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Abstract

This paper proposes a way to model boundedly rational dynamic programming in

a parsimonious and tractable way. It first illustrates the approach via a boundedly

rational version of the consumption-saving life cycle problem. The consumer can pay

attention to the variables such as the interest rate and his income, or replace them,

in his mental model, by their average values. Endogenously, the consumer pays little

attention to interest rate but pays keen attention to his income. This helps resolve some

extant puzzles in consumption behavior, especially the tenuous link between interest

rates and consumption.

The paper then lays out the general formulation of behavioral dynamic program-

ming, and derives tools that make it generally quite easy to compute, even with paper

and pencil. It also presents an application to dynamic portfolio choice, arguing that

the description put forth by the model is more realistic that in the standard, fully

rational model.

Finally, it studies in a basic case the impact of bounded rationality (as modeled

in this paper) on macroeconomic outcomes, in a prototypical DSGE model with one

variable, capital. We find that in general equilibrium, bounded rationality leads to

more persistent shocks, and larger aggregate fluctuations.
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rationality. For useful comments I thank Thomas Sargent and seminar participants at the AEA
meetings, Chicago, the Federal Reserve Board, Penn, NYU, and Yale.
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1 Introduction

This paper proposes a way to do dynamic programming, but with an element of bounded

rationality. This is first illustrated first in microeconomic contexts, in canonical consumption-

investment problems. Then, this framework is used to study macroeconomic implications

of bounded rationality. A main conclusion is that with bounded rationality, macroeconomic

fluctuations are larger and more persistent.

Before the macro consequences, let us study the micro motivation.

Modelling bounded rationality: first, microeconomics. The issue of rationality is impor-

tant. One of the criticisms against traditional economic models is the potential unrealism of

the infinitely forward-looking agent who computes the whole equilibrium in her own head.

This unrealism has long been suspected to be the cause of some empirical misfits that we

will review below. Behavioral economics aims to provide an alternative. However, the great-

est successes of behavioral economics change the tastes (e.g. prospect theory or hyperbolic

discounting) or the beliefs (e.g. overconfidence), but keeps the rationality. When tackling

the rationality, there is much less agreement and no dynamic alternative to the traditional

model has really emerged. This paper attempts to propose a compromise that keeps much

of the generality of the rational approach and injects some of the wisdom of the behavioral

approach, mostly inattention and simplification. It does so by proposing a way to insert

some bounded rationality in a large class of problems, the “recursive” contexts, i.e. with

dynamic programming in some stochastic steady state.

To illustrate these ideas, let us consider a canonical consumption-savings problem. The

agent maximizes utility from consumption, subject to a budget constraint, with stochastic

interest rate and income. In the rational model, he would solve a complex DP problem with

three state variables (wealth, income, interest rate). This is a complex problem that requires

a computer to solve it.

How will a BR agent do? I assume that the agent starts with a much simpler model, where

interest rate and income are constant —that’s his default model. Only one state variable

remains, his wealth. He knows what to do then, but what will he do in a more complex

environment, with stochastic interest rate and stochastic income? In the BR version, he

considers parsimonious enrichments to the value function, as in a Taylor expansion. He asks,

for each component, if it will matter enough for his decision. If a given feature (say, the
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interest rate), is small enough compared to a threshold (taken to be a fraction of standard

deviation of consumption), then he drops the feature, or partially attenuates it. The result

is a consumption policy that pays partial attention to income, and perhaps no attention at

all to the interest rates. This does seem realistic.

The result is a BR version of the traditional permanent-income model. We see that it is

often simpler than the traditional model. Indeed, the agent ends up using a typically simpler

rule (e.g., not paying attention to the interest rate). Hence, the framework can avoid the

curse of some behavioral models, which often lead to more complex problems. Arguably, the

reason why those models are more complex is indeed their maintained assumption of some

form of hyperrationality.

Let us now turn to macro consequences of this approach.

Macroeconomics. The model allows us to inject bounded rationality in general equilib-

rium. The consequence is: With bounded rationality, macroeconomic fluctuations are larger

and more persistent.

I illustrate this proposition, and qualify it, as it appears to hold for most reasonable

parameters, but can be overturned for extreme parameters.

To see the idea, which is fundamentally quite simple, imagine first an economy with only

one state variable, capital. It starts with a steady state amount of capital. Then, there is a

positive shock to the endowment of capital. In a rational economy, agents would consume

a certain fraction of it, say 6%, every period. That will lead capital to revert pretty fast to

its mean. However, in a BR economy, investors will not fully pay attention to that extra

capital. They will consume less of it than a rational agent would. Hence, capital will be

depleted more slowly and will mean-reverts more slowly to its mean. The shock has more

persistent effects.

Given that shocks are more persistent, past shocks accumulate more. Mechanically, this

leads to larger average deviations from trend of capital. As a consequence, the interest rate

and GDP also have larger, and more persistent, deviations from trend.

The model allows us to express those ideas in simple, quantitative ways. It allows us to

explore them in richer environments, e.g. with both shocks to productivity and the capital

stock. The proposition, “BR leads to larger and more persistent fluctuations,” still holds

true for most parameter values.

Literature review. Besides behavioral lit, cite Krusell Smith (but accent here is on the
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consequences of BR), Sims, Máckowiak &Wiederholt, Veldkamp, Woodford. One difference:

no entropy, so much more simplicity.

The rest of the paper is as follows. Section 2 studies the best response of an agent.

The leading example is that of a consumption-saving problem. Once it is well understood,

I formulate the more general notation of BRDP. Section 4 uses this framework to study

a general equilibrium situation. If formulates and illustrates the amplifying effect of BR

on aggregate fluctuations. Section 5 concludes. The Appendix contains the more technical

material and derivations.

2 Partial equilibrium: BRDP in a consumption-savings

problem

2.1 Bounded Rationality in a 2-Period Problem

Consider for concreteness the following decision problem with just two periods: the DM’s

value function is:

V (c, r̂t, ŷt) = u (c) + βv ((1 + r + r̂t) (w − c) + y + ŷt) ,

and he wishes to maxc V (c, r̂t, ŷt). That is, the consumer starts from an initial wealth w, and

picks his consumption c in order to maximize his utility, given that next period’s consumption

will be next period’s income, yt = y + ŷt, plus today’s savings, w − c, compounded by the
interest rate, rt = r + r̂t. Here r is the average value of the interest rate (I take the default

value to be the average), and r̂t is the (mean-zero) deviation of the interest rate from its

average; the same holds for y, the average income, and ŷt, the deviation of income from its

average.

A rational consumer will do: maxc V (c, r̂t, ŷt). What will a BR consumer do? Using

a mix of psychological and economic reasoning, I propose in Gabaix (2011) a reasonably

systematic way of handling that. The DM trades off the cost of having an imperfect decision

against the benefits of saving on “thinking costs.”This leads to an algorithm that boils down

to the following procedure in our consumption-investment case.

First, the consumer knows what to do under a “default model”where (r̂t, ŷt) = (0, 0),

i.e., all variables are at their average values. Then, the consumer has cognitive access to
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Figure 1: The anchoring-and-adjustment function τ

∂c/∂r = −Vcr/Vcc at the default model, i.e., by how much consumption should change if the
interest rate goes up by a small amount. It may seem a bit strange that the consumer might

know so much, but this assumption captures parsimoniously the fact that people do have a

sense that some quantities (e.g., their income) matter a lot, while others (e.g., the volatility

of the 1-year interest rate and, perhaps, that interest rate itself) do not matter very much.

Step 1. Replace the interest rate r̂t (to be more precise, the deviation of the interest

rate from its average) by its truncated version: the interest rate perceived by a BR agent is

(very shortly I will motivate and explain this particular formula):

r̂BRt = τ

(
1,
κσc
∂c
∂r
σr

)
r̂t, (1)

where ∂c/∂r is taken at the default model, and the truncation function

τ (µ, κ′) = (|µ| − |κ′|)+ sign (µ) (2)

is represented in Figure 1. r̂BRt is the deviation of the interest rate from its default perceived

by a BR consumer.

Likewise, the perceived income innovation is: ŷBRt = τ

(
1, κσc

∂c
∂y
σy

)
ŷt.
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Step 2: Then, the BR agent does maxc V
(
c, r̂BRt , ŷBRt

)
.

Step 2 is unproblematic: given the perceived interest rate and income, the DM optimizes

consumption. The nerve of the model is in Step 1. To interpret rule (1), note that it implies:

“Replace the interest rate by 0 if taking the interest rate into account changes consumption

by less than κ standard deviations, i.e., if
∣∣ ∂c
∂r
σr
∣∣ < κσc.”

That means: on average, a one-standard-deviation change in the interest rate makes the

BR agent change his consumption by only ∂c
∂r

σr
σc
standard deviations of consumption. If that

ratio is small enough (I calibrate the model to κ = 0.3, so that features which account for

less than κ2 = 9% of the variance are eliminated), then replace the interest rate by 0.1

The penalty for lack of sparsity, κ, is akin to an index of bounded rationality: if κ = 0,

the agent is fully rational.

Take the case where
∣∣∣ ∂c∂r σrσc ∣∣∣ < κ, so that r̂BRt = 0 and the DM proceeds as if the interest

rate was the average interest rate r rather than the true interest rate rt. We have the

picture of a sensible agent: he does not pay attention to the interest rate all the time, he

saves (so he is not “myopic”in the sense of heavily discounting the future), but he does not

obsess about smoothing his consumption given all wrinkles to the interest rate. This agent

is arguably more sensible and realistic than the traditional agent (below I will offer some

empirical evidence for that intuition).

Here, we use the “average values”for the interest rate and income shocks. In a one-shot

problem, we would use the above rule, replacing |σr| by |r̂t|, so that instead of (1) we obtain
r̂BRt = τ

(
r̂t,

κσc
∂c
∂r

)
. Then, the rule becomes: “Replace the interest rate by 0 iff taking it into

account makes consumption change by less than κ standard deviations.”Indeed, the agent

does not respond to the interest rate at all if
∣∣ ∂c
∂r
× r̂BRt

∣∣ < κσc. Thus, most of the time,

the agent will not take the wrinkles of the interest rate into account, but will pay attention

to changes in the interest rate only when changes are very large (e.g., if there is a large,

one-time discount of, say, cars).

The truncation rule embodies the idea that a DM who seeks “sparsity” (uncluttering

his mind from lots of small things) should sensibly drop relatively unimportant features: if

they account for less than κ standard deviations of the actions, they are dropped entirely.

In addition, if the features are larger than that cutoff, they are still dampened: in Figure

1, τ (µ, κ) is below the 45 degree line (for positive µ; in general, |τ (µ, κ)| < |µ|). This

1The main paper provides a microfoundation based on the welfare loss from a suboptimal answer.
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reflects Kahneman and Tversky’s “anchoring-and-adjustment”process, in which there is an

anchor in the default model, and then a partial adjustment toward the truth. This feature

could be abandoned, using the “hard-thresholding” function τH (µ, κ) = µ1|µ|>|κ| instead:

if |µ| > κ, then this is the 45 degree line, τH (µ, κ) = µ. However, the above function τ

has the advantage of yielding continuous demand curves, which are likely in practice. For

many cases, the smooth adjustment makes more empirical sense than the “all-or-nothing”

adjustment, which predicts discontinuities that we are unlikely to see empirically.

I hope that the reader got a sense of the intuition for the model in a (quasi-)static context.

Let us now see how to proceed in more dynamic contexts.

2.2 Infinite-Horizon Problem

One important payoff from the framework is that it allows for boundedly rational dynamic

programming (BRDP). This is important because many models in macroeconomics and

finance take the form of dynamic programming (Ljungqvist and Sargent 2004). The outcome

will be a model that is often simpler than the traditional model, because agents pay attention

to fewer things and, in particular, do not react to all future variables.

In addition, it is well-known that an important conceptual and practical problem when

dealing with dynamic programming is the curse of dimensionality. Strictly speaking, there are

perhaps over 1,000 state variables that should matter in our decisions, but solving dynamic-

programming problems with more than a few state variables (let alone 1,000 state variables)

is extremely hard in practice because of the combinatorial explosion of the problem’s com-

plexity. Even the most powerful computers cannot handle such complexity and solve the

problems exactly. Given that, how would a boundedly rational agent proceed?

I illustrate the approach in a canonical consumption-investment problem. The agent

has utility E
∑∞

t=0 β
tc1−γ
t / (1− γ). We assume he has solved the life-cycle problem in a

simple model, where the interest rate is constant at r (for simplicity, assume here that

R ≡ 1 + r = β−1) and his income is constant at y: his wealth wt evolves according to

wt+1 = (1 + r) (wt − ct) + y

(that is, wealth at t + 1 is savings at t, wt − ct, invested at rate r, plus current income,

y). Then, the optimal consumption is cd (wt) = (rwt + y) /R, and the value function is
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V d (wt) = A (rwt + y)1−γ for a constant A.

Now, the agent is told that the world is more complicated: the interest rate is actually

r+ r̂t and his income is y+ ŷt, where r̂t and ŷt are deviations of the interest rate and income

from their mean, respectively, and follow AR(1)s:

yt+1 = ρyŷt + εyt+1, rt+1 = ρrr̂t + εrt+1

ε·t+1 are mean-0 disturbances. Hence, wealth follows:

wt+1 = (1 + r + r̂t) (wt − ct) + y + ŷt.

What will be the consumption function c (wt, ŷt, r̂t) of a BR agent? It is diffi cult, because

this is a dynamic-programming problem with 3 state variables, and has no closed forms.

Under the previous approach, one might think that one should solve for the value function

V (wt, ŷt, r̂t); but that would be a very diffi cult task in general: DP with 3 or more (and in

practice perhaps 20) state variables is very diffi cult. However, we obviate this diffi culty by

using the following algorithm.

Step A (Taylor expansion around the simple, default model with just one

state variable). We observe that a rational agent would consume, for small disturbances

ŷt and r̂t:

ln cRat (wt, ŷt, r̂t) = ln cd (wt) + byŷt + brr̂t

+ 2nd-order terms. (3)

Importantly, the terms by, br are easy to derive by a local expansion of the simple, one-

dimensional value function V d (wt) (i.e., without solving for the full function V (wt, ŷt, r̂t)).

Indeed, by perturbation arguments, detailed in the Appendix, one finds:

by =
r

R
(
R− ρy

)
cdt
, br =

r
(
wt
cdt
− 1
)
− 1/γ

R− ρr
. (4)

Then, we assume that the BR agent somehow has cognitive access to br and by: while it

may seem counterintuitive, this merely represents that the BR agent senses that, for instance,

the interest rate is not a very important decision for his consumption (|br| is small).
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Step B (Simplification of the reaction function). The DM does a BR truncation

of (3), according to formula (1). Hence, we obtain the following.

Proposition 1 A BR agent has the following consumption policy:

ln cBRt = ln cd (wt) + bBRy ŷt + bBRr r̂t, (5)

where (for x = y, r) bBRx := τ
(
bx,

κσln c
σx

)
and bx are in (4).

Formula (5) shows a “feature-by-feature”truncation. It is useful because it embodies in

a compact way the policy of a BR agent in a quite complicated world. Note that the agent

can do that without solving the 3-dimensional (and potentially 21-dimensional, say, if there

are 20 state variables besides wealth) problem. Only local expansions and truncations are

necessary.

In this manner, we arrive at a quite simple way to do BRDP. There is just one continuously-

tunable parameter, κ. When κ = 0, the agent is (to the leading order) the traditional rational

agent. When κ is large enough, the agent is fully BR, and does not react to any variable.

Hence, we have a simple, smooth way to parametrize the agent, from very BR to (essentially)

fully rational.

2.3 Application: Insensitivity to the Interest Rates and Low Mea-

sured Intertemporal Elasticity of Substitution

To get a feel for the effects, consider a calibration with (using annual units): γ = 1, r = 5,

w = 2c, c = 1, σr = 0.8%, σy = 0.2c, ρy = 0.95, σln c = 5%, and ρr = 0.7 with yearly units:

as income shocks are persistent, they are important to the consumer’s welfare.

Then, Figure 2 shows the impact of a change in the interest rate and income on consump-

tion. Consider the left panel, bBRr . If the cost of rationality is κ = 0, then the agent reacts

like the rational agent: if interest rates go up by 1%, then consumption falls by 2.8% (the

agent saves more). However, for a sparsity parameter κ ' 0.5, the agent essentially does not

respond to interest rates. Psychologically, he thinks “the interest rate is too unimportant, so

let me not take it into account.”Hence, the agent does not react much to the interest rate,

but will react more to a change in income (right panel of Figure 2), which is more important:

the sensitivity of consumption to income remains high even for a high cognitive friction κ.
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Figure 2: Impact of a change in the interest rate (resp. income) on consumption, as the
function of weight on sparsity, κ. κ = 0 is the rational-agent model.

Note that this “feature-by-feature” selective attention could not be rationalized by just a

fixed cost to consumption, which is not feature-dependent.

The same reasoning holds in every period. The above describes a practical way to do BR

dynamic programming. In some cases, this is simpler than the rational way (as the agent

does not need to solve for the equilibrium), and this may also be more sensible.

Consequence. A behavioral solution to Puzzles and controversies around the

intertemporal elasticity of substitution (IES) For many finance applications (e.g.,

Bansal and Yaron 2004, Barro 2009, Gabaix forth.), a high intertemporal elasticity of sub-

stitution (IES, denoted ψ = 1/γ) is important (ψ > 1). However, micro studies point to an

IES less than 1 (e.g., Hall 1988). I show how this may be due to the way econometricians

proceed, by fitting the Euler equation, which yields ln ct+1− ln ct = ψ̂

R
rt+ constant, where ψ̂

is the measured IES. If the consumer “underreacts to the interest rate,”the measured IES

will be biased towards 0. Using the above model, we can more precisely calculate that if

consumers are boundedly rational (in the sense laid out above), the estimated IES will be

: ψ̂ = r
(
wt/c

d
t − 1

)
− bBRr R

(
R− ρR

)
. This is a point prediction that goes beyond Chetty

(forth.)’s prediction of an interval bound. Hence we obtain:

Proposition 2 An econometrician fitting an Euler equation even though the agent is BR

will estimate a downward biased IES (intertemporal elasticity of substitution):

ψ̂ = ψ −R
(
R− ρR

) (
bBRr − br

)
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Figure 3: Measured IES ψ̂ if the consumer is boundedly rational with sparsity cost κ.

where ψ̂ is the estimated IES, ψ the true IES, bBRr − br is the difference between the BR

agent’s and the traditional rational agent’s interest-rate sensitivity of consumption.

The above calibration yields Figure 3, which plots the measured IES ψ̂ if the consumer

is BR with sparsity cost κ. If κ = 0, the consumer is the traditional, frictionless rational

agent. We see that as κ increases, the IES is more and more biased. Hence, BR may explain

why while macro-finance studies require a high IES, microeconomic studies find a low IES.2

2.4 Application: Source-dependent Marginal Propensity to Con-

sume

The agent has initial wealth w, future income y, he can consume c at time 1, and invest

the savings at a rate R. Hence, the problem is as follows. Given an initial wealth w, solve

maxc V = u (c) +E [v (y +R (w − c))], where income is y = y∗+
∑n

i=1 yi: there are n sources

of income yi with mean 0. Let us study the solution of this problem with the algorithm. The

DM observes the income sources sparsely: he uses the model y (m) = y∗ +
∑n

i=1 miyi, with

2This is in the spirit of Gabaix and Laibson (2002)’s analysis of the biases in the estimation of the
coeffi cient of risk aversion with inattentive agents, in a different context and a more tractable model. See
also Fuster, Laibson and Mendel (2010) for a model where agents’use of simplified models leads to departures
from the standard aggregate model.
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mi to be determined. Applying the model, we obtain (assuming exponential utility with

absolute risk aversion γ for simplicity)

Proposition 3 Time-1 consumption is: c = 1
1+R

(Rw + δ/γ − γσ2
ε/2 + y∗ +

∑
imiyi), mi =

τ(1,
κmσc2
σyi

). The marginal propensity to consume (MPC) at time 1 out of income source i is:

MPCBR
i = MPCRat

i ·mi, (6)

where MPCBR
i = (∂c/∂yi)

BR is the MPC under the BR model, and MPCRat
i = (∂c/∂yi)

Rat

is the MPC under the traditional rational-actor model. Hence, in the BR model, unlike in

the traditional model, the marginal propensity to consume is source-dependent.

Different income sources have different marginal propensities to consume —this is remi-

niscent of Thaler (1985)’s mental accounts. Equation (6) makes another prediction, namely

that consumers pay more attention to sources of income that usually have large consequences,

i.e., have a high σyi . Slightly extending the model, it is plausible that a shock to the stock

market does not affect the agent’s disposable income much —hence, there will be little sen-

sitivity to it: the MPC out of wage income will be higher than the MPC to consume out of

portfolio income.

This model shares similarities with models of inattention based on a fixed cost of observing

information. Those models are rich and relatively complex (they necessitate many periods,

or either many agents or complex, non-linear boundaries for the multidimensional s, S rules,

or signal extraction as in Sims 2003), whereas the present model is simpler and can be

applied with one or several periods. As a result, the present model, with an equation like

(6), lends itself more directly to empirical evaluation. Some interesting “low-complexity”

models include Bordalo, Gennaioli, and Shleifer (2011) and Koszegi and Szeidl (2011). A

distinctive feature of the model presented in this note is its ability to handle continuous

choices (e.g., a consumption level) rather than the discrete choice between distinct goods.

3 General Framework

Here we present the more general procedure underlying the model of the previous section.

First, we present the BRmax operator, an operator representing BR maximization. Then,
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we state the dynamic programming problem, and some results that make its computation

easy.

3.1 A BRMax operator in static contexts

One result from Gabaix (2011) is the BRmax operator, which is a behavioral version of the

max operator. The agent faces a maximization problem which is, it its rational version,

maxa u (a, µ, x). We posit a procedure that the agent will follow. Its input are: σa for the

normal modulus of a, and P for the distribution from which the xi are drawn.

Definition 1 (BRmax operator) The BR maximum of function u (a, µ, x) is:

BRmax
a|md,ηa,P

u (a, µ, x) = max
a
u (a,m∗, x) (7)

m∗ = arg max
m
−1

2
(µ−m)′ EP

[
∂a

∂m
uaa

∂a

∂m

]
(µ−m)−κ

∑
i

∣∣mi −md
i

∣∣E[( ∂a

∂mi

· uaa · ηa
)2
]1/2

(8)

where ∂a/∂m := −u−1
aa · uam, and derivatives are evaluated at the default model md, ad =

arg maxa u
(
a,md, x

)
.

In other terms, the agent solves for the optimal m∗ that trades off a proxy for the utility

losses (the first term in the right-hand side of equation (8)) and a psychological penalty for

deviations from a sparse model (the second term on the left-hand side of 8). Then, the agent

maximizes over the action a, taking m∗ to be the true model.

In practice, the typical case applying the BRMax operator is the following: action a

maximizes a utility function u (a, x), where disturbances x might be neglected by the agent.

To apply the algorithm, we form the surrogate utility function:

u (a,m, x) = u (a,m1x1, ...,mnxn)

form the ideal vector µ = (1, ..., 1), and calculate the BRmaxa|md,ηa,P u (a, µ, x). It is actually

quite simple to calculate. There two versions for P.
1. Attention chosen before seeing the variables. In the second procedure, the DM chooses

the weight mi before seeing the xi. He simply takes into account their magnitude (as cap-

tured by their standard deviation). Formally, the probability P assumes that the Xi’s are
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uncorrelated, and Xi has a standard deviation σi. Then, the solution is very simple to

calculate.

2. Attention chosen after seeing the variables. This is the above procedure, but instead

of using σxi, the agent sets σxi = |xi|. Hence, the algorithm, when deciding what to truncate,
sees the magnitudes of variables but not the sign.

The following two Propositions derive the resulting procedures.

Proposition 4 When “attention is chosen before seeing the variables”, BRmax operator

can be equivalently formulated as:

BRmax
a|σa,σxi

u (a, x) = max
a
u (a,m∗1x1, ...,m

∗
nxn)

with

m∗i = τ

(
1,

κσa
σxi · ∂a/∂xi

)
(9)

and ∂a/∂xi = −u−1
aa · ua,xi.

Proposition 5 When “attention is chosen after seeing the variables”, the BRmax operator

can be equivalently formulated as:

BRmax
a|σa

u (a, x) = max
a
u (a, x∗1, ..., x

∗
n) (10)

with

x∗i = τ

(
xi,

κσa
∂a/∂xi

)
(11)

and ∂a/∂xi = −u−1
aa · ua,xi.

The proof is in the appendix.

The intuition is the xi’s are truncated. If |∂a/∂xi| is small enough, so that xi shouldn’t
matter much any way, then mi = md

i , and the agent doesn’t pay attention to xi (if m
d
i = 0).

For instance, in the first part of this paper, equation (1) came from the above Proposition,

with mr = τ
(

1, κσc
∂c
∂r
σr

)
.

The following Proposition gives a more explicit version of the action:3

3This proposition suggests a potential generalization of the SparseBR algorithm: just postulate the pro-
cedure in the Propositions, with potentially a different truncation function τ . For instance, we could have
τ (µ, κ′) = µ1|µ|≥|κ′|, or some smoother function.
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Proposition 6 In the limit of small x, if the rational action is:

a∗ (x) = ad +
∑
i

bixi +O
(
x2
)

then under the procedure with “attention chosen before seeing the variables”, the BR action

is:

aBR (x) =
∑
i

τ

(
bi,
κσa
σxi

)
xi +O

(
x2
)

(12)

and under the procedure with “attention chosen after seeing the variables”, the BR action is:

aBR (x) =
∑
i

τ (bixi, κσa) +O
(
x2
)

(13)

For a quadratic utility function u = − (a−
∑

i bixi)
2, the above expressions are exact (i.e.

hold without the O (x2) terms ).

We see the contrast. In the first procedure, the slope is chosen before seeing xi. Hence,

the policy is still linear in xi. In the second policy, the truncation is chosen after seeing the

xi. The policy is now non-linear in xi. The linearity of policies make the first procedure

useful for macro. Equipped with this piece of machinery, we turn to dynamic problems.

3.2 Dynamic programming

We consider an stationary environment. The rational version of the DP problem is:

V (w, x) = max
a
u (a, w, x) + βEV (w′, x′)

w′ = Fw (w, x, a) , x′ = F x (w, x, a)

where Fw are potentially random function, i.e. function of some noise.

In the BR version, the vector w is always considered (it’s in the default model). However,

the vector x represents variables that may not be considered by the BR agent.

We define the value function as follows:

15



Definition 2 The DP value function is the solution (provided it exists of):

V BR (w, x) = BRmax
a|ηa,σx

u (a, w, x) + βEV BR (w′, x′)

w′ = Fw (w, x, a) , x′ = F x (w, x, a)

where the BRMax operator for BR maximization is defined in Definition 1.

Slightly more explicitly, is

V BR (w, x) = BRmax
a|ηa,σx

U (a, w, x)

U (a, w, x) := u (a, w, x) + βEV BR (Fw (w, x, a) , F x (w, x, a))

The notion is recursive. However, the problem is actually quite simple to solve, at least

to the first order.

Indeed, we have:

Proposition 7 For small x, we have:

V BR (w, x) = V (w, x) + x2φ (w, x)

where φ (w, x) is continuous in (w, x) and twice differentiable in w at x = 0. In other words,

the BR value function and the rational value functions differ only by second order terms in

x.

This basically generalizes the envelope’s theorem. It implies that

V BR
w = Vw, V BR

ww = Vww, Vx = V BR
x Vwx = V BR

wx , at x = 0 (14)

However, it does not imply Vxx = V BR
xx , which is indeed false in general.

This leads to a simple proposition to calculate the value function.

Proposition 8 (Calculation of the optimal BR policy). Suppose that F x
a|x=0 = 0 (which is

usually satisfied in models). Consider the first order expansion of the optimal policy for small

x,

aRat (w, x) = a∗ (w) +
∑
i

bi (w)xi +O
(
x2
)
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Then, the BR policy is:

aBR (w, x) = a∗ (w) +
∑
i

τ

(
bi (w) ,

κσa
σxi

)
xi +O

(
x2
)

(15)

This proposition will be quite useful. To derive policies, first we can simply do a Taylor

expansion of the rational policy around the default model, and then truncate terms by terms.

3.3 Application: Dynamic Portfolio Choice

I now study a Merton problem with dynamic portfolio choice. The agent’s utility is:

E
[

1
1−γ
∫∞

0
e−ρsc1−γ

s ds
]
, and his wealth wt evolves according to:

dwt = (−ct + rwt) dt+ wtθt (πtdt+ σdZt)

where θt is the allocation to equities. The equity premium πt = π + π̂t has a variable part

π̂t as, which follows

dπ̂t = −φπ̂tdt− χtσdZt + σ′πdBt

The parameter χ ≥ 0 indicates that equities return mean-revert: good returns today lead

to lower returns tomorrow. That will create a hedging demand term —a term that’s quite

complex.

The agent’s problem is to find the policies ct and θt to maximize expected utility under

the constrains. Hence, the value function for the agent is V (wt, π̂t, χ).

We have the following (using the notation ψ = 1/γ for the IES):

Proposition 9 (Behavioral dynamic portfolio choice) The fraction of wealth allocated in

equities is, with θ∗ = π
γσ2

θBRt = θ∗ + τ

(
π̂t
γσ2

, κσθ

)
+ τ (Bχt, κσθ)

while consumption is:

cBRt = µwt

[
1 + τ

(
1− ψ
µ+ φΛ

θ∗π̂t, κσln c

)
+ τ

(
B (1− ψ)

πχ

µ+ φΛ

, κσln c

)]
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using the notations:

B =

(
1− 1

γ

)
θ∗

µ+ φ
, µ := ψρ+ (1− ψ)

(
r +

(π/σ)2

2γ

)
.

Proposition 9 predicts the choice of a BR agent. When κ = 0, it is to a first order the

policy of a fully rational agent, e.g. as worked out by Campbell and Viceira (2002). When

κ > 0, it is the policy of a BR agent. When κ is larger, then the agent first first, the portfolio

choice reflects less the change in the equity premium, π̂t. Also, the agent thinks less about

the mean-reversion of asset, the Bχ terms.

In addition, the agents’consumption function pays little attention to the mean-reversion

of assets.

(Next iteration should have a calibration, and the proof).

4 Bounded Rationality in General Equilibrium

The raison d’être of this model is the tractability that allows us to study GE effects. We

start with a basic question. Suppose that agents are BR; what will be the impact in general

equilibrium? The answer will be:

Bounded rationality leads to more persistent and larger aggregate fluctuations.

I will illustrate this thesis in a very basic model first, with just one state variable. Then,

we’ll move on to more complex models. We shall see it holds for many (but not all) values

of parameters.

4.1 A Simple example with shocks to capital

Let us start with a simple example. The utility function is still E
∑

t β
tC1−γ

t / (1− γ). In the

aggregate, the capital stock follows:

Kt+1 = F (Kt, L) + (1− δ)Kt − Ct + εt+1 (16)

where εt+1 are mean-zero shocks, whose distribution we’ll specify later. This way, there is

just one state variable in the economy, the capital stock.

18



The question is: will a BR economy react compared to a traditional (i.e., Qrational-agent)

economy?

This is a textbook example: and can be found in Blanchard Fischer (1989, Chapter 2) and

Romer (2012, Chapter 2); it introduces generations of students to macroeconomics. How-

ever, it looks somewhat odd (in my opinion), with these infinitely-rational forward looking

agents that calculate the whole macroeconomic equilibrium in their heads. I present here an

alternative to that presentation.

4.1.1 The essence of the argument

I present first the essence of the argument, sweeping under the rugs several specifics that

will be made explicit in the more special models.

If there were no shocks, the economy would be at the steady state, with capital stock

K∗. I use the hats notation for the deviation (not in logs) from mean, e.g. K̂t = Kt −K∗.
The law of motion for capital (16) is, in linearized form:

K̂t+1 = (1 + r) K̂t − Ĉt (17)

where r is the steady state interest rate, r = β−1 − 1.

Given there is one state variable, the policy function of the agent (rational of not) will

take the form of a deviation of consumption from trend:

Ĉt = bK̂t

for some positive b.

Plugging this into (17) we obtain: K̂t+1 = (1 + r − b) K̂t + εt+1, i.e.

K̂t+1 = (1− φ) K̂t + εt+1 (18)

with a speed of mean-reversion:

φ = b− r. (19)

Generally, BR consumers are less attentive than rational consumers, hence their policy

will take the form:

Ĉt = b′K̂t
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for some b′ :

0 < b < b′

Hence, the speed of mean reversion in the BR economy will be less than in the rational

economy:

φ′ = b′ − r < φ.

Therefore, fluctuations mean-revert less fast in the BR economy. That’s because con-

sumers respond less to shocks.

Finally, squaring equation (18), we obtain: varK̂t+1 = (1− φ)2 varK̂t + σ2
ε . As in the

steady state, varK̂t+1 = varK̂t,

varK̂t =
σ2
ε

1− (1− φ)2

When shocks mean-revert more slowly (lower φ), the average deviation of the stock price

from trends is higher (shocks “pile up”more). Hence, the variance of shocks will be larger

in the BR economy than in the rational economy.

The above argument give the qualitative essence of what is going on. However, we need

to flesh it out more to obtain more quantitative answers. Let us do that now.

4.1.2 The more detailed argument

The rational economy Formally, the rational agent has a value function V (Kt),

which satisfies:

V (K) = max
c
u (c) + βE [V (K ′)]

K ′ = F (K,L) + (1− δ)K − c+ εt

The solution is that small deviations of the capital stock mean revert at a speed φ

(K̂t = e−φtK̂0) that we will characterize soon.
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It comes from the following policy function by the representative agent (see Appendix):

Ĉt = bK̂t

b = r +
ξ

r + φ

ξ = −C∗F ′′ (K∗) /γ > 0

By the argument above, that leads to a speed of mean-reversion:

φ = b− r =
ξ

r + φ
(20)

Hence, solving via rational expectations imposes:

φ =
−r +

√
r2 + 4ξ

2
. (21)

The boundedly rational version The DM has wealth kt (and we normalize the

population to be one, so that which in equilibrium will be equal toKt, the aggregate wealth).

It evolves as:

kt+1 = (1 + rt) (kt + yt − ct)

where yt = F (Kt) − KtF
′ (Kt) is labor income, and rt = F ′ (Kt) is the interest rate. We

have:

ŷt = −K∗F ′′ (K∗) K̂t

r̂t = F ′′ (K∗) K̂t

This leads to the optimal policy:

ĉt = rk̂t +
r

r + φ
ŷt +

rk∗ − c∗ψ
r + φ

r̂t

= rk̂t +
(−rK∗F ′′ (K∗) + (rk∗ − c∗ψ)F ′′ (K∗))

r + φ
K̂t

ĉt = rk̂t +
ξ

r + φ
K̂t
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This is the Taylor expansion of the rational policy. The BR version is:

ĉt = rk̂t + τ

(
ξ

r + φ
, κ
σC
σK

)
K̂t (22)

We need to solve for the equilibrium. Note that σC is here an endogenous variable. Call

χ :=
ξ

r + φ

b′ := r + τ

(
χ, κ

σC
σK

)
(23)

Then, we will have ĉt = b′K̂t. That implies σC = b′σK , i.e.

σC
σK

= b′

Hence, from (23), b′ satisfies:

b′ = r + τ (χ, κb′) (24)

This is a piecewise linear equation. Take the interior region, so that χ > κb′. Then, the

equation writes: b′ = r + χ− κb′, so

b′ =
r + χ

1 + κ
(25)

In the interior region, χ ≤ κb′, b′ = r. So, we have:

b′ = max

(
r + χ

1 + κ
, r

)
Finally, the speed of mean-reversion of capital is:

φ = b′ − r =
χ− κr
1 + κ

φ =

(
ξ

r+φ
− κr

1 + κ

)+

(26)

Hence, φ is the solution of the above equation, which is a quadratic equation in the
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Figure 4: This Figure plots the speed of mean-reversion of fluctuations, φ, as a function of
the cost of rationality, κ.

interior domain. We obtain:

Proposition 10 Shocks are more persistent in the BR economy. More precisely, the speed

of mean-reversion is given by

φ =

[
−r (1 + 2κ) +

√
r2 + 4(1 + κ)ξ

2 (1 + κ)

]+

(27)

In particular, φ is decreasing in κ, φ (κ = 0) = φRat, and φ > 0 iff κ > ξ/r2.

As above, the variance of the stocks is:

varK̂t =
σ2
ε

1− (1− φ)2

Proposition 11 Shocks are larger in the BR economy. More precisely, the quadratic de-

viation from trend in capital, interest rate and GDP is multiplied by
1−(1−φRat)

2

1−(1−φ)2
, where φ is

given by (27).

Calibration The parametrization is conventional, F (K) = K1−α/ (1− α) − δK, r =

5%, δ = 8%, a capital share 1 − α = 2/3, log utility (γ = 1). This yields the following

graphs:
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Figure 5: This Figure plots the “multiplier of fluctuations” as a function of the cost of
rationality, κ. This is capital’s average squared deviation from its mean under the boundedly
rational model, divided by the same quantity under the rational model.

Figure 4 plots the speed of mean-reversion, φ, of fluctuations, as a function of the cost of

rationality, κ. At κ = 0, we have the rational persistence level. We see that the impact can

be quite high. Figure 5 plots the “multiplier of fluctuations,”i.e. it plots v (κ) /v (0), where

with v (κ) = E
[
K̂2
t

]
the dispersion of fluctuations under rationality cost κ. We see that the

impacts can be substantial indeed.

5 Conclusion

I sketched here a practical way to do boundedly rational dynamic programming. It is portable

and to the first order has just one free continuous parameter, κ, the penalty for lack of

sparsity, which can also be interpreted as a cost of complexity.

It allows us to revisit canonical models in economics, and give them a behavioral flavor.

From the micro point of view, we obtain inattention and delayed response. Those are not

necessarily very surprising features —however, it is useful to have clean model that generates

those things and can be calibrated. The model could be empirically evaluated, but that

would take us too far away.

From the macro point of view, the model allows us to think about BR in general equi-

librium. The upshot is that compared to the rational model, BR leads to larger and more

persistent fluctuations. The reason is that rational actors tend to “dampen”fluctuations.
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For instance, they consume more when more capital is available. This channel is muted with

BR agents. Hence, fluctuations are more persistent, innovations have a longer-lasting effect,

and the average fluctuations (deviations from the mean) are larger.

Given that it seems easy to use and sensible, we can hope that this model may be useful

for other extent issues in macroeconomics and finance.
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A Appendix: Tools to Expand a Simple Model Into a

More Complex one

Here I develop the method to derive the Taylor expansion of a richer model, when starting

from a simpler one. Here the methods are entirely paper and pencil. Judd (1998) surveys

related methods, with more of a computer-based perspective.

A.1 Life-cycle example

We start from the simple life-cycle example. =We assume, for simplicity, a stationary envi-

ronment with no trend growth. The Bellman equation is:

V (w, r) = max
c
u (c) + βV ′ ((R + r) (w − c) + y′, r′) (28a)

I suppress any expectation, as the shocks are assumed to be small. We assume a law of

motion:

r′ = ρr + ε′

Call next-period wealth w′:

w′ = (R + r) (w − c) + y′

We assume that the agent knows the simple model where interest is always as its average,

r ≡ 0. As is well-known, the optimal policy is c = rw + y, and, with R = 1 + r,

V (w) = A
(
w + wH

)1−γ
/ (1− γ) , wH = Y/r, A =

(
r/R

)−γ
First, we differentiate the Bellman equation w.r.t. the new variable:

Vr (w, r) = βV ′w′ (w
′, r′)

∂w′

∂r
+ βV ′r′ (w

′, r′)
∂r′

∂r

Vr (w, r) = βV ′w′ (w
′, r′) (w − c) + βV ′r′ (w

′, r′) ρ (29)

Take the values are r = 0, this leads to:

Vr (w, 0) = V d
w (w)

β (w − c)
1− βρ

26



We now take the total derivative w.r.t. w , Dwf = ∂wf + da
dw
∂af , e.g. the full impact of

a change in w, including the impact it has on a change in the consumption c. The baseline

policy is c (w) = rw/R + y, so Dwc = r, and Dww
′ = d

(
R (w − c)

)
/dw = R−Rr/R = 1.

Dwc = r/R

Dww
′ = 1

This means that one extra dollar of wealth received today translates into exactly one dollar

of wealth next period: its interest income, r, is entirely consumed.

So differentiate (using the total derivative) equation 29. We obtain:

β−1Vwr (w, r) = V ′w′w′ (w
′, r′) (Dw′w) · (w − c) + V ′w′ (w

′, r′)Dw (w − c) + V ′w′r′ (w
′, r′) ρDww

′

= V ′w′w′ (w
′, r′) (w − c) + V ′w′ (w

′, r′) (1− r

R
) + V ′w′r′ (w

′, r′) ρ

so, using

V ′w′w′ (w
′, r′) = −γVw ·

1

w + wH
= −γVw ·

r

Rc

Vw,r =
β
V ′
w′
R

(
1− γr

(
w−c
c

))
1− ρβ

Finally, let’s derive the impact of a change on r on c : We have

Vw = β
(
R + r

)
V ′w′ = u′ (c)

so

dc

dr
=

Vwr
u′′ (c)

=
−1

u′′ (c)

Vw

R

1− γr
(
w
c
− 1
)

R− ρrβ

=
−1

γu′ (c) c

Vw

R

1− γr
(
w
c
− 1
)

R− ρr
dc

c
=

1

R

r
(
w
c
− 1
)
− 1/γ

R− ρr
dr
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A.2 General Situation

Suppose the fully rational model:

V (w, x) = max
a
u (w, x, a) + βEV (w′ (a) , x′)

The state variables are w, x, and the decision variable is a. The state variables evolve

according to:

w′ = Gw′ (w, x, a)

x′ = Gx′ (x)

We start with a simpler model, where x ≡ 0, i.e.

V d (w) = max
a
u (w, x, a) + βEV d (w′ (a))

where w′ = Gw′ (w, 0, a) .

Using the notation Dwf = ∂wf + da
dw
∂af , which is the total derivative with respect to w

(e.g. the full impact of a change in w, including the impact it has on a change in the action

a). Differentiating the Bellman equation, we obtain:

Vx (w, x) = ux + βV ′w′G
w′

x (w, x, a) + βV ′x′G
x′

x

Vw,x (w, x) = Dwux + βDw

[
V ′w′G

w′

x (w, x, a)
]

+ βGx′

x V
′
w′,x′Dww

′

so

Vw,x (w, 0) =
Dwux + βDw

[
Gw′
x (w, 0, a)V ′w′ (w

′, 0)
]

1− βGx′
x Dww′

(30)

Proposition 12 The impact of a change x on the value function is:

Vw,x (w, 0) =
Dwux + βDw

[
Gw′
x (w, 0, a)V ′w′ (w

′)
]

1− βGx′
x Dww′

(31)

The impact of a change x on the optimal action is:

da = −Ψ−1
a Ψxdx
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Ψ (a, x) = ua (w, a) + βV ′w′G
w′

a

Ψa = uaa + βGw′

a V
′
w′w′G

w′

a + βV ′w′G
w′

aa

Ψx = uax + βV ′w′xG
w′

a + βV ′w′G
w′

ax

They depend only on the transition functions and the derivatives of the simpler baseline value

function V ′w′ (w
′).

The same procedure can be followed when x′ = Gx′ (w, x, a), with more complex algebra.

B Appendix: Proofs

Proof of Proposition 4 We have

E
[
∂a

∂mi

uaa
∂a

∂mj

]
= E

[
Xi

∂a

∂xi
uaa

∂a

∂xj
Xj

]
=

∂a

∂xi
uaa

∂a

∂xj
E [XiXj]

=
∂a

∂xi
uaa

∂a

∂xi
σ2
i if i = j, or 0 if i 6= j

Hence,

(µ−m)E
[
∂a

∂m
uaa

∂a

∂m

]
(µ−m) =

∑
i

∂a

∂xi
uaa

∂a

∂xi
σ2
i (mi − µi)2 .

So,

m∗ = arg max
m

∑
i

−1

2

∂a

∂xi
uaa

∂a

∂xi
σ2
i (mi − µi)2 − κ

∑
i

∣∣mi −md
i

∣∣E[(Xi
∂a

∂xi
· uaa · ηa

)2
]1/2

= arg max
m

∑
i

{
−1

2

∂a

∂xi
uaa

∂a

∂xi
σ2
i (mi − µi)2 − κ

∣∣mi −md
i

∣∣ ∣∣∣∣σauaa ∂a∂xiσi
∣∣∣∣}

We have n decoupled problems, which makes the problem easy to solve.

It is easy to verify that the solution of

max
mi

−A (mi − µi)2 −B
∣∣mi −md

i

∣∣
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is, for A > 0, B ≥ 0,

mi = md
i + τ

(
µi −md

i ,
B

A

)
where function τ is given in (2).

Applying this result to A = −1
2
∂a
∂xi
uaa

∂a
∂xi
σ2
i and B = κ

∣∣∣σauaa ∂a∂xiσi∣∣∣, and µi = 1, we have

the announced formula for m∗, with

B

A
=
κ
∣∣∣σauaa ∂a∂xiσi∣∣∣
− ∂a
∂xi
uaa

∂a
∂xi
σ2
i

=
κσa
∂a
∂xi
σi

Proof of Proposition 6 The rational reaction function satisfies:

a∗ (x) = ad +
∑
i

bixi + φ (x)

for a function φ (x) such that |φ (x)| ≤ C ‖x‖2 for ‖x‖ ≤ B, for some positive B.

So, ∂a/∂x′i = bi and:

m∗i = τ

(
1,

κσa
σxi · ∂a/∂xi

)
= τ

(
1,

κσa
σxi · bi

)
We shall use the notation φ (x) := φ ((m∗ixi)i=1...n) also satisfies that for ‖x‖ ≤ B,∣∣φ (x)
∣∣ ≤ C ‖x‖2, hence φ (x) = O (x2). The BR reaction function is:

aBR (x) = arg max
a
u (a,m∗1x1, ....,m

∗
nxn)

= a∗ (m∗1x1, ....,m
∗
nxn)

= ad +
∑
i

bim
∗
ixi + φ ((m∗ixi)i=1...n)

= ad +
∑
i

biτ

(
1,

κσa
σxi · bi

)
xi + φ (x)

= ad +
∑
i

τ

(
bi,
κσa
σxi

)
xi + φ (x)

= ad +
∑
i

τ

(
bi,
κσa
σxi

)
xi +O

(
x2
)
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Proof of Proposition 6 Let us consider two function U and U∗

UBR (a, w, x) = u (a, w, x) + βEV BR (Fw (w, x, a) , F x (w, x, a))

U (a, w, x) = u (a, w, x) + βEV (Fw (w, x, a) , F x (w, x, a))

and define a∗∗ (w, x) and a∗ (w, x) to be the optimal actions given the associated utility

functions:

a∗∗ (w, x) = arg maxUBR (a, w, x) , a∗ (w, x) = arg maxU (a, w, x)

First, we will prove:

Lemma 1 We have, at x = 0,

∂a∗ (w, x)

∂x |x=0
=
∂a∗∗ (w, x)

∂x |x=0

Proof. The key fact comes from Proposition 7, and is:

Vw (w, 0) = V BR
w (w, 0)

Vww (w, 0) = V BR
ww (w, 0)

Vx (w, x)|x=0 = V BR
x (w, x)|x=0

Vwx (w, x)|x=0 = V BR
wx (w, x)|x=0

and

Ua = ua (a, w, x) + βE [Vw · Fw
a (w, x, a) + Vx · F x

a (w, x, a)]

Uax = uax + βE [Fw
x · Vww · Fw

a + Vw · Fw
ax]

+ βE [Vx · F x
ax + F x

x · VxxF x
a ]

Likewise, for UBR,

UBR
ax = uax + βE

[
Fw
x · V BR

ww · Fw
a + V BR

w · Fw
ax

]
+ βE

[
V BR
x · F x

ax + F x
x · V BR

xx F x
a

]
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Hence, we have

U∗ax|x=0 = UBR
ax|x=0

Note that we used F x
a = 0. It is necessarily, because in general Vxx 6= V BR

xx .

Likewise,

Uaa = uaa (a, w, x) + βE [Fw
a (w, x, a) · Vww · Fw

a (w, x, a) + Vw · Fw
aa (w, x, a)]

+ 2βE [F x
a (w, x, a) · Vxw · Fw

a (w, x, a)]

+ βE [F x
a (w, x, a) · Vxx · F x

a (w, x, a) + Vx · F x
aa (w, x, a)]

and a similar expression for UBR
aa , which leads to:

U∗aa = UBR
aa at x = 0

Finally, we have:

∂a∗ (w, x)

∂x |x=0
= −U−1

aa · Uax|x=0

= −UBR−1
aa · UBR

ax|x=0

=
∂a∗∗ (w, x)

∂x |x=0

Given aRat (w, x) = a∗ (w) +
∑

i bi (w)xi +O (x2), we have

∂a∗ (w, x)

∂xi
= bi (w)

Hence, the lemma gives:
∂a∗∗ (w, x)

∂xi
= bi (w)

so

a∗∗ (w, x) = a∗ (w) +
∑
i

bi (w)xi +O
(
x2
)

Finally,
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aBR (x) = a∗∗ (m∗ixi)

= a∗ (w) +
∑
i

bi (w)m∗ixi +O
(
x2
)

= a∗ (w) +
∑
i

bi (w) τ

(
1,

κσa
bi (w)σxi

)
xi +O

(
x2
)

= a∗ (w) +
∑
i

τ

(
bi (w) ,

κσa
σxi

)
xi +O

(
x2
)
.
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