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Abstract

We consider equilibrium timing decisions in a model with informational exter-

nalities. A number of players have private information about a common payo¤

parameter that determines the optimal time to invest. The players learn from each

other in a continuous-time multi-stage game by observing the past investment deci-

sions. We characterize the symmetric equilibria of the game and we show that even

in large games where pooled information is su¢ ciently accurate for �rst best deci-

sions, aggregate randomness in outcomes persists. Furthermore, the best symmetric

equilibrium induces delay relative to the �rst best.

1 Introduction

This paper analyzes a game of timing where the players are privately informed about a

common payo¤ parameter that determines the optimal time to stop the game. Informa-

tion is transmitted across the players through observed actions, i.e. realized individual

stopping decisions. In other words, our model is one of observational learning where

communication between the players is not considered.

For concreteness, one may interpret the stopping decision as an irreversible invest-

ment decision as in the literature on real options. Since the payo¤ relevant parameter is

common to all players, the equilibrium investments are complementary. Delayed invest-

ment by other �rms indicates less favorable conditions for early investment whereas early

investment by other �rms encourages the others to follow. To put it simply, the �rst �rm

to invest must always worry about the fact that others have not yet invested. This creates

a hurdle to investment. But once this hurdle is cleared and some �rms invest, it is likely
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that the other �rms realize that they are already too late. This starts an investment

wave.

The key question in our paper is how the individual players balance the bene�ts

from observing other players�actions with the costs of delay. Observational learning is

potentially socially valuable because it allows information to spread across players. When

timing their own decisions, however, the players disregard the informational bene�ts to

the other players. This informational externality leads to delays when contrasted with

socially e¢ cient information transmission. As a result, much of the potential value of

social learning is dissipated.

Our main �ndings are: i) The most informative symmetric equilibrium results in

delays. ii) The most informative symmetric equilibrium displays herding in the sense

that when the number of players is large, almost all players stop at the same time. iii)

Even in large games with accurate pooled information, aggregate uncertainty persists.

iv) Almost all players bene�t from observational learning.

In our model, the �rst-best time to invest is common to all players and depends

on a single state variable !. Since all the players have information on !; the observed

actions re�ect the players�private information. The informational setting of the game is

otherwise standard for social learning models: The players�private signals are assumed

to be conditionally i.i.d. given ! and to satisfy the monotone likelihood ratio property.

The payo¤s are assumed to be either supermodular or logsupermodular in ! and the

investment time t.

We show that the game has symmetric equilibria in monotone strategies. Our main

characterization result describes a simple method for calculating the optimal decision for

each player in the most informative symmetric equilibrium of the game. In this equilib-

rium, a player always calculates her payo¤s as if her own signal were the most extreme

(that is, favoring early investment) amongst those players that have not yet invested.

The game has also less informative equilibria where all the players invest immediately

regardless of their signals.

We allow the players to react quickly to each other�s decisions. In order to avoid

complicated limiting procedures, we model the dynamic game as a multi-stage game with

continuous action sets. At the beginning of each stage, all the remaining players choose

their stopping time from the real line. The stage ends at the minimum of these stopping

times. This minimum stopping time and the identity of the player(s) that chose it are

publicly observed. The remaining players update their beliefs with this new information

and start immediately the next stage. This gives us a dynamic recursive game with �nitely

many stages (since the number of players is �nite). Since the stage game strategies are

simply functions from the type space to non-negative real numbers, the game and its

payo¤s are well de�ned. Quick reactions to stopping decisions are captured by allowing

immediate stopping in the next stage. It is well-know that for some stopping games
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with payo¤ externalities, the existence of a stage game equilibrium is problematic in the

continuous action variable case. In our game, all externalities are informational and no

such di¢ culties arise.1

To understand how the model works, consider the simplest case where the players

observe a binary signal on the true state of the world. If player i is the only player in the

game, she simply stops at the optimal moment given her posterior. Given that the signals

satisfy MLRP and the payo¤ is supermodular in ! and t; then she stops earlier, say at tL
if her signal is low. Suppose next that there are N > 1 players and consider the incentives

of the players that have received a low signal. If the other players with a low signal were

to stop at tL; then it would be in the best interest of player i to wait a bit longer to

observe the decisions at tL and hence to �nd out the number of low signals amongst the

other players. This rules out an equilibrium where all players with low signals stop at

tL. On the other hand, it is also impossible that in a symmetric equilibrium no player

stops with a positive probability at tL. If this were the case, then the �rst player to

stop after tL would act upon the information contained in her own signal only. But with

this information, the optimal stopping time is tL: Hence in equilibrium, the bene�ts from

learning from others must be balanced with the costs of delay.

If N is large, the weak law of large numbers guarantees that the number of players

with a private signal below any arbitrary value � identi�es the state ! (approximately)

accurately. While the players can decide at time t to delay their actions in response to

new information, they cannot decide to go backward in time and stop at t0 < t. Hence,

it is possible to learn that stopping is taking place too late. By contrast, since waiting

is always an option, it is not possible to become convinced that stopping is taking place

too early. This asymmetry that arises in most timing games explains the delays in our

model.

Related Literature

Our paper is related to the literature on herding. Early papers such as Banerjee

(1992) and Bikhchandani, Hirshleifer & Welch (1992) assumed an exogenous order of

moves for the players. Like us, Grenadier (1999) relaxes this assumption in order to

address observational learning in a model of investment. However, in his model players

are exogenously ranked in terms of the informativeness of their signals, and this ranking

is common knowledge. This assumption plays a role similar to the assumption of exoge-

nous order of moves, and as a result, the model features information cascades through a

mechanism similar to Banerjee (1992) and Bikhchandani, Hirshleifer & Welch (1992). By

contrast, we assume that the players are ex-ante similar, and this leads to qualitatively

di¤erent pattern of information revelation. Our model has no information cascades, but

1An early example of such existence problems appears in Fudenberg & Tirole (1985). With private

information, equilibrium existence is less problematic than in complete information settings. This can

be easily demonstrated in two-player games with a �rst mover advantage.
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information is revealed ine¢ ciently late.

The most closely related paper is the investment model by Chamley & Gale (1994)

where in contrast to our paper, it is optimal to invest either immediately or never.2 We

allow for a more general payo¤ structure where the state of nature determines the optimal

timing to invest, but which also captures Chamley & Gale (1994) as a special case. In

other words, Chamley & Gale (1994) models uncertainty over whether it is optimal to

invest or not, while we model uncertainty over when it is optimal to invest. This turns

out to have important implications for the model�s predictions. With the payo¤ structure

used in Chamley & Gale (1994), uncertainty is resolved immediately but incompletely at

the start of the game. In contrast, our model features gradual information aggregation

over time.3 The information revelation in our model is closely related to our previous

paper Murto & Välimäki (2011). In that paper, private learning over time generates

dispersed information about the optimal stopping point, and information is revealed in

sudden bursts of action. Moscarini & Squintani (2010) analyze a two-�rm R&D race

where the inference on common values information is similar to our model. The results

and the analysis in the two papers are quite di¤erent since our main focus is on information

aggregation in a general class of stopping models with pure informational externalities.

It is also instructive to contrast the information aggregation results in our context with

those in the auctions literature. In a kth price auction with common values, Pesendorfer

& Swinkels (1997) show that information aggregates e¢ ciently as the number of objects

grows with the number of bidders. Kremer (2002) further analyzes informational proper-

ties of large common values auctions of various forms. In our model, in contrast, the only

link between the players is through the informational externality, and that is not enough

to eliminate the ine¢ ciencies. The persistent delay in our model indicates a failure of

information aggregation even for large economies. On the other hand, Bulow & Klem-

perer (1994) analyzes an auction model that features "frenzies" that resemble equilibrium

stopping behavior in our model. In Bulow & Klemperer (1994) those are generated by

direct payo¤ externalities arising from scarcity, whereas our equilibrium dynamics relies

on a purely informational mechanism.

The paper is structured as follows. Section 2 introduces the basic model. Section 3

establishes the existence of a symmetric monotonic equilibrium. Section 4 discusses the

properties of the game with a large number of players. Section 5 presents a quadratic

example of the model. Section 6 presents some extensions of the basic model and compares

our results to the most closely related literature. Section 7 concludes.

2See also Chamley (2004) for a more general model. Levin & Peck (2008) extends this type of a model

to allow private information on the stopping cost. In contrast to our model, information is of the private

values type in their model.
3Section 6 discusses in more detail the relationship between these papers.
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2 Model

2.1 Payo¤s and signals

N players consider investing in a project. The payo¤ for player i from an investment at

time ti depends on the state ! 2 
, and is given by a continuous function

v (ti; !) .

The state space is a subset of the extended positive real line 
 � [0;1], and can be
either �nite or in�nite.4 The players share a common prior p0 (!) on 
. The players

choose their investment time t from the set T = [0;1]. The players face uncertainty over
! and choose the timing of their investment in order to maximize their expectation of v.

We assume the following:

Assumption 1 The payo¤ function v (t; !) is twice di¤erentiable in t almost everywhere,
and for each !, there is a unique t that maximizes v (t; !). Furthermore, v (t; !) is either

strictly supermodular, or strictly log-supermodular in (t; !).

The key implication of the assumption of strict (log-)supermodularity is that the

unique maximizer of v (t; !) must be strictly increasing in !. Examples include: i)

Quadratic loss relative to optimal time ! : v(t; !) = � (t� !)2 : ii) Discounted model
of costly investment where the market becomes pro�table at random time ! : v (t; !) =

e�rmaxft;!g � Ce�rt, where 0 < C < 1 is a parameter. iii) "Now or never": a special case
of ii) with state space 
 = f0;1g. iv) Discounted costly investment in a market growing
at rate � < r: v (t; !) = e�rt (e�t � !) :5

The players are initially privately informed about !. Player i observes a signal �i 2
� = [0; ��) for some �� � 1. G (�; !) is the joint probability distribution on � � 
: We
assume that the distribution is symmetric across i, and that signals are conditionally i.i.d.

Furthermore, we assume that the conditional distributions G(� j !) and corresponding
densities g(� j !) are well de�ned and have full support for all !. We also assume that
for all !, G(� j !) is continuous (i.e., there are no mass points) and g(� j !) has at most
a �nite number of points of discontinuity and is continuous at � = 0.

The signals in the support of the signal distribution satisfy monotone likelihood ratio

property (MLRP):

Assumption 2 For all i, �0 > �, and !0 > !,

g(�0 j !0)
g(� j !0) �

g(�0 j !)
g(� j !) : (1)

4We also assume that v (t; !) satis�es continuity at in�nity in both t and ! to ensure the existence of

optimal decisions.
5A variant of this model with a stochastic state variable will be discussed in Section 6.3.
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Assumptions 1 and 2 together allow us to conclude that the optimal stopping time

conditional on a signal is monotonic in the signal realization. That is, player i�s optimal

stopping time is increasing in her own type as well as in the type of any other player j.

Finally, we make an assumption for the signal densities at the lower end of the signal

distribution. This assumption has two purposes. First, we want to make sure that the

signals can distinguish di¤erent states. This is guaranteed by requiring g (0 j! ) 6= g (0 j!0 )
whenever ! 6= !0 (note that assumption 2 alone allows conditional signal densities that
are identical in two di¤erent states). Second, we want to rule out the case where some

players can infer the true state from observing their own signal. This is guaranteed by

requiring 0 < g (0 j! ) < 1 for all ! 2 
. While none of the players can infer the

true state based on their own signal, the assumption of conditionally independent signals

and MLRP together guarantee that the pooled information held by the players becomes

arbitrarily informative as the number of players tends to in�nity.

Assumption 3 For all !; !0 2 
, !0 > !,

0 < g (0 j!0 ) < g (0 j! ) <1.

2.2 Strategies and information

We assume that at t, the players know their own signals and the past decisions of the

other players. We do not want our results to depend on any exogenously set observation

lag. Therefore, we allow the players to react immediately to new information that they

obtain by observing that other players stop the game. To deal with this issue in the

simplest manner, we model the game as a multi-stage stopping game as follows.

The game consists of a random number of stages with partially observable actions.

In stage 0; all players choose their investment time � i (h0; �i) 2 [0;1) depending on
their signal �i: The stage ends at t0 = mini � i (h

0; �i) : At that point, the set of players

that invest at t0, i.e. S0 = fi : � i(h0; �i) = t0g is announced. The actions of the other
players are not observed. The public history after stage 0 and at the beginning of stage

1 is then h1 = (t0;S0) : The vector of signals � and the stage game strategy pro�le
� (h0; �) = (� 1 (h

0; �1) ; :::; �N (h
0; �N)) induce a probability distribution on the set of

histories H1. The public posterior on 
 (conditional on the public history only) at the

end of stage 0 is given by Bayes�rule:

p1
�
!
��h1 � = p0 (!) Pr (h1 j! )R



p0 (!0) Pr (h1 j!0 ) d!0 :

As soon as stage 0 ends, the game moves to stage 1, which is identical to stage 0

except that the set of active players excludes those players that have already stopped.

Once stage 1 ends, the game moves to stage 2, and so forth. Stage k starts at the point in
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time tk�1 where the previous stage ended. The players that have not yet invested choose

an investment time � i(hk; �i) � tk�1. We let N k denote the set of players that are still

active at the beginning of stage k (i.e., players that have not yet stopped in stages k0 < k).

The public history available to the players is

hk = hk�1 [
�
tk�1;Sk�1

�
:

The set of stage k histories is denoted byHk, and the set of all histories byH := [kHk.

We denote the number of players that invest in stage k by Sk and the cumulative number

of players that have invested in stage k or earlier by Qk :=
Pk

i=0 S
k.

A pure behavior strategy for stage k is a function

� ki : H
k ��! [tk�1;1];

and we also de�ne the strategy � i (h; �) on the set of all histories by:

� i (h; �) = �
k
i (h; �) whenever h 2 Hk:

The players maximize their expected payo¤. A strategy pro�le � = (� i; :::; �N) is a

Perfect Bayesian Equilibrium of the game if for all i and all �i and hk; � i(hk; �i) is a best

response to ��i:

3 Monotonic Symmetric Equilibrium

In this section, we analyze symmetric equilibria in monotonic pure strategies.

De�nition 1 A strategy � i is monotonic if for all k and hk, � i
�
hk; �

�
is (weakly) in-

creasing in �.

With a monotonic symmetric strategy pro�le, the players stop the game in the in-

creasing order of their signal realizations. Therefore, at the beginning of stage k, it is

common knowledge that all the remaining players have signals within
�
�k; ��

�
, where:

�k := sup
�
�
���(hk�1; �) = tk�1	 : (2)

3.1 Informative Equilibrium

We now characterize the symmetric equilibrium that maximizes information transmission

in the set of symmetric monotone pure strategy equilibria. Theorem 1 below states that

there is a symmetric equilibrium, where a player with the signal � stops at the optimal

time conditional on all the other active players having a signal at least as high as �.

The monotonicity of this strategy pro�le follows from MLRP. We call this pro�le the

informative equilibrium of the game.
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To state the result, we de�ne the smallest signal among the active players at the

beginning of stage k:

�kmin := min
i2N k

�i.

Theorem 1 (Informative equilibrium) The game has a symmetric equilibrium pro�le
� � in monotonic strategies, where the stopping time for a player with signal � at stage k

is given by:

� �
�
hk; �

�
:= min

�
arg max

t�tk�1
E
�
v (t; !)

��hk; �kmin = � �� . (3)

The proof is in the appendix, and it uses the key properties of � �
�
hk; �

�
stated in the

following Proposition:

Proposition 1 (Properties of informative equilibrium) The stopping time � �
�
hk; �

�
de�ned in (3) is increasing in �. Furthermore, for every hk, k � 1, there is some " > 0
such that along equilibrium path, � �

�
hk; �

�
= tk�1 for all � 2

�
�k; �k + "

�
.

Proof. Proposition 1 is proved in the Appendix.
The equilibrium stopping strategy � �

�
hk; �

�
de�nes a time-dependent cuto¤ signal

��k (t) for all t � tk�1:

��k (t) := sup
�
�
��� � �hk; �� � t	 : (4)

In words, ��k (t) is the highest type that stops at time t in equilibrium. Proposition 1

implies that along the informative equilibrium path, ��k
�
tk�1

�
> �k for all stages except

possibly the �rst one. This means that all the players with a signal in the interval�
�k; ��k

�
tk�1

��
stop immediately at the beginning of the stage, and there is therefore a

strictly positive probability that many players stop simultaneously.

To understand the equilibrium dynamics in stage k, note that the cuto¤ signal ��k (t)

(i.e. the lower bound of the signals of the existing players) moves upwards as time goes by.

By MLRP and the (log)supermodularity of v, this new information delays the optimal

stopping time for all the remaining players. At the same time, the passage of time

increases the relative payo¤ from stopping the game for each signal �. In equilibrium,

��k (t) increases at a rate that balances these two e¤ects and keeps the marginal type

indi¤erent.

As soon as stage k ends at tk > tk�1, the remaining players learn that one of the

other active players in stage k has a signal at the lower bound ��k
�
tk
�
. By MLRP and

the (log)supermodularity of v, the expected value from staying in the game falls by a

discrete amount. This means that the cuto¤ type moves discretely upwards and explains

why ��k+1
�
tk
�
> ��k

�
tk
�
= �k+1. As a result, each new stage begins with a positive
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probability of immediate further exits. If at least one player stops so that tk+1 = tk, the

game moves immediately to stage k + 2. The preceding argument can be repeated until

there is a stage with no further immediate exits. Thus, the equilibrium path alternates

between stopping phases, i.e. consecutive stages k0 that end at tk
0
= tk

0�1 and that result

in multiple simultaneous exits, and waiting phases where all players stay in the game for

time intervals of positive length.

Note that the random time at which stage k ends,

tk = � �
�
hk;min

i2N k
�i

�
;

is directly linked to the �rst order statistic of the player types remaining in the game at

the beginning of stage k. If we had a result stating that for all k, � �(hk; �i) is strictly

increasing in �i, then the description of the equilibrium path would be equivalent to

characterizing the sequence of lowest order statistics where the realizations of all previous

statistics is known. Unfortunately this is not the case since for all k > 1, there is a strictly

positive mass of types that stop immediately at tk = tk�1. This implies that the signals of

those players that stop immediately are imperfectly revealed in equilibrium. However, in

Section 4.1 we show that in the limit as the number of players is increased towards in�nity,

payo¤ relevant information in equilibrium converges to the payo¤ relevant information

contained in the order statistics of the signals.

3.2 Uninformative equilibria

Some stage games also have an additional symmetric equilibrium. In these equilibria,

players use strategies that do not depend on their signals. We call these equilibria unin-

formative. They are similar to rush equilibria in Chamley (2004).

To understand when such uninformative equilibria exist, consider the optimal stopping

problem of a player who conditions her decision on history hk and her private signal �i,

but not on the other players having signals higher than hers. If t = tk�1 solves that

problem for all signal types remaining in the game, i.e., if

tk�1 2 arg max
t�tk�1

E
�
v (t; !)

��hk; �i = � � for all � � �k,
then an uninformative equilibrium may exist. If all players stop at t = tk�1 then they

learn nothing from each other. If they learn nothing from each other, then t = tk�1 is

their optimal action.

It should be noted that some equilibria where all the players stop immediately satisfy

our criteria for informative equilibrium. If � �(hk; �) = tk�1 for all �, then the continuation

equilibrium is informative in our terminology even though all players stop at once. At any

such history hk, the players �nd it optimal to exit even if all the remaining players had the
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highest possible signal. Similarly, with some payo¤ speci�cations there are informative

equilibria where all the players stop at t =1 (which, in such a case, is to be interpreted

as delaying in�nitely). See discussion of such a case in Section 6.1.

In the least informative equilibrium, uninformative equilibrium is played in all stages

where the above criterion is satis�ed. There are also intermediate equilibria where after

some hk, players use � �
�
hk; �

�
de�ned in (3), and after other hk, they play uninformatively.

It is easy to rank the symmetric equilibria of the game. The informative equilibrium

is payo¤ dominant in the class of all symmetric equilibria of the game. This follows from

the fact that every player can always ensure the outcome of the uninformative equilibrium

after all hk regardless of the other players�strategy choices.

4 Informative Equilibrium in Large Games

In this section, we analyze the limiting properties of the model as we increase the number

of players towards in�nity. Since the informative equilibrium strategy is monotonic in

signals, the players stop in the ascending order of their signals. Therefore, given the

game with N players, the time instant at which the n:th player stops the game is a

function of the n lowest signal realizations amongst the players, and we can write it as

TNn

�e�N1 ; :::;e�Nn � ;
where e�Ni denotes the ith order statistic in the game with N players:

e�Ni := min�� 2 �0; �� j # fj 2 N j �j � �g = i
	
: (5)

We start with a simple statistical observation regarding the distribution of order sta-

tistics in large samples (Section 4.1). Using this result, we then derive the limiting

distribution for the n �rst stopping moments in the informative equilibrium (Section

4.2). Finally, we present a theorem that characterizes the equilibrium stopping times of

(almost) all the players in the large-game limit (Section 4.3).

4.1 Information in equilibrium

It is clear that if we increase N towards in�nity while keeping n �xed, the n lowest order

statistics e�N1 ; :::;e�Nn converge to the lower bound 0 of the signal distribution in probability.
Therefore, we scale the order statistics by the number of players:

ZNi :=
e�Ni �N . (6)

Since ZNi is a deterministic function of e�Ni , it has the same information content as e�Ni .
In the next proposition we record a well known statistical result according to which ZNi
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converge to non-degenerate random variables. This limit distribution, therefore, captures

the information content of e�Nn in the limit.
Proposition 2 For all n 2 N, the vector

�
ZN1 ; Z

N
2 � ZN1 ; :::; ZNn � ZNn�1

�
converges in

distribution to a vector of n independent exponentially distributed random variables with

parameter g (0 j !). That is,

lim
N!1

Pr
�
ZN1 � x1; ZN2 � ZN1 � x2; :::; ZNn � ZNn�1 � xn

�
= e�g(0j!)�x1 � ::: � e�g(0j!)�xn.

Proof. In the Appendix.
Proposition 2 states that in the limit N ! 1, learning from the order statistics is

equivalent to sampling independent random variables from an exponential distribution

with an unknown state-dependent parameter g (0 j !). The intuition is straight-forward.
When N increases, the n lowest order statistics converge towards 0. Therefore, the signal

densities matter for the learning only in the limit � # 0, and hence one can think of
g (0 j !) as the intensity of the order statistics in the large game limit. This explains why
we have adopted the assumption that the signal density g (� j !) is continuous at � = 0.
Note that ZNn = ZN1 +

�
ZN2 � ZN1

�
+ ::: +

�
ZNn � ZNn�1

�
, and therefore ZNn converges

to a sum of independent exponentially distributed random variables, which means that

its limiting distribution is Gamma:

Corollary 1 For all n;
ZNn

D! � (n; g (0 j !)) ;

where � (n; g (0 j !)) denotes gamma distribution with parameters n and g (0 j !).

We have now seen that when N ! 1, observing the n lowest order statistics is
equivalent to observing n independent exponentially distributed random variables. Since

exponential distributions are �memoryless�, this means that observing only the nth order

statistic e�Nn is informationally equivalent to observing all order statistics up to n. To see
this important fact formally, denote by � (! j (z1; :::; zn)) the posterior probability of an
arbitrary element ! 2 
 based on a realization (z1; z2 � z1; :::; zn � zn�1) of independent
exponential variables, and let � (! j zn) denote the corresponding posterior probability
based on the sample that contains only zn, the sum of the previous sample. Bayes�rule

and simple algebra show that these posteriors are equal:

� (! j (z1; :::; zn)) =
�0 (!) �

nY
i=1

g (0 j !) e�g(0j!)(zi�zi�1)

R


�0 (!0) �

nY
i=1

g (0 j !0) g (0 j !0) e�g(0j!0)(zi�zi�1)d!0
(7)

=
�0 (!) � (g (0 j !))n e�g(0j!)znR



�0 (!0) � (g (0 j !0))n e�g(0j!0)znd!0 = � (! j zn) :
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In the �nite model (away from the limit N ! 1), the posterior �N (! j (z1; :::; zn))
based on a sample ZN1 = z1; :::; Z

N
n = zn generally di¤ers from the posterior �N (! j zn)

that is based only on ZNn = zn. Nevertheless, Bayes�rule is continuous in the limit as

N ! 1 in (z1; :::; zn) since we assume g(� j !) to be continuous at � = 0 for all !.

Therefore, Proposition 2 implies that both �N(! j (z1; :::; zn)) and �N (! j zn) converge to
the posterior �(! j zn) for all ! and (z1; :::; zn) as N !1. We summarize this discussion
in the following Corollary.

Corollary 2 For a �xed sample of normalized order statistics (z1; :::; zn),

lim
N!1

�N(! j (z1; :::; zn)) = lim
N!1

�N(! j zn) = �(! j zn) for all !:

More generally, a player may have some, but not perfect, information on (z1; :::; zn�1).

Suppose that a player knows zn, and in addition knows that each zi, i < n, lies within

some arbitrary interval Ai of the real line. Corollary 2 also means that

lim
N!1

�N (! j z1 2 A1; :::; zn�1 2 An�1; zn) = � (! j zn) :

This observation plays a key role in our analysis. Suppose that player i has signal

� and that she has some information on the signals of those players that have stopped

before her. In particular, by the monotonicity of the informative equilibrium strategy

pro�le, she knows at the very least that those signals are all below �. By Theorem 3,

she would now choose the optimal stopping time conditional on her information on those

lower signals and conditional on the assumption that all other players have signals above

� (and of course subject to the restriction that stopping before the current instant of real

time is impossible). Corollary 2 implies that the number of players n with signals below

� summarizes the relevant part of the history in the limit as N ! 1. Hence even if all
signals were observable, the relevant conditioning event is still ZNn = N� when N !1.
We now turn to the formalization of this reasoning.

4.2 Timing in Large Games

In this section, we link the equilibrium stopping decisions to the information contained in

the order statistics. We show that when N ! 1, the equilibrium path of the game can

be approximated by a simple algorithm that samples sequentially the order statistics.

As a terminological matter, we use the term unconstrained stopping time to refer to

the optimal element from the original action space T = [0;1]. Since in equilibrium the

players cannot go backwards in time, we are ultimately interested in stopping times chosen

from
�
tk�1;1

�
where tk�1 is the time at which the previous stage ended. We use the term

constrained stopping time to refer to an optimal stopping time that is constrained to be

weakly higher than some previously chosen stopping time. We use the term limit model

12



to refer to the statistical properties of the order statistics in the limit N ! 1, derived
in the previous subsection.

We consider �rst the unconstrained stopping time in a hypothetical case, where a

decision maker observes the nth order statistic of the limit model. In the following Lemma

we establish the uniqueness of the optimal solution to this problem for almost every

realization zn of Zn.

Lemma 1 Let Zn � �(n; g(0 j !)) and de�ne

tn (zn) := arg max
t2[0;1]

Z



v (t; !)�(! j zn)d!: (8)

Then tn (zn) is a singleton for almost every zn in the measure induced by the random

variable Zn on R+:

Proof. In the Appendix.
We turn next to the �nite model with N players. Consider a sample of normalized

order statistics �
ZN1 = z1; :::; Z

N
n = zn

�
;

and let tNn (z1; :::; zn) and t
N
n (zn) denote the unconstrained optimal stopping times, based

on the whole sample (z1; :::; zn) and sample zn, respectively:

tNn (z1; :::; zn) : = arg max
t2[0;1]

Z



v (t; !)�N(! j (z1; :::; zn))d!;

tNn (zn) : = arg max
t2[0;1]

Z



v (t; !)�N(! j zn)d!:

Note that tNn (y1; :::; yn) and t
N
n (zn) could in principle be sets. The next Lemma, which

is based on Corollary 2 in the previous subsection, shows that they converge to tn (zn),

which is singleton for almost every zn by Lemma 1.

Lemma 2 For almost every (z1; :::; zn),

lim
N!1

tNn (z1; :::; zn) = lim
N!1

tNn (zn) = tn (zn) :

Proof. In the Appendix.
With this Lemma, we can relate the equilibrium stopping times to the stopping times

of the limit model. Notice, however, that so far we have been discussing the unconstrained

stopping times tn (zn), which could be decreasing in n: Since the players cannot go back-

wards in time, the relevant constrained stopping time in the limit model for the player

with nth lowest signal is the maximum of tn0 (zn0), n0 = 1; :::; n:

tn (z1; :::; zn) := max
n0=1;:::;n

tn0 (zn0) . (9)
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The main result of this section is that the stopping times in the informative equilibrium

of the game converge to the stopping times de�ned in (9). Recall that TNn
�e�N1 ; :::;e�Nn �

denotes the real time at which the player with the nth lowest signal stops in the informative

equilibrium. We have:

Proposition 3 For all n; and for almost every (z1; :::; zn) ;

lim
N!1

TNn

�z1
N
; :::;

zn
N

�
= tn (z1; :::; zn) .

Proof. In the Appendix.
We end this section by relating the joint distribution of equilibrium stopping times

to the stopping times of the limit model. Omitting the arguments, let
�
TN1 ; :::; T

N
n

�
de-

note the vector that contains the random stopping times of the n �rst players to stop

in the symmetric equilibrium. Corollary 3 below provides a simple algorithm for sim-

ulating equilibrium stopping times in the large-game limit: �x an arbitrary n, draw n

realizations (z1; :::; zn) from exponential distribution with parameter g (0 j !), and com-
pute t1 (z1) ; :::; tn (z1; :::; zn) using (8) and (9).

Corollary 3 The realized stopping times in the symmetric equilibrium converge in dis-

tribution to the constrained stopping times in the limit model:�
TN1 ; :::; T

N
n

� D!
�
t1 (Z1) ; :::; tn (Z1; :::; Zn)

�
where ti is a function de�ned by (8) and (9), and Z1; :::; Zn are independent, exponentially

distributed random variables with parameter g (0 j !).

Proof. Direct consequence of Propositions 2 and 3.

4.3 Delay in Equilibrium

In this section, we characterize the real time behavior of (almost) all the players in the

informative equilibrium when N !1. Let TN(�; !) denote the random stopping time in
the informative equilibrium of a player with signal � when the state is ! and the number

of players at the beginning of the game is N . We will be particularly interested in the

behavior of TN(�; !) as N grows and we de�ne

T (!; �) := lim
N!1

TN(!; �);

where the convergence is to be understood in the sense of convergence in distribution.

The time instant at which the last player invests is denoted by TN(!) and we let

T (!) := lim
N!1

TN(!):

14



We let F (t j !) denote the distribution of T (!), or in other words,

F (t j !) = PrfT (!) � tg:

The following Theorem characterizes the asymptotic behavior of the informative equilib-

rium as the number of players becomes large. We denote by t (0) the optimal investment

time of a player that decides based on signal � = 0 only, and we denote by t� (!) the

�rst-best investment time for state !:

t� (!) := arg max
t2[0;1]

v (t; !) .

Theorem 2 In the informative equilibrium of the game, we have for all ! 2 
,

1. For all � > 0,

lim
N!1

Prf
��TN(!; �)� TN(!)�� < "g = 1 for all " > 0:

2. F (t j !) = 0 for all t < maxft(0); t� (!)g.

3. F (t j !) < 1 for all t < max
:

Proof. In the Appendix.
Theorem 2 con�rms the main properties of our model. Almost all the players stop

(almost) simultaneously (Part 1 of the theorem), and this stopping moment is ine¢ ciently

late and random (Parts 2 and 3 of the theorem). Since all the players with signals strictly

above zero stop at the same time, the informational properties of the model are driven

by the lowest signals. All the relevant information is transmitted by the lowest order

statistics, and it is irrelevant how good information might be available at higher signal

values.

5 Example with quadratic payo¤s

In this section, we compute analytically the statistical properties of the informative equi-

librium in the limit model for a special case of our model. As in much of the literature

on observational learning, we assume that both the states and the signals are essentially

binary. There are N ex ante identical players. We let ! 2 f0; 1g and we map the binary
signal setting into our model by assuming the following signal densities:

g(� j 0)
g(� j 1) = cl for all 0 � � � ��; (10)

g(� j 0)
g(� j 1) = ch for all �� < � < �; (11)
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where cl > ch > 0 and �� > 0 are parameters. Hence all the signals below (above) ��

have the same informational content de�ned by parameter cl (ch). Sometimes we call

signals below (above) �� low (high) and write � = l(= h). For simplicity, we assume that

the probability of getting a low (high) signal if ! = 0 (! = 1) is given by a parameter

� > 1=2:

G(��; 0) = 1�G(��; 1) = � > 1

2
;

which implies that cl = �= (1� �) and ch = (1� �) =�. Hence, � measures the precision
of the signals. We also assume that the prior probability p0 = Prf! = 1g = 1

2
.

The payo¤s in the model are given by

v(t; !) = �(t� !)2: (12)

Hence the optimal action for a player with posterior p on f! = 1g is to invest at t = p.
We start the analysis by calculating the payo¤s of a player that decides the timing of

her investment in isolation from other players. First, suppose a player must choose the

stopping time without a signal. Then she stops at t = 1=2 and her payo¤ is

V 0 =
1

2

�
�1
4

�
+
1

2

�
�1
4

�
= �1

4
:

After observing her signal, her posterior becomes more informative. If she observes a

signal � � ��, her posterior becomes p = 1� �. If � > ��, her posterior is p = �. Hence
her payo¤ after observing her own signal is

V I = �� (1� �)2 � (1� �)�2

= �� (1� �) .

Notice that the loss from non-optimal decisions vanishes as the signals get accurate, i.e.

V I " 0 as � " 1. On the other hand, as � # 1=2, signals become uninformative and
V I # V 0.
Consider next the case with a large N . If the players were able to pool their informa-

tion, then the posterior would be very informative of the true state, and all the players

would stop together at the e¢ cient stopping time. This follows from the fact that the

number of players with a signal below �� is a binomial random variableX0(N) (orX1(N))

with parameter � (or 1��) if ! = 0 (or ! = 1). We next investigate how well the players
do if they can only observe each others�investment decisions but not their signals. That

is, we consider the payo¤s of the players in the informative equilibrium of the game.

From Theorem 1, we know that there is an informative equilibrium that is symmetric

and in monotonic pure strategies. We denote this strategy pro�le by � � and the corre-

sponding ex-ante payo¤ by V � (this is the expected equilibrium payo¤ prior to observing

the private signal �).
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When a player with signal �� invests, she behaves at every stage as if she knew that

all other players have signals (strictly) above �� with probability 1 (again, this follows

from Theorem 1). In order to compute V �, we compute �rst the payo¤ of a player with

signal � that deviates to the strategy ~� = � �(h; ��) for all h 2 H. In other words, the
deviating player just follows the strategy of the highest possible low signal player. We

denote the ex ante expected payo¤ to the deviating player by ~V when all other players

use their equilibrium strategies. Clearly this gives us a lower bound for V �.

Denote by ~T the random real time at which the deviating player invests when using

strategy ~� . Suppose that ! = 1. Then t� (!) = 1, and Part 2 of Theorem 2 states that

in the large game limit the last player stops at time t = 1. Part 1 of the same Theorem

says that the stopping times of all signal types converge in probability to the same real

time, hence we must have ~T ! 1 in probability. Therefore, denoting the expected payo¤

conditional on state ! by V!, we have:

~V1 ! 0

(in probability) as N !1.
We turn next to the computation of ~V0. To do this, we de�ne �rst the expected

payo¤ ~V�=l of the deviating player when her signal is low, i.e. when � < ��. Since the

informational content of each such signal is the same and since the signals across players

are conditionally independent, we know that this expected payo¤ is the same as the payo¤

to the player with the lowest possible signal � = 0. Since the player with the lowest signal

is the �rst to invest in the informative equilibrium, her payo¤ is the same as the payo¤

based on her own signal only, and thus

~V�=l = V
I = ��(1� �): (13)

On the other hand, the probability of state ! = 0 conditional on a low signal is �, and

therefore

eV�=l = �eV0 + (1� �) eV1: (14)

Combining (13) and (14), and solving for eV0 gives:
eV0 = � (1� �) 1 + eV1

�

!
:
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Therefore,

eV =
1

2
eV0 + 1

2
eV1

= �1� �
2

+

�
1

2
� 1� �

�

� eV1
! �1� �

2
as N !1:

The �nal step is to observe that as N ! 1, we have ~V ! V � in probability. This

follows from Part 1 of Theorem 2: since the real stopping times of all signal types (expect

zero-probability case � = 0) converge to the same instant, the deviation that we have

considered will not a¤ect the realized payo¤ in the large game limit. Therefore, as N !
1,

V � ! �1� �
2

:

Note that we have 0 > V � > V I whenever � 2 (1
2
; 1). This means that the play-

ers bene�t from the observational learning in equilibrium (V � > V I), but their payo¤

is nevertheless below e¢ cient information sharing benchmark due to the informational

externality (V � < 0). Furthermore, denoting by V �! the equilibrium payo¤ conditional

on state, it should be noted that V �1 ! 0 and V �0 ! � (1� �). That is, observational
learning bene�ts the players when ! = 1 , but hurts them when ! = 0. Figure 1 draws

the payo¤s as functions of �.

< Figure 1 here >

To complete the analysis of the quadratic case, we analyze the distribution of ~T . As

long as t > 1 � �, but some of the uninformed players stay in the game, they must be
indi¤erent between staying and investing. Therefore, we must have

p�=l(t) = t for all t > 1� �;

where p�=l(t) denotes probability that a player with a low signal assigns on the event

f! = 1g at real time t. We already concluded that ~T ! 1 in probability if ! = 1,

and therefore, if it turns out that ~T < 1, then we know that p�=l(t) = 0 for all t > ~T .

Therefore, we can compute the hazard rate � ~T (t) for the investment of the last player

with a low signal in the limit as N !1 from the martingale property of beliefs:

t = p�=l(t) = (1� � ~T (t)dt)p�=l(t+ dt) + � ~Tdt � 0;

or

� ~T (t) =
1

t
:
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Since Prf ~T < 1 � � j! = 1g ! 0 as N ! 1, we can write the conditional probabilities
of the event f ~T 2 [t; t+ dt) j ~T � tg as

� ~T (t j ! = 0) =
(
0 for t < 1� �
1

t(1�t) for 1� � � t < 1
� ~T (t j ! = 1) = 0 for t < 1.

By Theorem 2, the probability distribution that we have derived for ~T is also the prob-

ability distribution for the stopping time of the last player in the game, which we have

denoted F (t j !). Figure 2 draws F (t j 0) with di¤erent values of �.

< Figure 2 here >

It should be noted that the binary state-space makes this example quite special. With

more than two states, we are not able to compute analytically the equilibrium payo¤s or

the probability distribution for the players�stopping times. Nevertheless, as explained in

Section 4.2, it is easy to simulate the large-game limit for any model speci�cation. As an

illustration, we extend the example to ten states: ! 2 f0; 1
9
; 2
9
; :::; 1g (the payo¤ is given by

(12) as before so that t� (!) = !). Since we simulate the model directly in the large-game

limit, we only need to specify the signal distributions at the low end of the signal space,

and we let

g(0 j !) = 1� �
�
! � 1

2

�
,

where � 2 [0; 2) is a parameter that measures the precision of the signals. We use Monte-
Carlo simulation to derive V �! and F (t j !) for all state values with two signal precisions:
� = 1 (precise signals) and � = 0:1 (imprecise signals). Figure 3 shows V �! . We see that

V �! is increasing in ! so that observational learning is especially bene�cial in those states

where �rst-best investment is late. Also, we see that V �! is higher for � = 1 so that the

players bene�t from more accurate signals.

< Figure 3 here >

Figure 4 shows F (t j !) for all state values (upper panel with � = 1, lower panel

with � = 0:1). This �gure con�rms the properties derived in Theorem 2: for any state

realization, the players stop at a random time that is always later than the �rst-best time.

Note that there is more delay with imprecise signals, which explains the higher payo¤s

with precise signals.

< Figure 4 here >

To summarize, this quadratic example has demonstrated the following properties of

our model: i) Observational learning is bene�cial in high states and harmful in low states.
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ii) Ine¢ cient delays persist for all but the highest state. iii) Almost all players invest at

the same time as N !1. iv) The instant at which almost all the players invest arrives
with a well de�ned hazard rate.

6 Discussion

6.1 Relation to Chamley and Gale (1994)

Our general results are quite di¤erent from the related models in Chamley & Gale (1994)

and Chamley (2004). To understand why this is the case, it is useful to note that we can

embed the main features of those models as a special case of our model. For this purpose,

assume that ! 2 f0;1g, and

v (t; 0) = e�rt; v (t;1) = �ce�rt:

This is the special case, where the optimal investment takes place either immediately

or never. The private signals a¤ect only the relative likelihood of these two cases. To see

this formally, note that for any information that a player might have, the strategy de�ned

in Theorem 1 is always a corner solution: either � � (ht; �) = tk�1 or � � (ht; �) = 1. In
other words, as explained in Chamley & Gale (1994), no player ever stops in any stage

at some t > tk�1 conditional on no other investments within (t� "; t) since otherwise it
would have been optimal to invest already at t � ". As a result, a given stage k ends
either immediately if at least one player stops at time tk = tk�1 or the stage continues

forever. Since this holds for all stages, all investment in the game must take place at real

time zero, and with a positive probability investment stops forever even when ! = 0.

The models in Chamley & Gale (1994) and Chamley (2004) are formulated in discrete

time, but the limit equilibrium in their model as the period length is reduced corresponds

exactly to the informative equilibrium of this special case of our model.

6.2 Uninformed Investors

Suppose that there are N informed players and a random number of uninformed investors.

For simplicity, one could assume that the uninformed investors arrive according to an

exogenously given Poisson rate � per unit of real time. Assuming that the players are

anonymous, the statistical inference is changed only minimally relative to our current

model. If tk > tk�1; then there is a positive probability that the stopping player is indeed

uninformed. As a result, the remaining players update their beliefs less than in the main

model.

In any stage where tk = tk�1; the player that stops is informed with probability 1. This

conclusion follows from the fact that stage k has a real-time duration 0 and uninformed
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investors arrive at a bounded rate �. Hence inference in such stages is identical to the

main model and all the qualitative conclusions remain valid. It can be shown that for

large games, the hazard rate with which the game ends is unchanged by the introduction

of uninformed players as long as � is bounded.

6.3 More General State Variables

Considering our leading application, investment under uncertainty, one may view as quite

extreme the modeling approach where nothing is learnt about the optimal investment time

during the game from other sources than the behavior of the other players. Indeed, exoge-

nous and gradually resolving uncertainty on the payo¤ of investment plays an important

role in the literature on real options.

Our paper can easily be extended to cover the case where the pro�tability of the

investment depends on an exogenous (and stochastic) state variable in addition to the

private information about common market state !. An example of such a formulation is:

v(t; ! ;x) = e�rt (xt � !) ;
dxt
xt

= �dt+ �dZt;

where Zt is a Brownian motion. Such investment problems have been studied extensively

in the literature (see Dixit & Pindyck (1994) for a survey), and it is well known that the

optimal investment time is the smallest t where xt exceeds a threshold value x (!). Hence

the problem is reduced to a model with a single state xt, and the optimal investment

threshold for a known ! is strictly increasing in !: The analysis of our paper would

extend in a straightforward manner to this case: the informative equilibrium strategy

would command a player with signal � to choose an investment threshold x�
�
hk; �

�
that

is optimal conditional on � being the lowest signal among the remaining players. By our

assumption of MLRP of the signals, the equilibrium thresholds would always be increasing

in �. All of our results would have a natural analogue in this extended model, with the

stochastic state variable xt playing the role that the calender time t plays in the current

paper.

7 Conclusions

The analytical simplicity of the model also makes it worthwhile to consider some other

formulations. First, it could be that the optimal time to stop for an individual player i

depends on the common parameter ! as well as her own signal �i: The reason for consid-

ering this extension would be to demonstrate that the form of information aggregation

discovered in this paper is not sensitive to the assumption of pure common values. Second,
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by including the possibility of payo¤ externalities in the game we can bring the current

paper closer to the auction literature. We plan to investigate these questions in future

work.

8 Appendix

Proof of Proposition 1. The monotonicity of � �
�
hk; �

�
follows directly from MLRP

and the (log-)supermodularity of v.

Denote by b� �hk; �� the optimal (unconstrained) stopping time based on the public
history hk and the knowledge that the lowest signal amongst the players remaining in the

game after history hk is �:

b� �hk; �� := min�argmax
t�0

E
�
v (t; !)

��hk; �kmin = � �� : (15)

The relationship between b� �hk; �� and � � �hk; �� de�ned in (3) is:
� �
�
hk; �

�
= max

�
tk�1;b� �hk; ��� . (16)

Consider an arbitrary stage k � 1. The highest type that stops during that stage is �k,
and therefore by (16) b� �hk�1; �k� � � � �hk�1; �k� = tk�1. (17)

Consider next stage k. We have hk = hk�1[(tk�1;Sk�1), where Sk�1 consists of players
with signals in

�
�k�1; �k

�
. Therefore, it follows fromMLRP and the (log-)supermodularity

of v that b� �hk; �k� < b� �hk�1; �k� � tk�1,
where the latter inequality follows from (17). By the continuity of signal densities, we

then have b� �hk; �k + "� < tk�1
for some " > 0. But then from (16), we have

� �
�
hk; �k + "

�
= tk�1;

and the result follows from the monotonicity of � �
�
hk; �

�
in �.

Proof of Theorem 1. The proof uses the one-shot deviation principle. We assume that

all players j 6= i play according to � � (h; �) after all histories h. We consider an arbitrary
history hk and assume that player i uses � �

�
hk

0
; �
�
for all k0 > k. We show that under

this assumption, � �
�
hk; �

�
is optimal for i.

We divide the proof in two steps. In the �rst step, we consider the optimal stopping

problem of player i in an auxiliary problem where we impose � i(hk+1; �) = tk for all hk+1
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where i remains active. That is, we force i to stop immediately if some other player j 6= i
stops �rst in stage k. In the second step, we show that � �

�
hk; �

�
remains optimal when

i chooses � �
�
hk+1; �

�
in stage k + 1.

Step 1: We de�ne the auxiliary problem as follows. Consider player i with signal �

at an arbitrary stage k. Her expected payo¤when she chooses t � tk�1 in stage k is given
by:

V k (t; �) : = E
�
v
�
t�; !

� ��hk; �i = �; t� � ; where
t� = min

�
t;min

j 6=i
� �
�
hk; �j

��
.

The problem is to choose a t � tk�1 that maximizes V k (t; �). Since v (t; !) is continuous
in t, it follows that also V k (�; �) :

�
tk�1;1

�
! R is a continuous function. Our goal is to

show that V k (t; �) de�ned above is maximized at t = � �
�
hk; �

�
.

Let Tk de�ne the subset of
�
tk�1;1

�
that consists of those (interior) time instants

that are chosen in equilibrium for some signal �0:

Tk :=
�
t 2
�
tk�1;1

�
: 9�0 2

�
0; ��
�
s.t. lim

�00"�0
� �
�
hk; �00

�
= lim

�00#�0
� �
�
hk; �00

�
= t

�
:

The plan for accomplishing step 1 of the proof is as follows. First, we show that

@V k (t; �)

@t
� 0 for t 2 Tk \

�
0; � �

�
hk; �

��
and

@V k (t; �)

@t
� 0 for t 2 Tk \

�
� �
�
hk; �

�
;1
�
. (18)

Second, we show that when tk�1 < t < � �
�
hk; �

�
and t =2 Tk, we have

V k (t; �) � V k
�
inf
�
t0 > t

��t0 2 Tk	 ; �� ; (19)

and when � �
�
hk; �

�
< t < 1 and � =2 Tk, we have

V k (t; �) � V k
�
sup

�
t0 < t

��t0 2 Tk	 ; �� : (20)

Since V k (t; �) is continuous in t, (18) - (20) imply that:

� �
�
hk; �

�
2 argmax

t
V k (t; �) .

We now proceed to show that (18) - (20) hold. We start with (18) and consider time

instants in Tk. The realized value of i depends on i�s stopping time t only when all the
other players choose a stopping time above t, that is, when �min�i > �

�k (t), where �min�i is

the smallest signal amongst players other than i:

�min�i := min
j2N k�i

�j,
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and where ��k (t) is the highest type that stops at or before t:

��k (t) := sup
�
�
��� � �hk; �� � t	 :

Therefore, the time derivative of V k (t; �) at t 2 Tk can be written as:

@V k (t; �)

@t
= Pr

�
�min�i > �

�k (t)
�
�
@E
�
v (t; !)

��hk; �min�i > �
�k (t) ; �i = �

�
@t

: (21)

Since t 2 Tk, t is the optimal stopping time for type ��k (t), i.e. t = � �
�
hk; ��k (t)

�
. This

means that t is an interior solution to (3), and it follows from optimality that:

@E
�
v (t; !)

��hk; �min�i > �
�k (t) ; �i = �

�k (t)
�

@t
= 0: (22)

Supermodularity or log-supermodularity of v (t; !) together with MLRP then imply that

@E
�
v (t; !)

��hk; �min�i > �
�k (t) ; �i = �

�
@t

� (�) 0 for � > (<) ��k (t) . (23)

If t < (>) � �
�
hk; �

�
, we have � > (<) ��k (t). Therefore (21) and (23) together prove (18).

Next, consider the case where t 2
�
tk;1

�
, t =2 Tk. This means that t lies within an

interval t 2 (��; �+) such that no signal type invests within it:

�� : = lim
�0"��k(t)

� �k
�
hk; �0

�
= sup

�
t0 < t

��t0 2 Tk	 ;
�+ : = lim

�0#��k(t)
� �k
�
hk; �0

�
= inf

�
t0 > t

��t0 2 Tk	 .
Notice that signal ��k (t) is now a cuto¤ type such that a signal just above it prefers

stopping at �+ to t, while a signal type just below it prefers stopping at �� to t. Since

the information about the other players�signals is summarized by �min�i > ��k (t) within

the whole interval (��; �+), this means that:

lim
�0#��k(t)

E
�
v
�
�+; !

� ��hk; �min�i > �
�k (t) ; �i = �

0 � � lim
�0#��k(t)

E
�
v (t; !)

��hk; �min�i > �
�k (t) ; �i = �

0 � ;
lim

�0"��k(t)
E
�
v
�
��; !

� ��hk; �min�i > �
�k (t) ; �i = �

0 � � lim
�0"��k(t)

E
�
v (t; !)

��hk; �min�i > �
�k (t) ; �i = �

0 � .
These two equations, supermodularity (or log-supermodularity) of v (t; !), MLRP, and

the fact that the probability with which some j 6= i stops within (��; �+) is zero, imply:

V k
�
�+; �

�
� V k (t; �) if � > ��k (t) , and

V k
�
��; �

�
� V k (t; �) if � < ��k (t) .

To con�rm that equations (19) and (20) hold, it only remains to note that if t >

(<) � �
�
hk; �

�
, then � < (>) ��k (t).
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Step 2: We argue next that � �
�
hk; �

�
remains optimal in stage k when i plays

� �
�
hk+1; �

�
in stage k + 1. To see this, note that relaxing the constraint � = tk in

stage k + 1 can only increase the optimal stopping time in stage k (since it makes the

continuation value in stage k + 1 larger). Therefore, it is immediate that our conclusion

according to which � �
�
hk; �

�
is preferred to all t < � �

�
hk; �

�
continues to hold when we

let i play � �
�
hk+1; �

�
in stage k + 1.

On the other hand, we know from Proposition 1 that � �
�
hk+1; �

�
= tk for all � � �k+1.

In particular, this means that if stage k ends at time tk � � �
�
hk; �

�
, we have � � �k+1 and

i will in any case choose � �
�
hk+1; �

�
= tk. Therefore, for tk � � �

�
hk; �

�
the restriction

�(hk+1; �i) = t
k is irrelevant because it is optimal to choose � �

�
hk+1; �

�
= tk.

To summarize: we have now shown that if all players j 6= i play � �(h; ��i) at all

histories h, and if � �
�
hk

0
; �
�
is optimal for i in all stages k0 > k, then � �

�
hk; �

�
is optimal

for i in stage k. Since � � (h; �) is clearly also optimal for i in a stage where she is the only

player left in the game, the proof is complete by backward induction.

Proof of Proposition 2. For n = 1, this result is implied by Theorem 5 of Gnedenko

(1943). To extend the result to n > 1, assume that
�
ZN1 ; Z

N
2 � ZN1 ; :::; ZNk � ZNk�1

�
con-

verge to k independent exponential variables for some k � 1. Consider ZN+1k+1 . Since the

signals are statistically independent,
�e�N+1k+1 � e�N+1k

���e�N+1k = z
�
has the same distribution

as
�e�Nk � e�Nk�1 ���e�Nk�1 = z�. Multiplying by N we conclude that�

N

(N + 1)
(N + 1)

�e�N+1k+1 � e�N+1k

� ���e�N+1k = z

�
has the same distribution as �

N
�e�Nk � e�Nk�1� ���e�Nk�1 = z� :

Therefore also �
N

(N + 1)

�
ZN+1k+1 � ZN+1k

� ���e�N+1k = z

�
and ��

ZNk � ZNk�1
� ���e�Nk�1 = z�

have the same distribution.

By induction hypothesis,
�
ZNk � ZNk�1

�
converges to an exponential random variable,

and by the argument above, so does

N

(N + 1)

�
ZN+1k+1 � ZN+1k

�
:

Therefore also
�
ZNk+1 � ZNk

�
converges to an exponential r.v. as N !1.

Proof of Lemma 1. Let

U(t j zn) :=
Z



v (t; !)�(! j zn)d!:
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Note �rst that by our assumption of continuity at in�nity of v (t; !), tn (zn) � [0;1] is
non-empty. For the uniqueness, we use Theorem 1 in Araujo & Mas-Colell (1978). To

this e¤ect, we note that v (t; !) is continuously di¤erentiable in t for almost every (t; !)

and �(! j zn) is continuously di¤erentiable in zn: Therefore U(t j zn) is continuously
di¤erentiable in (t; zn). Furthermore, MLRP and the (log)supermodularity of v (t; !)

imply that for t and t0 6= t such that U(t j zn) = U(t0 j zn); we have:

@ (U(t j zn)� U(t0 j zn))
@zn

6= 0:

Hence the conditions for Theorem 1 in Araujo & Mas-Colell (1978) are satis�ed and the

claim is proved.

Proof of Lemma 2. Let

UN(t j (z1; :::; zn)) :=
Z



v (t; !)�N(! j (z1; :::; zn))d!;

UN(t j zn) :=
Z



v (t; !)�N(! j zn)d!:

Consider the sequence
�
tNn (z1; :::; zn)

	1
N=n

. SinceZ



�N(! j (z1; :::; zn))d! = 1 for all N;

and v (t; !) is bounded in !, Corollary 2 implies that for every t,

lim
N!1

UN(t j (z1; :::; zn)) = U(t j zn): (24)

Moreover, since v (t; !) is di¤erentiable in t and this derivative is bounded for all !, we

have

lim
N!1

@UN(t j (z1; :::; zn))
@t

=
@U(t j zn)

@t
;

and therefore the convergence in equation (24) is uniform. Since v (t; !) is continuous at

in�nity, UN(t j (z1; :::; zn)) has a maximum value. Uniform convergence then implies that

lim
N!1

�
max
t

�
UN(t j (z1; :::; zn))

��
= max

t
U (t j zn) .

Take any sequence
�
tNn
	1
N=n

such that tNn 2 argmaxUN(t j (z1; :::; zn)) for every N .
Since UN(t j (z1; :::; zn)) converges uniformly to U (t j zn), and the latter has a unique
maximizer tn (zn) by Lemma 1, we have

tNn ! tn (zn) .

The proof is identical for the sequence
�
tNn (zn)

	1
N=n

.

Proof of Proposition 3. Fix n and (z1; :::; zn). Call the player with the ith lowest signal

player i. Her normalized signal is zi. Consider her information at the time of stopping.
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By (3), she conditions on all the other remaining players having a signal higher than hers.

Since the informative equilibrium is monotonic, all the players that have signals above

her signal are active. Therefore, i conditions on her signal being the mth lowest, where

we must have m � i. It then follows from Lemma 2 that when N ! 1, the optimal
stopping time of i conditional on her information at the time of stopping converges to

tm (zi), where m � i. By MLRP and (log)supermodularity of v, we have tm (zi) � ti (zi),
and therefore,

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
� ti (zi) . (25)

Assume next that

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
> lim

N!1
TNi�1

�z1
N
; :::;

zi�1
N

�
: (26)

This is the case, where player i stops at time tk > 0 in some stage k (for N high enough).

This means that i has the lowest signal among the active players at the time of stopping

so that she correctly conditions on having the ith lowest signal. Since her conditioning is

correct, Lemma 2 implies that

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= ti (zi) . (27)

Combining equations (25) - (27), we have

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= max

h
lim
N!1

TNi�1

�z1
N
; :::;

zi�1
N

�
; ti (zi)

i
.

For the player with the lowest signal, we have:

lim
N!1

TN1

�z1
N

�
= t1 (z1) = t1 (z1) :

Therefore, it follows by induction that for i = 2; :::; n

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= max

�
ti�1 (z1; :::; zi�1) ; ti (zi)

�
= ti (z1; :::; zi) :

Proof of Theorem 2. We analyze the sequence of stopping times tn (z1; :::; zn),

n = 1; 2; :::, de�ned by (8) and (9) where the inference is based on exponential ran-

dom variables. After that, we link those properties to equilibrium stopping times using

Corollary 3.

By the weak law of large numbers, the sample average of n exponential random vari-

ables Z1, Z2�Z1; :::; Zn�Zn�1 converges in probability to 1=g (0 j! ) as n!1. Assump-
tion 3 implies that this identi�es the true state !. Therefore, the unconstrained stopping

time tn (Zn) de�ned in (8) converges in probability to the �rst-best time as n!1:

tn (Zn)
P! t� (!) . (28)
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Consider then the distribution of tn (Z1; :::; Zn) = max (t1 (Z1) ; :::; tn (Zn)). Being the

maximum process of tn, tn (Z1; :::; Zn) converges in probability to some random variable

t1:

tn (Z1; :::; Zn)
P! t1; (29)

and (28) implies that

lim
n!1

Pr
�
tn (Z1; :::; Zn) � t

	
= 0 for all t < t� (!) . (30)

Consider next the distribution of the �rst stopping time t1 (Z1). We have denoted the

optimal stopping time under the lowest possible individual signal by t (0). On the other

hand, by assumption 3 we have g (0 j! ) > g (0 jmax
) for any ! < max
, and therefore
the likelihood ratio across states ! and max
 goes to zero when z1 !1:

lim
z1!1

g (0 j! ) e�g(0j! )z1
g (0 jmax
) e�g(0jmax
)z1 = 0:

Therefore, we have

lim
z1#0

t1 (z1) = t (0) and lim
z1"1

t1 (z1) = max
,

and hence:

lim
n!1

Pr
�
tn (Z1; :::; Zn) < t (0)

	
= 0; (31)

and

lim
n!1

Pr
�
tn (Z1; :::; Zn) > t

	
> 0 for all t < max
. (32)

We turn next to the stopping times in the informative equilibrium, and �x a player

with signal � > 0. Consider the game with N players, and let n (N) =
lp
N
m
(where

d�e denotes rounding up to the nearest integer). As N ! 1, also n (N) ! 1, so by
Corollary 3 and (29), the stopping times of all players that stop after the n (N)th player

converge in probability to t1 as N !1. Also, since n (N) =N ! 0 as N !1, we have

lim
N!1

Pr
ne�Nn(N) < �o = 1 for any � > 0,

so that all the players with signals above � stop later than the n (N)th player. This

obviously applies also to the player with the highest signal who stops at time TN(!).

Therefore, for any � > 0,

lim
N!1

Prf
��TN(!; �)� TN(!)�� < "g = 1 for all " > 0;

which establishes part 1 of the theorem. Parts 2 and 3 follow then directly from (30),

(31), and (32).
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Figure 1: Payoffs as functions of signal precision in the quadratic binary example. 

  



 

Figure 2: Probability distribution of the stopping time of the last player with various signal 
precisions ( = 0). 

 

  



 

 

Figure 3: Equilibrium payoffs conditional on state in the ten-state example. Triangle marker: = 1. 
Square marker: = 0.1. 
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Figure 4: Conditional probability distributions of the stopping time of the last player in the ten-
state example. Each solid curve corresponds to one state realization. Dashed lines correspond to 
first best stopping times for each state. Top panel: = 1. Bottom panel: = 0.1. 

 


	stoppingpauli040811
	Figures

