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Technological vs ecological switch and the
environmental Kuznets curve

RAOUF BOUCEKKINE, AUDE POMMERET, AND FABIEN PRIEUR

For quite a long time, it has been claimed that the relationship between income and pol-

lution was inverted U-shape, yielding the so-called Environmental Kuznets Curve (EKC

hereafter). This claim, based on several early empirical studies (see for example, Gross-

man and Krueger 1993), has been at the heart of a massive empirical and theoretical liter-

ature. Empirical research has mainly consisted in examining a wide variety of pollutants

for evidence of the inverted U-shaped pattern, resulting in the conclusion that such a shape

is valid for many local and flow pollutants. But it does not seem to be the rule for stock

pollutants like CO2 which do rather generate monotonically increasing relation between

wealth and pollution (see Brock and Taylor 2005, for a survey). Parallely, a great deal

of theoretical contributions has been devoted to identify conditions under which the EKC

arises. This includes optimal growth models like in Dinda (2004) and Stokey (1998) or

equilibrium models in the spirit of John and Pecchenino (1994), all with stock pollutant.

In all the contributions mentioned above, the role of the abatement technology is crucial.

For example, in the latter abatement starts only after a large amount of capital, and thus

pollution, is accumulated, ultimately generating the decreasing part of the EKC. A similar

scheme can give rise to the EKC under endogenous growth: the shift from insufficient to

sufficient investment in abatement in an advanced stage of development curves down the

pollution level at that stage. Another stream of the EKC literature puts forward technologi-

cal progress: if richer countries are supposed to use, say, more energy-saving technologies,
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which are typically costly to implement, then pollution goes down in sufficiently devel-

oped countries. We shall take this avenue in this paper. Precisely, we consider an optimal

technology adoption AK model in line with Boucekkine Krawczyk and Vallée (2011): an

economy, caring about consumption and pollution as well, starts with a given technolog-

ical regime and may decide to switch at any moment to a cleaner technology at a given

permanent or transitory output cost. At the same time, we posit that there exists a pollution

threshold above which the assimilation capacity of Nature goes down, featuring a kind of

irreversible ecological regime. It has been shown by Prieur (2009) that introducing such

an irreversibility in the John and Pecchenino model considerably weakens the EKC case.

We shall study how the irreversibility mechanism interacts with the ingredients of the opti-

mal technological switch problem outlined above, with a special attention to the outcomes

regarding the capital-pollution relationship.

Our contributions are twofold. First of all, our contribution is technical. It is well known

that including irreversibility in the above sense also induces an optimal switching time

problem from the reversible to the irreversible ecological regime. Accordingly, our optimal

AK growth model involves two optimal timing problems associated to technological and

ecological switching times respectively. Original multi-stage optimal control techniques

will be developed to solve the model, extending previous works of Tomiyama (1985) on

technological switching and Tahvonen and Withagen (1996) on ecological switching. Sec-

ond, and more importantly, the interaction between the ecological and technological mech-

anisms generates a large set of potential optimal solutions. These solutions feature different

relationships between capital and pollution. For our calibrated model, if a single techno-

logical switch is optimal, one recovers the EKC provided initial pollution is high enough.

If exceeding the ecological threshold is optimal, then the latter configuration is far from

being the rule.
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The problem

We consider an optimal growth AK model with two stocks, physical capital (K) and pol-

lution (P). Two production technologies are available from t = 0. Each can be described

by two parameters (Ai,qi), i = 1,2: Ai is marginal productivity of capital since the produc-

tion function is Y = Ai K, while qi measures the degree of dirtiness of the technology i.

Concretely, qi captures the marginal contribution of capital to the flow of pollution. The

economy starts with technology i = 1 and has to decide whether it switches to technology

i= 2, and when. The economy cares about both the levels of consumption and pollution. So

for the problem to be nontrivial, we shall assume that A1 > A2 but q1 > q2: technology 1 is

more productive but dirtier. A1−A2 measures the cost of adopting a cleaner technology, we

assume it permanent.The problem is at this stage similar to the one tackled in Boucekkine

Krawczyk and Vallée (2011). There are however two major differences with respect to the

latter contribution: the existence of capital accumulation and of pollution decay. We also

introduce a key feature: irreversible pollution as in Prieur, Tidball and Withagen (2011).

More precisely, the two state variables evolve according to the following laws of motion:

K̇ = (Ai− δ )K −C, for i = 1,2, C being consumption and δ the depreciation rate, and

Ṗ = qi K−α jP, with i, j = 1,2 and α1 > α2 ≥ 0. The j subscript indexes the ecological

regime, here parameterized by the pollution natural decay rate α j. While the technological

switch from regime i = 1 to i = 2 does not require any minimal level of physical capital to

take place, an ecological switch from j = 1 to j = 2, where α1 > α2 ≥ 0, does naturally

entail the idea that nature cannot regenerate in the same way for low and high levels of the

stock of pollution. Typically, this is modeled through a threshold value for the pollution

stock, say P̄, above which the decay rate falls.1

As explained in the introduction section, putting together technological and ecological

switches enriches considerably the economic discussion. From the technical point of view,

the problem sounds at first glance strongly asymmetric, the technological switch involving
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explicit timing decisions while ecological switches are essentially based on a threshold

pollution level posited. It is however easy to see that this apparent asymmetry can be

attenuated: in line with the pioneering contribution of Tahvonen and Withagen (1996), it

is quite obvious to reformulate the ecological switching problem also as an optimal timing

problem: indeed, if such a switch occurs, it exists a date, say tP, where PtP = P̄ (assuming

P0 < P̄). As we shall see, this does not mean that the two state variables’ laws of motion

will imply similar optimality conditions. However, the previous observation legitimates the

formulation of the two switchings problems both as optimal timing problems. Hereafter, tK

with 0≤ tK ≤∞ will refer to the timing of technological switching while tP with 0 < tP≤∞

does the job on the ecological side.

Given these provisos, our optimal control problem can be written as:

max
{C,tK ,tP}

V =

∞∫
0

[U(C)−D(P)]e−ρtdt

subject to,

K̇ =

 (A1−δ )K−C if t ≤ tK

(A2−δ )K−C else

and,

Ṗ =



q1K−α1P if t ≤min{tK, tP}

q1K−α2P if tP < t ≤ tK

q2K−α1P if tK < t ≤ tP

q2K−α2P if t > max{tK, tP}

P0 < P̄ and K0 are given, ρ > 0 is the rate of pure time preference. The control set includes

the two timing variables mentioned above, plus consumption. The social welfare func-

tion is the same as in Tahvonen and Withagen (1996). The following standard regularity

conditions assure the concavity of the problems we will have to handle along the way:
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Hypothesis 1. The utility function, U(C), satisfies: U(0) = 0, U ′′(C) < 0, 0 <U ′(0) < ∞

and ∃!C̃/U ′(C̃)= 0. The damage function, D(P), satisfies: D(0)= 0, D′(P)> 0, D′′(P)≥ 0

and D′(0) = 0.

The optimal control problem stated above is novel in that the two timing problems are

of a different nature. In particular, one involves a threshold level for the state variable and

the other no. Problems with multiple timing have already been tackled in the literature

(see Saglam 2011) but in the latter literature only technological switching is considered.

Here two types of timing problems are mixed in the same framework; needless to say,

the interaction of both is very likely to give rise to a richer set of outcomes. Indeed, a

quick inspection into the set of optimal regimes allowed in our enlarged problem is enough

to get this point. A priori, one can list the following optimal regimes: 1. No switch, 2.

One technological switch, 3. One ecological switch, 4. Two switches: technological then

ecological and 5. Two switches: ecological then technological. It is not obvious at all to

guess a priori which kind of regime will result optimal given initial conditions, preferences

and available technological and ecological menus. Even worse, one can identify within

the optimal outcomes with at least one switch (the last five categories), different classes

of solutions: interior (that is tK > 0 and/or tP > 0) or corner (tK = 0). Eight regimes are

thus possible. Even more, one might be interested in distinguishing the case when there is

a simultaneous ecological and technological interior switch, which adds another possibly

interesting sub-case.

The next section gives our solution approach to this intricate problem.

The solution approach

We shall proceed as follows. First, for every possible regime k (k = 1 to 10 regimes from

the discussion just above), we write the corresponding first-order necessary conditions and

compute the resulting welfare function, say Vk. Then, we pick the regime which delivers

the largest social welfare, that is we identify the global maximum of the problem. The chal-
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lenge is first analytical because the general optimal control problem involved is nontrivial.

It is also computational because comparing nine possible regimes is highly demanding.

We shall ultimately resort to numerical comparison because our underlying optimal con-

trol problem does not admit a closed-form solution in most regimes. In the following, we

provide the general control theory foundations to identify the solutions with two interior

switches; this covers three cases: 0 < tK < tP < ∞, 0 < tP < tK < ∞, and 0 < tK = tP < ∞.

The other cases can be immediately recovered from the literature with one possible techno-

logical switch (see Boucekkine, Saglam and Vallée 2004) or one possible ecological switch

(Tahvonen and Withagen, 1996), including corner regimes.2

A natural approach is to decompose the problem into several sub-problems for given

timing variables, to solve each of them, and then to identify the optimal timings. With one

timing variable, two sub-problems are involved corresponding to the resulting two time

intervals, before and after the switch. In our case, three would result from the occurrence

of two switching times. In the spirit of Tomiyama (1985), we shall use the following

recursive scheme, illustrated here below on the case 0 < tK < tP < ∞:

• Third interval sub-problem: the problem in this regime is:

max
{C}

V3 =

∞∫
tP

[U(C)−D(P)]e−ρtdt

subject to, K̇ = (A2−δ ) K− C

Ṗ = q2 K−α2 P

where tP and the initial conditions K(tP) and P(tP) = P̄ are fixed. The associated hamil-

tonian is: H3 = [U(C)−D(P)] e−ρt +λ 22
K ((A2−δ ) K− C)+λ 22

P (q2 K−α2 P), where

λ
i j
v is the co-state variable associated with the state variable v = K,P in the technological

menu i and ecological regime j. The resulting value-function is of the form V ∗3 (tP,K(tP)).
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• Second interval sub-problem: in the next interval, the maximization problem is:

max
{C,tP,K(tP)}

V2 =

tP∫
tK

[U(C)−D(P)]e−ρtdt +V ∗3 (tP,K(tP))

subject to the corresponding dynamics, for regime i = 2 and j = 1, where tK , K(tK)

and P(tK) are given, and tP and K(tP) are free. Respectively denote by H2 and

V ∗2 (tK,K(tK),P(tK)) the corresponding hamiltonian and the resulting value-function.

• First interval sub-problem: This sub-problem considers the interval [0 tK]:

max
{C,tK ,K(tK),P(tK)}

V1 =V =

tK∫
0

[U(C)−D(P)]e−ρtdt +V ∗2 (tK,K(tK),P(tK))

subject to the dynamics of regimes i = 1 and j = 1, with K(0) and P(0) given, and with free

tK , K(tK) and P(tK). Again, denote the hamiltonian by H1 and it is obvious that V ∗1 =V ∗.3

Notice that each optimal control sub-problem is well-behaved, we will not spend space

on writing the corresponding standard Pontryagin conditions. Rather, we will focus on

uncovering the much trickier optimality conditions with respect to the timing variables and

the so-called matching conditions. Matching conditions refer to how hamiltonians and the

co-state variables behave at the optimal junction times. This is solved by the following

theorem.4

Theorem 1. Let 0 < t∗K < t∗P < ∞ be the optimal timing. Then:

H∗2 (tP) = H∗3 (tP) and H∗1 (tK) = H∗2 (tK),(1)

λ
22∗
K (tP) = λ

21∗
K (tP),λ 21∗

K (tK) = λ
11∗
K (tK) and λ

21∗
P (tK) = λ

11∗
P (tK).(2)

A few comments are in order here. First of all, one can read the five optimality conditions

above are continuity or matching conditions at the junction times. In this respect, conditions

(1) impose the continuity of the hamiltonian at the optimal junction times while the other

conditions ensure the continuity of co-state variables at these times. Interestingly enough,

one can observe that while at the technological switching time, both co-state variables

are optimally continuous, only the one associated to K is necessarily continuous at the

7

ha
ls

hs
-0

06
33

02
4,

 v
er

si
on

 1
 - 

17
 O

ct
 2

01
1



ecological switching time. This points at the major difference between the two switching

types: in the latter, pollution is fixed at the switching time, equal to the threshold value,

while at the technological switching time, both state variables can be freely chosen. This

generally implies discontinuity of the co-state variable associated to P at tP.

Second, one can interpret the matching conditions (1)-(2) as first-order optimal timing

conditions for tP and tK respectively. Generally speaking, the matching condition for timing

ti may be therefore written as: H∗i (tv)−H∗i+1(tv) = 0, for i = 1,2 and v = K,P. This con-

dition is quite common in the literature of multi-stage technological switching (see Saglam

2011). We show here that it applies also to ecological switches. Keeping the discussion

non-technical, one may interpret the difference H∗i (tv)−H∗i+1(tv) as the marginal gain from

extending the regime inherent to the time interval [ti−1, ti], with t0 = 0, at the expense of

the regime associated with interval [ti, ti+1]. Because there are no direct switching costs,

the marginal switching cost is nil. Therefore, the matching conditions on hamiltonians do

equalize marginal benefits and costs of delaying switching times. Hence they do feature

first-order necessary conditions with respect to the latters.5

There are two remaining cases of interest with two interior switchings, which derive

quite trivially from the analysis of the benchmark case. If ecological switching precedes

technological switching, that is if 0 < tP < tK < ∞, Theorem 1 still applies integrally. It

is indeed invariant to the sign of tK − tP as one can infer from the discussion following

Theorem 1. The last two (interior) switchings case follows the same logic though the list

of corresponding first-order timing and matching conditions is shorter because only two

successive regimes are involved, not three: one before tK = tP = ts and one after. Denoting

by Hi, λ ii
K = λ i

K and λ ii
P = λ i

P, i= 1,2, the hamiltonians and co-state variables corresponding

to the sub-problems on the intervals [0 ts] and [ts ∞) respectively, optimality conditions

reduce to H∗1 (t
s) = H∗2 (t

s) and λ 1∗
K (ts) = λ 2∗

K (ts).

We end this section by assessing briefly the impact of technical and ecological switching

on steady state. For any technological menu i = 1,2 and ecological regime j = 1,2, the
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expression of steady state capital and pollution are implicitly given by

U ′((Ai−δ )Ki j
∞ ) =

qiD′(
qiK

i j
∞

α j
)

(Ai−δ −ρ)(ρ +α j)
and Pi j

∞ =
qi

α j
Ki j

∞ .

One can directly observe that both Ki j
∞ and Pi j

∞ are non monotonic in the technological

menu (Ai,qi). In addition, if Ki j
∞ is decreasing in α j, Pi j

∞ also is not monotonic in α j. Intu-

ition runs as follows. Suppose the planner adopts, at some instant, the new technological

menu. The reduction in Ai generates the usual income and substitution effects that am-

biguously affect investment. Moreover, the associated decrease in the intensity of pollution

qi, induced by the adoption of the new technology, lowers the social cost of capital ac-

cumulation and stimulates investment. So, there are different forces at play and it is not

immediately obvious which effect will prevail in the long run. In the same vein, the impact

of technology adoption on pollution is unclear. Of course, the decrease in qi is a means to

slow down pollution accumulation. But depending on whether technical change stimulates

investment, there is an indirect effect that may go the other way round. In the numerical

exercise to follow, we find it reasonable to assume that the adoption of the new cleaner

technology allows the economy to reach a less polluted steady state. Regarding the impact

of the ecological switch on steady state pollution, two effects are also pushing in opposite

direction. Indeed, a decrease in α j makes it more difficult for Nature to regenerate itself.

At the same time however, everything else equal, it tends to reduce the incentive to invest

in capital (through the higher social cost of pollution λ
i j
P ). From now on, we shall consider

the more realistic case where the ecological switch translates into higher pollution.

It is now time to apply this theoretical analysis and our solution approach to the optimal

growth model described in Section 2.

Numerical investigation

What should be the solution of the optimal growth problem with ecological and technical

switches? To what extent does this solution respond to changes in the fundamentals of the
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economy? What is the relationship between the two state variables, capital and pollution,

along the optimal path? These are the questions we shall address in this numerical analysis.

Model calibration

The analysis is conducted with the following utility and damage functions: U(C) = θC(C̄−

C) and D(P) = νP, with θ ,ν ,C̄ > 0. The set of baseline parameters used is

(3)
θ = 14.4,q1 = 0.04,q2 = 0.02,z = 120,A1 = 1/3,A2 = 0.25,K0 = 15,

P0 = 107,ρ = 0.05,δ = 0.075,α1 = 0.005,α2 = 0.002,c = 10,ν = 2.1

As for the discount rate, the chosen value is close to what most western governments

use for most long term investments. The depreciation rate is usually between 5% and

10% depending on the level of economic development. We choose 7.5%. A review of

the literature suggests that α1 = 0.005 (implying a half-life of 139 years, see Hoel and

Karp 2002). The technology parameter value (A1) is set in order to be consistent with

the observed K11/Y 11 = 3. Moreover in our model, emissions before technology adop-

tion are E11 = q1K11. According to the DICE model (Nordhaus 2008, figure 5-10 p.110),

E11/Y 11 = 0.12 for 2010, yielding q1 = 0.04. At the steady state, ν = −λ 11
P∞

(α1 + ρ).

According to the literature (see for instance Nordhaus 2008), the social damage costs of

carbon dioxide emissions cannot be than less than 20$ or 30$ per ton but could probably

not exceed 50$ per ton. Choosing 40$ to appraise the shadow price of pollution we obtain

ν = 2.1. At the steady state again, θ = γλ 11
P∞

q1/(ρ +δ −A1) where γ stands for the relative

risk aversion. We assume the latter to be equal to 5 that leads to θ = 14.4. Parameter C̄ in

the utility function has been arbitrarily chosen because it is a scale parameter that does not

affect conclusions of the simulations. Consistently with the discussion about the impact of

ecological and technical switches on steady state, in the benchmark we choose parameters

(A2,q2,α2) so that steady state pollution is lower (resp. larger) after the technical (resp.

ecological) switch than before. For the values reported in (3), it appears that steady state

capital is higher after the technical switch than before.6 So, if the adoption of the new tech-
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nology is costly in terms of investment in the short run, it is ultimately beneficial to capital

accumulation.

The last important discussion refers to the set of initial conditions. For the particular

issue of climate change, irreversible switches will likely occur if no severe action is under-

taken soon. Indeed, there is now growing evidence that oceans (the most important carbon

sink) display a buffering capacity that begins saturating. At the same time, the assimilation

capacity of terrestrial ecosystems will likely peak by mid-century and then decline to be-

come a net source of carbon by the end of the present century. Finally, the potential collapse

of the North Atlantic meridional overturning circulation is drawing much of the attention,

since it may happen for a 450 ppm CO2 concentration while we have already reached 390

ppm (Yohe et al. 2006). These considerations have led us to start the numerical exercise by

setting the level of initial pollution close enough to – but below – the ecological threshold.

In addition, it is worth noting that we have chosen a threshold P̄ < P11
∞ . It implies that a

switch, either technical and/or ecological, will necessarily occur at some point in time. We

further assume that a technological switch is a priori a means to avoid the ecological switch

because P̄ > P21
∞ . Finally, the initial endowment in capital K0 satisfies K0 < K11

∞ (< K21
∞ ).

Benchmark scenario

Solving our calibrated AK model with pollution and switches, we first observe the existence

of multiple optimality candidates. For the set of baseline parameters, we find solutions to

the necessary optimality conditions associated with three of the nine possible regimes: 1.

Technological switch alone, 2. Simultaneous technological and ecological switches and 3.

Immediate technological switch alone.

Interestingly enough, as far as the nature of the relationship between K and P is con-

cerned, these three candidates show very distinct features. Along the first regime, there is a

sustained capital accumulation during the period before the switch, investment being more

efficient than after tK . Consequently, K21
∞ is nearly reached at the time of the switch and pol-
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lution rises as well during this phase (see figure 1, top). At some point in time (tK = 15.61),

the accumulated pollution and the level of capital become so high that the economy finds

it worthwhile to adopt the new greener technology. From that point on, pollution, starting

at a high level, decreases because natural assimilation now prevails on the lesser emissions

due to the new technology. In the second regime, capital accumulation is delayed relative

to what happens in the first regime in order to reach P̄ as late as possible (see figure 1,

second row). Once the double switch has occurred, pollution grows at a high rate because

the economy cannot rely anymore on a high regeneration rate. Finally, the economy may

choose to adopt immediately the new technology. In this third regime, we obtain a U-shape

relationship between K and P (see Figure 1, third row): from the beginning, the economy

is able with the new technology to accumulate capital while reducing the pollution stock.

What is the optimal regime? It turns out that it is the regime with a technical switch

alone (W1 = 2464.6 >W2 = 2432.81 >W3 = 1948.3). This result is very intuitive. Along

regime 1, the planner can avoid the ecological threshold and is therefore better off than

under regime 2. Regime 1 also dominates regime 3 because under the former, capital

accumulation benefits from a higher investment efficiency. To conclude this analysis, it is

worth mentioning that the optimal policy, with technical change alone, exhibits a capital-

pollution relationship that has the feature of the EKC.7

Let us investigate whether these results survive to modifications of critical parameters.

Sensitivity analysis

This section reviews all the possible variations around the baseline scenario. Table 1 sum-

marizes our findings.

Several interesting conclusions hold whatever the scenario considered. Firstly, the

regime with immediate technical switch always exists and is always dominated by another

solution. Secondly, there is no solution featuring a technical switch followed by an

ecological switch. Thirdly, each time a candidate with a technical switch alone exists, this
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yields the optimum. Last but not least, when the optimum is a technological switch alone,

the relationship between capital exhibits a turning point and consequently is inverted

U-shaped provided that initial capital and pollution are high enough8 and that agent are

sufficiently sensitive to pollution.

Finally, it is worth mentioning that under some scenarios, our conclusions sensibly differ.

In case where the intensity of pollution remains relatively high after adoption (q2 = 0.03),

the technological switch is not valuable to the planner. It implies that the optimum is the

regime with a simultaneous double switch. For a not too damaging pollution (ν = 1), a

small ecological threat (α2 = 0.003), or more impatient agents (ρ = 0.1), less attention is

paid to the ecological threshold and solutions to the regime with an ecological switch alone

exist. However, it is optimal only in the case where agents are relatively impatient. In such a

case, the capital-pollution relationship is not at all an EKC: it encompasses an intermediate

stage where pollution increases whereas capital decreases (see figure 1, bottom).

Concluding remarks

This paper investigates the income-pollution relationship within and optimal AK growth

model with technological and ecological switches. We show that the EKC, that is usually

seen as a description of the relationship between wealth and pollution along the different

development stages of one country, can also emerge as a result of the implementation of

the optimal policy from the current development stage of the economy.
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Notes

1The case α2 = 0 is the case for strong pollution irreversibility, we allow here for in-

termediate situations where the decay goes down above the threshold while nature keeps

some degree of regeneration.

2The case of two switchings, one interior and one corner, can be also settled similarly.

For example if 0 < tP < ∞ and tK = 0, one have just to solve for the ecological switch the

particular problem with tK = 0 given and the implied capital law of motion.

3One would use exactly the same scheme to handle a dynamic optimization problem in

discrete time over three periods. Here the Bellman principle applies on the three intervals

involved by the double timing problem instead of discrete periods of time.

4A detailed proof of the theorem is available upon request.

5The same type of arguments could be used to visualize easily the kind of necessary con-

ditions implied by corner switching times: for example immediate technological switching,

say t∗K = 0 implies H∗1 (0)−H∗2 (0)< 0.

6 Steady state values, for the benchmark, are: (P11
∞ ,K11

∞ ) = (147,18.4), (P21
∞ ,K21

∞ ) =

(109.4,27.4), (P12
∞ ,K12

∞ ) = (366.3,18.3) and (P22
∞ ,K22

∞ ) = (272.9,27.3).

7 Would A2 be closer to A1 (for instance A2 = 0.3, see table 1) the investment efficiency

gap before and after the switch would be reduced and the capital would be significantly

increasing after the switch, therefore leading to a nicer EKC.

8 For a low K0, assimilation prevails on emission at the beginning, thus generating a

decreasing relationship between K and P. For a low P0, the pollution keeps raising even

after the adoption of the new technology.
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Figures

Figure 1. Benchmark scenario: optimality candidates and corresponding paths. Last
row: optimum with ecological switch (ρ = 0.1)
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Tables

Table 1. Summary of results

Tech. switch Eco. switch tK < tP tP < tK
Bench. tK = 15.6, V = 2464.6 no no no
K0 = 5 tK = 22, V = 1257.9 no no no
P0 = 50 tK = 15.6, V = 4641 no no no

K0 = 5, P0 = 50 tK = 22, V = 3434,3 no no no
q2 = 0.01 tK = 10.2, V = 2578.2 no no no
q2 = 0.03 no no no no

α2 = 0.001 tK = 15.6, V = 2464.6 no no no
α2 = 0.003 tK = 15.6, V = 2464.6 tP = 96, V = 2431,3 no (tP, tK) = (108.4,122.2),

V = 2431.5
ν = 1 tK = 19.7, V = 4872.8 tP = 78.6, V = 4857.4 no no

ρ = 0.1 no tP = 81.9, V = 1206.5 no no
A2 = 0.3 tK = 5.9, V = 2568 no no no

tK = 0 tK = tP = t Opt. Relation K, P
Bench. V = 1948.3 t = 72.7, V = 2428.4 Tech. switch EKC
K0 = 5 V = 378.4 no Tech. switch no EKC
P0 = 50 V = 4124.7 t = 247.4, V = 4610.2 Tech. switch no EKC

K0 = 5, P0 = 50 V = 2563.8 no Tech. switch no EKC
q2 = 0.01 V = 2132 t = 72.5, V = 2434.2 Tech. switch EKC
q2 = 0.03 V = 1768 t = 72.9, V = 2422.7 switch tK = tP no EKC

α2 = 0.001 V = 1948.3 t = 74, V = 2426.1 Tech. switch EKC
α2 = 0.003 V = 1948.3 t = 71.5, V = 2430.8 Tech. switch EKC

ν = 1 V = 4280.8 t = 64.8, V = 4856.8 Tech. switch EKC
ρ = 0.1 V = 714.58 t = 68.8, V = 1206.4 Tech. switch no EKC
A2 = 0.3 V = 2503.2 t = 84.8, V = 2432.6 Tech. switch EKC
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