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Abstract

We study the optimal extraction of a polluting non-renewable resource within the fol-
lowing framework: environmental regulation is imposed in the form of a ceiling on the stock
of pollution and a clean unlimited backstop technology can be developed by research and
development. More specifically, the time taken to develop a new technology depends on the
amount spent on R&D. A surprising result is that the stringency of the ceiling and the size
of the initial stock of the polluting non-renewable resource have a bearing on whether envi-
ronmental regulation speeds up the optimal arrival date of this new technology. Compared
to a scenario with no environmental externalities, stringent environmental regulation drives
up the optimal R&D investment and advances the optimal backstop arrival date only in the
case of a large initial resource stock. Otherwise, if the initial resource stock is small, regula-
tion reduces optimal R&D and postpones the optimal backstop arrival date. These results
are explained by the two roles played by the backstop technology. Firstly, the backstop
serves to replace oil once it has been exhausted. As extraction is slowed down by regulation,
the exhaustion of the non-renewable resource is postponed and the gains of innovation are
lowered. Secondly, environmental regulation raises the gains of innovation by increasing the
cost of consuming just oil.
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1 Introduction

New energy technologies, such as wind, solar or hydro energy, are likely to be needed to
combat climate change and public R&D is being done in order to improve these technologies
and lower their costs. The date when they will be broadly available for consumption should
have an impact on oil supply and it is not straightforward to determine which combination of
instruments (carbon tax and R&D toward clean technology) should be used in order to mitigate
Greenhouse Gases (GHG) emissions in an efficient manner. This paper combines two strands
of the literature to determine what effect a ceiling on the stock of pollution might have on the
optimal extraction path of a polluting non renewable resource and on the optimal R&D toward
an alternative backstop technology.

The first strand of the literature uses the Hotelling textbook model of exhaustible resources
(Hotelling (1931)) to determine the optimal path of extraction of a polluting exhaustible
resource, and thus the optimal time path for a carbon tax. The fact that polluting resources
are non renewable is critical for the design of the optimal time path of a carbon tax. Choosing
a wrong price path could exacerbate climate change by giving non-renewable resource owners
the incentive to accelerate extraction in anticipation of future losses, thereby generating a
green paradox (see Sinn (2008), Strand (2010)). Chakravorty, Magne & Moreaux (2006)
characterize the effect of environmental regulation, in the form of a ceiling on the stock of
pollution, on the dynamics of the transition from an exhaustible resource to an existing clean
backstop technology. We adopt the same modeling but, rather than assuming that a clean
renewable resource is already available at a given cost, we assume that R&D investment at
date 0 determines the date at which a new technology is available, based on a deterministic
innovation process as in Dasgupta et al. (1982).

The second strand of the literature that we refer to, in particular Dasgupta et al. (1982),
deals with the optimal timing of R&D toward a backstop technology aiming to replace a
non renewable resource. We compare the optimal backstop technology arrival date when
there is a ceiling on the stock of pollution, with the optimal backstop technology arrival
date without any pollution constraint, as determined by Dasgupta et al. (1982). This paper
addresses the following questions: Does the optimal R&D investment toward an alternative
backstop technology increase or decrease with environmental regulation ? The underlying
intuition is that environmental regulation has two effects. The first is that it postpones the
date of oil exhaustion, lengthening the time for which a potential backstop competes with
oil. From this point of view, R&D toward an alternative technology and carbon taxation
are substitutes: the energy used by future generations can be oil that has been saved due
to the carbon tax or an alternative backstop. The second effect is that environmental reg-
ulation increases the marginal cost of consuming oil and gives incentives to develop the backstop.

In the first section, we introduce the model, combination of Chakravorty, Magne & Moreaux
(2006) and Dasgupta et al. (1982).

2 Model with pollution and endogenous innovation

2.1 Assumptions and notations

We consider the energy commodity market. The corresponding gross surplus associated with
its consumption is given by a twice continuously differentiable function u, strictly increasing
and strictly concave. We denote the corresponding demand (u′)−1 (p) by D(p).
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Energy can be generated from a non-renewable resource such as oil. The non-renewable resource
is extracted from a stock Q0 known with certainty from the outset. Let xt the rate of extraction
of the non-renewable resource. The residual stock Qt at date t is hence:

Qt = Q0 −
ˆ t

0
xτdτ (1)

The cost of extraction of this non-renewable resource is zero1. The burning of this resource
increases the stock of CO2, denoted Zt, in the atmosphere. We assume natural decay at a
constant rate α such that:

Żt = xt − αZt (2)

The stock of pollution at date t is thus (Z0 given):

Zt = e−αt
(
Z0 +

ˆ t

0
eαuxudu

)
The environmental constraint is that the stock of pollution should not exceed a limit Z:
∀t, Zt ≤ Z̄. This ceiling Z̄ may be exogenously fixed by a regulatory institution, or a
bang-bang damage function. Once the stock of pollution has reached the ceiling, the flow of the
non-renewable resource that can be burnt cannot exceed the natural decay, i.e. xt ≤ αZ ≡ x.
The corresponding energy minimal price is given by p̄ = u

′
(x̄).

A backstop technology can be developed by R&D. The supply of the energy from the backstop
technology is inelastic at price q once it has been developed. We call yt the consumption of
backstop energy at date t. The total energy consumed at date t is hence xt + yt. The date
at which this innovation occurs depends on the amount spent on R&D. As in Dasgupta et al.
(1982), we assume that the necessary investment is reduced (in date 0 value) by postponing
the date of innovation. Let T be the date of invention; the R&D cost function is c(T ), with
c′(T ) ≤ 0. We make the following assumptions.

1. Assumption 1 : The marginal benefit, expressed at date T , of delaying innovation
−c′(T )erT is increasing with T .

2. Assumption 2 : limT→0−erT c
′
(T ) = +∞, so that for all Q0 > 0 and backstop cost q > 0

it is never optimal to innovate at date 0

3. Assumption 3 : limT→∞−erT c
′
(T ) < u(D(q))− qD(q), otherwise performing no R&D at

all would be optimal, irrespective of Q0.

4. Assumption 4 : q < p̄. At the ceiling, it is cheaper to use the backstop technology if any,
than the non-renewable resource alone.

2.2 The social planner problem

The social planner maximizes the net surplus by choosing extraction rate xt, innovation date T
and rate of use of the backstop yt for t ≥ T , which maximize:

ˆ T

0
u(xt)e

−rtdt+

ˆ +∞

T

(
u(xt + yt)− qyt

)
e−rtdt− c(T )

1Choosing a low constant extraction cost would not change the results
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subject to: 

Q̇t = −xt
(
λTt
)

Żt = −αZt + xt
(
µTt
)

Zt ≤ Z
(
υTt
)

xt, yt ≥ 0
(
aTt ≥ 0, bTt ≥ 0

)
Q0, Z0 given
limt→+∞Qt ≥ 0

In the above program we have denoted the Lagrange multipliers in brackets.

2.2.1 Solving the planning problem

For sake of clarity we first derive the solution for T given. We will, in a second step, determine
the optimal date of innovation. Denote by H(s), the indicator function of R+. The first order
conditions are:

u
′
(xt +H(T − t)yt)− λTt + µTt + aTt = 0

u
′
(xt +H(t− T )yt)− q + bTt = 0

Together with the complementary slackness conditions:

νTt ≥ 0 and νTt
(
Z − Zt

)
= 0

aTt ≥ 0 and aTt xt = 0

bTt ≥ 0 and bTt yt = 0

The dynamics of the costate variables are determined by:

λ̇Tt = rλTt ⇐⇒ λTt = λT0 e
rt

µ̇Tt = (r + α)µTt + νTt

Remark that the costate variable µTt is non positive. If Zt < Z̄ over some time interval, then
νTt = 0 over that interval and µTt = µT0 e

(r+α)t over that interval. The transversality conditions
at infinity are moreover given by:

lim
t→+∞

e−rtλTt Qt = λT0

(
lim

t→+∞
Qt

)
= 0

and
lim

t→+∞
e−rtµTt Zt = 0

The solution is denoted by starred letters. As long as the non-renewable resource is used (a∗Tt ),
its full marginal cost (equal to the marginal utility of consumption) is given by p∗Tt = λ∗Tt −µ∗Tt .
This is the sum of the scarcity rent λ∗Tt = λ∗T0 ert and the shadow cost of pollution −µ∗Tt .
At the ceiling, the price of the resource is p∗Tt = p̄ if the backstop has not yet arrived (i.e.
if t < T ). In this case x∗Tt = αZ̄ and y∗Tt = 0. If the ceiling is binding and the backstop
technology has arrived (i.e. if t ≥ T ), then p∗Tt = q , x∗Tt = αZ̄, and u′(x∗Tt + y∗Tt ) = q, so that
y∗Tt = D(q) − αZ̄. If the scarcity rent is above p̄, the ceiling constraint is not binding and the
shadow price follows a Hotelling path : −µ∗Tt = 0 and u′

(
x∗Tt
)

= λ∗T0 ert.

We can write the following proposition characterizing the solution (with T fixed).
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Proposition 1. With T fixed, calling T ∗e the date of oil exhaustion, the solution
(x∗Tt , y∗Tt , λ∗T0 , µ∗T0 , µ∗Tt , T ∗e ) of the optimization problem is given by2 :

1. u′
(
x∗Tt + y∗Tt

)
=
(
λ∗T0 ert − µ∗Tt

)
H(T − t) + min

(
q, λ∗T0 ert − µ∗Tt

)
H(t− T )

2. −µ∗Tt = max

[
min

(
pH(T − t) + qH(t− T )− λ∗T0 ert,−µ∗T0 e(r+α)t

)
, 0

]

3. y∗Tt =

(
(D(q)− x̄)H(T ∗e − t) +D(q)H(t− T ∗e )

)
H(t− T )

4. maxt

(
e−αt

(
Z0 +

´ t
0 e

αux∗Tu du
))

= Z

5. T ∗e = max
(
T, 1

r ln( q
λ∗T0

)
)

6.
´ T ∗e

0 x∗Tu du = Q0

The problem is very similar to that studied by Chakravorty, Magne & Moreaux (2006).
However, unlike them, the backstop technology cannot be used before arrival date T . The
solution exposed in Chakravorty, Magne & Moreaux (2006) would be the solution to the
problem presented here if the R&D cost was zero for all T .

In Proposition 1, the second item shows that several configurations are possible, depending on
arrival date T . For instance if the backstop arrives after the binding date of the ceiling, while
the ceiling is binding and before exhaustion, then the shadow price u′(x∗Tt + y∗Tt H(t− T ))
falls from p to q at the very date of innovation. If the binding date coincides with T then
before innovation date the shadow price is equal to the sum of the scarcity rent λ∗T0 ert and the
shadow price of pollution −µ∗Tt = −µ∗T0 e(r+α)t, with λ∗T0 erT − µ∗T0 e(r+α)T ≤ p̄, and falls to q
after. In the sequel we shall see all the possible configurations of the optimal shadow prices paths.

At this point of the presentation one can already do several important remarks. The scarcity
rent λ∗T0 ert is indeed the price that would be set by oil owners in perfect competition if there
was a carbon tax −µ∗Tt , and if the backstop was planned to arrive at date T . We therefore refer
to −µ∗Tt as the “carbon tax” even though there are several possible carbon taxes. Indeed, in this
model, any carbon tax of the form: λert − µ∗Tt with λ ≤ λ∗T0 would lead to the same optimal
extraction path, it would only impact the sharing of the rent between the tax levier and the oil
owners. It is important for the time path of the carbon tax to depend on the arrival date of
the backstop. For instance, if the arrival date of the backstop was exogenously advanced after
the carbon tax had been implemented (or if the backstop was subsidized, as in Van der Ploeg
& Withagen (2010)), it would result in accelerated extraction and more pollution, thereby
generating a “green paradox”.

The second step consists in finding the optimal innovation arrival date, which maximizes
V (Q0, Z0, Z̄, T )− c(T ).

In the following, we compute the optimal extraction rate and optimal backstop arrival date. We
compute the optimal price path for each possible innovation date. We derive from the optimal
price path for arrival date T the marginal cost of delaying innovation at this arrival date. We

2If it exists, otherwise the ceiling is not binding and the solution is in Dasgupta et al. (1982).
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first recap (see Dasgupta et al. (1982)), in Section 3.1, the solution to this planning program
when there is no constraint on the stock of pollution. Then, in Section 3.2, we move on to the
case of a low ceiling on the stock of pollution. In order to gain intuition, we first consider the
case where the initial stock of pollution is already at the (stringent) ceiling in subsection 3.2.1.
Then we study the general case with a stringent ceiling in subsection 3.2.2.

3 Optimal innovation date and extraction path

3.1 Unconstrained case: no externality

This case is a special case of the problem presented above, when Z̄ = +∞. This case is studied
in Dasgupta et al. (1982). It is never useful to develop the backstop technology before the oil is
exhausted. The backstop’s only role is to replace the non-renewable resource when there is no
oil left. We denote with a˜on top the solution of the problem without externality. Let denote
T̃0 the date at which the oil is exhausted in a Hotelling model with backstop available at price
q from the outset.

Price path for any arrival date T : For any arrival date before T̃0, the backstop remains
unused before T̃0 and the non-renewable resource’s price path follows a Hotelling price
path p̃∗Tt = λ̃0e

rt. It is exhausted at date T̃0, and the backstop is used from this date
on, at price q. For any arrival date greater than T̃0, the oil is exhausted exactly at the
innovation date. Prior to invention, the non-renewable resource’s price path follows a
Hotelling price path :

u
′
(x̃∗Tt ) = p̃∗Tt = λ̃∗T0 ert

where λ̃∗T0 is the initial scarcity rent for arrival date T , satisfying that
´ T

0 x̃(λ̃∗T0 ert)dt = Q0.
The final scarcity rent λ̃∗T0 erT is above q. At arrival date, oil is exhausted and the energy
price falls from λ̃∗T0 erT to q. After the invention, energy price is equal to the marginal cost
of producing the substitute q.

Optimal arrival date: The marginal benefit from delaying innovation due to saved R&D,
−c′(T )erT , is equal, at the optimal arrival date, to the marginal cost of delaying innovation.
Because the backstop remains unused prior to date T̃0, the marginal cost of delaying
innovation is zero for all T ≤ T̃0. For any arrival date after T̃0, this marginal cost is
(u(D(q))− qD(q))− (u(x̃∗TT )− p̃∗TT x̃∗TT ). It is the sum of the welfare loss from consuming
the oil at date T instead of consuming the backstop u(x̃∗TT ) − (u(D(q) − qD(q)) and the
welfare loss from reduced oil consumption at all dates before T : consumption is reduced
during the consumption path ending at T − dT by exactly x̃∗TT . It costs the discounted
marginal utility of consumption, which is constant along the Pareto efficiency path, times
the amount of consumption transferred to be consumed at date T, −p̃∗TT x̃∗TT

The optimal price path is represented in Figure 1.

Proposition 2. As shown in Dasgupta et al. (1982), at the optimal unconstrained innovation
date T̃ :

−c′(T̃ )erT̃ = (u(D(q))− qD(q))− (u(x̃∗T̃
T̃

)− p̃∗T̃
T̃
x̃∗T̃
T̃

) (3)

The main results are :

• Result 1: The non-renewable resource is exhausted exactly at the date of innovation.

• Result 2: The price of the non-renewable resource at optimal arrival date T̃ is higher
than the exogenous price of the renewable resource p̃∗T̃

T̃
> q.
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Figure 1: Price path for endogenous arrival date, without pollution (Z̄ = +∞).

• Result 3: The optimal introduction date for the backstop technology is increasing with the
initial stock of the non-renewable resource: T̃ (Q0) is an increasing function of Q0.

• Result 4: The final price of the non renewable resource decreases with the initial stock of
the non renewable resource.

At the optimal arrival date, Eq.3 holds, so that the larger Q0, the later T̃ , and the lower p̃∗T̃
T̃
,

and then the lower the initial scarcity rent. Therefore, the extraction rate is increasing with
the initial stock of the non-renewable resource, as is the stock of pollution in the atmosphere.
For a given ceiling constraint on the stock of pollution Z̄, there exists a threshold level for the
non-renewable resource such that, if the initial stock of the non-renewable resource is over this
threshold, the unconstrained stock of pollution becomes greater than the constrained stock of
pollution: ∀Z̄,∃Qmin(Z̄) s.t. Q > Qmin(Z̄)⇒ Zt > Z̄ for some t. (Formal proof in Appendix A.)

The same modeling approach is taken in the next section, but the externality caused by the
burning of fossil fuels is taken into account. All the notations corresponding to the case with no
externalities are indicated with a tilde˜on top. In the following, we denote Ñ(T ) = (u(D(q))−
qD(q))− (u(x̃∗TT )− p̃∗TT x̃∗TT ).

3.2 Externality case with a stringent ceiling on the stock of pollution: αZ̄ < D(q)

If αZ̄ < D(q), the maximum quantity of CO2 that can be released into the atmosphere at the
ceiling, αZ̄, is less than the demand for energy at price q, D(q). This is the case if q < p̄, with
q being the price for the backstop once it has been developed. When the ceiling is binding, in
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order to remain at the ceiling, either oil can be consumed at price p̄ or oil and the backstop can
be consumed together at price q if the backstop has been developed. With a low ceiling, this
second option is preferable, because q < p̄. The backstop is not only useful to replace oil when
it is exhausted, but also to lower energy cost when the ceiling is binding.

3.2.1 Starting from the ceiling Z0 = Z̄

In order to build an intuition and understand how environmental regulation affects innovation
and extraction, we assume first that the initial stock of pollution is at the ceiling Z0 = Z̄, this
implies that, for all t, xt ≤ αZ̄.

Optimal price path for a given arrival date. Let denote t0(Q0) the date when oil would
be exhausted if xt = αZ̄ for all t, i.e. t0(Q0) ≡ Q0

αZ̄
.

• If arrival date T is prior to t0(Q0), extraction is limited to αZ̄ at each date until
exhaustion at date t0(Q0). Before arrival, the ceiling is binding, then ν∗Tt > 0 and
p∗Tt = p̄. Up to the innovation date, the price is equal to p̄. At the arrival date T ,
oil is not exhausted and the price falls from p̄ to the backstop price q. As µ∗Tt is non
positive, item 2 of Proposition 1 implies that the scarcity rent at arrival date λ∗T0 erT

is thus lower than q and the shadow cost of pollution falls from −µ∗TT− = p̄−λ∗T0 erT to
−µ∗TT+ = q−λ∗T0 erT . Then, as long as there is oil left, the non-renewable resource and
the backstop are used jointly at price q. At date t0(Q0), the scarcity rent reaches the
backstop price λ∗T0 ert0(Q0) = q and the oil is exhausted. From this date t0(Q0), only
energy supplied by the backstop is consumed, at price q. The oil extraction path, as
well as the scarcity rent, is exactly the same as it would have been if the backstop
had been available from the outset: for all T ≤ t0(Q0), λ∗T0 = λ0

0. The shadow cost
of pollution, however, depends on the arrival date T . The price path is illustrated on
Fig.2.

Arrival date 

T
t

rtTT
t ep **

0
* µλ −=

Exhaustion date p

p

rtT e*
0λ

T )( 00 Qt t

T
t
*µ−

q

T*
0λ

Figure 2: Price path (bold solid line) for exogenous arrival date before t0(Q0) in the constrained
case.
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• If innovation arrives at date T later than t0(Q0), initially as the ceiling is binding,
then ν∗Tt > 0 and p∗Tt = p̄. The scarcity rent λ∗T0 ert reaches p̄ before t0(Q0). From
this date, as xt < αZ̄ the ceiling ceases to be binding, the shadow price of the stock of
carbon −µ∗Tt is zero and resource use follows a Hotelling path through to exhaustion.
During this phase, what determines oil price is the constraint on the stock of oil
(scarcity) and not the constraint on the stock of pollution (ceiling). The resource
price and the scarcity rent are equal. The final price of the oil is over p̄. The price
path is illustrated on Fig.3

Arrival date 

T
t

rtTT
t ep **

0
* µλ −=

Exhaustion date p

p

rtT e*
0λ

T)( 00 Qt t

T
t
*µ−

q
T*

0λ

Figure 3: Price path (bold solid line) for exogenous arrival date after t0(Q0) in the constrained
(solid line).

Optimal arrival date. • The value of innovating at date T < t0(Q0) can be written:

V (Q0, Z̄, Z0, T ) =

ˆ T

0
u(x̄)e−rtdt+

ˆ t0(Q0)

T
(u(D(q))− q(D(q)− x̄))e−rtdt

+

ˆ ∞
t0(Q0)

(u(D(q))− qD(q))e−rtdt

So that the marginal cost N(T ) of delaying innovation expressed at date T , writes,
for all T < t0(Q0):

N(T ) = erT
∂V

∂T
= (u(D(q))− qD(q))− (u(x̄)− qx̄)

The marginal cost of delaying innovation can be broken down into two terms.

N(T ) =

((
u(D(q))− qD(q)

)
−
(
u(x̄)− p̄x̄

))
︸ ︷︷ ︸

constrained oil price increases N

− x̄

(
p̄− q

)
︸ ︷︷ ︸

oil left at arrival date decreases N

The first term in the marginal cost of delaying arrival looks like the marginal cost
in the unconstrained case, Ñ(T ) =

(
u(D(q)) − qD(q)

)
−
(
u(x̃∗TT ) − p̃∗TT x̃∗TT

)
. As
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T < t0(Q0), p̄ is necessarily greater than final oil price of the unconstrained case
p̃∗TT , so that this first term is greater than in the unconstrained case. Therefore, the
incentive to innovate to lower the energy price is greater in the constrained case.
However, This is not the only driver of innovation. Indeed the second term reduces
the marginal cost of delaying innovation. Indeed, because the oil is not exhausted at
arrival date T , delaying arrival does not reduce the quantity of oil consumed before
T , contrary to the unconstrained case with final price p̄. Delaying innovation then
reduces welfare before T more in the unconstrained case than in the constrained case3

for the same energy price drop from p̄ to q.
• The value of innovating at T > t0(Q) writes, if we denote h(T ) the end of the ceiling

period:

V (Q0, Z̄, Z0, T ) =

ˆ h(T )

0
u(x̄)e−rtdt+

ˆ T

h(T )
u(x∗Tt )e−rtdt

+

ˆ ∞
T

(u(D(q))− qD(q))e−rtdt

As in the unconstrained case, the marginal cost of delaying innovation can be written
N(T ) = (u(D(q))−qD(q))−(u(x∗TT )−p∗TT x∗TT ), because delaying innovation entails a
loss in welfare from consuming, at date T , oil at price p∗TT instead of energy from the
backstop at price q ((u(D(q))− qD(q))−u(x∗TT )) and it entails a loss in welfare from
decreased oil consumption, by x∗TT , before T , valued at price p∗TT . This expression is
the same as the marginal cost of delaying innovation for the unconstrained case. At
the arrival date, oil is exhausted. Regulation slows down oil extraction. The final
price p∗TT is consequently less than the final price in the unregulated case for the same
arrival date p̃∗TT .

The following proposition holds:

Proposition 3. (Preliminary results)

1. The optimal arrival date T ∗ is given by4 :

−c′(T ∗)erT ∗ = N(T ∗)

With, starting from the ceiling:

N(T ) =

{
(u(D(q))− qD(q))− (u(x̄)− qx̄) if T < t0(Q0)
(u(D(q))− qD(q))− (u(x∗TT )− p∗TT x∗TT ) T ≥ t0(Q0)

2. There exists an initial stock of oil Ql such that:

• For all Q0 ≤ Ql, innovation is postponed by regulation compared to the case with no
externality: T ∗ > T̃

3Delaying innovation reduces welfare before T more, by p̄x̄, in the unconstrained case than in the constrained
case. However, for the same reason, expenses saved due to a delayed arrival, and hence extracting oil at no cost
instead of purchasing energy from the backstop, is q(D(q)− x̄) in the constrained case whereas it is qD(q) in the
unconstrained case with final price p̄. The marginal cost of delaying arrival is consequently (p̄− q)x̄ lower, with
a ceiling constraint on the stock of pollution, than the unconstrained case with final price p̄ and exhaustion.

4V (Q0, Z0, Z̄, T ) is continuous but not derivable in t0(Q0). However limT→T∗−
(
erT ∂V ((Q0,Z0,Z̄,T )

∂T

)
increases

with T ∗, so that V (Q0, Z0, Z̄, T ) − c(T ) has a unique maximum. For ease of notation, we write that, at
optimal arrival date −erT

∗
c
′
(T ∗) = erT

∗ ∂V (Q0,T )
∂T

also if limT→T∗−
(
erT ∂V ((Q0,Z0,Z̄,T )

∂T

)
≤ −erT

∗
c
′
(T ∗) and

limT→T∗+
(
erT ∂V ((Q0,Z0,Z̄,T )

∂T

)
≥ −erT

∗
c
′
(T ∗)
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• For all Q0 > Ql, innovation is advanced by regulation compared to the case with no
externality: T ∗ ≤ T̃

If limT→+∞−erT c
′
(T ) ≤ u(D(q))− qD(q)− (u(x̄)− qx̄), then Ql < +∞

N(T ) is increasing and −erT c′(T ) is decreasing so that there is a single maximum.

Proof . Consider the limit price pl, satisfying

u(x(pl))− plx(pl) = u(x̄)− qx̄

Then p̄ > pl > q. If the unconstrained optimal final price is below pl, then the entire price
path is below p̄, so that date t0(Q0) is after the optimal innovation date T̃ . The constrained
marginal cost of delaying innovation at date T̃ satisfiesN(T̃ ) = (u(D(q))−qD(q))−(u(x̄)−
qx̄) = (u(D(q))− qD(q))− (u(x(pl))− plx(pl)) ≥

(
u(D(q))− qD(q))− (u(x̃T̃ )− p̃T̃ x̃T̃

)
=

Ñ(T̃ ): regulation drives up optimal innovation if final unconstrained case is below pl (see
the upper figure of Fig.4). Similarly, if final unconstrained optimal final price is above pl,
regulation postpones optimal arrival date, compared to the unconstrained case. Let T l be
such that5:

(u(D(q))− qD(q))− (u(x̄)− qx̄) = e−rT
l
c
′
(T l) (4)

and (Ql, λl) be the solution of : {
Ql =

´ T l
0 D(λlert)dt

λlerT
l

= pl
(5)

As pl < p̄, then T l < t0(Ql) and T l is the optimal date of innovation if Q0 = Ql for both
the no externality case and the externality case. For all Q0 > Ql, as dp̃∗Tt /dQ0 < 0, the
final unconstrained price satisfies p̃∗T̃

T̃
< pl and the optimal unconstrained arrival date T̃

satisfies T̃ > T l. As dt0(Q0)/dQ0 > 0, then t0(Q0) > T l, the optimal date of innovation in
the constrained case is thus T = T l. Optimal arrival date is advanced by the constraint on
the stock of pollution. For Q0 such that Qmin < Q0 < Ql, the optimal date of innovation
in the unconstrained case is before T l, as the optimal arrival date increases with the initial
stock of oil in the unconstrained case. If t0(Q0) ≥ T l, the optimal date of innovation is
T = T l in the externality case (see the lower figure of Fig.4), so that innovation occurs
later in the externality case than in the no externality case. If t0(Q0) < T l, then at date
T̃ , the price path is in a Hotelling phase in both constrained and unconstrained case, with
p∗T̃
T̃
≤ p̃∗T̃

T̃
, so that N(T̃ ) < Ñ(T̃ ), so that innovation occurs later in the externality case

than in the no externality case.

The comparison between the marginal cost of delaying the arrival date in the constrained case
and in the unconstrained case depends on the relative magnitude of two diverging effects: a
higher oil price due to regulation and less arrival utility because there is oil left. The larger the
initial stock of non-renewable resource Q0, the lower the oil price at optimal arrival date in the
unconstrained case. If Q0 is large, the gains from reducing the constrained oil price, from p̄ to q,
are sufficiently high compared to the gain from reducing the unconstrained oil price to offset the
fact that the backstop is made less useful in the long run to replace the oil once it is exhausted
(because regulation postpones oil exhaustion). On the other hand, if Q0 is small enough so
that the final price in the unconstrained case is not much below p̄, the difference between oil
prices at the unconstrained optimal arrival date in the unconstrained and constrained case does

5if T → −erT c
′
(T ) is always above (u(D(q))− qD(q))− (u(x̄)− qx̄), then Ql defined hereafter is equal to +∞
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Figure 4: Price path for optimal constrained arrival date T l, for Q0 > Ql (upper figure) and for
Q
′
0 < Ql (lower figure), in the constrained (solid line) and unconstrained case (dotted line).

not offset the second term of the marginal cost of delaying innovation in the constrained case
(p̄− q)x̄. If Q0 is small enough so that the final price in the unconstrained case is above p̄, then
final unconstrained oil price is above final constrained price, so that there is only one of the two
effects: regulation postpones extraction and thus postpones optimal arrival date.

3.2.2 Starting from below the ceiling: Z0 < Z̄

Starting from below the ceiling, it is never useful to innovate before the ceiling has been reached.
It would result in a dormant technology, which has been developed but is not used because
cheap oil can be used as long as the ceiling is not binding. This result echoes the Chakra-
vorty, Magne & Moreaux (2006) finding. In their case, the backstop is never used before the
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ceiling is reached. We restrict our attention, in the following, to the case when extraction is
slowed down by regulation, for arrival at T̃ (assumption 5). This seems a reasonable assump-
tion, which is obviously satisfied if, for a given arrival date, regulation initially increases oil
price. For all (Z0, Z̄), a sufficient condition is that Z̄ is not too large compared to Z0 (Then
∀Q0, at the optimal unconstrained date T̃ , either oil is not exhausted in the constrained case or
p∗T̃
T̃
≤ p̃∗T̃

T̃
, see Appendix C)6. In this case there are two diverging effect of the externality on

optimal backstop arrival date: Firstly, the externality makes innovation useful, as it allows for
the consumption of cheap energy despite the externality. Secondly, regulation postpones the
exhaustion of the oil. In the future, energy from the backstop will be in competition with oil
that has been saved by regulation.

Optimal price path for a given innovation date. It is first necessary to characterize the
optimal price path for any arrival date to compute the marginal cost of delaying innovation
at each date. The expression of the marginal cost of delaying innovation depends on the
arrival date and this expression changes at some pivotal dates that we define below.

• The date t1 is the start of the ceiling period when there is backstop available at
price q from the outset. If arrival occurs before t1, i.e. while the ceiling constraint
is non-binding, the price path is the same as if the backstop was available from the
outset (it is described in Chakravorty, Magne & Moreaux (2006)). The oil price
p∗Tt = λ∗T0 ert − µ∗T0 e(r+α)t reaches, along the optimal path, price q at the start of
ceiling period t1. From this date on, the backstop and the oil are used jointly at price
q until oil exhaustion at date θ1. Date t1 is such that (λ∗t10 , µ∗t10 , t1, θ1) satisfy:

Zt1 = Z̄

λ∗t10 ert1 − µ∗t10 e(r+α)t1 = q

λ∗t10 erθ1 = q´ θ1
0 x∗t1t dt+ (θ1 − t1)αZ̄ = Q

The price path and extraction path are represented in Fig.5.
• If the arrival date is after t1, then the resource price at the arrival date is greater

than q. We define date t2, such that, when the arrival date is between t1 and t2,
the ceiling is reached exactly at T , at price p∗TT between q and p̄. Before T , the
ceiling is non-binding and the shadow price of pollution rises at rate r+α, for t ≤ T ,
p∗Tt = λ∗T0 ert − µ∗T0 e(r+α)t. At arrival date, the price falls from p∗TT to q. After the
arrival date, the backstop and the non-renewable resource are used at price q until
exhaustion at date h(T ). (λ∗T0 , µ∗T0 , h(T )) satisfy:

ZT = Z̄´ h(T )
0 x∗Tt dt = Q

λ∗T0 erh(T ) = q

• If the arrival date is equal to t2 or happens after t2, the oil price remains equal to p̄
from date t2 until the arrival date or until the scarcity rent reaches p̄. Date t3 is such

6The fact that regulation actually slows down oil extraction is always true for large Q, but, because we have
assumed that natural dilution is proportional to the stock of pollution, accelerating extraction at the beginning,
i.e. before the ceiling is reached, increases the maximum quantity of oil that can be burnt before a given date
for a given pollution constraint. If Z̄ − Z0 is large, it might be the case that the proportional pollution dilution
makes it profitable to accelerate extraction (and not to postpone it) so that the final price in the unconstrained
case is below the final price in the constrained case. We do not consider this case here, but it could be studied in
further work. It is interesting to note, however, that if instead of assuming proportional natural decay, we had
assumed that α decreases inversely with the stock of pollution in the atmosphere Zt, then this assumption would
always be satisfied, and all the results hereafter would be true, irrespective of Z0. Stock dependent decreasing
natural decay would be more accurate, according to Joos et al. (1996). See a calibration in appendix C.
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Figure 5: Price and extraction paths for arrival date t1(Q)

that, for any arrival date T between t2 and t3, extraction follows the (same) following
path: the ceiling is non-binding in the first phase ending at date t2 at price p∗Tt2 = p̄,
during this first phase p∗Tt = λ∗T0 ert − µ∗T0 e(r+α)t; then, from date t2 until date t3,
the oil is used in quantity x̄ at each date until oil exhaustion at date t3, when the
scarcity rent reaches q, λ∗T0 ert3 = q. Between arrival date T and exhaustion t3, both
the backstop and oil are used, at price q, exactly x̄ of oil is consumed at each date.
For arrival date between t2 and t3, λ∗T0 = λ∗t20 , µ∗T0 = µ∗t20 and x∗Tt = x∗t2t . Dates t2
and t3 are such that (λ∗T0 , µ∗T0 , t2, t3) solve:

Zt2 = Z̄

λ∗T0 ert2 − µT0 e(r+α)t2 = p̄
λ∗T0 ert3 = q´ t2

0 x∗Tt dt+ (t3 − t2)αZ̄ = Q

The price path and extraction path for arrival date t2 are represented in Fig.6. The
oil is exhausted at date t3. For any arrival date between t2 and t3, the extraction
path is the same as in Fig.6.
• If the arrival date is after t3, the scarcity rent is higher than q at the arrival date

and the oil is exhausted precisely at the arrival date. We define t4 such that for any
arrival date between t3 and t4, the scarcity rent at the innovation date is between
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Figure 6: Price path for arrival date t2. The oil is exhausted at date t3 for any arrival date
between t2 and t3.

q and p̄. At the arrival date between t3 and t4, the ceiling constraint is tight and
the price falls from p̄ to q, and the oil is exhausted. Denoting g(T ) as the start of
the ceiling period, for t ≤ g(T ), p∗Tt = λ∗T0 ert − µ∗T0 e(r+α)t then, for g(T ) ≤ t ≤ T ,
p∗Tt = p̄. With (λ∗T0 , µ∗T0 , g(T )) solving:

Zg(T ) = Z̄´ T
0 x∗Tt dt = Q

λ∗T0 erg(T ) − µ∗T0 e(r+α)g(T ) = p̄

• For innovation date t4, the ceiling is reached at date θ3. Before that date, p∗Tt =
λ∗T0 ert − µ∗T0 e(r+α)t, with p∗Tθ3 = p̄. From θ3 to t4, price equals p̄. Oil is exhausted at
t4, with final scarcity rent p̄. By definition, (λ∗t40 , µ∗t40 , θ3, t4) is the solution of:

Zθ3 = Z̄

λ∗t40 erθ3 − µ∗t40 e(r+α)θ3 = p̄

λ∗t40 ert4 = p̄´ θ3
0 x∗t4t dt+ (t4 − θ3)αZ̄ = Q

The price path and extraction path for arrival date t4 are represented in Fig.7.
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• If the arrival date is after t4, the scarcity rent is higher than p̄ at the arrival date, the
constraint is non-binding at the arrival date and the price follows a "Hotelling path";
the oil is exhausted precisely at this date. Calling f1(T ) the start of the ceiling period
and f2(T ) the end of the ceiling period, for t ≤ f1(T ), p∗Tt = λ∗T0 ert − µ∗T0 e(r+α)t;
then, for f1(T ) ≤ t ≤ f2(T ), pt = p̄ and finally, for t ≥ f2(T ), p∗Tt = λ∗T0 ert. With
(λT0 , µ

T
0 , f1(T ), f1(T )) solving:

Zf1(T ) = Z̄´ T
0 x∗Tt dt = Q

λ∗T0 erf1(T ) − µ∗T0 e(r+α)f1(T ) = p̄

λ∗T0 erf2(T ) = p̄

Optimal arrival date . All dates (t1, t2, t3, t4) depend on Q and Z̄.

Proposition 4. The optimal arrival date T ∗ is characterized by:

e−rT
∗
c
′
(T ∗) = N(T ∗)
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With:

N(T ) =


0 T ≤ t1
(u(D(q))− qD(q))− (u(x∗TT )− x∗TT p∗TT )− x̄(p∗TT − q) t1 < T ≤ t2
(u(D(q))− qD(q))− (u(x̄)− qx̄) t2 < T ≤ t3
(u(D(q))− qD(q))− (u(x̄)− λ∗T0 ertx̄) t3 < T ≤ t4
(u(D(q))− qD(q))− (u(x∗TT )− p∗TT x∗TT ) T > t4

N(T) is computed in appendix D.

The oil price p∗TT at arrival date between t1 and t2 increases with T (see appendix B.1),
and by definition p∗t1t1 = q and p∗t2t2 = p̄ ; the final scarcity rent increases with T between t3
and t4 (see appendix B.2) and by definition, λ∗t30 ert3 = q and λ∗t40 ert4 = p̄. The marginal
cost of delaying innovation is thus increasing with T and continuous at dates t1, t2, t3 and
t4. So that there is a single solution to the maximization problem. The exhaustion date is
increasing with the innovation arrival date. For any arrival date, the energy price is first
increasing then decreasing at the arrival date. This result contrasts with Chakravorty et al.
(2009). They find that, with learning by doing in the clean substitute, regulation may
lead to cyclical energy price behavior. They assume that the unit cost of the renewable
resource increases with the quantity supplied in each period, such that solar energy may be
used before the ceiling is binding, but decreases between two periods with cumulative use.
The process studied here is very different, as we assume a fixed cost for energy supplied
by the backstop. If we assumed learning by doing after arrival, or positive spillovers in
the clean sector (as in Acemoglu et al. (2009)), regulation might further speed up the
optimal arrival of the clean substitute. Assuming an increasing unit cost of clean energy
in each period may lead to more complicated patterns for the price paths in our case as well.

The marginal cost of delaying innovation expressed at arrival date, N(T ), must be positive
at the arrival date: p∗T ∗T ∗ > q, so thatResult 2 remains true with environmental regulation.
Moreover, Result 3 continues to hold:

Proposition 5. The optimal arrival date increases with the initial stock of the non-
renewable. However, if limT→∞−erT c

′
(T ) < u(D(q)) − qD(q) − (u(x̄) − qx̄), there is

a cut-off date T lim such that arrival is never after T lim.

The proof is presented in Appendix E. Increasing the stock of the non-renewable resource
reduces the incentive to innovate. However, if Q0 is sufficiently high, it is as if the supply
of Q0 were infinite. In the unconstrained case, if the stock of oil were infinite, innovation
would be useless, whereas in the constrained case, because regulation increases the price
of consuming oil, it is useful to innovate at some date T lim even when the stock of oil is
infinite.

The following proposition holds:

Proposition 6. There exists a stock Ql(Z0, Z̄) of the non-renewable resource, such that:

• ∀Q ≥ Ql, regulation advances the optimal date of innovation compared to a case with no
externality.
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• ∀Q < Ql, regulation postpones the optimal innovation date compared to the case with no
externality.

This result expands on the intuition in the previous section (proof in Appendix F). The
intuition is the following: for Q0 large enough, optimal unconstrained final price is low enough
such that the gain from reducing marginal consumption cost in the constrained case is much
higher than the gain from reducing the marginal consumption cost in the unconstrained case.
This effect is sufficiently large to offset the fact that, because of regulation, the backstop is
in competition with oil until oil exhaustion. If the oil stock is sufficiently large, regulation
advances the optimal innovation date.

Result 1 no longer holds. The oil might not be exhausted at the optimal arrival date. This
result parallels Chakravorty, Magne & Moreaux (2006): they show that both the non-renewable
resource and the renewable resource can be used jointly. However, whether both resources are
used simultaneously depends on the initial stock of the non-renewable resource and not only
on the price of energy supplied with the new technology. When the stock of the non-renewable
resource is small, it is optimal for the backstop to arrive after the ceiling period: For small Q0,
for optimal unconstrained arrival date T̃ , constrained price path is also in a Hotelling phase,
but oil is less scarce at T̃ in the constrained case than in the unconstrained case. The fact that
regulation postpones exhaustion makes R&D less useful.

As the ceiling can be expected to become tighter over time, it is interesting to see how the
optimal R&D investment varies with the stringency of the ceiling7.

Proposition 7. If, for initial oil stock Q0 and ceiling Z̄ l, regulation strictly advances innovation,
then increasing the stringency of the ceiling from Z̄ l to Z̄ < Z̄ l also increases optimal R&D effort
compared to the unconstrained case. (Proof in Appendix G).

Corollary: The smallest initial amount of oil such that regulation advances innovation arrival,
Ql(Z0, Z̄) is decreasing with the stringency of the ceiling, i.e is increasing with Z̄.

The central planner should thus increase R&D if the ceiling is lowered. In a decentralized
economy, the market outcome of lowering the ceiling depends on the structure of the R&D
sector. For a private sector engaging in R&D, there would be also two effects of carbon
regulation: the date at which the backstop is used alone is postponed, so that possible full
monopoly profits are postponed by regulation, but on the other hand, the backstop can be used
earlier, in combination with oil.

3.3 Insights on possible extensions

Additional R&D to decrease the backstop cost q . If the social planner can also conduct
additional R&D to decrease the backstop price, the problem becomes more complicated.
The optimal cost q of the backstop, as well as its arrival date, depends on the characteristics
of the cost function. If, for instance, this cost is separable in its two arguments, q and T ,

7For values of the ceiling satisfying assumption 5
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then the aim of the central planner is to find (q, T ), which maximizes:

max
q,T

(
V (q, T )− C(q)− C(T )

)
This maximization problem is rewritten:

max
q

(
(max

T

(
V (q, T )− C(T )

)
− C(q)

)
The optimal arrival date is T ∗(q), i.e. the solution of: maxT

(
V (q, T ) − C(T )

)
. If we

assume, as before, that regulation postpones extraction for all possible values of q, we
have the following result:

Proposition 8. If the R&D cost function c(T, q) is separable in its two arguments, optimal
innovation arrival date T ∗(q) is increasing with the cost q of energy supplied by the backstop.
(Proof in Appendix H)

The marginal cost of delaying the arrival date decreases with the cost of energy supplied by
the backstop. If the backstop cost is high, the drop in energy price for a given arrival date is
lower and innovation is less desirable. Thus, the social planner makes a trade-off between
developing a cheap backstop early or an expensive backstop later, as in a case without
externality. More precise demand and cost function assumptions may be necessary before
a complete characterization of the solution can be made, and for a comparison between
the externality and the no-externality cases, which is beyond the scope of this paper.

Positive extraction costs. With positive extraction costs ce greater than the backstop price
q, oil would not be used after innovation so that regulation would only increase the
marginal cost of consuming oil, but would not lengthen the period during which the
backstop competes with oil. Starting from the ceiling, the limit price plc is such that:
u(x(plc))− plcx(plc) = u(x̄)− cex̄ ≤ u(x̄)− qx̄, so that plc > pl. The corresponding initial oil
stock such that regulation leads to advance innovation is thus smaller: Qlc < Ql. Regula-
tion would advance optimal arrival date in this case, even for Q0 smaller than Ql defined
in section 3.2.1.

3.4 Policy implications

If the non-renewable resource owners are in perfect competition and if the central planner
chooses the R&D strategy and can put a carbon tax in place, then the optimal carbon tax
is equal to the shadow cost of pollution of the planned economy. It is first increasing then
decreasing, as in Chakravorty, Magne & Moreaux (2006).

Moreover, if the initial stock of oil is large, placing a stringent ceiling on the stock of pollution
should drive up the effort toward an alternative backstop technology, and not to push back
the optimal arrival date, contrary to the intuition of the green paradox. On the other hand,
imposing a high ceiling on the stock of pollution would reduce research into an alternative
backstop technology compared to the unconstrained case.

These results do not imply, however, when research is conducted privately, that there should
be subsidies to green innovation if the initial oil stock is large. Indeed, it would depend on the
market structure associated with R&D. Taking as a starting point the Chakravorty, Magne &
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Moreaux (2006) framework, where there is a backstop available at price q̄ > p̄ from the outset,
the potential for endogenous R&D toward a backstop technology consisting in a drop in the
backstop cost from q̄ to q increases the initial optimal environmental tax −µ0. Endogenous
innovation lowers the scarcity rent due to the Sinn (2008) green paradox: policies that become
greener over time make the oil producers’ price fall. So it becomes necessary to increase the
carbon tax.

4 Conclusion

We consider the effect of a cap on the stock of pollution on optimal R&D toward a clean
backstop technology when the effect of R&D is to speed up the arrival of the backstop.
We show that if the price of the backstop technology is such that the environmental cap
can be met at a relatively low cost, innovation arrives earlier compared to the case with no
externalities when the stock of the non-renewable resource is large. If the stock is small, on
the other hand, the optimal arrival date of the backstop is postponed. This comes from two
contradictory effects. The backstop fulfills two roles: it is used to meet the constraint on
the stock of pollution, without limiting energy consumption too much, and it is also used
to replace the non-renewable resource once it is exhausted. When the price of the backstop
is relatively high (or the constraint on the stock of pollution is slack), only the second role
is played by the backstop and regulation postpones the optimal innovation date for the backstop.

We have examined a case with zero extraction costs, implicitly assuming exogenous techno-
logical progress in extraction costs. We have not take into account learning by doing in the
clean substitute. One avenue for research would be to consider this kind of technological progress.

Another avenue for future research would be to allow for imperfect substitution between
the non-renewable resource and the backstop. Also, we could discard the hypothesis of the
deterministic feature of R&D, the intuitions would remain the same. Optimal environmental
regulation has two effect on the desirability of increasing the probability of arrival of the
backstop: firstly it postpones exhaustion, so that the backstop is less desirable ; secondly,
it increases the price of oil, making the development of a cheap substitute more desirable.
However, introducing probabilistic R&D makes the computation much harder and the optimal
environmental regulation would not be as simple as it is in the deterministic model.

More importantly, it would be interesting to study this problem in a second-best setting, where
R&D is conducted privately. Yet the solution of this problem cannot easily be decentralized if
R&D is conducted by the private sector (for instance, with a monopoly engaging in R&D at
date 0) without binding contracts. The reason for this is that ex-ante incentives (lowering the
backstop price in order to accelerate exhaustion) then enter into conflict with ex-post incentives
(setting the monopoly price once oil is exhausted). The monopoly price itself depends on the
quantity of oil left at the arrival date. How the transition to a clean substitute would be affected
by regulation would depend on the market structure associated with R&D.
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A For Q0 large enough, Zt ≥ Z̄ for some t on the unconstrained price path

If there existsQmin such that the stock of pollution in the atmosphere is above Z̄ at some date in the unconstrained
case with endogenous innovation, then, as the optimal initial scarcity rent decreases with Q0, for all Q0 ≥ Qmin,
the stock of pollution also exceeds the ceiling at some date. Let find one value of Q0 such that the stock of
pollution in the atmosphere exceeds the ceiling on the unconstrained price path. Consider (λ, T0) such that
pt = λert and the ceiling is reached when the pt reaches q:

e−αT0(Z0 +

ˆ T0

0

eαtxtdt) = Z̄

λerT0 = q

For this λ, consider the price path pt = λert. There exists a date T , such that:

−erT c
′
(T ) + u(x(pT ))− pTx(pT )− (u(D(q)− qD(q)) = 0

Indeed the function T → −erT c
′
(T ) + u(x(pt))− ptx(pt)− (u(D(q)− qD(q)) is continuous (as a composition of

continuous functions) and is positive, equal to −erT0c
′
(T0) at date T0, and negative for T sufficiently high such

that −erT c
′
(T ) +u(x(pt))−ptx(pt)− (u(D(q)− qD(q))→t→+∞ −α < 0. Take Tmin such that −erTminc

′
(Tmin) +

u(x(pt))− ptx(pt)− (u(D(q)− qD(q)) = 0 and λ defined above, take the stock of pollution Q0, such that if the
price is equal to λert, Q0 is exhausted at date Tmin. For this Q0, by construction, the ceiling is reached at some
date on the unconstrained price path.

B Intermediate results

B.1 Intermediate result 1: Constrained price at date T , pTT , increases with T
between t1 and t2

If arrival date is T between t1 and t2, then:
e−αT (Z0 +

´ T
0
eαtx∗Tt dt) = Z̄´ h(T )

0
x∗Tt dt = Q

λ∗T0 erh(T ) = q

We differentiate with respect to T and we get:

dλ∗T0 =
−
(´ T

0

∂x∗Tt
∂p∗Tt

e(r+α)tdt
)

(x∗TT − x̄)rqdT

x̄erh(T )
´ T

0

∂x∗Tt
∂p∗Tt

e(r+2α)t +

((´ T
0

∂x∗Tt
∂p∗Tt

e(r+α)tdt
)2

−
(´ T

0

∂x∗Tt
∂p∗Tt

ertdt
)(´ T

0

∂x∗Tt
∂p∗Tt

e(r+2α)tdt
)) ≤ 0

dµ∗T0 =

((´ T
0

∂x∗Tt
∂p∗Tt

ertdt
)
rq − x̄erh(T )

)
(x∗TT − x̄)dT

x̄erh(T )
´ T

0

∂x∗Tt
∂p∗Tt

e(r+2α)t +

((´ T
0

∂x∗Tt
∂p∗Tt

e(r+α)tdt
)2

−
(´ T

0

∂x∗Tt
∂p∗Tt

ertdt
)(´ T

0

∂x∗Tt
∂p∗Tt

e(r+2α)tdt
)) ≥ 0

As dλ∗T0 ≤ 0 and dµ∗T0 ≥ 0, it must be the case that dλ∗TT +dµT∗T ≥ 0, otherwise the price between 0 and T would
be decreased at all dates when T increases and the stock of pollution would exceed the ceiling at some date.

B.2 Intermediate result 2: final scarcity rent λ∗T0 erT increases with T between t3
and t4

If arrival date is T between t3 and t4, then:
e−αg(T )(Z0 +

´ g(T )

0
eαtx∗Tt dt) = Z̄´ T

0
x∗Tt dt = Q

λ∗T0 erg(T ) − µ∗T0 e(r+α)g(T ) = p̄

We differentiate with respect to T and we get:

dλ∗T0 =

(´ T
0

∂x∗Tt
∂p∗Tt

e(r+2α)tdt
)
x̄dT((´ T

0

∂x∗Tt
∂p∗Tt

e(r+α)tdt
)2

−
(´ T

0

∂x∗Tt
∂p∗Tt

ertdt
)(´ T

0

∂x∗Tt
∂p∗Tt

e(r+2α)tdt
)) ≥ 0

So that d(λ∗T0 erT ) > 0
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B.3 Intermediate result 3: date t1(Q) decreases with Q

Consider two stocks Q
′
> Q. We call λ (resp. λ

′
) and −µ (resp. −µ

′
) the scarcity rent and carbon tax associated

with Q(resp. Q
′
) when there is a backstop from the outset. It is first straightforward that λ > λ

′
⇔ −µ < −µ

′
.

Otherwise, the pollution stock would exceed the ceiling (or remain strictly below) for one of the stocks. Assume
moreover that λ > λ

′
. We denote xt (resp. x

′
t) the extraction at date t. from equation, it must be that :

e−αt
′
1(Z0 +

ˆ t
′
1

0

eαtxtdt) = Z̄

e−αt
′
1(Z0 +

ˆ t
′
1

0

eαtx
′
(t)dt) = Z̄

If λ < λ
′
, then xt − x

′
t is decreasing with t, It is first positive and then negative. We call θ1 the date at which

price paths cross. It follows that :

ˆ θ1

0

eαt(xt − x
′
t)dt =

ˆ t
′
1

θ1

eαt(x
′
t − xt)dt > 0

Then, ˆ θ1

0

eαt(xt − x
′
t)dt <

ˆ θ1

0

eαθ1(xt − x
′
t)

and
´ t′1
θ1
eαt(x

′
t − xt)dt >

´ θ1
0
eαθ1(x

′
t − xt), and as a result

ˆ t
′
1

0

(xt − x
′
t)dt > 0

More oil is consumed between 0 and t
′
1 with Q than Q

′
. But as λ < λ

′
, the date of oil exhaustion is also later

with Q than Q
′
, so that more oil is consumed, which is in contradiction with Q < Q

′
. So that λ > λ

′
and

−µ < −µ
′
, implying that t1(Q) > t1(Q

′
)

B.4 Intermediate result 4: t2(Q) decreases with Q and t3(Q) increases with Q

Date t2 and t3 are defined by

e−αt2(Z0 +

ˆ t2

0

eαtx∗t2t dt) = Z̄

λ∗t20 ert2 − µ∗t20 e(r+α)t2 = p̄

λ∗t20 ert3 = qˆ t2

0

x∗t2t dt+ (t3 − t2)αZ̄ = Q

Differentiating wrt Q, we get:

(

ˆ t2

0

e(α+r)tx
′
(pt)dt)dλ

∗t2
0 − (

ˆ t2

0

e(2α+r)tx
′
(p∗t2t ))dµ∗t20 = 0 (6)

dλ∗t20 ert2 − dµ∗t20 e(r+α)t2 + (rλ∗t20 ert2 + (r + α)e(r+α)t2)dt2 = 0 (7)
dλ∗t20 ert3 + rλ∗t20 ert3dt3 = 0 (8)

(

ˆ t2

0

ertx∗t2t dt)dλ− (

ˆ t2

0

e(r+α)tx∗t2t dt)dµ∗t20 + dt3x̄ = dQ (9)

Combining Eq7, ?? and 9, we get:(( ˆ t2

0

e(α+r)tx
′
(p∗t2t )dt

)2 − ˆ t2

0

e(2α+r)tx
′
(p∗t2t )dt

ˆ t2

0

e(r)tx
′
(p∗t2t )dt

)
rλ∗t20 dλ∗t20

+x̄(

ˆ t2

0

e(2α+r)tx
′
(p∗t2t )dt)dλ∗t20 = −rλ∗t20

ˆ t2

0

e(α+r)tx
′
(p∗t2t )dtdQ

Using the Cauchy Schwartz inequality, it appears that dλ∗t20 < 0, the scarcity rent decreases with Q. It implies
that

dt3 > 0
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From 7, we have that

−dµ∗t20 e(r+α)t2 = −
´ t2

0
eαt2e(α+r)tx

′
(p∗t2t )dt)

(
´ t2

0
e(2α+r)tx′(p∗t2t ))

dλ∗t20 ert2 > −dλ∗t20 ert2

From 8, we then have that :
dt2 < 0

B.5 Intermediate result 5 : for a date of innovation T given, with that
t1(Q) < T < t2(Q) in the regulated case, the energy price increases with Q

We take Q
′
> Q. Assume that λ

′
> λ, then −µ

′
< −µ (for ease of notation, we write λ ≡ λ∗T0 etc), and the

prices must cross at some date (otherwise, pollution would exceed the ceiling) .
As λ < λ

′
, then xt − x

′
t is decreasing with t, It is first positive until date θ1 and then negative. It follows that :

ˆ θ1

0

eαt(xt − x
′
t)dt =

ˆ T

θ1

eαt(x
′
t − xt)dt > 0

But, because xt − x
′
t is decreasing with t, It is first positive until date θ1 and then negative,

ˆ θ1

0

eαt(xt − x
′
t)dt <

ˆ θ1

0

eαθ1(xt − x
′
t)dt

and ˆ T

θ1

eαt(x
′
t − xt)dt >

ˆ T

θ1

eαθ1(x
′
t − xt)dt

, and as a result
ˆ T

0

(xt − x
′
t)dt > 0

But as λ < λ
′
, more oil is consumed after innovation when the stock is Q than when the stock is Q

′
, which

is a contradiction (more oil is consumed during all the price path). So that Q
′
> Q implies that λ > λ

′
and

−µ < −µ
′
, so that, at the date of innovation T , p

′
T > pT

B.6 Intermediate result 6: the final scarcity rent increases with Q between t3(Q)
and t4(Q)

For arrival date T between t3(Q) and t4(Q), calling t2 the date at which the ceiling is reached, (t2, λ
∗T
0 , µ∗T0 )

satisfy the set of equation (for ease of notation, we write λ ≡ λ∗T0 etc):

e−αt2(Z0 +

ˆ t2

0

eαtxtdt) = Z̄

λert2 − µe(r+α)t2 = p̄ˆ t2

0

xtdt+ (T − t2)αZ̄ = Q

With xt = D(pt) and pt = (λert − µe(r+α)t) for t < t2 and pt = p̄ for t2 < t < T .
If T is also between t3(Q+ dQ) and t4(Q+ dQ), differentiating wrt Q, we get:

(

ˆ t2

0

e(α+r)t ∂xt
∂pt

dt)dλ− (

ˆ t2

0

e(2α+r)t ∂xt
∂pt

dt)dµ = 0

dλert2 + (rλert2 + (r + α)e(r+α)t2)dt2 − dµe(r+α)t2 = 0

dλ(

ˆ t2

0

ert
∂xt
∂pt

dt)− dµ(

ˆ t2

0

e(r+α)t ∂xt
∂pt

dt) = dQ

From the first equation:

dλ = +

´ t2
0
e(2α+r)t ∂xt

∂pt
dt´ t2

0
e(α+r)t ∂xt

∂pt
dt
dµ

From the fourth:

dµ
(
´ t2

0
e(α+r)t ∂xt

∂pt
dt)2 −

´ t2
0
e(2α+r)t ∂xt

∂pt
dt
´ t2

0
e(r)t ∂xt

∂pt
dt´ t2

0
e(α+r)t ∂xt

∂pt
dt

= dQ

So that, using the Cauchy Schwartz inequality, −dµ > 0 if dQ > 0 and dλ < 0.

23



C Regulation postpones extraction if, for all (Z̄, Z0), Z̄ is not too large compared
to Z0.

1. We first show that for any Z̄, there is a Z̄0, with Z̄0 < Z̄, such that if Z0 > Z̄0, regulation slows extraction
down.

• Assume that Q0 =∞ and there is no backstop. The constrained price path is pt = −µ∞e(r+α)t until
pt reaches p̄ at date TZ∞ when the stock of pollution reaches Z̄. From this date TZ∞, the price equals
p̄, we call this price path the infinite price path. Define QZ∞ the total amount of the non renewable
resource consumed in this case between dates 0 and date TZ∞. This date TZ∞(Z0) is decreasing with
Z0 and QZ∞(Z0) is decreasing in Z0. Indeed (µ∞, T

Z
∞) are implicitly defined by:

e−αT
Z
∞(Z0 +

ˆ TZ∞

0

eαtx(pt)dt) = Z̄ (10)

−µe(r+α)TZ∞ = p̄ (11)

Differentiating wrt Z0, we get that8 : dTZ∞ < 0. Then9 dQZ∞ < 0 and10dQZ∞ − dTZ∞x̄ < 0

• Consider t1 and λ solutions of

λert1 = p̄ (12)ˆ t1

0

x(λert)dt = QZ∞ + (t1 − TZ∞)x̄ (13)

´ t1
0
x(p̄e−r(t1−t))dt− t1x̄ is continuous and increasing with t1, it is equal to zero at t1 = 0 and tends

to +∞ when t1 tends to +∞. So that we can find t1 that solves the equation. It cannot11 be the
case that t1 ≤ TZ∞. If t1 and λ are solutions of the above system, the quantity consumed on the
infinite price path between 0 and t1 is the same as the quantity consumed on the Hotelling price
path ending at date t1 at price p̄. If Z0 = Z̄, this quantity is zero.

• The date t1 decreases with Z0. Indeed
´ t1

0
x(p̄e−r(t1−t))dt − t1x̄ is increasing with t1, whereas

QZ∞ − TZ∞x̄ is decreasing with Z0, so that t1 is continuous and decreasing with Z0. If Z0 = Z̄, then
t1 = 0. For Z0 high enough, it is then the case that −ert1c

′
(t1) ≥ (u(D(q))− qD(q))− (u(x̄)− p̄x̄).

If this is satisfied, then for Q∗ = QZ∞ + (t1 − TZ∞)x̄, Q∗ is sufficiently small so that the final optimal
unconstrained price for Q∗ is above p̄. . If it is the case, then we can show that for all Q such that
the regulation is binding, regulation postpones extraction.

• If final price in the unconstrained case for arrival date T̃ is above p̄ then, as the scarcity rent is
lowered by the constraint, the final constrained price is less than the final unconstrained price for
this arrival date. If final price in the unconstrained case for arrival date T̃ is below or equal to p̄,
then Q > Q∗. We first show that innovation arrives necessarily after date t1 if oil is exhausted in the
constrained case. Assume that innovation arrives at date t1 defined above at final constrained price
less or equal to p̄, we show that it is not possible to exhaust more than Q∗ under the constraint at
date t1. Indeed, if λ > 0 then −µ ≤ −µ∞. But the infinite price path and the t1 price path must
cross once before date TZ∞ (otherwise if the price path remains below the infinite price path before
TZ∞ the ceiling constraint is not satisfied, and if it is above always, then less than Q∗ is consumed).
Between 0 and t1, it is the case that

´ t1
0
eαtxtdt ≤

´ t1
0
eαtx∞t dt = Z̄. As prices cross once, there

exists θ, such that for t < θ, the infinite price is below and for t > θ1, infinite price is above. So
that

´ θ
0
eαt(x∞t − xt)dt ≥

´ t1
θ
eαt(xt − x∞t )dt ≥ 0, so that eαθ

´ θ
0

(x∞t − xt)dt >
´ θ

0
eαt(xt − x∞t )dt ≥´ t1

θ
eαt(xt−x∞t )dt > eαθ

´ t1
θ

(xt−x∞t )dt. So that more is consumed on the infinite price path between
0 and TZ∞. As a result at date t1 oil cannot be exhausted for Q ≥ Q∗, so that T > t1 necessarily.
If T > t1, at date t1, as Q > Q∗ and oil is exhausted at price below p̄, then unconstrained price is

8We use that dTZ∞ = e−αT
Z
∞

−µ(r+α)
´TZ∞
0 e(r+2α)tx

′
(pt)dt

dZ0

9As
´ TZ∞

0
x(pt)dt = QZ∞, if Z0 increases the shadow cost increases everywhere.

10 dQZ∞ − dTZ∞x̄ = −dµ
´ TZ∞

0
x
′
(pt)e

(r+α)tdt = −
´TZ∞
0 x

′
(pt)e

(r+α)tdt

´TZ∞
0 x

′
(pt)e(r+2α)tdt

e−αT
Z
∞dZ0 < 0.

11Assume that it is the case, then λ > −µ∞ and the quantity consumed between 0 and t1 is less than
the quantity consumed between these two dates on the infinite price path. But as the price on the infinite
price path is below p̄ between t1 and TZ∞, and that the total quantity consumed on this price path ending at
date TZ∞ is QZ∞, then the quantity consumed between 0 and t1 on the infinite price path is strictly less than
QZ∞− (TZ∞− t1)x̄ = QZ∞+ (t1−TZ∞)x̄. So that the quantity consumed between 0 and t1 on the λert price path is
also strictly less than QZ∞ + (t1 − TZ∞)x̄, which contradicts the fact that λ, t1 solve the above system of equation.
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below p̄. Then the quantity consumed between 0 and t1 is more than Q∗. On the other hand, on the
constrained price path, we have seen that the quantity consumed increase with Q, so that between
0 and t1, less is consumed on the constrained price path than if Q is infinite, i.e, less than Q∗ is
consumed. But if the constrained price at t1 is p̄, then less is consumed also on the constrained path
between t1 and T̃ than on the unconstrained price path, which contradicts the hypothesis that oil is
exhausted at T̃ in both cases.

2. Similarly, we show that for any initial stock of pollution Z0, there is a Z̄∗ > Z0 such that if Z̄ ≤
Z̄∗, regulation slows extraction down. Take (Q∞, T∞, λ, t1) defined in Eqs. 12, 13, 10 and 11. It is
straightforward that λ decreases with Z̄. Call t2(Z̄) such that λert2 = p̄0. For Z̄ = Z0, t2 = t1 = 0.
The date t2 is continuous and increasing with Z̄. We can find t∗2 such that, for all T ≤ t∗2, −erT c

′
(T ) >

u(D(q))− qD(q)− (u(x̄0)− p̄0x̄0). Denote Z̄∗ the value of the ceiling corresponding to t∗2. Then Z̄∗ < Z0

as t∗2 > 0. For all value of the ceiling such that Z̄∗ < Z̄ < Z0, the optimal unconstrained final price for
Q0 = Q∞ + (t1 − T∞)αZ̄ is above p̄. The end of the demonstration is the same as above.

3. Remark: On can find a backstop cost q∗ such that assumption 4 is always true for all (Z0, Z̄) satisfying
D(q) > αZ̄ > αZ̄0, as long as q > q∗.

4. Calibration: Using data on price elasticity in Chakravorty, Magné & Moreaux (2006), data on sectoral
energy demands and CO2 content of fossil fuel in Coulomb & Henriet (2010). We compute Q∗ defined
above. We find that if the backstop was to arrive at price below p̄ for this Q∗, it would be necessary that
the backstop arrives before 7.8 years, which is highly unlikely.

D Marginal cost of delaying innovation with a low ceiling

For T ≤ t1, the marginal change in surplus is zero. If innovation arrives at date T between date t1 and date t2,
the price path is such that the ceiling is reached exactly at date T , the scarcity rent λ (for ease of notation, we
denote λ ≡ λ∗T0 etc) the shadow cost of pollution −µ, exhaustion date h(T ) satisfy:

e−αT (Z0 +

ˆ T

0

eαtxtdt) = Z̄ (14)
ˆ T

0

xtdt+ (h(T )− T )αZ̄ = Q (15)

λerh(T ) = q (16)

And the surplus can be written:
ˆ T

0

u(xt)e
−rtdt+

ˆ h(T )

T

(u(D(q))− q(D(q)− x̄)e−rtdt+

ˆ ∞
h(T )

(u(D(q))− qD(q))e−rtdt

The marginal cost of delaying innovation, expressed at date T , is:

N(T ) = −erT ∂

∂T

( ˆ T

0

u(xt)e
−rtdt+

ˆ h(T )

T

(u(D(q))− q(D(q)− x̄)e−rtdt+

ˆ ∞
h(T )

(u(D(q))− qD(q))e−rtdt

)
(17)

Developing equation 17:

erT
(
− u(xT )e−rT −

ˆ T

0

pt
∂xt
∂T

e−rtdt−
(
∂h(T )

∂T
e−rh(T ) + e−rT

)
(u(D(q))− q(D(q)− x̄))

+
∂h(T )

∂T
e−rh(T )(u(D(q))− qD(q))

)
= −u(xT )− erT

ˆ T

0

pt
∂xt
∂T

e−rtdt− ∂h(T )

∂T
er(T−h(T ))qx̄+ (u(D(q))− q(D(q)− x̄))

And we know that between the dates 0 et T , pt = (λ− µeαt)ert,then
ˆ T

0

pt
∂xt
∂T

e−rtdt = λ

ˆ T

0

∂xt
∂T
−
ˆ T

0

µ
∂xt
∂T

eαtdt (18)

Differentiating Eq.14, we obtain :

−αZ̄ + xT + e−αT
ˆ T

0

eαt
∂xt
∂T

= 0
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so that : ˆ T

0

eαt
∂xt
∂T

= (αZ̄ − xT )eαT

Differentiating Eq.15, we obtain : ˆ T

0

∂xt
∂T

= (αZ̄ − xT )− ∂h(T )

∂T
αZ̄

so that Eq.18 can be rewritten:
ˆ T

0

pt
∂xt
∂T

e−rtdt = λ(αZ̄ − xT )− µ(αZ̄ − xT )eαT − λ∂h(T )

∂T
x̄ (19)

Moreover, using Eq.16 and the fact that pT = λerT − µe(r+α)T , and x̄ = αZ̄:
ˆ T

0

pt
∂xt
∂T

e−rtdt = (x̄− xT )pT e
−rT − qe−rh(T ) ∂h(T )

∂T
x̄ (20)

Delaying the arrival date of innovation induces a marginal loss in welfare, at the arrival date :

N(T ) = −
(
u(xT )− xT )pT

)
− x̄(pT − q) + (u(D(q))− qD(q)) (21)

and we define
N(T ) = (u(D(q))− qD(q))−

(
u(xT )− xT pT

)
− x̄(pT − q) (22)

The greater is T , the greater the price at the innovation date, and the greater the surplus loss.
If innovation occurs between t2 et t3, the price is pt = λert − µe(r+α)t until date t2, p̄ between t2 and T , oil and
the backstop are used jointly at price q until date t3, when oil is exhausted, the backstop is used alone at price q.
During this period, λ, µ, the date at which the ceiling is reached t2 and exhaustion date t3 do not depend on T .
The surplus writes:
ˆ t2

0

u(xt)e
−rtdt+

ˆ T

t2

(u(x̄)e−rtdt+

ˆ t3

T

(u(D(q))− q(D(q)− x̄)e−rtdt+

ˆ ∞
t3

(u(D(q))− qD(q))e−rtdt (23)

Deriving Eq.23, we find that delaying the innovation date induces cost, expressed at date T :

N(T ) = −(u(x̄)− qx̄) + (u(D(q))− q(D(q)) (24)

If innovation occurs between t3 and t4, then the price path is first pt = λert−µe(r+α)t until the ceiling is reached
at price p̄, then during the ceiling period, price equals p̄ until exhaustion. At exhaustion date, the scarcity rent
is above q and below p̄, it is increasing with T . The scarcity rent λ, the shadow cost −µ, and the date g(T ) when
the ceiling is reached satisfy:

e−αg(T )(Z0 +

ˆ g(T )

0

eαtxtdt) = Z̄ (25)

ˆ g(T )

0

xtdt+ (T − g(T ))αZ̄ = Q (26)

λerT − µe(r+α)T = p̄ (27)

The surplus writes:
ˆ g(T )

0

u(xt)e
−rtdt+

ˆ T

g(T )

u(x̄)e−rtdt+

ˆ ∞
T

(u(D(q))− qD(q))e−rtdt

The marginal cost of delaying innovation, expressed at date T , writes:

N(T ) = −erT ∂

∂T

( ˆ g(T )

0

u(xt)e
−rtdt+

ˆ T

g(T )

u(x̄)e−rtdt+

ˆ ∞
T

(u(D(q))− qD(q))e−rtdt

)
= u(D(q))− qD(q)− erT

ˆ g(T )

0

pt
∂xt
∂pt

e−rtdt− u(x̄)

Using that pt = λert − µe(r+α)t

ˆ g(T )

0

pt
∂xt
∂pt

e−rtdt = λ

ˆ g(T )

0

∂xt
∂pt

dt− µ
ˆ g(T )

0

∂xt
∂pt

eαtdt
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Deriving Eq.26:

λ

ˆ g(T )

0

∂xt
∂pt

dt = −λx̄

Deriving Eq.25:

λ

ˆ g(T )

0

eαt
∂xt
∂pt

dt = 0

So that:

N(T ) = u(D(q))− qD(q)− (u(x̄)− λerT x̄)

If innovation occurs after t4, oil price follows a Hotelling path at arrival date, and oil is exhausted at this date.
The surplus can be written: ˆ T

0

u(xt)e
−rt +

ˆ ∞
T

(u(D(q))− qD(q))e−rtdt

So that the marginal cost of delaying innovation, at arrival date, writes:

N(T ) = (u(D(q))− qD(q))− erTu(xT )e−rT − erT
ˆ T

0

pt
∂xt
∂T

dt

using that pt = λert after date T :

N(T ) = (u(D(q))− qD(q))− u(xT )− λerT
ˆ T

0

∂xt
∂T

dt

Oil is exhausted at date T , so that
´ T

0
xt = Q, implying that

´ T
0

∂xt
∂T
dt = −xT . The marginal cost of delaying

innovation, expressed at the arrival date, writes:

N(T ) =

(
u(D(q)))− qD(q)

)
−
(
u(xT )− pTxT

)

E Proof of Proposition 5

In order to demonstrate Proposition 5, we adopt a recursive reasoning. We show first that for all Q1
0 such that

innovation arrives at date T1 after t2(Q1
0), then for any Q2

0 > Q1
0 innovation arrives at date T2 > T1, satisfying

T2 > t2(Q2
0). Denote N1(T ) the marginal cost of delaying innovation for Q0 = Q1

0 and N2(T ) the marginal cost
of delaying innovation for Q0 = Q2

0. Denote λT0 (Qi0) the initial scarcity rent for arrival date T and Q0 = Qi0.
Notice first that T1 > t2(Q2

0) as t2(Q0) is decreasing with Q0 (see appendix B.4).

• If T1 satisfies t2(Q1
0) ≤ T1 ≤ t3(Q1

0), then t2(Q2
0) ≤ T1 ≤ t3(Q2

0), so N1(T1) = N2(T1), as t3(Q0) increases
with Q0 (see appendix B.4).

• If T1 satisfies t3(Q1
0) < T1 ≤ min(t3(Q2

0), t4(Q1
0)), thenN1(T1) = u(D(q))−qD(q)−(u(x̄)−λT1

0 (Q1
0)erT1 x̄) ≥

u(D(q))− qD(q)− (u(x̄)− qx̄) = N2(T1). If t3(Q2
0) < t4(Q1

0), and innovation arrives between t3(Q2
0) and

t4(Q1
0), as the final scarcity rent λTT decreases with Q0 (see appendix B.6), then it is the case that N1(T1) =

u(D(q))−qD(q)−(u(x̄)−λT1
0 (Q1)erT1 x̄) ≥ u(D(q))−qD(q)−(u(x̄)−λT1

0 (Q2)(T1)erT1erT1 x̄) = N2(T1). If
t3(Q2

0) > t4(Q1
0), and innovation arrives between t4(Q1

0) and t3(Q2
0) ,N1(T1) ≥ u(D(q))− qD(q)− (u(x̄)−

p̄x̄) ≥ u(D(q))− qD(q)− (u(x̄)− qx̄) = N2(T1).

• Between max(t3(Q2
0), t4(Q1

0)) and t4(Q1
0), N1(T1) ≥ u(D(q))− qD(q)− (u(x̄)− p̄x̄) ≥ u(D(q))− qD(q)−

(u(x̄)− λT1
0 (Q2)(T1)erT1 x̄) = N2(T1).

• After t4(Q1
0), the bigger Q0 the lower the scarcity rent and so N1(T1) ≥ N2(T2). So that, at T1,

−erT1C
′
(T1) ≥ N2(T1), so that optimal arrival for Q2

0 is after T1. We find that T2 > T1 > t2(Q2
0).

We show now that for Qmin, optimal arrival is after t2(Qmin). We know that final price pmin at optimal arrival
date for Q0 = Qmin satisfies pmin > p̄ (see Appendix C). We call θ2 the date at which price p̄ is reached along
the optimal price path for Q0 = Qmin. As for t > θ2 pt > p̄, the stock of pollution in the atmosphere declines, for
t > θ2 whereas while t ≤ θ2, the stock of pollution in the atmosphere increases, the ceiling is reached exactly at
date θ2. By definition, t2(Qmin) is the lowest possible date such that the ceiling is reached, when Q0 = Qmin, at
price p̄. So that, θ2 < t2(Qmin) and as final price is above pmin > p̄, optimal arrival date is at Tmin ≥ θ2 > t2(Q).
So that for Q0 = Qmin, optimal arrival date is after t2(Qmin), so that by recursive reasoning, optimal innovation
for increases with Q0.

Corollary: Arrival date is always after t2(Q0).
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F Proof of proposition 6

We first show that, if there exists a Ql such that regulation advances innovation, then for all Q > Ql, regulation
also advances innovation. We assume that there is a Ql such that at optimal unconstrained innovation date T l,
N(Ql, T l) > Ñ(Ql, T l). Notice first that, if N(Ql, T l) > Ñ(Ql, T l) then oil is not exhausted at this date. If
it was the case, then it would be the case that p̃∗T

l

T l > p∗T
l

T l , which is not possible if N(Ql, T l) > Ñ(Ql, T l).
Indeed, one can verify that N(Ql, T l) ≤ (u(D(q))− qD(q))− (u(x∗T

l

T l )− p∗T
l

T l x
∗T l
T l ), so that if p̃∗T

l

T l > p∗T
l

T l , then
N(Ql, T l) ≤ Ñ(Ql, T l). So: if innovation is advanced for a given Ql, it must be the case that oil is not exhausted
at the optimal unconstrained innovation date in the constrained case, and as a result, that T l < t3(Ql). We
have shown that t3(Q0) increases with Q0 (see B.4), so that ∀Q0 > Ql, T l < t3(Q0). let denote T ∗ the optimal
constrained innovation date for Q0 > Ql. We know that, for Q0 > Ql, t1(Q0) < t1(Ql)(see B.3), then if
the T ∗ is between t1(Q0) and t1(Ql), then N(T ∗, Q0) > N(T ∗, Ql) = 0. So that T ∗ < T l. We differentiate

u(x∗TT∗)−p∗T
∗

T∗ x
∗T∗
T∗ + x̄(p∗T

∗
T∗ − q) wrt Q0, we obtain (x̄−x∗T

∗
T∗ )

∂p∗T
∗

T
∂Q0

. But we know that ∂p∗T
∗

T∗
∂Q0

> 0 (see appendix
B.5), so that if T ∗ is between dates t1(Ql) and t2(Q0) (t2(Q0) < t2(Ql) see B.3), then N(T ∗, Q0) > N(T ∗, Ql),
so that T ∗ < T l. Between dates t2(Q0) and t2(Ql), it is straightforward that N(T ∗, Q0) > N(T ∗, Ql) as,
N(T ∗, Q0) ≥ N(t2(Q0), Q0) = N(t2(Ql), Ql) > N(T ∗, Ql), so that T ∗ < T l. If T ∗ is between t2(Ql) and t3(Ql),
then N(T ∗, Q0) = N(T ∗, Ql), so that T ∗ = T l. So that it is always the case T ∗ ≤ T l. On the other hand, if
Q0 > Ql, we know that T̃ > T l, so that for Q0 > Ql, we have that T ∗ < T̃
So that the implication : 

Q > Ql

N(Ql, T l) > Ñ(Ql, T l)

Ñ(Ql, T l) = −erT
l

c
′
(T l)

Ñ(Q, T̃ ) = −erT c
′
(T̃ )

⇒ N(Q, T̃ ) > Ñ(Q, T̃ )

is true.

We show now that there exists an initial stock Ql of the non renewable resource such that, at the optimum,
innovation arrives earlier in the constrained case than in the unconstrained. Consider the date T l satisfying
(u(D(q)) − qD(q)) − (u(x̄) − qx̄) = −erT

l

c
′
(T l). Take Q1 such that innovation arrives strictly after t2(Qmin)

in the unconstrained case, and such that Ñ1(T l) < −erT
l

c
′
(T l) ((N1(T l) decreases with Q0 and tends to 0).

Then, as t2(Q0) decreases with Q0, optimal unconstrained arrival date T̃ > t2(Q1). We have then that N1(T̃ ) ≥
(u(D(q))− qD(q))− (u(x̄)− qx̄) = −erT

∗
c
′
(T l) ≥ Ñ1(T l) ≥ Ñ1(T̃ ).

G Proof of Proposition 7

Take Z̄1 < Z̄∗. According to appendix E, arrival date for Z̄∗ is after t2(Q, Z̄∗). Moreover, as we have assumed
that regulation postpones innovation for Z̄∗, then it must be the case that optimal arrival date for Z̄∗ is prior to
t3(Q, Z̄∗). We can show now that t3 increases when Z̄ decreases. Indeed, using the set of equation defining t3,
we get that:

dt3 =
−dZ̄ert3

(´ t2
0
x
′
te

(r+α)tdt+
´ t2

0
x
′
te

(r+2α)tdt(t3 − t2)α
)

x̄ert3 intt20 x
′(t)e(r+2α)tdt+ rλert3

((´ t2
0
x
′
te

(r+α)tdt
)2

−
´ t2

0
x
′
te

(r+2α)tdt
´ t2

0
x
′
te
rdt

)
So that we dZ̄ < 0, we get dt3 > 0. If dt2 < 0, as u(x̄∗) − qx̄∗ > u(x̄) − qx̄, then it is straightforward that
more stringent ceiling advances innovation. If dt2 > 0, we find that dλ < 0 (cf dt3 > 0) and then necessarily
−dµ > 0. As a result, the price at arrival date t2(Z̄∗) in the case where the ceiling is Z̄1 is greater then
p̄∗. Then: u(xt2(Z̄∗)) − pt2(Z̄∗)xt2(Z̄∗) + x̄1(pt2(Z̄∗) − q) = u(xt2(Z̄∗)) − qxt2(Z̄∗) − (pt2(Z̄∗) − q)(xt2(Z̄∗) − x̄1) ≤
u(xt2(Z̄∗))− qxt2(Z̄∗) ≤ u(x̄∗)− qx̄∗ As a result, if arrival date for Z̄∗ is between t∗2 and t2(Z̄1), innovation is also
advanced by a more stringent ceiling.

H Proof of Proposition 8

We first show that t2(Q) increases with q. Indeed, taking equations defining t2(Q) and differentiating wrt q, we
get:

dt2 =
x̄(ert2

´ t2
0
e(r+α)tx

′
(pt)(e

αt1 − eαt)dtdq

(rλert2 + (r + α)µe(r+α)t2)

(
x̄erθ2

´ t2
0
x′(e(r+2α)tdt+ rq

(
(
´ t2

0
x′(e(r+α)tdt))2 −

´ t2
0
x′(e(r+2α)tdt

´ t2
0
x′ertdt

))
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Using the Cauchy Schwartz inequality, we get that dt2 > 0. Innovation always arrives after t2 (see corollary in
E). We can show that dt3 > 0, indeed, we get:

dt3 =
x̄(
´ t2

0
e(r+α)tx

′
(pt)dt)dq

(rλert2 + (r + α)µe(r+α)t2)

(
x̄erθ2

´ t2
0
x′(e(r+2α)tdt+ rq

(
(
´ t2

0
x′(e(r+α)tdt))2 −

´ t2
0
x′(e(r+2α)tdt

´ t2
0
x′ertdt

))

It is clear that dt4 = 0. Consider q1 < q2, at date t2(q2), N(t2(q2), q1) = u(D(q1)) − q1D(q1) − (u(x̄) −
q1x̄) > u(D(q2)) − q2D(q2) − (u(x̄) − q2x̄) = N(t2(q2), q2). So that N(t2(q2), q1) > N(t2(q2), q2). For all T
satisfying t3(q2) > T > t2(q2), N(T, q1) = N(t2(q2), q1) > N(t2(q2), q2) = N(T, q2). Between t3(q1) and t3(q2),
N(T, q1) > u(D(q1)) − q1D(q1) − (u(x̄) − q1x̄) > u(D(q2)) − q2D(q2) − (u(x̄) − q2x̄) = N(t2(q2), q2). After
t3(q2), the constrained price path is the same for both cases but as u(D(q1)) − q1D(q1) > u(D(q2)) − q2D(q2),
N(T, q1) > N(t2(q2), q2). So that the higher q (below p̄), the later innovation.
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