

target level of cash holdings that depends on current pro�tability. The �rm makes

payouts to owners to make sure it doesn�t hold more than the target level of cash;

hence we call ŝ the dividend threshold. The value of the �rm above the dividend

threshold must be:

V (x; s) = V (x; ŝ(x)) + (s� ŝ(x)) , when s > ŝ(x).

For su¢ ciently high x the possibility of forced exit is so remote that it is not worth

holding on to any cash. We denote the threshold above which it is optimal to not hold

any cash by xmax. In the limit x!1, the prospect of forced exit becomes irrelevant,
and thus the value of the �rm must converge to the value of the unconstrained:

lim
x!1

V (x; s) = V �(x) + s. (16)

6The �rm�s position in (x; s)-space cannot evolve along the boundaries of the continuation region

because, if st = 0 and xt > c then ds > 0, and if xt < c then the �rm exits if it hits the boundary

fx; ~s (x)g.
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At the dividend threshold, cash is equally valuable inside as it is outside the �rm,

where one dollar is of course worth one dollar. Thus, the value matching condition

Vs (x; ŝ(x)) = 1 (17)

must hold at the dividend threshold. The associated smooth-pasting condition re-

quires7

Vss (x; ŝ(x)) = 0, (18)

Vxs (x; ŝ(x)) = 0: (19)

The �rm is constrained at the margin only in the continuation region; there having a

dollar more would increase the value of the �rm by more than a dollar: Vs (x; s) > 1.

When the �rm hits the dividend threshold from inside it pays out just enough

cash to not cross the boundary. However, if the �rm were to start at s0 > ŝ(x0), then

it would immediately pay out the excess s0� ŝ(x0) as a lump sum dividend. (For

a new �rm this means that the owners have more than enough funds to endow the

�rm with the optimal level of precautionary cash holdings; the �lump dividend�at

the start is then the cash that owners retain for themselves.) A lump sum dividend

is also paid out as the liquidation value upon precautionary exit. Note that if a �rm

that enters the industry at revenue level x0 can choose its initial cash holdings then

s0 = ŝ(x0) is the optimal choice.

2.3 Special Case: No Liquidity Premium (r = �)

Consider now the special case in which there is no liquidity premium: r = �. Hoarding

cash is now costless, so it can never be strictly optimal to pay dividends. The optimal

policy is thus de�ned by dividing the (x; s)� space between the exit region and

the continuation region. The qualitative properties of the exit region and the exit

threshold ~s (x) are the same as with r < �.

Holding cash inside the �rm can be strictly optimal only when there is a positive

probability of being forced to exit in the future. Of course, no matter how high xt,

falling below x� remains physically possible. But the �rm would become irreversibly

unconstrained if it were to accumulate so much cash that it could use the interest
7In terms of Dumas (1991), the dividend is �an in�nitesimal requlator�(while exit is a discrete

regulator) so there must be �super-contact�at ŝ(x).
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income from its cash holdings to cover what would be the worst-case losses under the

optimal unconstrained policy. The worst-case cash �ow level under the unconstrained

policy is x� � c. This loss can be fully compensated by interst payments once cash
holdings reach the escape level of cash

s� =
c� x�
r

. (20)

This means that a �xed boundary condition

V (x; s�) = V � (x) + s� (21)

now replaces the free boundary ŝ(x) seen in the r < � case. For st � s�, the �rm

is indi¤erent between paying dividends or not and V (x; s) = V � (x) + s. Above the

escape level of cash, the �rm can no longer run out of cash before �rst becoming so

unpro�table that it would want to exit even in the absence of a liquidity constraint.

As the �rm is then in e¤ect unconstrained, its exit policy is the same as for an

unconstrained �rm: exit if and only if x � x�. We summarize these results in the

following proposition:

Proposition 2 (Optimal policy when 0 � r = �) If xt > x� and st < (c� x�) =r,
it is strictly optimal to refrain from paying dividends. If xt > x� and st > (c� x�) =r,
the owners are indi¤erent between paying dividends and continuing without paying

dividends. The optimal exit policy is qualitatively the same as when r < � (see

Proposition 1).

The special case without a liquidity premium is quite similar to the setup of

a �nancially constrained �rm in Mello and Parsons (2000). They study optimal

hedging, namely how �rms should use futures contracts on an asset that is correlated

with their pro�ts to reduce the risk of ine¢ cient exit. They do not take into account

that the �rm becomes permanently safe from ine¢ cient exit at a �nite level of cash

holdings, but instead assume that the constrained �rm�s value reaches that of the

unconstrained case only in the limit of in�nite cash holdings. The environment faced

by the agent in DeMarzo and Sannikov (2008) also features serially correlated cash

�ow and saving is possible without liquidity costs; there precautionary exit does not

arise because expected cash �ow is assumed to be always positive (due to a parameter

restriction which implies that the exit threshold is always positive).
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There is also no liquidity premium in the model of Gryglewicz (2011), so it is never

strictly optimal to pay out dividends. To generate predictions about the dividend

policy he assumes that the �rm pays dividends at the indi¤erence boundary, which

is equivalent to our s� (but is changing over time due to learning). Our numerical

results will show that even a tiny liquidity cost can in fact make a large di¤erence to

the payout policy (even though not to �rm�s value).

3 Numerical Analysis

3.1 Solving the Optimal Policy

The PDE de�ned by (11) and the various free boundary conditions cannot be solved

analytically. To solve the �rm�s problem we turn to a discrete-time approximation

of the problem and solve it numerically. In the binomial process approximation of

geometric Brownian motion the evolution of x is governed by

x (t+�) =

8<: x (t) e�
p
� with probability q = 1

2

�
1 +

���2

2

�

p
�

�
x (t) e��

p
� with probability 1� q

(22)

where � is the length of the time period.8 The evolution of the cash balance is now

s (t+�) = (s (t)� � (t)) (1 + r�) + (x (t)� c)�, (23)

where � (t) 2 [0;�s (t)] is the dividend paid at time t. The dividend cannot be so

high as to make the cash holdings negative at any point in time, so the maximum

feasible dividend is restricted by min fs (t+�) ; s (t)g � 0, where �s (t) � s (t)+

min f0; (x (t)� c)�= (1 + r�)g.
The value function of the �rm, stated in recursive form, is

V (x (t) ; s (t) jt) =

max

(
s (t) ;

max�2[0;�s]

n
� + 1

1+��
E [V (x (t+�) ; s (t+�) jt+�)]

o
;

)
(24)

where s (t+�) is from (23).

8This way of discretizing geometric Brownian motion was inspired by Cox, Ross and Rubinstein

(1979).
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The recursion in (24) satis�es Blackwell�s su¢ cient conditions so it is a contraction

mapping. Thus it can be solved by iterating backwards in time: Starting from an arbi-

trary VT (x; sjT ) the value function converges to a unique solution that approximates
V (x; s).9

3.2 Comparative Statics of Optimal Policy

Next we investigate how the �rm�s optimal policy depends on the parameters r; �; �.

We do this comparison by varying one parameter at a time from a set of baseline

parameters, r = 0:05, � = 0:1, � = 0, � = 0:25, c = 1. The results are depicted in

Figure 2. The solid lines mark the borders of the continuation region in the liquidity

constrained case, and the vertical dashed lines mark the optimal exit threshold in the

unconstrained case.10

The left hand panel of Figure 2 shows the impact of varying the return on �rm�s

cash holdings, r. As r gets larger it becomes less costly to hold cash so continuation is

everywhere more attractive and the continuation region expands. The limiting case

r = � = 0:1 results in the escape level of cash s�, from (20), that is much higher

than the highest cash holdings that the �rm would ever keep even at r = 0:099. The

limiting case is qualitatively di¤erent, because the trade-o¤ behind the payout policy

(between the liquidity cost of the cash holdings and the expected bene�t of preventing

exit) is no longer there. While optimal payout policy is very sensitive to r near �,

the value of the �rm is not. When r is very close to � the liquidity cost is negligible,

and there is a large region in state space where the �rm is almost indi¤erent between

retaining and paying out cash. (There the marginal value of cash, Vs, is only very

slightly above unity). The high sensitivity of optimal policy to r near � means that,

even when the liquidity premium is close to zero, the optimal behavior of �rms is not

well approximated by a model where the liquidity cost is completely assumed away.11

The top right panel of Figure 2 shows the relation of the optimal policy and the

9A natural starting point for the backward induction is V (x; sjT ) = s: This means that the

problem is turned into a �nite-horizon problem with forced exit in the last period. By increasing T

the value function at t = 0 converges to that of the in�nite horizon problem.
10The program for solving the optimal policy is available at http://www.hse-econ.�/murto.
11Nevertheless, it can be shown that as r " � the optimal policy converges to the limiting case,

in the sense that, for every point (x0; s0 < s�) in the continuation region of the limiting case r = �,

there exists r0 < � for which (x0; s0) is in the continuation region.
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volatility of the cash �ow process. As is typical, higher volatility makes it optimal

to accept bigger losses because it increases the upside potential while the downside

is still protected by the exit option. In terms of the optimal policy, the increased

option value shows up as an enlarged continuation region. This is already visible

in the unconstrained problem, where the exit threshold x�is decreasing in �. In the

constrained problem, the dividend boundary shifts out to the right because, at any

given x, higher volatility also increases the risk of facing forced exit within any given

period of time.

The bottom right panel shows the e¤ect of varying �, the percentage drift of the

cash �ow process. Higher � increases the option value at any given level of losses, as

the �rm is more likely to bounce back to positive pro�ts within any given period of

time. However, as higher � also makes the �rm safer at any given point� by making it

less likely that forced exit would threaten it within any given time� it is not obvious

that a higher � should also shift out the dividend boundary. However, we have found

no examples of the opposite.

[ Figure 2 here ]

Figure 2. Comparative statics of the optimal policy of a liquidity constrained �rm. Top

Left: r 2 f0; 0:05; 0:09; 0:099g; Bottom Left: same as top left, and r 2 f0; 0:05; 0:09; 0:099; 0:1g,
Top Right: � 2 f0:1; 0:25; 0:4g, Bottom Right: � 2 f�0:05; 0; 0:05; 0:09g.

4 Debt

We now introduce the assumption that the �rm has debt. Endogenizing capital

structure would require a signi�cantly di¤erent model, but there are a few issues

that we can analyze in the present framework by assuming that the debt burden is

exogenous. Our main interest lies in explaining the relation of the value of debt with

the combinations of pro�tability and cash holdings� that is, with the �rm�s position

in the state space of our model. The value of debt is inversely related with credit

spread and credit ratings. In the end we relate our �ndings to recent empirical work.

The key simpli�cation is to assume away renegotiation and re�nancing. The debt

has been incurred in the past, perhaps to cover a part of the (now sunk) entry cost,

and the servicing of debt takes the form of a �xed coupon payment to perpetuity.

(This way there is no need to introduce another state variable for debt.) In terms of
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our model, the �ow �xed cost c in (9) is now a sum of two components, an operating

�xed cost cf and a �xed cost of servicing the debt cd. As before, if the �rm ever fails

to pay the �xed cost c it is forced to go out of business.

We consider three cases, in the order of closest resemblance to the basic model.

Looting

The �rst case is the most straightforward: it involves nothing but the reinterpretation

of the �xed cost, and leaves the debtors as silent bystanders. The owner does not

care how the �xed cost is broken down between the operating cost and the coupon

payment. The owner is free to take cash out of the �rm, and there is no point in

leaving any cash in the �rm when it goes out of business. Thus, when the �rm exits,

no cash is left for the debtors. Now when the owner takes money out of the �rm

in anticipation of going out business, this is very much against the interests of the

debtholders. What we called precautionary exit in the absence of debt is now more

aptly called funneling or �looting�.12

The owner�s optimal policy and value function are unchanged from the basic

model, but we can now calculate a value function for the debtholders. The value

of debt comes from the fact that the �rm has to make the coupon payment as long

as it stays in business. The value of debt is depicted by the contour lines in the

top left panel of Figure 3, with the units measured for a unit coupon. The value of

debt is closely related to the expected remaining lifetime of the �rm, so it is roughly

increasing in the distance from the exit threshold. In the limit case where pro�ts

become larger the value of debt approaches that of a risk-free perpetuity, as the �rm

is expected to stay in business forever.13

Performance covenant

In the second case, we add a simple debt covenant: the owner is allowed to take cash

out of the �rm only if the current cash �ow is positive. This means that the owner

will not want to exit, no matter how negative the current pro�ts, but will rather run

down the funds. There is always some chance of recovering back to pro�ts, but no

12We use the term looting broadly in the sense of Akerlof and Romer (1993).
13For calculations we assume that debtholders have the same discount rate as the owner; this

matters for the value levels but not much for the shapes of the contours.
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money to be recovered from precautionary exit.

The performance covenant o¤ers some protection for the debtholders, as the own-

ers cannot loot the remaining cash holdings when the �rm is nearing exit. The

value of debt comes from continued coupon payments, so delayed exit is good for the

debtholders. However, the downside is that owners now have less of an incentive to

accumulate cash holdings inside the �rm in the �rst place.

Owner�s optimal policy under the performance covenant is depicted in the top

right panel of Figure 3, together with the contours for the relative di¤erence between

the values of debt with and without the performance covenant. Where payouts are

not prevented by the covenant (right of the dashed line) the dividend boundary is now

lower than in the looting case. Owners accumulate less cash because they anticipate

the possibility of performance covenant becoming binding in the future. Nevertheless,

the value of debt is now higher for any given combination of pro�tability and cash

holdings. This is quite obvious where the looting �rm would near exit, because with

the covenant the debt retains some value due to longer expected lifetime, but even in

the region where the covenant is not binding the di¤erence is about 5% at its highest.

Here the bene�t of preventing looting more than compensates the debtholders for the

downside of lower cash holdings, which hurts them by making it harder for the �rm

to prevent ine¢ cient exit.

Retractable debt with a performance covenant

In the �nal case we give the debtholders the power to retract the debt (in addition to

the performance covenant). This means that the exit policy is now in e¤ect decided

by the debtholders. (The owner still has the ability to exit, but, as in the previous

case, would never �nd it optimal.) At redemption the debtors get the remaining cash

and the �rm is forced to exit. For simplicity we assume that the face value of the

debt is su¢ ciently high so that the �rm would never want to accumulate so much

cash as to survive a redemption.

Now that debtholders decide the exit policy, �rm behavior is determined through

strategic interaction between the owner and the debtholders. In equilibrium, the

owner maximizes the present value of dividends, taking as given the exit policy used

by the debtholders; similarly, debtholders choose the exit policy in order to maximize

their present value, taking as given the dividend policy.
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A useful simplifying feature of this environment is that the regions where owners

and debtholders are active do not overlap. The reason is that the covenant prevents

the owners from making payouts when cash �ow is negative, and debtholders do not

want to force exit when cash �ow is positive. Thus there is no true within-period

strategic interaction, and it makes no di¤erence whether we assume that decisions

within a period are sequential or simultaneous.

We assume that each period begins by everyone observing the new realization of

the stochastic revenue x. The owners choose the dividend in order to maximize their

value function

VE(x(t); s(t); ~sD) = max
�2[0;�s]

�
� +

1

1 + ��
E [VE (x (t+�) ; s (t+�) ; ~sDjt+�)]

�
(25)

subject to the constraint that the dividend � does not cause the performance covenant

to be violated, � � maxf0;minfs; x�c+rsgg ��s. Owners anticipate the debtholders�
exit policy ~sD, which is de�ned analogously to the exit boundary of the basic model

in Section 2.

The debtholders can either accept the coupon payment and let the �rm continue,

or dissolve the �rm and take the remaining cash. Their value function is de�ned

recursively as

VD(x(t); s(t); ŝE) = max

�
s(t); cd +

1

1 + ��
E [VD (x (t+�) ; s (t+�) ; ŝDjt+�)]

�
(26)

where ŝE is the next period�s dividend policy, anticipated by the debtholders, and

de�ned similarly as the dividend boundary in Section 2. In equilibrium, ~sD and ŝE
are mutually consistent. The numerical solution is again obtained by a standard

recursive method.

Exit by debtholders and payouts by owners are strategic complements. The point

of accumulating cash holdings is to allow the �rm to survive a temporary foray into

negative pro�ts; if the debtholders force an exit they take the remaining cash and the

accumulation was a waste from the owner�s point of view. The quicker the debtholders

are to pull the plug, the lower the amount of cash that the owners want to accumulate.

And vice versa: the lower the dividend boundary, the less valuable is continuation for

debtholders because they can expect the �rm to arrive at the exit boundary sooner

and with less cash.
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The value for debtholders consists of the coupon payments during the lifetime

of the �rm, and of the �nal cash holdings at exit. Equilibrium policy regions are

depicted in the bottom left panel of Figure 3, with the contours for the di¤erence

in the value of debt relative to the case with looting superimposed. The value is

higher than in the absence of a covenant, and also slightly higher than with a plain

performance covenant without retractability.

To solve the equilibrium policies we have to assume some particular fraction for

the share of the coupon payment out of total �xed cost, cd=c. Note that this share was

immaterial in previous cases, where it had no impact on �rm behavior. The bottom

right panel depicts the policy regions under various assumed proportions for the cost

of debt service out of total �xed costs; it was set at 25% at the bottom left panel.

The continuation region is smaller on both sides when the share of debt is smaller.

From the debtholders point of view coupon payments are not a cost but an income.

Total �xed cost c is being held constant, so, when the proportion of debt service

is smaller, the real operating cost is correspondingly larger, and debtholders have

more to lose from continued operation so they choose to exit sooner. The reason for

precautionary exit by the debtholders is the same as it was for the owner in the basic

setup. Continued operation incurs operating costs and depletes the cash holdings, so,

at su¢ ciently low pro�tability, the debtholders are better o¤ taking the remaining

cash rather than using it to gamble for resurrection.

[ Figure 3 here ]

Figure 3. Optimal policy in various cases, see Figure 1 for color coding. Top left :

Looting, with the contours for the value of debt superimposed. Top right : Performance

covenant, with the di¤erence in the value of debt relative to the looting case. Bottom:

Performance covenant with retractable debt; on left optimal policy with the di¤erence in

the value of debt relative to the looting case superimposed, on right the optimal policy

under several assumed values for the share of debt service out of �xed costs.

Discussion

The explicit power of the holders of retractable debt is similar to the power held

by the owners of short-term debt, who may choose to stop the rollover before the

�rm can burn through its remaining cash. However, a model with actual rollover
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would require us to endogenize both the interest rate on new debt and the capital

structure; that is beyond the scope of the current paper. Our point is that when the

continued operation of the �rm requires the consent of debtholders then they face a

similar trade-o¤ as the entrepreneur-owner in our basic model, and the resulting exit

behavior is also qualitatively similar. In general, the debtors want the �rm to exit

while it still has cash but the probability of bouncing back to pro�ts before defaulting

is su¢ ciently low.

The results of our debt-augmented model can be related to recent empirical �nd-

ings on the relationship between debt, cash holdings, and asset values. Consider the

possible life span of a �rm in our model. The points along the exit boundary cor-

respond to di¤erent combinations of asset value and balance sheet liquidity at the

time of exit. From the shape of the exit policy we see that pro�tability should be

negatively correlated with the likelihood of default in the near future. Furthermore,

controlling for pro�tability, the cash holdings should also be negatively correlated

with the likelihood of default. This is consistent with Davydenko (2010), who ana-

lyzes data on bond and equity values of speculative grade �rms (BB+ and below),

and �nds that the two variables that predict default are the "economic solvency" of

the �rm, which corresponds to our pro�tability, and "balance sheet liquidity" that

roughly corresponds to our cash holdings. Both our theoretical model and Davy-

denko�s empirical �ndings suggest that economic value and liquidity are two distinct,

yet related, potential triggers of default: some �rms exit mainly because of economic

insolvency while others exit mainly because of liquidity distress (which may be a

result of poor past economic performance).

Our model also has implications for the correlation between cash holdings and

bond yields. Consider the regions of state space where a �rm can and cannot be

located. The shape of the continuation region shows that combinations of low cash

holdings and high bond yields are selected out by exit, while combinations of high cash

holdings and low bond yields are selected out by payouts. (In the case of performance

covenant without early redemption only the latter is true.) Thus a population of �rms

in the continuation region should show a negative correlation between cash holdings

and the value of debt, i.e., a positive correlation between cash holdings and bond yield.

This is consistent with Acharya, Davydenko and Strebulaev (2011), who report that

there is a positive correlation between cash holdings and credit spread in cross sections

of �rms, and that this correlation becomes negative if one controls for pro�tability.

22



5 New Cash Injections

Next we extend the model by allowing the owners to increase the �rm�s cash holdings

at some transaction cost. Speci�cally, they can, at any point in time, inject any

amount s of cash at cost � + (
 + 1) s, where � is the �xed and 
 the marginal

transaction cost. The injection of cash causes the �rm to jump directly upwards in

the state space (x; s). Paying the transaction cost can only be optimal when the �rm

would otherwise face immediate forced exit (s = 0 and x < 0) because otherwise the

cost could still be postponed and, with luck, even avoided.14

If the �rm decides to incur the transaction cost, then its target level of cash is

s+ (x) = argmax
s
fV (x; s)� (1 + 
) sg . (27)

The target level s+ equalizes the marginal cost of new cash and its marginal value

at the �rm, Vs (x; s+ (x)) = 1 + 
. Transaction costs are independent of x, so cash is

raised on an interval fs = 0; x 2 [x+min; 0]g, where x+min 2 (x�; 0). The lowest x where
the �rm replenishes its cash holdings, x+min, is the point where the value of exit (which

is zero on the s = 0 line) is just equal to the value of continuing from fx; s+ (x)g, net
of the transaction cost of moving there:

V
�
x+min; 0

�
= V

�
x+min; s

+
�
x+min

��
� � � (1 + 
) s+ = 0. (28)

The left panel of Figure 4 depicts the optimal policy for a �rm that faces positive but

not prohibitive transaction costs. The qualitative di¤erence to the basic model (recall

Figure 1) is the segment of horizontal axis where cash is raised and the associated

target curve s+ (x) directly above. For su¢ ciently low cash �ow the �rm still �nds it

optimal to exit with positive cash holdings rather than incur the transaction cost.

The liquidity cost of holding cash makes it desirable to limit the cash holdings,

so without a �xed transaction cost �rms would raise cash only to o¤set a contem-

poraneous negative cash �ow. The �xed cost makes it optimal to raise new cash in

lumps, in order to postpone the prospects of having to incur it again. In the absence

of a marginal transaction cost it is optimal to "jump" all the way to the dividend

boundary. Any transaction costs reduce the value of continuation and shift the exit

boundary to the right.
14Hennessy and Whited (2007) estimate that (�nancial companies excluded) the marginal cost of

raising new equity is 0:053 for large companies and 0:12 for small, and that �xed costs are $38900

and $95100 respectively.
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The value function is now augmented with the additional option of raising more

cash. Thus, in solving for the optimal policy, (24) is replaced with

V (x (t) ; s (t) jt) =

max

8>><>>:
s (t) ,

max�2[0;�s]

n
� + 1

1+��
[EV (x (t+�) ; s (t+�) jt+�)]

o
,

maxs+2[s(t);1) fV (x (t) ; s+jt)� � � (1 + 
) (s+ � s (t))g

9>>=>>; (29)

where s (t+�) is from (23). The numerical solution method is otherwise unchanged.

The right panel of Figure 4 shows the optimal policy under di¤erent combinations

of the transaction cost parameters.15 In each case the exit boundary is further left

than under prohibitive costs, as the threat of forced exit is not as grave with the

possibility to raise new capital. The lower the transaction costs, the further the exit

boundary shifts towards the unconstrained exit threshold. With low transaction costs

it is cheap to add cash whenever necessary, so it is possible to reduce the liquidity

cost and never hold very much cash, so the continuation region becomes smaller. In

the limiting case the �rm holds no cash; it pays out pro�ts as they come in, and raises

cash as it makes losses.

The unconstrained case, with the simple exit threshold x� in (3), is the limiting

case where both the �xed and the marginal transaction cost are zero. The constrained

case, where the �rm never raises new cash, is equivalent to assuming that the cost pa-

rameters are prohibitively high.16 Hence this setup encompasses both the constrained

and unconstrained cases of the basic model.

One literal interpretation of the model is a risk-neutral owner-entrepreneur who

allocates her wealth between two assets; one liquid asset that can be used to pay o¤

possible losses, and another illiquid asset that yields a higher rate of return but can

only be turned into liquid form at a transaction cost. The entrepreneur has deep

pockets in terms of the illiquid asset, but the transaction cost makes it desirable to

hold some liquid assets as well and, in some circumstances, let the �rm fold rather

than incur another transaction cost.

A related interpretation is a start-up operating with the money of the owner-

manager, who can sell the company to new owners at a transaction cost. Now the

15The parameter values are 
 = � = 0:005 in the case of "low" and 
 = � = 0:1 in the case of

"high" costs. For more cases see the working paper version of this paper.
16Transaction costs are prohibitively high when maxs fV (0; s)� (1 + 
) s� �g � 0.
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owner operates the �rm until either hitting the exit threshold ~s (x) (at which point the

�rm exits and the owner keeps the remaining cash), or running down the cash reserves

(at which point the �rm is sold to new owners). In this setup, an alternative formu-

lation would be to assume that the �rm is initially owned by a liquidity constrained

manager, but the �rm can be sold to �nancially unconstrained owners. This would

change the problem slightly: instead of jumping up in state space to point fx; s+ (x)g,
the �rm would become permanently unconstrained upon hitting fs = 0; x 2 [x+min; 0]g.
In that case its continuation value would be given by the unconstrained value function

(5), and the point x+min would be determined as the unique point along x-axis where

this value equals the transaction cost. The qualitative nature of the problem would

be otherwise unchanged.

A broad interpretation of the extended model analyzed in this section is a �rm that

can raise new equity at a transaction cost. This interpretation is similar to Décamps

et al (2011) who analalyze the case of non-persistent cash �ow risk. Assuming that

there is a �xed cost associated with raising equity, the �rm delays the recapitalization

until it has used up its liquid assets. Then, upon hitting fs = 0; x 2 [x+min; 0]g, it will
raise new equity in order to increase its cash balance to level s+ (x) that equalizes

the marginal value of internal cash with the marginal cost of raising equity. The

new owners supply the �rm with cash and are compensation with an equally valuable

stake in the �rm.

[ Figure 4 here ]

Figure 4. Optimal policy when cash can be raised at a transaction cost.

Left panel: Schematic view. Amount s+ (x) of new cash is raised when s = 0 and

x 2 [x+min; c]. Right panel: Case with low transaction costs is depicted in red, case with
high transaction costs in blue, and case without the possibility to raise new cash (i.e., the

basic model) in black.

6 Industry Equilibrium

We saw in Section 2 how a liquidity constraint causes �rms to exit at higher levels

of current revenue compared to unconstrained �rms. It might therefore seem obvious

that, at the level of an entire industry, the liquidity constraint would cause there

to be fewer but on average more productive �rms. However, as we next show, this
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�rm-level reasoning is misleading, because it does not take into account the impact

that the liquidity constraint has on output price in competitive equilibrium.

In order to analyze the impact of the liquidity constraint on a competitive industry,

we use the de�nition of industry equilibrium similar to Hopenhayn (1992) and Dixit

and Pindyck (1994, Ch 8.4).17 There is a continuum of �rms. We assume that for

each �rm the revenue x depends on �rm-speci�c output or �productivity�z and an

endogenous industry-speci�c output price p, so that

xt = pzt: (30)

We assume that productivity z follows geometric Brownian motion

dzt = �zt dt+ �ztdwt; (31)

with the shocks dwt independent across �rms. New �rms of known productivity z0 can

be established by paying an entry cost �. In the constrained case new �rms enter with

initial cash holdings s0, which we treat as a parameter of the problem. To guarantee

the existence of steady state, we assume an exogenous �death rate�� > � at which

�rms are forced to exit with their cash holdings as the exit value (see the Appendix

B for details).18 In steady state, both the dying and the endogenously exiting �rms

must be balanced by an equal in�ow of new �rms of type fz0; s0g.
The industry faces a demand curve D(p) for its output. We assume that the

demand curve is everywhere strictly downward sloping. The equilibrating variables

are price of output p and mass of �rms m. Firms are atomistic, so there is no

aggregate uncertainty in steady state. As p is constant, the revenue of individual

�rms (30) follows the same process (1) that we assumed earlier in Section 2. All �rms

follow the same optimal policy, which in turn results in a stationary distribution of

z. In steady state, m and p must satisfy market clearing

D (p) = m�z (p) , (32)

17Liquidity constraints are introduced to a similar steady-state setting by Gomes (2001) to study

the relation of cash �ow and investment, and by Cooley and Quadrini (2001) to study the age-

conditional relation of growth and �rm size. Jones (2003) averages over simulated time series of

individual �rms to study the impact of liquidity constraints on the propagation of aggregate shocks.
18The risk of exogenous exit changes the �rm�s optimal policy slightly compared to Section 2: the

�rms discount the future at rate �+� instead of � and the Bellman equation of the constrained �rm

includes a term �s on the right hand side of (11).
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where �z denotes the cross-sectional average output of �rms in steady state (�z depends

on p because the exit policy in terms of z depends on p). Entry is endogenous, so

equilibrium must also satisfy the zero-pro�t condition for entering �rms

V (pz0; s0) = �+ s0. (33)

Equilibrium price is fully determined by the entry condition (33): p must adjust

to eliminate expected rents to entrants. (If entry were pro�table then more �rms

would enter and m would increase, and if entry resulted in expected loss then no

one would enter and m would decrease.) Since the value function V is increasing in

revenue, p is uniquely determined by (33); V is obtained numerically as described in

the previous section. In the unconstrained case the entry condition (33) is replaced

by V � (pz0) = �, where V � has the closed form seen in (5).

For any p, the mass of �rms is determined from (33) as m = D(p)=�z (p). The

role of m is merely to close the model. We are not interested in the number of �rms

but rather on the cross-sectional distribution of productivity, which is independent

of m and of the shape of the demand curve because the model has, at industry-level,

constant returns to scale.19 Thus m and D will not feature in our analysis.20

Note that, due to perfect competition, the only component of welfare that can be

a¤ected by the liquidity constraint is consumer surplus, which varies in the opposite

direction as p. Maximum welfare is, of course, attained in the unconstrained case, so

the liquidity constraint can only increase p. In real terms, there are potentially three

di¤erent components to the distortion: higher aggregate entry cost (due to higher

turnover), lower average productivity, and higher liquidity costs. As it turns out,

turnover and productivity can move to either direction.

To understand why the impact of the liquidity constraint on mean productivity is

ambiguous, consider, for simplicity, a world where entering �rms have no cash holdings

(s0 = 0). The position of �rms in (z; s)-space is illustrated in Figure 5. Entry level z0
is at the point to the right of the zero-pro�t level (z = c=p) where the continuation

value matches the entry cost. As price is distorted upwards, the lowest type to

ever continue (zmin) is below the unconstrained exit threshold (z�), even though the

associated revenue level is higher (Recall xmin > x� in Figure 1). The price distortion

19Doubling of entry �ow will double the steady state industry output.
20For a more detailed exposition of this industry equilibrium concept, see Miao (2005), who studies

capital structure (in the absence of liquidity constraints).
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makes it optimal for �rms with su¢ cient cash reserves to continue at productivity

levels that would trigger exit in the unconstrained world. The light shaded region

(ine¢ cient survival) covers �rms that would exit in the unconstrained solution but

stay in under the liquidity constraint. The dark region (ine¢ cient exit) covers �rms

that are more productive than the unconstrained exit threshold z� but exit due to

the liquidity constraint. Whether mean productivity is increased or decreased by a

liquidity constraint depends on which of these two e¤ects dominates.21

[ Figure 5 here ]

Figure 5. Liquidity constraint and average productivity in industry equilibrium.

Numerical Results To analyze the e¤ect of the liquidity constraint on market

equilibrium, we calculated the steady state �rm distributions for a wide range of

combinations of entry cost � and starting cash s0. For the unconstrained case those

distributions can be calculated analytically, but for the constrained case we �rst have

to solve numerically the optimal �rm policy (as explained in Section 3.1). The steady

state distribution is then obtained by iterating the �rm distribution according to this

policy until the distribution converges (see the Appendix B for more details). Once

the �rm distributions are calculated, various statistics are readily computed.

Selected steady state outcomes are reported in Figure 6. Each outcome is reported

for those combinations of entry cost � and starting cash s0 that result in �rms entering

inside the continuation region. Other parameters are held at the baseline levels used

in Section 3.1.22 The assumption that transaction costs are prohibitively high is made

in order to obtain a clear contrast between the constrained and unconstrained cases:

Varying 
 and � between zero and prohibitive levels covers the entire ground between

the two cases in a continuous manner, as seen in Section 5. Blank regions correspond

to s0 so high that entering �rms would be in the dividend region; the outcomes for

points in the blank region are thus exactly the same as in the highest colored point

21If s0 is su¢ ciently high and � not too high then z0 2 (z�; c=p) and the picture is more compli-
cated, as some of ine¢ ciently exiting �rms are replaced by less productive �rms.
22Baseline parameters are � = 0, � = 0:25, � = 0:1, r = 0:05, � = 0:1, c = 1; z0 = 1. Note that

z0 = 1 merely normalizes the units of output. The combinations f
; �g that result in prohibitive
costs can be obtained by solving �(
) implicitly the equality in footnote 16. For example, 
 = 0:15,

� = 0:25 results (just barely) in prohibitive costs.
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directly below. Values of � that are outside the �gures result in such high p that, in

terms of Figure 1, the position of entrants is to the right of xmax.

The top panels of Figure 6 show the output price and mean productivity of �rms;

the middle panels show the same values relative to the unconstrained benchmark.

The liquidity constraint is harsher when s0 is small, so the relative distortion is

always decreasing in s0 as the constraint becomes milder. However, there is a subtle

interaction with the entry cost �. If � is small then p is low and the pro�t level of

entering �rms is low or even negative, so newborn �rms enter near the exit boundary

and immediately face an acute threat of exit. By contrast, when � is high then

entrants must have a large safety margin in terms of initial revenue making any

liquidity constraint less important. The relative impact of the constraint is highest

when both s0 and � are low: the constraint is harsh and the safety margin low. At

high values of � the level contours are almost vertical, re�ecting the safety margin

e¤ect that reduces the impact of the liquidity constraint.

[ Figure 6 here ]

Figure 6. Impact of liquidity constraint on industry equilibrium.

Mean productivity is shown in the top right panels of Figure 6. The liquidity

constraint has a negative impact on mean productivity at low levels of �. Thus we

�nd a case of �survival of the fattest�when the entry cost is su¢ ciently low, with a

magnitude of up to a 15% decrease in mean productivity. At higher levels of � the

impact is positive but eventually the impact of the constraint is attenuated as the

safety margin e¤ect becomes overwhelming. Output is increasing in s0 at low levels

of � and decreasing at high levels of �. This means that, regardless of its sign, the

magnitude of the output distortion generally gets smaller as the liquidity constraint

gets milder.

Average cash holdings are depicted in the bottom-left panel of Figure 6. An

increase in initial cash holdings naturally tends to increase the mean cash holdings

of all �rms in steady state, but, surprisingly, not always. When both � and s0 are

low then an increase in s0 decreases average cash holdings. This is possible because

entering �rms have a narrow safety margin. When entrants�pro�t level is negative

then young �rms tend to have cash holdings further below s0. The decrease in p

caused by higher s0 further reduces the cash holdings of young �rms, which have a

high steady state population share precisely because many �rms exit soon after entry.
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For simplicity, we have treated initial cash holdings s0 as a parameter, but our

setup allows it to be endogenized as the entering �rms� optimal response to the

transaction cost parameters. The lower-right panel of Figure 6 maps the implicit

marginal transaction cost 
0 that would result in the given s0 being the optimal

choice of the entering �rms, assuming that entering �rms can choose any s0 � 0 at

a cost (1 + 
0)s0, while the cost of raising more cash post-entry is still prohibitive.

The dark shaded region covers the points that do not arise endogenously under any

f
0; �g.
The cross section of �rms in our setup bears a resemblance to that in Gomes

(2001), who analyzes industry equilibrium with a model where �rms face a mean

reverting productivity process and a cost of raising external funds. In his model �rms

are not able to hold cash, but use an excessive stock of physical capital in e¤ect as a

form of precautionary savings, in order to reduce the need for external �nance in the

future. Gomes shows that the nonlinearity of the optimal investment rule generates a

spurious correlation between investment and cash �ow, irrespective of whether there

are liquidity constraints. In our model cash holdings have a purely precautionary

motive while physical capital is �xed (and sunk). Now suppose that the observed

value of capital includes assets that are held for precautionary reasons. It is clear

from our results that the contribution of the precautionary motive to the relation of

cash �ow and accumulation of capital is then necessarily non-monotone. To see this,

recall Figure 1. Firms with lowest x are spending their reserves on covering losses

(and thus have E[dSjx] < 0), �rms with intermediate x are on average accumulating
cash (E[dSjx] > 0), while at x > xmax no cash is held and dS = 0.23 Gomes�

point is that the power of a cash �ow variable in classic investment regressions arises

spuriously when the data is generated in a structural model. Our model implies that,

if the capital stock includes assets held for precautionary reasons, then the relation

between "investment" and cash �ow is nonlinear (indeed non-monotone) even if the

relation of physical investment and cash �ow were linear (as it is in our model).

23The same non-monotonicity applies to E[dSjV ] because the contour lines of V are downward-

sloping in (x; s)-space.
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7 Conclusion

We have analyzed the problem of a liquidity constrained �rm that faces persistent cash

�ow uncertainty. The �rm may be forced to exit due to inability to absorb a negative

cash �ow, even when the possibility to rebound into pro�ts conveys option value that

would make continuation (socially) optimal. To prevent such ine¢ cient exit, the �rm

engages in precautionary saving out of retained earnings, and to preempt it the �rm

will exit before actually running out of cash. Our main contribution is to show how

pro�tability and liquidity jointly in�uence the �rm�s exit and payout policies. We

have also analyzed extensions to the model and showed that our �ndings are not an

artifact of ignoring debt or equity �nancing.

The obvious selection e¤ect of pre-entry liquidity constraints is to increase the av-

erage productivity of �rms in market equilibrium, because the standard for pro�table

entry is set too high. Similarly, for a �xed output price, the post-entry liquidity con-

straint would seem to distort the average productivity upwards, by weeding out �rms

with upside potential that are currently unproductive. We showed that, taking into

account endogenous entry and exit, post-entry liquidity constraints lead also to an

opposite phenomenon where unproductive �rms that have a lot of cash (from earlier

success) do not exit soon enough and end up reducing the average productivity below

the e¢ cient benchmark level. Our steady state calculations showed that the negative

e¤ect dominates when entry costs are su¢ ciently low.
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Appendix A: Proof of Proposition 1

Preliminaries. We begin by three lemmas that collect together the key properties
of V (x; s) utilized in the proof. The �rst one merely records properties of V (x; s)

that are discussed in more detail in Section 2.2 of the main text:

Lemma 1 V (x; s) is continuous and increasing in both arguments, and V (x; s) � s
for all (x; s). Depending on the optimal policy at (x; s):

� If it is optimal to exit, then V (x; s) = s.

� If it is optimal to continue without paying dividends, then V (x; s) > s, Vs (x; s) >
1, and the following partial di¤erential equation holds locally at (x; s):

�V (x; s) = (x� c+ rs)Vs (x; s) + �xVx (x; s) +
�2

2
x2Vxx (x; s) : (34)

� If it is optimal to pay dividends and continue thereafter, then V (x; s) > s and
Vs (x; s) = 1 .

Proof. Choosing dividend dDt = st and exiting immediately thereafter is a feasible

policy at every point in state space and gives value st. It follows immediately that

V (x; s) � s for all (x; s). In particular V (x; s) = s whenever it is optimal to exit

and V (x; s) > s whenever it is strictly optimal to continue. The application of

Bellman�s principle and Ito�s lemma imply that if it is optimal to continue without

paying dividends, then the value function must satisfy the Hamilton-Jacobi-Bellman

equation (34) locally at (x; s), and Vs (x; s) > 1 (see Section 2.2 in the main text).

Finally, if it is optimal to pay a positive dividend dD > 0 and continue thereafter, the

principle of dynamic programming gives V (x; s) = dD+V (x; s� dD), which implies
that Vs (x; s0) = 1 for all s0 2 [s� dD; s]. Continuity and monotonicity of V (x; s)
follow from the properties of state transition dynamics and monotonicity of cash �ow

with respect to x.

Lemma 2 establishes lower and upper bounds for V (x; s):

Lemma 2 For all (x; s), we have

V (x) + s � V (x; s) � V � (x) + s; (35)
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where

V (x) =

( �
c
�
� c

���

� �
x
c

��
+ x

��� �
c
�
for x > c

0 for x � c
; (36)

and where V � (x) is given by (5) and � is given by (4) in the main text.

Proof. Consider the following policy: pay out immediately any positive cash reserves,
and thereafter keep cash holdings at st = 0 by immediately paying out any incoming

cash. This leads to forced exit as soon as xt � c. The unique value function that

satis�es the appropriate di¤erential equation (equation (2) in the main text) together

with the boundary condition V (c) = 0 is given by (36). Since this policy is feasible, it

gives a lower bound for the value of the optimally managed �rm. On the other hand,

the net value of a �rm that faces no liquidity constraint is V � (x), and this must be

an upper bound for the liquidity constrained �rm.

Finally, Lemma 3 states that a �rm that is at the edge of being pro�table (xt = c)

is more valuable to its owners than its cash holdings. This lemma guarantees that

positive cash holdings are optimal at least under some conditions:

Lemma 3 V (c; s) > s for all s > 0.

Proof. The key to this result is the kink in the value function V (x) at x = c.

Take an arbitrary s > 0, and let xt = c, st = s. Take a sequence f�ng1n=1 such
that limn!1�n = 0 and �n > 0 for each n. Denote by Vn the expected payo¤ of a

feasible (but suboptimal) policy, according to which the �rm continues without paying

dividends for a period of length �n, and thereafter pays out all incoming cash:24

Vn = e
���nE (V (xt+�n) + st+�n) .

Since xt is a geometric Brownian motion, we have:

xt+�n � xt
xt

� N
�
�xt�n; �

2�n

�
.

Standard properties of Normal distribution imply:

E
����xt+�n � xtxt

� �xt�n

���� =
r
2

�
�
p
�n.

24Note that st > 0 and xt � c = 0, so that the �rm is not under threat of immediate forced exit.

Therefore, as we consider short intervals �n, we can safely ignore the possibility that st0 = 0 for

some t0 2 [0;�n].
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Since Normal distribution is symmetric around its mean, we have

E
�
max

�
0;
xt+�n � xt

xt
� �xt�n

��
=
1

2
E
����xt+�n � xtxt

� �xt�n

���� = �
r
�n

2�
,

so that

E [max (0; xt+�n � xt)] =
�xtp
2�

p
�n + o (�n) ;

where o (�n) denotes terms that go to zero at least linearly in �n. Denoting by � the

derivative from right of V (x) at the kink:

� := lim
x#c
V (x) > 0,

and noting that

Est+�n = st + E
Z t+�n

t0=t

(xt0 � c+ rst0) dt0 = st + o (�n) ;

we have

Vn = e���nE (V (xt+�n) + st+�n)

= e���n
�
max

�
0; �

�xtp
2�

p
�n

�
+ st + o (�n)

�
= �

�xtp
2�

p
�n + st + o (�n) .

Therefore, for n large enough, Vn > st. But since the optimal policy is at least weakly

better than this strategy, we have V (c; st) � Vn for any n, and it follows that

V (c; st) > st.

Proof of Proposition 1
Part 1: We want to show that there is some x0 > x� such that stopping is optimal

for all x � x0, s � 0. Suppose the contrary. Then we can �nd a sequence fxn; sng1n=1
with xn > x� for all n, limn!1 sn = s > 0 and limn!1 xn = x

�, such that all points

(xn; sn) are within the continuation region so that (34) holds by Lemma 1.25 Since

V � (x�) = 0, it follows from Lemma 2 that V (x�; s) = s for all s. Therefore

V (xn; sn) ! sn and

Vs (xn; sn) ! 1

25Part 2 of the Proposition, which we will prove shortly, states that it is optimal to exit whenever

s is small enough for all x < c, and therefore we can assume a limit point s > 0 for sn.
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as n ! 1. By the smooth-pasting condition of the unconstrained �rm, we have
V �x (x

�) = 0, and therefore we must have

Vx (xn; sn)! 0.

(Otherwise we would have either V (xn; sn) < sn or V (xn; sn) > V � (xn) + sn for n

large enough, hence violating Lemma 2.)

Since (34) must hold at all points in the sequence fxn; sng1n=1, we have:

�2

2
x2nVxx (xn; sn)! (�� r) s+ c� x�.

On the other hand, from the corresponding Hamilton-Jacobi-Bellman equation of the

unconstrained �rm (equation (2) in the main paper) we have

�2

2
x2V �xx (x

�) = c� x� < (�� r) s+ c� x�,

and therefore

lim
n!1

Vxx (xn; sn) > V
�
xx (x

�) .

But since V (xn; sn) ! V � (x�) + sn and Vx (xn; sn) ! V �x (x
�), this implies that

V (xn; sn) > V
� (xn) + sn for n large enough. This is a contradiction with Lemma 2.

We can conclude that V (x; s) = s for all s for some x > x�. We let

xmin := sup fx jV (x; s) = s for all s � 0g . (37)

Part 2: By Lemma 3, we have V (c; s) > s for all s > 0. It follows from continuity
of the value function that V (c� "; st) > st for some " > 0, so that xmin de�ned in
(37) satis�es xmin < c.

Next, we show that for all x 2 (xmin; c), there is some s0 > 0 such that V (x; s) = s
for all s � s0. Suppose, by contrast, that there is some x0 2 (xmin; c) such that

V (x0; s) > s for all s > 0. Since V (x; s) is increasing in x, this implies that V (x; s) >

s for all x 2 (x0; c), s > 0. Therefore, there is a continuation region that reaches all
the way down to s = 0 for the interval (x0; c), and by Lemma 1, (34) must hold for all

s su¢ ciently small. However, since a cashless �rm is forced to exit at s = 0 for x < c,

the boundary condition V (x; 0) = 0 must hold for the whole interval, and therefore

also Vx (x; 0) = Vxx (x; 0) = 0 for all x 2 (x0; c). Substituting these into (34) yields
Vs (x; 0) = 0 for x 2 (x0; c). But since V (x; s) � s for all (x; s) by Lemma 1, this is
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a contradiction. It follows that V (x; s) = s for all x 2 (xmin; c) and for all s � s0 for
some s0 > 0. De�ne for all x 2 (xmin; c):

es (x) := max fs jV (x; s) = sg .
It remains to show that es (xt) is decreasing in xt and limxt!c es (xt) = 0. The former

property follows from the monotonicity of V (x; s) in x: suppose on the contrary thates (x00) > es (x0) for some x00 > x0. But then, V (x0; es (x00)) > s = V (x00; es (x00)) which
violates the property that V (x; s) is increasing in x. The latter property follows from

the continuity of V (x; s): suppose that there is some s0 > 0 such that es (x) > s0

for all x in some open neighbourhood of c. But this means that V (x; s) = s for all

0 < s < s0 when x is arbitrarily close to c, and this is in contradiction with continuity

of V (x; s) and our previous �nding that V (c; s) > s for all s > 0.

Part 3: One available (non-optimal) policy is to pay-out all incoming cash and
keep cash balance at st = 0. When x > c, this policy gives value V (x) + s > s, so it

cannot be optimal to exit.

Part 4: Fix s > 0, and suppose that it is not optimal to pay dividends even

at high values of x so that (34) holds for all x. Let x ! 1. From equation (5) in

the main text and (36), V � (x) � V (x) ! 0, and therefore it follows from Lemma 2

that V (x; s) ! V � (x) + s. This means that Vs (x; s) ! 1, Vx (x; s) ! V �x (x), and

Vxx (x; s)! V �xx (x), so that

�V (x; s)� �xVx (x; s)�
�2

2
x2Vxx (x; s)! � (V � (x) + s)� �xV �x (x)�

�2

2
x2V �xx (x) .

But then, combining (34) and equation (2) in the main text,

rs! �s;

which is a contradiction because we have � > r and s > 0. It follows that the

continuation region must be bounded from the right: it is optimal to pay dividends

for high enough x. We let

xmax := inf fx > c jV (x; s) = V (x; 0) + s for all s � 0g :

Finally, �x x > xmin and suppose that it is not optimal to pay dividends even at

high values of s. But then, as s!1, it follows from (34) that

�xVx (x; s) +
�2

2
x2Vxx (x; s)!1:
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But this is in contradiction with (35) holding for all x and s, and the fact that V �x (x),

V �xx (x), V x (x), and V xx (x) are all bounded and independent of s. We can therefore

conclude that the continuation region must be bounded from above: it is optimal to

pay dividends for high enough s. We let

smax := inf fs > 0 jV (x; s0) = V (x; s) + s0 � s for all x and for all s0 � sg :

Appendix B: Stationary distributions

Unconstrained Case

In the unconstrained case, the steady-state �rm distribution and its properties re-

ported in Section 6 can be derived analytically as follows. Denote y � log z. The exit
threshold is y� = log z� and new �rms are born at y0 > y�. Taking a discrete time

approximation, y follows the binomial process:

y (t+�) =

(
y (t) + �y with probability q

y (t)��y with probability 1� q

where � is the length of a period, q = 1
2

�
1 + ���2=2

�

p
�
�
, and �y = �

p
�. The

steady state condition gives a di¤erence equation for the mass of �rms located at an

arbitrary state point y,

(1� ��) [qf (y ��y) + (1� q) f (y +�y)]�y + g (y)�y = f (y)�y,

where f (y)�y is the mass of all �rms and g (y)�y is the mass of newborn �rms

at state point y. Taking the limit � ! 0 leads to a di¤erential equation for the

stationary �rm density:26

1

2
�2f 00 (y)�

�
�� (1=2)�2

�
f 0 (y)� �f (y) + g (y) = 0, (38)

with f (y�) = 0 and limy!1 f (y) = 0 as boundary conditions. In our setup g (y) is

positive at y0 and zero elsewhere. The point y0 splices the di¤erential equation into

two regions, with the f (y0) = f0 as a boundary condition in the middle. (f is �nite

but not di¤erentiable at y0). The value of f0 can be solved from the condition that

26See Dixit and Pindyck (1993), chapter 8, section 4.c for more details.
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total probability density integrates to one. Combining the boundary conditions with

(38) yields the closed-form solution:

f (y) =

8>>>>>><>>>>>>:

0 y � y�

f0e
� (�+�)(y�y0)

2�2

 
e
�y

�2 �e
�y�
�2

!
 
e
�y0
�2 �e

�y�
�2

! y� < y � y0

f0e
� (�+�)(y�y0)

2�2 y0 < y

(39)

where � � �2 � 2�; � =
p
8��2 + �2, and

f0 =
2�

�

�
e
�y

�2 � e
�y�
�2

�
�
e
�y0
�2 � e�

(���)y�+(�+�)y0
2�2

� : (40)

There is no economically sensible steady state unless z = ey has a �nite mean.

Here
R1
y0
eyf (y) dy <1 is a necessary and a su¢ cient condition for the �nite mean.

Taking out the terms that are independent of y in (39), the �nite mean requirement

becomes Z 1

y0

ey�
(�+�)y

2�2 dy <1. (41)

This holds if 2�2 � � � � < 0, which simpli�es to � > �.

Constrained Case

The stationarity proof in the unconstrained case is su¢ cient for the stationarity of

the distribution of z in the constrained process. As s is endogenously bounded by the

optimal dividend policy and, �rm by �rm, depends deterministically on the history

of z, the fact that z has a stationary distribution su¢ ces for the stationarity of the

joint distribution (z; s). However, now the optimal policy has no closed-form solution

so the steady state distribution must be computed numerically. In the discrete time

approximation the life span of each individual �rm is a Markov chain in the discretized

state space. Therefore, the steady state distribution is obtained by �rst computing

the optimal policy of an individual �rm, and then, starting from some initial �rm

distribution, iterating the �rm distribution according to the state transition equations

associated with the policy (where a constant mass of new �rms are established at the

birth point within each iteration) until the �rm distribution converges to the steady

state.
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Figure 6. Impact of liquidity constraint on industry equilibrium.
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