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Abstract 

We analyze the optimal deposit insurance scheme that can prevent a liquidity run. We obtain a 

simple characterization of the optimal scheme. Based on this characterization, we examine how 

the insurance depends on the size of the investment. When comparing agents who are partially 

insured we show that on a per-dollar basis a larger investor should receive better insurance. 

However, the relation between size of investment and level of insurance need not be monotone as 

the largest investor is never fully insured.  

  

I. Introduction 

The recent financial crisis highlighted the role of a liquidity run. As with most financial crises, a 

major factor was the lack of coordination that led investors to early demand for fear that others 

would do the same. However, early demand itself can, and often does, cause banks to become 

insolvent in a sort of self-fulfilling prophecy. What perhaps distinguishes the recent crisis is the 

fact that this phenomenon was not restricted to commercial banks and retail investors but 

occurred in the interdealer market among agents such as Lehman Brothers and J. P. Morgan (see 

for example Krishnamurthy, Nagel and Orlov 2011, and Gorton Metrick 2011). Hence, while 

traditionally this is known as a bank run, it might be more appropriate to use a more general term 

such as liquidity run.
 2

 

 

One can think of different ways to avoid such a run. The simplest one is to avoid it ex ante by not 

using a contract such as term deposits that can be withdrawn on demand. A bank may also 

temporarily suspend withdrawals; this is often referred to as “suspension of convertibility.” The 

bank can also try to coordinate a joint agreement with all of stakeholders. However, temporary 

suspension is in many cases infeasible and there might be good reasons why a bank has signed a 

contract that is equivalent to a short-term loan. After all, one of its roles is to convert illiquid 

assets into liquid ones. Finally, coordinating among investors is also in many cases infeasible or 

unlikely.  

 

As a result, a bank may reach a point where there is a significant risk of a run. At this point the 

only way to avoid a run is to rely on external assets and offer some form of deposit insurance 
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‘bank’ and ‘depositors’. 



with which an investor is insured that even if all other agents run he will still be entitled to some 

assets. This can be implemented through collateral using external funds or in other ways that 

protect an agent in case of a run. Providing full insurance to all agents would clearly eliminate 

the possibility of a run. However, in reality insurance is costly as the bank owns only a finite 

amount of resources and almost no bank is able to insure all its creditors. Fortunately, full 

insurance to all agents may not be necessary. An agent may decide to stay even if he is not fully 

insured. An agent could stay based on him knowing that other agents are sufficiently insured and 

hence will not run. In this paper we analyze the size of the required insurance scheme and how to 

design it in the most efficient way. In particular, how does the optimal allocation depend on 

investors’ size; should a large investor receive more protection on a per-dollar basis? Should the 

largest investor receive the best coverage or in contrast the optimal coverage is decreasing in 

size? 

 

Similar to Segal (2003) and Winter (2004), we obtain a simple characterization of the optimal 

scheme. It can be described through an inductive procedure. At the k th  step, we set the 

insurance needed for the k th  agent as the level of insurance that will make him stay, assuming 

that the first 1k  agents stay but all other agents run. This implies that optimal scheme 

discriminates agents even if ex-ante they are all identical.  

 

We focus our attention to the more interesting case where agents are heterogeneous in size. In 

this case, the solution of the optimal scheme amounts to finding the optimal permutation in the 

above procedure.  We show that on a per-dollar basis coverage is decreasing as in earlier steps 

we offer better coverage.  Hence, the dependence of the optimal permutation on size implies who 

should get better coverage.  We also prove that on a per-dollar basis, the insurance for an agent 

with $x  is the same as the insurance needed for his marginal dollar assuming that the first 

( 1)$ x  are not demanded. This results in significant cost saving when we insure a larger 

investor. Intuitively this is because a large investor internalizes a larger fraction of the liquidation 

costs that follow from mis-coordination among investors. 

 

Based on these two results we describe the relation between the size of the investment and the 

level of coverage. We find that in general a larger investor should receive better insurance on a 



per-dollar basis. Nevertheless, this relation can be non-monotone as the largest investor never 

receives full coverage while smaller investors may. The reason why the larger investor should 

receive better insurance is based on the observation that on a per-dollar basis it is cheaper to 

insure the larger investor. The question is, what position do we choose for a large investor so as 

to best utilize the positive externalities he induces in others? If we place him late in the order, 

then he will receive low coverage but his positive externality on others will be less effective as it 

affects only his successors. On the other hand, if we need to fully insure at least one agent, we 

will not choose the largest investor to be fully insured. We would be better off positioning him at 

the stage where the insurance starts declining so as to maximize the advantage of his size. 

 

For a concrete example of the second effect, suppose there are two agents who invested a total of 

3$  at some prior date: A  who invested 1$  and B  who invested 2$  The investment will pay a 

gross return of 1 5  with certainty but each agent can demand his investment immediately. 

Further assume that liquidity costs are high enough so that if only one agent stays (A  or )B  

then the bank will need to liquidate all its assets.
3
 An agent will choose to stay only if he 

believes that the other agent will. So we will need to secure exactly one of the two agents; the 

question is which agent should it be? Clearly, the answer is that we should secure the smaller 

investor, A , as we need to guarantee a future payment of 1$ . 

 

The rest of the paper is organized as follows. Section II describes the basic model. In Section III 

we characterize the optimal insurance scheme and present the main results of this paper. Section 

IV extends the results to the case where agents are hit by random liquidity shocks so that an 

agent may run even if he is fully insured. Most proofs appear in the Appendix. 
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 When there are more than two agents we need to assume that if n-1 agents run that results in complete liquidation, 

which is a weak condition.  

 



A. Relation to Prior Literature  

Following Diamond and Dybvig (1983) there is an extensive literature on bank runs.  Some have 

took an approach similar to mechanism design and asked whether one can design contracts so as 

to avoid a run.
4
 

 

While the focus of most of these papers has been on the ex-ante stage, we perform calculations at 

the interim stage. Specifically, suppose there are three dates t=0,1,2. At t=0 contracts are signed, 

at t=2 payoffs of long-term assets are realized, and at t=1 investors have the right to withdraw 

their deposits. Prior research asked questions from an ex-ante perspective, i.e., t=0. For example, 

some models solve for the best mechanism or contract, given agents who may have random 

liquidity needs at t=1. One of the key issues is whether we can avoid a run with the optimal 

contract. 

 

Instead, we focus on t=1 and start with a situation where there exists an equilibrium in which 

there is a run on the bank. This is perhaps because an inefficient contract was signed at t=0, 

which we could not have avoided. Alternatively, it may arise from the fact that agents were 

optimistic about avoiding the mis-coordination problem when they acted at t=0, but at t=1 they 

were not so optimistic anymore (perhaps because they witnessed a bank run between the two 

periods). We ask how a run may still be avoided if we use other assets to insure some investors. 

 

 

The special feature of the optimal collateral scheme we present here, by which a favorable 

contract that locks one agent in allows the principal to offer less attractive contracts to others, is 

related to the “divide and conquer” strategy that has been discussed in the contracting literature. 

An upstream monopoly can deter the entry of a potential rival by signing exclusionary contracts 

with downstream buyers. The more buyers are signing the more attractive it is for others to sign 

as well (see Segal and Whinston (2000)). It is also related to optimal incentives in teams, where a 

high reward for one agent sufficient enough to induce him to exert effort will increase the 
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incentives of other agents to do the same (See Winter (2004)). Finally, it is related to the 

argument about introductory prices by a monopolist producing goods with positive consumption 

externalities such as in Bensaid and Lesne (1996) and Cabral, Salant and Woroch (1999) (see 

also Farrell and Saloner (1985) and Katz and Shapiro (1986)). Berenstein and Winter (2011) 

discuss a model of contracting with heterogeneous externalities but they require that externalities 

are bilateral (i.e., for each two players i and j, the externality that i induces on j is independent of 

the actions taken by other players. Clearly, this assumption does not hold in our framework as 

the gains that agent i acquires from the fact that agent j is not running strongly depends on who 

are the other people that run. 

  

Segal (2003) introduced a general model of trade contracts when the principal’s trade with one 

agent generates externalities on other and has shown that with increasing externalities the 

principal gains by using a divide and conquer strategy, when he cannot coordinate players to play 

his most preferred equilibrium. Segal’s model fits nicely into a variety of IO applications (like 

takeovers, vertical contracting, exclusive dealing, and network externalities). While Segal 

defines the divide and conquer strategy in a general contracting setup that allows for 

asymmetries, he doesn't solve for the optimal mechanism except for special cases such as the 

symmetric case (although he is able to obtain some comparative static results without deriving 

the optimal mechanism explicitly).  

 

The contribution of the current paper is driven from the specific coordination problem that arises 

in liquidity runs. In our framework the asymmetry across players plays a major role and agents’ 

externalities are multilateral.  The specific payoff structure in our framework of liquidity runs 

requires a separate analysis. This analysis enable us characterize the optimal collateral scheme 

which is our main objective.  

 



II. Setup 

A. Run with No Insurance 

We examine a two-date economy 1 2t , where agents decide whether to demand their money at 

1t  or wait until 2t  There are N  such agents and we let  denote the set of agents. For 

simplicity, we assume that agents are risk-neutral and do not have a time preference, so that they 

maximize: 

 1 2 1 2( ) ( )u c c c E c , 

where 1c  and 2c  denote the consumption at 1 2t  In Section IV, we relax this assumption as in 

Diamond and Dybvig (1983) and allow investors to be subject to random liquidity shocks. An 

agent who is hit with a liquidity shock may demand his money at 1t  even when his investment 

is perfectly insured.  

 

There are two assets in the economy:  a liquid asset and an illiquid one. The illiquid asset is a 

long-term asset that yields a gross return of 1R  at 2t . For simplicity, we assume that it is 

non-random. The illiquidity is represented by liquidation costs of , so 1$  invested in an 

illiquid asset yields only 1  when liquidated at 1t . Alternatively, if we want to obtain 1$  by 

liquidating risky assets then we need to liquidate
 

1
1

$ . The liquid asset yields zero return but has 

no liquidation cost.  

 

Each agent, say i  has invested ix  with the bank, which in turn invested these funds in the 

illiquid asset. The amount ix also equals what an agent has the right to demand. If he demands at 

1t  and the bank is solvent then he receives ix . Following Diamond and Dybvig (1983), we 

assume that if no agent demands at 1t  then he receives iRx  at 2t ; however, this payoff will 

be lower if some agents demand early. We let 
iX x  and refer to the decision to demand at 

1t  as run. We denote by BR  the subset of agents who run and by NR  the set of agents who 

stay; BR NR . Let

 

,BR NR

i i

i BR i NR

X Xx x . Following Diamond and Dybvig (1983), 

we assume that withdrawal tenders are served sequentially in random order until the bank runs 



out of assets.
5
 For an agent who does not run, i NR , we let ( , , )h i NR X denote his payoff given 

the decision of others: 

 ( , , ) max 0 max 0
1 1

BR NR

i i

NR NR

X x X X x
h i NR X { R X } { R X }

X X
 (1.1) 

In the next section when we introduce insurance we will modify this payoff to account for the 

guarantee an agent may receive. Equilibrium is described by the set of agents who do not run, 

NR , where  

( , , ) ii NR h i NR X x  

As a tie-breaking rule we assume that if an agent is indifferent whether to run then he will stay. 

This simplifies the definition of the optimal insurance scheme. 

 

Based on the above functional form, (1.1), we argue that:  

 

LEMMA 1 (i) h satisfies strategic complementarity, i.e., 

( , , ) ( , { }, )h i NR X h i NR j X  

 

(ii) Agents who stay expect the same gross return. For ,i j NR we have: 

 
( , , ) ( , , )

i j

h i NR X h j NR X

x x
 (1.2) 

Based on this we argue that there are only two possible equilibria, one where all agents run and 

the other where they all stay. Since 1R  the first equilibrium always exists but in many cases 

both equilibria exist. We also argue that a necessary and sufficient condition for the existence of  

the equilibrium in which agents run is that the largest investor will run if he believes that all the 

other agents will not stay. 

 

LEMMA 2 (i) No equilibrium exists where only some of the agents stay, i.e., NR , and 

NR . (ii) A necessary and sufficient condition for the existence of an equilibrium where 

agents run is: 
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If the order were deterministic and known to agents, then there would be a unique equilibrium in which agents do not run. This follows from the 

fact that a sub-game perfect equilibrium is generically unique. 



 
max max max( ,{ }, )h i i X x , (1.3) 

where max maxmax{ }, arg max{ }i ix x i x . 

 

Throughout the paper we assume that (1.3) holds. In some cases we will consider a slightly 

stronger condition, namely, 

max({ }, ) 0h i X
 

This implies that if all but one agent decide to run then all assets will be liquidated, which is 

equivalent to  

 
1

iX x
i X  

 

1. Special Case: $1 Investors, ( , )h n X  

Of particular importance is the special case where all investors have 1ix . With some abuse of 

notation we let ( , )h n X  stand for ( , , )h i NR X ,  where exactly n N agents stay and 

1, iX X x . In the figure below we plot this function for the case with N=10 investors, 

1.1R , and 0.2 .  

 

 

More generally, a simple calculation reveals that: 

 LEMMA  3  ( , )h n X  is non-negative, non-decreasing, and concave in n in the interval where it is 

positive. 

100

Number of agents staying

h

Number of agents staying

h



B. An Collateral/Insurance Scheme 

To avoid a run, the bank guarantees future payments to the different investors. A guarantee 

implies that a certain amount is protected even in the case of a run. We denote by 0iy  the 

insurance to agent i  These guarantees can be implemented by posting a collateral with a future 

value of iy  for investor i . The cost of this insurance scheme is an increasing function of 

iY y , so we would like to examine what is the minimal Y  that can insure that there will not 

be an equilibrium where some agents run. We refer to 
iy  as the insurance scheme. We modify 

the definition of ( , , )h i NR X  to account for this insurance and we define i NR as follows: 

 ( , ) min{ , ( , , )}y

i i ih i y X NR Rx y h i NR X  

The above expression represents a liquidation procedure that may depend on the court’s decision. 

Still, our results are robust as long as this function satisfies the properties we describe in the next 

section, most notably “strategic complementarity.” For example, one can replace the above 

expression by  

 ( , ) max{ , ( , , )}y

i ih i y X NR y h i NR X  

 

In summary, the run game is an N-person normal form game, where each player has two 

strategies {stay, run} and the payoff for a player i for a given strategy profile is 
yh if he stays and 

ix if he runs. Similar to the case with no insurance an agent runs when 

( , )y

i ih i y X NR x  

 

Definition We say that aggregate collateral Y with allocation 
j j

j

y y Y  is sufficient to 

prevent a run if it is a unique Nash equilibrium for all players to stay. 

 

Given the above, our research question can be formulated as follows:  

i) What is the minimal level of Y that will prevent a run?  

ii) What should be the allocation, jy ?  



C. Examples 

There are three investors (A, B, and C), each with $1, and so 3X ; we also assume that 1.5R

and 1
3

. As noted earlier, it is equilibrium for all agents to stay but it is also an equilibrium to 

run.  

If two agents run, then the third one will lose his entire asset. Hence, to eliminate the bank run 

equilibrium, there should be at least one agent who is fully insured, 1iy . If contracts have to be 

symmetric then we need to offer full insurance to all agents, i.e., Y=3. Otherwise it is equilibrium 

for all agents to run.  

 

Based on the above we can see that a symmetric scheme is not optimal even when agents are 

identical. If two agents are offered full insurance then the third investor will stay even if he is 

offered no insurance. In this case he is certain that the other two are staying, so he prefers to stay. 

In fact the optimal scheme is simple to compute in this case. To eliminate the bank run 

equilibrium one agent needs to be offered full insurance, 1iy .   

Otherwise, it is equilibrium strategy for all agents to run. Suppose now that one of the two other 

remaining agents runs. In this case we need to liquidate 3/2. This will leave 1.5 invested in the 

illiquid asset, which yields a payoff of 2.25 at t=2.  Hence, even if we offer no insurance to the 

other two agents. 

III. Analysis  

A. Required Insurance  

Consider that i NR  and ( ,0, , )y

ih i NR X x ,  which implies that this agent will run if he does 

not have any coverage. Let ( )iy X NR  denote the unique solution to
 

( , , , )y

i ih i y NR X x ; 

( )iy X NR  is well defined as ( , , , )y

ih i y NR X  is increasing in iy , and corresponds to the 

minimal coverage that will prevent i  from running; we refer to this as the required insurance. If 

( ,0, , )y

ih i NR X x  then we define ( )iy X NR  to be zero.  

 



Similar to the case of no insurance, II.A, also ( , )y

ih i y X NR
 

satisfies strategic 

complementarity. If an agent i stays when j runs then he will prefer to do so also if agent j stays: 

 ( , , , ) ( , , { }, )y y

i ih i y NR X h i y NR j X  (1.4) 

It follows that one needs less insurance if we increase the set of agents who stay:  

 ( ) ( )i iy X NR {j} y X NR  (1.5) 

 

A more interesting property is that on a per-dollar basis, the collateral needed for each agent 

equals the collateral needed for his marginal dollar assuming that he decided to keep his first 

1ix  invested. Formally, suppose that we split agent i  into two agents i  and i"  while keeping 

everything else the same. We divide their holdings to 1 1ii i
x x x  so that  

 1 1( 1 1 )i i ni i
X x x x x x x  

Therefore 

LEMMA  4  1
'( ) ( )

i i ix
y X NR y X NR {i } , 

This property is key to our analysis. It implies that a large investor internalizes a larger part of 

the liquidation cost. On a per-dollar basis the needed collateral is lower by the fact that when 

deciding to keep his last dollar he takes into account the fact that he also keeps the first 1ix  

dollars.  

 

Based on this and (1.5) we argue that if we convince an agent to stay then on a per-dollar basis 

the collateral that is needed to convince the next agent decreases.  

 

 LEMMA  5 1 1( ) ( )
i ji jx x
y X NR y X NR {i}

 

1. Example 

Suppose there are four agents, {a b c d}  where 2 1a b c dx x x x  and 1 5 0 5R and 

assume that NR {b}  so we assume that only agent b  decides to stay  We are interested in the 



collateral that would keep agent a  from running  Note that in this case if a  also stays we have 

1
1

BRXX  . So he will receive 2
1 3

1
BRXR X  Hence, we need a coverage of 1$  or 0 5$  on a 

per-dollar basis. 

  

Now consider the case where we split agent a  into two agents a  and a  where 1
a a

x x  

We compute the coverage needed for a  and a  assuming we treat them separately. We begin 

with agent a  and compute the needed coverage assuming that only agent b  stays. Since 

1
0

BRXX , it follows that to keep him we would need 1$ . Assuming now that both a  and b  

stay, we would only need a coverage of 0 5$  to convince a  to stay. So in the original setup on 

a per-dollar basis the needed collateral for agent a  is the collateral needed for his marginal 

dollar, a .  

2. Required Insurance for $1 investors  

Consider again the special case where all n investors have 1ix . We let *,1( , )y n X denote the 

required optimal collateral scheme that will keep all investors in the bank in any Nash 

equilibrium.  

In the figure below we plot this function for the case when n=10 investors, 1.1R , and 0.2

.  

 

 

figure 1  

1 

y
*,1 

n 



B. The Optimal Scheme in the General Case 

We first argue that the optimal collateral scheme takes a very specific form. One can describe it 

as a sequential algorithm, but it is important to note that the game itself does not follow this 

order. The procedure depends on a permutation  which we take as given. We let ( )Y  be 

defined as follows:  

- (1) ( )Y y X  is the collateral of the first agent that will keep him staying even if all agents 

run.  

- (2) ( (1) )Y y X { }  is the collateral of the second agent that would keep him staying 

assuming that the first agent stays and everybody else runs. 

- (3) ( (1) (2) )Y y X { }  is the collateral of the third agent that would keep him staying 

assuming that the first two agents stay and everybody else runs. 

.....  

 

Let  be the set of n! permutations and denote it by: 

( )argmin j

j

Y  

We argue that:  

 

THEOREM 1: *Y is the optimal insurance scheme. 

Based on Theorem 1 it follows that in optimizing we should optimize over all possible 

permutations. Recall Lemma 3 that implies that the cost of insuring an agent matches the cost of 

insuring the marginal dollar. Based on this we can compare the cost of insuring X ix agents 

each with $1. For example, instead of insuring 5 agents with a total of $100 we look at the case 

of 100 agents each with $1. Lemma 3 implies that the cost of our scheme is given by: 

*,1

( )( , )j ii j i
y x X x  (1.6) 

This can be expressed as the sum of the area in the rectangle in the figure below. In this graph we 

proceed as in the previous example where 1.1R  and 0.2 . There are 4 investors and a total 

of X=10 and so the cost of a given permutation can be computed based on the function 
*,1y  that 

we plotted in figure1.  

 



 
 

 

So finding the right permutation can be described as: 

 
*,1

( )min ( , )j ii j i
y x X x  (1.7) 

Intuitively, we would like to reap the potential cost saving from insuring large investors. As we 

shall discuss in the Appendix, the combinatorial problem in (1.7)  is NP-compete and thus there 

is no simple solution. Nevertheless, we can characterize the optimal solution. 

  

THEOREM 2: Let maxi  be the agent with the largest investment and assume that he is unique so 

that 
max

: i ii x x  . Then in the optimal scheme, *Y , this agent is not fully insured, that is, 

*
max max,i i

x y  . 

 

We next show that among almost all agents who are partially insured agents with higher 

investment are treated better not only in terms of their total collateral but also in terms of their 

collateral pre-dollar of investment. 

  

  

 
 

 

    

 

 

 

 
 

  
 

  
 

  
 

 



THEOREM 3:   Consider the order  according to which an optimal collateral scheme is derived 

(in the inductive algorithm presented in the first part of this section). Consider all agents who are 

not fully insured except the first among them. Then an agent with a higher investment receives 

higher per-dollar collateral.  

  

The preferential treatment of agents with a large investment in the per-dollar collateral they 

receive reflects the fact that these agents are critical in preventing a run that would turn the bank 

insolvent. This also means that investors could be made better off if they pool their investments 

and present themselves as a single investor vis-a-vis the bank. This makes sense as by pooling 

the investments they internalize some of the negative externalities associated with mis-

coordination and eventually an inefficient bank run. However this internalization of the 

externalities plays a role only after the bank managed to "lock in" a sufficiently large group of 

investors so that if all, but one agent outside this group, are running it would still pay off for this 

last player to stay. At an early stage of the algorithm when this condition fails to hold it doesn’t 

matter how large my investment is, I will be treated (on a per-dollar basis) exactly the same as 

someone who is investing one dollar only.  

IV. Random Liquidity Shocks  

An important extension is the case where investors are hit by random liquidity shocks (Diamond 

and Dybvig 1983). This provides a natural motivation for giving agents demand deposits despite 

the fact that the bank invests in illiquid assets where early liquidation is inefficient.  

 

Such shocks pose a challenge to our scheme. An investor who is given high collateral as an 

incentive to stay and thereby convince others to follow suit may nevertheless decide to leave. 

Still, we argue that our scheme can be modified to account for this uncertainty. We refer to an 

agent who decides to demand his money at 1t  but is not hit by a liquidity shock as an agent 

who runs. An agent who demands early only because he is hit with a liquidity shock is 

considered as an agent who does not run. We examine the insurance that is needed to ensure that 

all agents will not run. Our scheme will guarantee that those who are not hit with liquidity shocks 

will stay.  

 



We let j  denote a binary random variable where 1j  in the event that agent j  is hit with a 

liquidity shock and it equals zero otherwise. We assume liquidity shocks are independent and 

that Pr 1j i  The set of agents who actually stay is a random set and can be defined as a 

function of those who do not run and the realized liquidity shocks. 

 ( , ) \{ : 1}iST NR NR i  

Let NRZ  denote the amount of funds that are not demanded; this is a random variable as it 

depends on the realization of the liquidity shocks, (1 )NR

j jj NR
Z x  . With some abuse of 

notation we let , ( )y

ih i y X NR  denote the expected payoff for an agent who stays given the 

decisions of others:  

 
, ( , ) ( ( , ))y y

i iST
h i y X NR E h i y X ST NR , 

 

Note that we assume that agents know the probability that other agents are hit with a liquidity 

shock but are uncertain regarding the actual realization.  If instead we had assumed that the 

realizations of liquidity shocks are common knowledge then we would be back at a similar case 

to what we have examined before. The main difference would be that we will start the process 

with lower future payoffs as a result of the realized liquidity shocks. 

 

A key property that we have used in the case of no random liquidity shocks was the fact that the 

there is a strategic complementarity in the decision to stay.  If one agent decides to stay then it is 

easier for other agents to follow. A similar property holds when we introduce random liquidity 

shocks: 

 

LEMMA 6 , ( , )y

ih i y X NR satisfies strategic complementarity: 

 , ,( , { }) ( , )y y

i ih i y X NR j h i y X NR  

PROOF OF LEMMA 1Based on our analysis in earlier sections we know that for any realization of 

shocks which cause some agents to leave with their investments the payoff function defined on 

the remaining players satisfies strategic complementarity. By Lemma 6 this property applies also 



on the the expected payoff function with respect to the distribution of shocks. An implication of 

the above claim is that the procedure that we described before is still valid.  

 

Based on this we conclude: 

 

THEOREM 4:  (i) The inductive procedure yields the optimal scheme also for the case with 

ransom liquidity shocks, (ii) in the optimal scheme the largest investor is not be fully insured 

 

Proof: Both results rely only on the shape of the functions ( )g NR  and ( )h NR  as specified in the 

proof of these two results. By Lemma 6 above the properties of concavity and convexity of these 

functions are preserved under the random liquidity shocks. Hence, these results still hold true. 

The set of agents who demand at 1t  is the union of agents who run and agents who do not run 

but are hit with liquidity shocks.  

where the expectation is taken with respect to the distribution of liquidity shocks.  

 

 

A more interesting question concerns how the properties of the optimal scheme change as a 

result of this noise. We argue that randomness favors small investors since securing small 

investors becomes even more attractive. Suppose that 0 5  and consider the difference 

between securing an investor who has 10$  and 10  investors who each have 1$ . If it costs us the 

same then the difference results from the reaction of other investors. In both cases we get the 

same expected value of their investment which will not be demanded early, 5$  But in the case 

of a single large investor we have a more variable outcome as it equals 10$  or zero with equal 

probability. How does this affect other agents? For this we need to consider ( )ih i y X NR  

and examine the effect of a more variable outcome. To see this, consider the expression  

 
1

NR

i

NR NR

X Z x b
R X } a

Z Z
, 

where 1
1 1

0 (1 ) 0iRx

ia b Rx X  which is concave in NRZ  
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VII. Appendix  

PROOF OF LEMMA 1 

We argue that  

 
( )

1 1

NRNR
ji i

NR NR

j

X X xX X x x
X X

X X x
 

If we let 1

NRX Xa X  this can be expressed as:  

 

[ ] ( )
1

1

jNR NR

j

jNR

j

x
a X x a X

x
ax X

 

This holds as 1
( )

NR NR NRX Xa X X X X X  and 1
1

1   QED  

PROOF OF LEMMA 2 

 (i) Suppose by contradiction that there exists an equilibrium where agent i stays but j runs. So 

we have 
( , , ) ( , { }, )

1, 1
i j

h i NR X h j NR j X

x x
. Lemma 1 implies that 

( , { }, )
1

i

h i NR j X

x
 but 

then  implies that 
( , { }, )

1
j

h j NR j X

x
, which is a contradiction. 

(ii) We first note that 

 

max 0
1

i
i

X x
{ R X } x  

 

is increasing in ix  so that if 
max max max( ,{ }, )h i i X x  then for all agents ( ,{ }, ) ih i i X x . In this 

case each agent would prefer to run if he believed that the others would do likewise, and hence it 

is equilibrium for all agents to run. Now suppose that 
max max max( ,{ }, )h i i X x , which implies that 

it is a dominant strategy for the largest investor to stay. Hence, based on (i) the only equilibrium 

is for all agents to stay. QED 

 



PROOF OF LEMMA 3 

The claim follows from the fact that the payoff for agent i” with collateral i

i

y

xi
y  is exactly 

1 ix the payoff for agent i who has collateral iy   

 

1
max 0 [min ]

1

1
max 0 [min ]

1

NR

i

NR

i

NR

i
i i NR

i

y X X
{ E {D R X } }

x X

xX X
{ E {x D y R X } }

x X

 

QED  

 

PROOF OF LEMMA 4 

We replace agent i  and j  each with two agents. Agent i is replaced with i i"  and agent j  with 

agents j j"  so that 1
i i

x y  and 1ii
x x  1jj

x x   

 1 1( 1 1 1 1 )i i j ni i j j
X x x x x x x x x x  

 

As we have shown in Lemma 2 the per-dollar collateral for agents i  and j  is equal to that of i"  

and j" . That is,  

 

1
( ) ( )

1
( ) ( )

i i
i

j j
j

y X A y X A {i }
x

y X A {i} y X A {i i j }
x

 

So we need to argue that ( ) ( )
i j

y X A {i } y X A {i i j }  Based on strategic 

complementarity we conclude that the collateral for agent j"  is not higher than that of i" . QED  

 

PROOF OF THEOREM 1 

We consider some collateral scheme *Y  that prevents a run. We first note that there must be an 

agent (call him (1) ) who is offered a collateral sufficiently high as to induce him to stay even if 

he believes that all other agents are running. If in contrast all agents receive coverage lower than 



this threshold then there exists a Nash equilibrium in which all agents run. If (1)  is offered this 

level of collateral, then because of strategic complementarity (1)  has a dominant strategy to 

stay. Now there must be another agent, (2) , who is offered a collateral high enough to make 

him stay even if he believes that all agents but (1)  will run. If no such agent exists then there is 

an equilibrium in which all agents except player (1)  run. Because of strategic complementarity, 

if (1)  stays, then the dominant strategy of (2) is to stay as well. More generally, assume by 

induction that we designated (1) (2) ( 1)j . There must be an agent ( )j  who is offered 

a collateral high enough so that he prefers to stay assuming that (1) (2) ( 1)j  are staying 

and no matter what the rest of the agents are doing. If such an agent does not exist, then there is a 

Nash equilibrium in which (1) (2) ( 1)j  stay and all the rest run. Designating 

(1) (2) ( )n  with the appropriate collateral yields a scheme Y  that admits a unique 

equilibrium in which all agents choose to stay and more over *

( ) ( )iY Y i . The fact that 

( )Y  is the most efficient scheme now follows immediately from the definition of  as the 

permutation that minimizes the total collateral. QED  

 

PROOF OF THEOREM 2 

Let ( )g NR  be the function that specifies the level of collateral that solves ( ) 1y

ih i y X NR , as 

a function of the number of players that stay NR  where yh  stands for the symmetric problems 

with n  investors with one dollar each and 
ii

n x  . Since h  is concave g  is a convex 

function (see figure XX). Consider the inductive algorithim described in the first part of this 

section, and let  be the optimal order according to which the scheme is derived. Let k  denote 

the horizontal section of g  i.e., the number of agents in the symmetric problem that need to be 

fully insured. If 1x k  , agent 1 has a sufficiently large investment so that he need not be fully 

insured and therefore all subsequent players are not fully insured either including the agent with 

the maximal investment. Suppose now that 1x k ; then some agents may be fully insured. Let 

maxi  denote the agent with the largest investment, and assume by way of contradiction that maxi  is 

one of the agents who are fully insured. Let j  be the first player in the order  who is not fully 

insured. Such a player always exists since the last agent in the algorithm is never fully insured as 



he receives zero collateral.  Clearly j  appears after maxi  in the order  because all agents who 

are fully insured appear before all the agents who are partially insured. Consider now an 

alternative order denoted  in which the positions of j  and maxi  are swapped so that now j  

appears before maxi . We first note that the agents who precede maxi  in  are receiving the same 

full collateral in both  and . Likewise, the agents who appear after j  in   receive the same 

(partial) collateral in  and . So it is enough to compare the collateral of those appearing 

between maxi  and j  under the order  (including maxi  and j ) when moving from  to . 

Consider the collateral offered to players between maxi  and j  in the order  By the definition 

of j  these players are all fully insured under the scheme that corresponds to the order , and 

their collateral under  is at most 1. On the other hand the total collateral offered to maxi  and j  

under  is strictly greater than their total collateral under . This is because the per-dollar 

collateral to an agent equals the marginal collateral of his last dollar of investment. Hence if y  is 

the per-dollar collateral of j  in  and z  is the per-dollar collateral of maxi  in  we must have 

z y  Now the total collateral paid to these two players under  is given by 
maxj iyx x  and 

under  it is 
maxi jzx x  , which is smaller since 

maxi jx x . This point is a contradiction to the 

assumption that  is the optimal order and completes the proof. QED  

 

PROOF OF THEOREM 2 

Consider a symmetric problem with n X  agents and with one dollar investment for each agent. 

Let 1 1
1 1

( ) (1 )X NR X
NR NR

h NR R X  be the residual payment for an agent in this 

problem, where NR  is the set of agents who stay. Since  and X   and R  are constants h  is an 

increasing and concave function in NR . Consider again the inductive procedure for deriving the 

optimal collateral scheme as described earlier in this section and let  be the corresponding 

optimal order. The per-dollarcollateral i

i

y

x  offered to an agent in the optimal scheme must satisfy 

( )i

i

y NR

x
h X D  Hence, as a function of NRX  the per-dollar collateral is a declining and convex 

function. We shall denote this function by g  (see figure XX).) Suppose by way of contradiction 

that the statement of the result is false. Then there must exist three agents i , j , and k  such that 



k  is the first agent to receive partial collateral, ( ) ( ) ( ) 1k i j  (i.e., i  and j  adjacent 

and appear after k  in the optimal order of the inductive scheme) and furthermore i  is investing 

x  j   is investing y  and y x . Let x  be the total investment over all agents preceding agent 

i  in the optimal order. We denote this set of agents Q . We know that by iterative elimination of 

dominated strategies all the agents in Q  stay even when N \Q   run. We now argue that by 

reversing the order of i  and j  the bank can save on the collateral while maintaining a unique 

equilibrium in which all players stay. We first recall from the proof of Proposition 1 that 

whenever an agent i  is placed in the order after a set of agents Q  when the total investment for 

the agents in Q  is k , and the investment of i  is ix the optimal per-dollarcollateral for agent i  is 

( )ig x x , which equals the collateral we would have offered to the last among ix x  agents 

each with an investment of $1 only. Hence, in the given order of i  and j  the total collateral for 

i  and j  is given by ( ) ( )xg x x yg x x y  If we reverse the order of the two agents the 

total collateral will be ( ) ( )yg x y xg x y x  Since ( ) ( ) ( )k i j  both points x x  

and x x y  are in a region in which g  is declining and convex. We note that by swapping the 

positions of i  and j  and keeping the rest of the order intact we will not affect the collaterals of 

the rest of the players. Hence we have to show that 

( ) ( ) ( ) ( )yg x y xg x y x xg x x yg x x y which is equivalent to 

( ) ( ) ( ) ( )g x x g x x y g x y g x x y

y x . The nominator of the LHS equals (1)  
1
( ( 1) ( ))x x y

i x x
g i g i , 

where the LHS is 
1

(2) ( ( 1) ( ))x x y

i x y
g i g i  Since y x  the (1)  contains more terms than (2) . 

By the convexity of g  every term in the (1)  which is not in (2)  is smaller than every term in 

(2)  Hence the average of the terms in (1)  is greater than that of (2) , which implies the desired 

inequality.  

 

Suppose now that the bank remains solvent even when all agents but the one with the smallest 

investment runs. Then regardless of the identity of the agent who appears first in the optimal 

order of the collateral scheme this agent is not fully insured. Furthermore, by the arguments 

provided in the first part of the proof all the remaining players receive a per-dollar collateral that 



is less than that of the first agent. Hence all these agents are also not fully insured, which 

establishes the result. QED  

 

PROOF OF ERREUR ! SOURCE DU RENVOI INTROUVABLE. 

 Since both functions are continuously differentiable the integral is identical to the integral of the 

derivative of the integrand. Hence the sign of the second derivative of ( )y x  is positive 

(negative) for every value of , so this must also be the case for ( ( ))E y x  If the random 

variable is discrete the result follows directly from the fact that the sum of two convex (concave) 

functions is concave (convex) and from the fact that multiplication by a positive number 

preserves convexity(concavity).  

 

 


