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PRICE INFERENCE IN SMALL MARKETS

BY MARZENA ROSTEK AND MAREK WERETKA1

This paper investigates the effects of market size on the ability of price to aggregate
traders’ private information. To account for heterogeneity in correlation of trader val-
ues, a Gaussian model of double auction is introduced that departs from the standard
information structure based on a common (fundamental) shock. The paper shows that
markets are informationally efficient only if correlations of values coincide across all
bidder pairs. As a result, with heterogeneously interdependent values, price informa-
tiveness may not increase monotonically with market size. As a necessary and sufficient
condition for the monotonicity, price informativeness increases with the number of
traders if the implied reduction in (the absolute value of) an average correlation statis-
tic of an information structure is sufficiently small.

KEYWORDS: Information aggregation, double auction, divisible good auction, het-
erogeneous correlations, commonality.

1. INTRODUCTION

UNPRECEDENTED GROWTH in contemporaneous markets has raised ques-
tions regarding how market size impacts the ability of price to aggregate the
private information dispersed among traders.2 The literature on information
aggregation suggests that market growth unambiguously improves the infor-
mativeness of market price: Markets are informationally efficient in that all
payoff-relevant information in the economic system is revealed in prices. Con-
sequently, price informativeness builds as information is introduced by new
participants. The existing literature assumes that the values of a good for all
traders are determined by an underlying common shock (fundamental value).
The common shock assumption abstracts from a feature of growth inherent in

1We would like to thank a co-editor and anonymous referees for very helpful comments. We
are also grateful for the suggestions offered by Kalyan Chatterjee, Dino Gerardi, James Jordan,
Michael Ostrovsky (discussant), Romans Pancs, Ricardo Serrano-Padial, Lones Smith, Bruno
Strulovici, Gábor Virág, Jan Werner, Dai Zusai, and participants at the 2009 SAET Meeting at
Ischia, the 2009 Summer Sorbonne Workshop in Economic Theory, the 2010 EWGET in Cracow,
the 2010 Fall Midwest Theory Meeting at Wisconsin–Madison, the 2011 Winter ES Meetings in
Denver, the 4th Annual Conference on Extreme Events, Expectations, and Decisions 2011 in
Stavanger, and seminar audiences at Bonn, EPFL & HEC-Lausanne, Maryland, Michigan, Mon-
treal, NHH Bergen, Notre Dame, NYU, Paris School of Economics, Philadelphia Fed, Rochester,
Stanford GSB, Toronto, Tulane, UAB, UBC, UC Davis and Washington (St. Louis). We gratefully
acknowledge the financial support of this research by the National Science Foundation (Grant
SES-0851876).

2For example, in futures markets, electronic trading (80% of total exchange volume in 2007)
facilitates trades from widely dispersed geographic locations. In just the last two decades, the
number of traders has doubled in the top four futures markets. The Commodity Futures Trad-
ing Commission (CFTC) is concerned with how the unprecedented growth in futures markets,
which increases trader diversity, will impact the traditional roles of markets in price discovery
and efficiency (CFTC (2007)).
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many economic settings: By increasing diversity in the population of traders,
whose values for the good traded are subject to different shocks, market ex-
pansion affects heterogeneity in preference covariance among traders.3 This
paper shows that information aggregation in markets in which trader values
are heterogeneously correlated differs qualitatively from that of markets with
a common shock. In particular, smaller markets may offer opportunities to
learn from prices that are not available in large markets.

We present a model of a uniform-price double auction with an arbitrary
number of traders, cast in a linear-normal setting. Permitting shock structures
with heterogeneous correlations in values distinguishes our model from other
strategic (small- and large-market) models of information aggregation, in par-
ticular, that of Vives (2009), and is central to this paper’s results.4 We allow
all shock structures for which the average correlation of each bidder’s value
with the other bidders’ values, which we dub commonality, is the same across
bidders. The model of an equicommonal auction accommodates a variety of as-
pects of heterogeneity, including preference interdependence that varies with
“distance,” such as geographical or social proximity; group dependence in val-
ues; and certain asymmetries in composition of trader population. Moreover,
negative dependence of bidder values is permitted.

We demonstrate that in equicommonal auctions, prices convey to traders
all information available in the market only if the correlation between values
is the same for all pairs of traders (for example, as under the common shock
assumption).5 We establish the necessary and sufficient condition for price in-
formativeness to be monotone in the number of traders in equicommonal auc-
tions: reduction in the absolute value of the commonality must not exceed a
threshold determined by auction primitives. Focal examples in the paper use
this condition to examine the growth impact for empirically motivated aspects
of preference heterogeneity, including spatial or group dependence.

One lesson from the small-market literature (Dubey, Geanakoplos, and Shu-
bik (1987), Ostrovsky (2009), and Vives (2009)) is that the nonnegligibility of
individual signals in price, per se, does not obscure information aggregation.

3In many markets, trading strategies depend strongly on spatial proximity, social identity (cul-
tural or linguistic), professional membership, or, more abstractly, shocks that affect groups of
traders, but not the market as a whole. (Veldkamp (2011) provided an overview of the literature.
See also Section 2.2.)

4There are strategic models of markets with a finite number of traders that allow for more
general, nonquadratic utilities and nonnormal distributions (Dubey, Geanakoplos, and Shubik
(1987) and Ostrovsky (2009)). However, these models are based on the fundamental value as-
sumption. Departure from the fundamental value formulation of preferences also distinguishes
our model from information aggregation models in the linear-normal setting, in particular, those
of Kyle (1989), Vives (2009), and Colla and Mele (2010); see also Vives (2008). We postpone
discussion of related literature until after full development of our model.

5In a model with identical correlations for all trader pairs, Vives (2009) demonstrated infor-
mational efficiency and, hence, established the “if” counterpart of our result.
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An insight from our analysis is that it is not the nonnegligibility of an individ-
ual signal as such, but rather its interaction with heterogeneity in preference
correlation that gives rise to nonmonotone price informativeness.

2. EQUICOMMONAL AUCTIONS

2.1. A Double Auction Model

Consider a market of a divisible good with I ≥ 2 traders. We model the mar-
ket as a double auction in the linear-normal setting. Trader i has a quasilinear
and quadratic utility function

Ui(qi)= θiqi − μ

2
q2
i �(1)

where qi is the obtained quantity of the good auctioned and μ> 0. Each trader
is uncertain about how much the good is worth. Trader uncertainty is captured
by the randomness of the intercepts of marginal utility functions {θi}i∈I , re-
ferred to as values. Randomness in θi is interpreted as arising from shocks to
preferences, endowment, or other shocks that shift the marginal utility of a
trader. The key novel feature of the model is that it permits heterogeneous
interdependencies among values {θi}i∈I , as described next.

Information Structure

Prior to trading, each trader i observes a noisy signal about his true value θi,
si = θi+εi. We adopt an affine information structure: Random vector {θi� εi}i∈I
is jointly normally distributed; noise εi is mean-zero independent and identi-
cally distributed (i.i.d.) with variance σ2

ε , and the expectation E(θi) and the
variance σ2

θ of θi are the same for all i. The variance ratio σ2 ≡ σ2
ε/σ

2
θ measures

the relative importance of noise in the signal. The I × I variance–covariance
matrix of the joint distribution of values {θi}i∈I , normalized by variance σ2

θ ,
specifies the matrix of correlations

C ≡

⎛
⎜⎜⎜⎝

1 ρ1�2 · · · ρ1�I

ρ2�1 1 · · · ρ2�I

���
���

� � �
���

ρI�1 ρI�2 · · · 1

⎞
⎟⎟⎟⎠ �

Lack of any correlation among values corresponds to the independent (private)
value model, ρi�j = 0 for all j �= i. At the other extreme, perfect correlation
of values for all bidders, ρi�j = 1 for all j �= i, gives the pure common value
model of a double auction (e.g., the classic model of Kyle (1989), which also
includes noise traders). Vives (2009) relaxed this strong dependence, while still
requiring the values of all trader pairs in the market to covary in the same way,
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ρi�j = ρ̄ ≥ 0 for all j �= i.6 The present paper allows correlations of values ρi�j
to be heterogeneous across all pairs of bidders in the market. We impose one
restriction: for each trader i, his value θi is on average correlated with other
traders’ values θj , j �= i, in the same way: for each i,

1
I − 1

∑
j �=i
ρi�j = ρ̄(2)

for some ρ̄ ∈ [−1�1]; that is, in each row in C , the average of the off-diagonal
elements is the same. Statistic ρ̄ measures how a trader value correlates on av-
erage with the values of all other traders in the market. Given the same average
correlation across traders, ρ̄ can be viewed as a measure of the commonality in
values of the traded good to all market participants. We call the family of all
auctions that satisfy condition (2) equicommonal.

Analysis is carried out at the level of correlations among values {θi}i∈I spec-
ified by matrix C , rather than the underlying shocks that determine the joint
distribution of values. The results developed in this paper hold for all jointly
normal data generating processes that give rise to an equicommonal correla-
tion matrix.

A Sequence of Auctions

Since our primary interest is market-size effects, we analyze sequences of
auctions indexed by market size {AI}∞

I=1. In a sequence, the utility function re-
mains the same for all auctions. What changes is the number of traders I and,
crucially, the equicommonal matrix C may vary with market size in an arbi-
trary way; commonality ρ̄ itself may change with market size and so may other
details of the correlation matrix. (In Section 4.3, it will be natural to make a
stronger assumption that, when adding a trader, the correlation matrix among
the remaining traders is preserved.) Define a measure of market size as a mono-
tone function of the number of traders, γ ≡ 1 − 1/(I − 1); γ ranges from 0 for
I = 2 to 1 as I → ∞. Throughout, we refer to auctions with γ < 1 as finite
and reserve the term infinite for limits as γ → 1. For a sequence of equicom-
monal auctions {AI}∞

I=1, commonality function ρ̄(γ) specifies commonality for
any market size.

Double Auction

We study double auctions based on the canonical uniform-price mechanism.7
Bidders submit strictly downward-sloping (net) demand schedules {qi(p)}i∈I ;

6In a later version of Vives (2009), ρi�j = ρ̄ < 0, i �= j, is also permitted. The analyses for nega-
tive correlations in this paper and Vives (2009) were developed independently.

7In this paper, as in Vives (2009), the results extend to a larger class of models: competitive
and strategic, including one-sided auctions (with an elastic or inelastic demand) and nonmarket
settings, in which I Bayesian agents each make inference about a random variable θi based on
the observed signal si and a statistic that is a deterministic function of the average signal.
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the part of a bid with negative quantities is interpreted as a supply schedule.
The market clearing price p∗ is that for which aggregate demand equals zero,∑

i∈I qi(p
∗) = 0.8 Bidder i obtains the quantity determined by his submitted

bid evaluated at the equilibrium price, q∗
i = qi(p

∗), for which he pays q∗
i · p∗.

Bidder payoff is given byUi(q
∗
i )−q∗

i ·p∗. The symmetric linear9 Bayesian Nash
equilibrium (henceforth, equilibrium) is used as a solution concept.

A noteworthy feature of our double auction model is that all traders—buyers
and sellers—are Bayesian and strategic. (In particular, there are no noise
traders.)

2.2. Examples

While restrictive, the class of equicommonal auctions subsumes a variety of
economic environments beyond those with common ρi�j = ρ̄≥ 0. Let us intro-
duce two examples of equicommonal auctions that capture various aspects of
preference interdependence that are common to many economic settings. As
a benchmark, we also consider the standard model based on the fundamental
value assumption.

EXAMPLE 1—Fundamental Value Model: A common (fundamental) shock
determines the values of all bidders who are, in addition, subject to idiosyn-
cratic (i.i.d.) shocks. As a result, values are equally correlated for all pairs of
bidders in the auction; that is, ρi�j = ρ̄ > 0 for all j �= i. Correlation of a new
bidder’s value with each incumbent’s value is equal to ρ̄ and the commonality
function ρ̄FV(γ)= ρ̄ is constant.

A stochastic process with fundamental and idiosyncratic shocks is often as-
sumed in the macroeconomics and finance literature. Nevertheless, the funda-
mental value assumption precludes markets in which shocks affect subgroups
of traders and, thus, the values of some traders covary more closely than others.

Electronic trading, trade liberalization, and globalization trends in contem-
poraneous markets all encourage participation from diverse geographic loca-
tions. Increased trader diversity translates into greater heterogeneity in pref-
erence correlations.10 Heterogeneity that results from spatial considerations
motivates the next model.11

8The definition of the game can be completed in the usual way: If there is no such price or if
multiple prices exist, then no trade takes place. The assumption that bids are strictly downward-
sloping rules out trivial (no-trade) equilibria.

9The term “symmetric linear” is understood as bids having the functional form of qi(p) =
α0 + αssi + αpp, where the coefficients αs and αp are the same across bidders.

10As empirical evidence demonstrates, trading preferences or endowments depend strongly on
geographical and cultural proximity or educational networks (e.g., Coval and Moskowitz (2001),
Hong, Kubik, and Stein (2004), Cohen, Frazzini, and Malloy (2008); see also Veldkamp (2011)).

11Malinova and Smith (2006) and Colla and Mele (2010) studied spatial informational linkages
in a linear-normal setting: While the asset has a fundamental value, traders pool signals with their
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EXAMPLE 2 —Spatial Model: I bidders are located on a circle. The dis-
tance between any two immediate neighbors is normalized to 1. Let di�j be
the shorter of the two distances between bidders i and j (measured along
the circle). To capture that values of closer neighbors covary more strongly,
correlation between any two bidders ρi�j is assumed to decay with distance,
ρi�j = βdi�j , where β ∈ (0�1) is a decay rate. The model takes as a primitive
the decay rate β and assumes that a new bidder enlarges the auction by in-
creasing the circle circumference by 1.12 The commonality function ρ̄S(γ) =
2(1 − γ)β(1 −β(1/2)1/(1−γ))/(1 −β) (assuming that I is odd) is decreasing.

In many markets, one can identify groups of traders with distinct prefer-
ences—sectors, industries, countries, clubs, or social affiliations. Since the in-
come, endowment, and liquidity needs of traders from different groups are
governed by different shocks, values tend to covary more strongly within than
across groups. The group dependence of correlations in values is captured by
the group model.

EXAMPLE 3—Group Model: There are two groups, each of size I/2. The
values that members of each group derive from the traded good are perfectly
correlated (ρi�j = 1); cross-group correlation can be positive or negative, or
values can be independent (ρi�j = α;α ∈ [−1�1]). Additional bidders increase
the populations of both groups and the commonality function ρ̄G(γ) = (γ +
(2 − γ)α)/2 (assuming that I is even) is increasing.

Unlike the fundamental value and spatial models, the group model permits
negative correlation of values.

3. CHARACTERIZATION OF EQUILIBRIUM

In a finite double auction, bidders shade their bids relative to the bids they
would submit if they were price-takers and values were independent and pri-
vate (ρi�j = 0 for j �= i). It is well known (e.g., from Kyle (1989)) that equilib-
rium existence requires that the resulting bid shading not be too strong. Cor-
respondingly, equilibrium existence in equicommonal auctions requires an up-
per bound on commonality, ρ̄+(γ�σ2) (derived in the proof of Proposition 1).

neighbors. These models differ from our spatial model in Example 2 in two main respects: In
terms of matrix C, the models assume ρi�j = ρ̄ for all j �= i and, there, noise is correlated as
a function of distance between traders. In our paper, heterogeneity in preference correlations
derives from the interdependence of values rather than noise and all traders are Bayesian (in
particular, there are no noise traders).

12Without loss of generality a bidder can be added at an arbitrary position on a circle. Alterna-
tively, one can assume that the circumference is fixed and additional bidders increase population
density. Such a formulation implies that values covary more closely in pairs of traders in larger
markets.
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For the fundamental value model, the bound ρ̄+(γ�σ2) coincides with that of
Vives (2009)13 and otherwise weakens the Vives bound in that ρ̄+(γ�σ2) in-
volves only the average correlation. Moreover, for negative correlations, com-
monality has to be strictly above the lower bound of ρ̄−(γ) = −(1 − γ) < 0.14

Proposition 1 demonstrates that a symmetric linear Bayesian Nash equilibrium
exists in equicommonal double auctions under quite general conditions. The
necessary and sufficient conditions are assumed thereafter.

PROPOSITION 1—Existence of Equilibrium: There exist bounds ρ̄−(γ) and
ρ̄+(γ�σ2) such that, in an equicommonal double auction characterized by (γ� ρ̄),
a symmetric linear Bayesian Nash equilibrium exists if and only if ρ̄−(γ) < ρ̄ <
ρ̄+(γ�σ2). The symmetric equilibrium is unique.

The bounds ρ̄−(γ) and ρ̄+(γ�σ2) are tight; that is, for any pair (γ� ρ̄) that
strictly satisfies the two bounds, there is an auction (i.e., a data generating pro-
cess {θi}i∈I with 1 − 1/(I − 1)= γ and an equicommonal correlation matrix C
characterized by ρ̄) for which an equilibrium exists. Proposition 1 contributes
to the equilibrium existence for divisible goods by accommodating markets
with heterogeneously interdependent values (pairwise correlations of values in
the auction can be arbitrary), negative (individual and average) dependence,
and auctions with two bidders, as long as ρ̄ < 0. (In the classic models by Wil-
son (1979) and Kyle (1989), an equilibrium fails to exist with I = 2.15)

Proposition 2 derives the equilibrium bids for a class of auctions character-
ized by (γ� ρ̄). Given a profile of linear bids of bidders j �= i, the best response
of bidder i with utility (1) is given by the first-order (necessary and sufficient)
condition: for any p,

E(θi|si�p)−μqi = p− (∂qi(p)/∂p)
−1

I − 1
qi�(3)

where −(∂qi(p)/∂p)−1/(I − 1) is the slope of the (aggregate) supply defined
for bidder i by symmetric bids j �= i, the realization of which depends on signals
{sj}j �=i. By the first-order condition (3) and market clearing, the equilibrium

13Assuming an inelastic demand and downward-sloping bids in Vives (2009).
14For the stochastic process that generates a joint distribution of values itself to exist,

Var( 1
I

∑
i∈I θi) = 1

I2 (Iσ
2
θ + (I − 1)Iρ̄σ2

θ ) ≥ 0, which holds if and only if ρ̄ ≥ ρ̄−(γ) = − 1
I−1 =

−(1 − γ). Thus, the lower bound is binding only for commonality equal to ρ̄−(·).
15In the absence of price inference, the nonexistence with I = 2 results from strategic inter-

dependence in bid shading: The slope of the best response to an arbitrary (inverse) linear bid of
the opponent is strictly greater than the slope of the opponent’s (inverse) bid and, consequently,
a Nash equilibrium does not exist in which inverse bids have finite slopes. When values are, on
average, positively correlated, price informativeness amplifies the strategic interdependence of
best responses, whereas when values are, on average, negatively correlated, price informative-
ness mitigates the interdependence, which gives existence in our model.
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price is characterized by p∗ = 1
I

∑
i∈I E(θi|si�p∗). Given an affine information

structure, the conditional expectation is linear, E(θi|si�p) = cθE(θi) + cssi +
cpp. The two conditions and the projection theorem applied to random vector
(θi� si�p) determine the inference coefficients cs, cp, and cθ in terms of com-
monality and market size.

PROPOSITION 2—Equilibrium Bids: The equilibrium bid of trader i is

qi(p)= γ− cp
1 − cp

cθ

μ
E(θi)+ γ− cp

1 − cp
cs

μ
si − γ− cp

μ
p�(4)

where inference coefficients in the conditional expectation E(θi|si�p) are given by

cs = 1 − ρ̄
1 − ρ̄+ σ2

�(5)

cp = (2 − γ)ρ̄
1 − γ+ ρ̄

σ2

1 − ρ̄+ σ2
�(6)

cθ = 1 − cs − cp�(7)

By ensuring that the equilibrium price is equally informative across bidders,
equicommonality permits a symmetric equilibrium.

Propositions 1 and 2 allow us to introduce a convenient geometric repre-
sentation of equicommonal auctions. Holding primitives other than C fixed,
the class of auctions characterized by a given pair (γ� ρ̄) can be represented as
a point in the Cartesian product [0�1] × [−1�1] (Figure 1(A)).16 By Proposi-
tion 2, all auctions in this class share the same equilibrium bids. Figure 1(B)
depicts commonality functions for the sequences of auctions from the exam-
ples in Section 2.2.

4. INFORMATION AGGREGATION

How does market expansion affect the market’s ability to aggregate traders’
private information when trader values covary heterogeneously? A logically
prior question is whether markets are informationally efficient in that prices
convey to traders all available private payoff-relevant information. As such,
the pool of information available in a market is nondecreasing with every new
trader.17 In informationally efficient markets, since the additional piece of in-
formation contained in the new traders’ signals becomes fully incorporated in
price, price informativeness improves as the market grows.

16Precisely, γ takes values from a countable set Γ ≡ {γ ∈ [0�1]|γ = 1 − 1/(I− 1)� I = 2�3� � � �}.
The commonality function is a map ρ̄(·) :Γ → [−1�1]. The space of equicommonal auctions is
given by a Cartesian product Γ × [−1�1].

17Strictly speaking, this holds (as a sufficient condition) in all sequences of auctions in which,
for all i and j, ρi�j is not affected by introducing additional bidders h �= i� j.
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(A) Auction space

(B) Commonality functions

FIGURE 1.—Existence and commonality function.

4.1. Informational Efficiency

In the literature, informational efficiency is conceptualized by means of a
privately revealing price: The market is set against an efficiency benchmark of
the total available information, which corresponds to the profile of all bidders’
signals, s ≡ {si}i∈I .

DEFINITION 1: The equilibrium price is privately revealing if, for any bidder i,
the conditional cumulative distribution functions of the posterior of θi satisfy
F(θi|si�p∗) = F(θi|s) for every state s, given the corresponding equilibrium
price p∗ = p∗(s).

A privately revealing price allows every Bayesian player i, who also observes
his own signal si, to learn about value θi as much as he would if he had access to
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all the information available in the market, s. Proposition 3 determines which
double auctions accomplish efficiency in this sense.

PROPOSITION 3—Aggregation of Private Information: In a finite double auc-
tion, the equilibrium price is privately revealing if and only if ρi�j = ρ̄ for all j �= i.

Proposition 3 extends to infinite auctions as long as limγ→1 ρ̄(γ) < 1. Our re-
sult resonates with that of Vives (2009), who examined markets with ρi�j = ρ̄ for
all j �= i and proves the “if” part of our result. Even if learning through mar-
ket does not suffice for traders to learn their values exactly, in markets such
as those in which uncertainty is driven by fundamental shocks, traders learn
all information that is available. One lesson from Vives (2009), and the small-
market literature more generally, is that strategic behavior and the nonnegli-
gibility of individual signals in price in finite markets can be consistent with
informational efficiency. Our result complements the aggregation prediction
of the literature by underscoring the role of heterogeneity in interdependence
among trader values for (in)efficiency.

The lack of private revelation of information in Proposition 3 does not re-
sult from the presence of noise traders (e.g., Kyle (1989)) or uncertainty about
aggregate endowment. As in Jordan (1983), the dimension of signals exceeds
the dimension of the learning instrument (price). However, given the normally
distributed signals, the dimension of (payoff-relevant) information is reducible
to that of price and information is not too rich to be summarized by price: for
any bidder, a statistic exists that is sufficient for the payoff-relevant information
contained in the signals of other bidders. This sufficient statistic is a properly
weighted average signal, where the weights depend on correlations C and may
differ across bidders. In an equicommonal auction, price deterministically re-
veals the equally weighted average signal s̄ (see (10)), which is, for each bidder,
the sufficient statistic only in models with identical correlations.18

18The generic lack of private revelation does not stem from equilibrium symmetry. Even
if asymmetric linear equilibria exist, they are not privately revealing when correlations are
heterogeneous. Suppose that an asymmetric equilibrium exists. Heuristically, in any equicom-
monal auction, by the projection theorem, for any trader i, there exists a vector of weights
ωi = (ωi1�ω

i
2� � � � �ω

i
I) satisfying

∑
j ω

i
j = 1, such that a one-dimensional statistic ssi = ∑

j ω
i
jsj

is sufficient for the signals of other bidders. Weights ωi depend on the correlations of signals sj
with value θi and with heterogeneous correlations in values, they differ across bidders;ωi �=ωj for
i �= j. (For instance, in the spatial model from Example 2, the weights associated with immediate
neighbors are higher than those of distant bidders.) Thus, ssi is not perfectly correlated with ssj
for some j �= i. Then, even if in some asymmetric equilibrium, price perfectly reveals sufficient
statistic ssi, it cannot simultaneously deterministically reveal ssj . That is, price does not aggregate
information for bidder j and, hence, is not privately revealing. When correlations in values are the
same for all bidder pairs, the sufficient statistic coincides for all bidders and is revealed by price
in a symmetric (but not asymmetric, if it exists) equilibrium. Thus, the private revelation property
requires both identical correlations in values for all bidder pairs and equilibrium symmetry.
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Proposition 3 demonstrates that, generically in equicommonal auctions,
prices do not aggregate all available information. Informational inefficiency,
in turn, severs the link between market size and price informativeness. The
next section provides a condition under which market growth that increases
heterogeneity still translates into more informative market prices.

4.2. Price Informativeness

To measure price informativeness, we examine how much inference through
the market—that is, conditioning on the equilibrium price p∗ as well as one’s
own signal si—reduces the variance of the posterior of θi, conditional only on
the signal. Define an index of price informativeness ψ+ ∈ [0�1] as

ψ+ ≡ Var(θi|si)− Var(θi|si�p∗)
Var(θi|si) �(8)

Indexψ+ quantifies the market’s contribution to inference about a trader value
θi. No reduction in variance (ψ+ = 0) occurs when the price contains no payoff-
relevant information beyond a private signal, whereas full reduction (ψ+ = 1) is
accomplished when the price, jointly with the private signal, precisely reveals
the value θi to trader i. Index ψ+ is not trader-dependent, an artifact of the
equicommonality assumption in a symmetric equilibrium.

Proposition 4 pins down the necessary and sufficient condition, in any
equicommonal auction, for a new bidder to increase the informational content
of price. In a sequence of equicommonal auctions, let �ρ̄(γ) be the change in
commonality that results from including a new bidder in an auction of size γ.

PROPOSITION 4—Informational Impact: Fix γ and ρ̄ > 0 (ρ̄ < 0). A threshold
τ < 0 (respectively, τ > 0) exists such that, in any auction that satisfies ρ̄(γ)= ρ̄,
the contribution of an additional bidder to price informativeness is strictly positive
if and only if �ρ̄(γ) > τ (respectively, �ρ̄(γ) < τ).

Price informativeness increases provided a new trader participation does not
induce too strong a reduction in the (absolute value of) commonality. The
threshold τ is characterized in the Appendix.

Proposition 4 can be interpreted geometrically by constructing a map of
price informativeness curves (Figure 2). For each value ψ+ ∈ [0�1], let a ψ+

curve comprise all profiles (γ� ρ̄) that give rise to price informativeness equal
to ψ+. For ρ̄= 0 (e.g., independent private value setting), price is uninforma-
tive (ψ+ = 0) for any market size and the 0 curve coincides with the horizontal
axis. For any ψ+ ∈ (0�1), a ψ+ curve consists of two segments, located in the
positive and negative quadrants of ρ̄, as bidders can learn from prices in envi-
ronments with positive and negative dependence among values. For the slope
of ψ+ curves, ceteris paribus, price informativeness ψ+ increases in market
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(A) Price informativeness map

(B) Informativeness in examples

FIGURE 2.—Price informativeness map.

size γ and the absolute value of commonality ρ̄. Consequently, the positive
(negative) components of a ψ+ curve slope down (up) and ψ+ curves located
farther away from the horizontal axis correspond to greater price informative-
ness, with the curve for the maximum price informativeness ψ+ = 1 comprising
one point (1�1). Take an arbitrary sequence of auctions represented by a com-
monality function ρ̄(γ). For any auction (γ� ρ̄) in the sequence, the condition
from Proposition 4 is approximately (cf. footnote 16) the commonality func-
tion crossing the ψ+ curve at point (γ� ρ̄) from below if ρ̄ > 0 or from above
if ρ̄ < 0. Threshold τ measures the change in commonality that is just suffi-
cient to maintain the price informativeness constant with an additional bid-
der.
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Implications

By Proposition 4, since market growth can have an arbitrary impact on price
informativeness,19 to assess this impact, it is essential first to determine the
growth’s effect on the structure of covariance in trader preferences. Specifi-
cally, if the fundamental value model provides a good approximation of pref-
erence interdependence in the considered market, then market growth unam-
biguously advances learning. Insofar as geographical, social, cultural, and other
“distances” between traders are the chief determinant of the interdependen-
cies among values, our spatial model suggests that additional traders enhance
learning when the market is small, but when the market size exceeds a cer-
tain threshold, price becomes less informative as the market grows further.
(See Figure 3(A).) In the group model, price informativeness monotonically
increases with market size unless values are sufficiently negatively correlated
across trader groups (α ∈ (−1�−1/3)), in which case, price informativeness ex-
hibits a U-shaped behavior (Figure 3(B)). Worth noting is an instance of the
limit group model as α→ −1,20 where price informativeness decreases with ev-
ery additional trader and learning from prices is most effective in the smallest
market. Notably, in this model, s̄ = 1

I

∑
i εi and, hence, the equilibrium price is

independent from each trader’s value θi. Still, traders learn from prices in all
but the infinite auction. Section 4.3 investigates the mechanisms that give rise
to the behaviors of price informativeness described in this section.

Informational Content in Infinite Markets

Inference in infinite equicommonal auctions may feature three qualitatively
different outcomes. Specifically, price is perfectly uninformative about θi if
limγ→1 ρ̄(γ)= 0; it contains information about θi if limγ→1 ρ̄(γ) ∈ (0�1]; only if
limγ→1 ρ̄(γ)= 1 does price deterministically reveal θi. For instance, in the spa-
tial model, the price conveys no information about bidder values in the infinite
market. Given that new traders add to the pool of payoff-relevant information,
why does the price become uninformative in the infinite spatial model? For
any decay rate β ∈ (0�1), any trader’s value is strongly correlated only with
a group of close neighbors and is essentially independent from the values of
distant traders. A strong correlation of values in a neighborhood becomes neg-
ligible in an infinite market. With respect to price informativeness (but not with

19In his classic paper, Kremer (2002) offered an example of a (unit-demand) auction in which
a large auction fails to aggregate all information. A key feature of the example is that the total
amount of information is fixed (does not depend on market size) so that the accuracy of an in-
dividual signal decreases in the number of bidders. Our paper preserves signal accuracy (noise
variance is constant) and, hence, total information available in the market increases with new
traders. Still, price may reveal less information in larger markets due to heterogeneous interde-
pendence among values.

20In the group model with α = −1, ρ̄ = −(1 − γ) and, by Proposition 1, an equilibrium does
not exist.
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(A) Spatial model

(B) Group model

FIGURE 3.—Price informativeness and informational gap.

regard to informational efficiency), an infinite market operates effectively like
one with independent private values. In Figure 3, informational inefficiency is
measured by ψ−

i ≡ (Var(θi|si�p∗)− Var(θi|s))/Var(θi|si); ψ−
i ∈ [0�1]. Indices

ψ+, defined in (8), and ψ−
i quantify the contribution of the market to learning

and the potential for learning outside the market, respectively; ψ−
i +ψ+ ≤ 1.

4.3. Finite versus Infinite Auctions

The absence of the monotonicity of price informativeness suggests that some
information that is lost in price in infinite auctions becomes revealed in finite
auctions. This section identifies components of a trader signal si transmitted
by price in finite and infinite auctions. For the purpose of comparing signal
decompositions in finite as well as infinite auctions, this section assumes that
an auctionAI+1 results from adding a trader to an auctionAI and the pairwise
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correlations in values from the auction AI are preserved in AI+1. Precisely,
a random vector {θi}Ii=1 in auction AI is a truncation of vector {θi}∞

i=1 in the
infinite auction.

For an infinite auction with trader values {θi}∞
i=1, define a common value

component as a random variable X such that for each trader i, θi can be
decomposed into X and a residual Ri ≡ θi − X , such that, for each trader
i, (i) X⊥Ri and (ii) Ri⊥ limI→∞ 1

I

∑
i Ri; that is, the common value compo-

nent is independent from each bidder residual and each bidder residual is in-
dependent from the average residual in the infinite auction.21 A thus-defined
common value component X represents randomness in values common to all
traders,22 while residuals {Ri}∞

i=1, which can be mutually correlated, capture
shocks in values that affect trader subgroups, but not the market as a whole.
Lemma 1 in the Appendix demonstrates that in any infinite equicommonal
auction—that is one such that lim I→∞ 1

I−1

∑
j∈I�j �=i ρi�j ≡ ρ̄∞ is the same for all

i—a common value componentX exists and is identified uniquely up to a con-
stant,X = limI→∞ 1

I

∑
i∈I θi ∼ N (E(θ)�σ2

θ ρ̄
∞). Among the examples from Sec-

tion 2.2,X is deterministic in the independent private value setting, the spatial
model, and the limit group model (α→ −1), and is nondegenerate in the fun-
damental value mode and the group model with α >−1.

To explain Bayesian learning about value θi from price p∗ and signal si =
X + Ri + εi, and, more generally, to shed light on the results about price in-
formativeness from Section 4.2, we examine Bayesian updating of each signal
component y =X�Ri�εi. Proposition 5 determines price inference coefficient
cy�p in the conditional expectation E(y|si�p∗)= const + cy�si si + cy�pp∗ in terms
of the coefficients from the projection of the equilibrium price on the signal
components, βy = Cov(y�p∗)/Var(y), which allows us to attribute price infer-
ence to each component y in a given auction.23

PROPOSITION 5—Inference Coefficients: For a signal component y =X�Ri�
εi, inference coefficient cy�p is given by

cy�p = c̄
∑
y′ �=y
(βy −βy′)σ2

y σ
2
y′ �(9)

where constant c̄ ≡ Var(si)Var(p∗)− (Cov(si�p∗))2 > 0 is the same for all y .

21Given the assumption that a finite auction is a truncation of the infinite auction, the common
value component defined for an infinite auction can then be interpreted as a common value
component for a subset of bidders as well.

22Clearly, the common value component may be nondegenerate even if the underlying process
does not involve a shock that is common to all bidders (e.g., the group model).

23It can be shown that βy ≥ 0 for y =X�Ri�εi , even if ρ̄ < 0. In small auctions, price is strictly
positively correlated with εi andRi , as it is an increasing function of the average signal, s̄ = 1

I
(X+

Ri +εi)+ 1
I

∑
j �=i sj . If the common value component is nondegenerate, βX > βε > 0 holds by the

positive correlation ofX with sj . Moreover, βR ∈ [0�βX ], where βR = 0 for ρ̄(γ)− ρ̄∞ = −(1−γ)
and βR = βX for ρ̄(γ)− ρ̄∞ = 1; βR = βε if ρ̄= 0.
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As is important for our analysis, coefficient cy�p depends on the coefficients
βX�βRi , and βε only through differences |βy −βy′ | and is zero when βy ’s coin-
cide for all y . A Bayesian bidder i who makes inference based on si and p∗ can
be interpreted as decomposing the observed signal realization into the condi-
tional expectations of the signal components si =E(X|si�p∗)+E(Ri|si�p∗)+
E(εi|si�p∗). Given the fixed sum of the three components, a higher price re-
alization results in an upward revision of the expectation of y (i.e., cy�p > 0)
and, thus, a downward revision of the sum of the other two components only
if price comoves more strongly with y than with the other two components.
When βX = βR = βε, the equilibrium price realizations do not affect signal de-
composition and the price does not contain any information about y beyond si.

Infinite Auctions

As is well understood from the competitive literature, in large markets, the
equilibrium price reflects only those elements of information that are com-
mon to all traders (e.g., Hellwig (1980)). Accordingly, in an infinite equicom-
monal auction, the equilibrium price reveals no information contained in sig-
nals {si}∞

i=1 other than that which results from the common value compo-
nentX . Individual signal si has a negligible impact on the average signal s̄ and,
hence, price p∗. Correlation of p∗ with si—and Bayesian updating in general—
originates from the common value component alone, present in the price and
values of all traders. It follows that βR = βε = 0 and, hence, from (9), the price
is informative about value θi =X +Ri (i.e., cp�X + cp�R = cβXσ

2
Xσ

2
ε �= 0) only

if the common value component is nondegenerate (σ2
X = σ2

θ ρ̄
∞ �= 0), as it is

in the fundamental value and group models. The informational content of the
common value component X about θi might vary from almost full revelation
(which is obtained only with pure common values for almost all bidders) to
nothing (e.g., the spatial model).

Finite Auctions

In finite auctions, the effect of an individual realization si on the equilibrium
price is nonnegligible. Consequently, correlation between the signal and the
price can arise not only from the presence of a common value component X ,
but also from the residual Ri and noise εi. This changes the nature of learning
in finite auctions from that of infinite auctions, as follows.

First, a finite-auction price can be informative, even if X is deterministic
(ρ̄∞ = σ2

X = cp�X = 0); hence, Ri = θi (modulo a constant) and the price con-
tains no information about value θi in the infinite auction.

Second, by Proposition 5, with a deterministic X , price inference in finite
auctions can be interpreted as (“net”) learning through residual (βR > βε) or
learning through noise (βR < βε). Learning through the residual occurs if and
only if ρ̄ > 0; then, cp�R = −cp�ε = c(βR − βε)σ

2
Rσ

2
ε > 0. This happens in the

spatial model. Similarly, learning through noise occurs if and only if ρ̄ < 0;
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then cp�R = −cp�ε = c(βR −βε)σ2
Rσ

2
ε < 0. In the latter case, bidder i attributes

a higher p∗ to a high realization of εi rather than Ri. This explains why, in the
limit group model (α→ −1), the price is informative even though s̄ = 1

I

∑
i εi

and, hence, the price is independent from each trader’s value θi and βR = 0. In
a finite independent private value auction (more generally, ρ̄= 0), residual Ri
and noise εi are positively correlated with the price (βR = βε > 0); however,
the comovements offset each other and the price is uninformative, cp�R = cp�ε =
cp�X = 0.

Third, learning about θi through the common value component reinforces
learning through the residual or counterbalances learning through noise. In
the group model, βR = 0, and depending on βX , βε, σ2

X , and σ2
ε , traders learn

either through noise or through the common value component. In the funda-
mental value model, residuals are mutually independent; therefore, βR = βε >
0 and bidders learn only through the common value component, as βX > βε.

Fourth, whether and why price informativeness ψ+ is monotone in γ de-
pends on how differences |βy −βy′ | in inference coefficients (9) change as the
market grows. For example, the nonmonotone (U-shaped) price informative-
ness ψ+ in the group model with α > −1 can be understood in terms of two
countervailing effects that derive from βX > βε > βR = 0.24

APPENDIX

The proof of Proposition 1 is provided after the proof of Proposition 2.

PROOF OF PROPOSITION 2: From (3) and market clearing, the equilibrium
price is equal to p∗ = 1

I

∑
i∈I E(θi|si�p∗). Given that E(θi|si�p) = cθE(θi) +

cssi + cpp, the equilibrium price can be written as

p∗ = cθE(θi)

1 − cp + cs

1 − cp s̄�(10)

where s̄ = 1
I

∑
i∈I si� Using (10), random vector (θi� si�p∗) is jointly normally

distributed,⎛
⎝ θi
si
p∗

⎞
⎠ = N

⎡
⎣

⎛
⎝E(θi)E(θi)

E(θi)

⎞
⎠ �

⎛
⎝ σ2

θ σ2
θ Cov(θi�p∗)

σ2
θ σ2

θ + σ2
ε Cov(si�p∗)

Cov(p∗� θi) Cov(p∗� si) Var(p∗)

⎞
⎠

⎤
⎦ �(11)

24If the variance ofX is sufficiently small (α ∈ (−1�−1/3)), then the comovement of p∗ withX
is outweighed by the effect of learning though noise in small markets. As the market grows and βε
decreases, |βR−βε| monotonically decreases as well and ψ+ diminishes. For any α ∈ (−1�−1/3),
γ exists for which the two effects exactly balance and price informativeness attains its minimum
of zero. For all market sizes beyond this threshold, bidders infer through the common value
component and, because |βX − βε| is monotonically increasing, so is ψ+. In the group model
with α ∈ (−1/3�1), learning through the common value component dominates for all γ and ψ+

monotonically increases in γ.
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Covariances in (11) are given by

Cov(θi�p∗)= 1
I

cs

1 − cp (1 + (I − 1)ρ̄)σ2
θ �

Cov(si�p∗)= 1
I

cs

1 − cp
(
(1 + (I − 1)ρ̄)+ σ2

)
σ2
θ �

and

Var(p∗)= 1
I

(
cs

1 − cp
)2(
(1 + (I − 1)ρ̄)+ σ2

)
σ2
θ �

Applying the projection theorem25 to random vector (11) and the method
of undetermined coefficients yields the inference coefficients cs and cp in
E(θi|si�p), (5) and (6); by E(θi) = E(si) = E(p), cθ is as in (7). Using (3),
the equilibrium bid is

qi(p)= 1
(μ− (∂qi(p)/∂p)−1/(I − 1))

[cθE(θi)+ cssi − (1 − cp)p]�(12)

By the linearity of equilibrium, ∂qi(p)/∂p is constant. Taking a derivative of
(12) with respect to price and solving for the bid slope, we obtain ∂qi(p)/∂p=
−(γ− cp)/μ, which gives the equilibrium bid (4). Q.E.D.

PROOF OF PROPOSITION 1: Only if : The profile of bids (4), i ∈ I, from
Proposition 2 constitutes an equilibrium with downward-sloping bids only if
the slope of the (aggregate) supply satisfies ∞>−(∂qi(p)/∂p)−1/(I − 1) > 0.
This implies γ > cp >−∞, which, by (6), requires

ρ̄ �= −(1 − γ)�(13)

Combined with the fact that ρ̄≥ −(1 − γ) holds for any random vector {θi}i∈I ,
condition (13) implies the desired lower bound on the commonality, ρ̄ >−(1−

25Let θ and s be random vectors such that (θ� s)∼N(μ�Σ), where

μ≡
(
μθ

μs

)
and Σ≡

(
Σθ�θ Σθ�s

Σs�θ Σs�s

)

are partitional expectations and variance–covariance matrix, and Σs�s is positive definite. The
distribution of θ conditional on s is normal and given by (θ|s)∼N(μθ +Σθ�sΣ−1

s�s (s−μs)�Σθ�θ −
Σθ�sΣ

−1
s�s Σs�θ).
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γ)≡ ρ̄−(γ). The upper bound is derived from condition γ > cp, which by (6) is
equivalent to

ρ̄ <

γ2 − 2(1 − γ)σ2 + (1 − γ)
√

4σ4 +
(
γ

2 − γ
1 − γ

)2

2γ
≡ ρ̄+(γ�σ2)�

For γ = 0, the upper bound ρ̄+(0�σ2) is defined as the limit of ρ̄+(γ�σ2) as
γ→ 0, ρ̄+(0�σ2)≡ 0.

If : For any commonality ρ̄ such that ρ̄−(γ) < ρ̄ < ρ̄+(γ�σ2), the first-order
condition (3) is necessary and sufficient for optimality of the bid (4) (for any
price) for each i, given that bidders j �= i submit bids (4). It follows that the
bids from Proposition 2 constitute a unique symmetric linear Bayesian Nash
equilibrium. Q.E.D.

PROOF OF PROPOSITION 3: Only if : Assume that the equilibrium price is
privately revealing, that is, the posterior cumulative distribution functions co-
incide, F(θi|si�p∗) = F(θi|s) for every i and s, given the equilibrium price
p∗ = p∗(s). Fix i. Using that the price is a deterministic function of the av-
erage signal (by (10)), we have that F(θi|si�p∗)= F(θi|si� s̄). By the projection
theorem applied to (θi� s), E(θi|si� s̄)= c0 + c · s, where cT = (cs1� cs2� � � � � csI )
is a vector of constants in which all entries j �= i are identical. That the equal-
ity E(θi|si� s̄)= E(θi|s) holds for all s implies that the coefficients multiplying
each sk, k ∈ I, are the same in both conditional expectations. It follows that
coefficients in E(θi|s) satisfy csj = csk for all j�k �= i. We now show that this
implies ρi�j = ρ̄ for all j �= i. Let Σs�s ≡ σ2

θC + σ2
εI be the variance–covariance

matrix of signals {si}i∈I and let Σθi�s = {Cov(θi� sk)}k∈I be the row vector of co-
variances. By the positive semidefiniteness of C , Σs�s is positive definite and,
hence, invertible. Applying the projection theorem, coefficients c ∈ RI in ex-
pectation E(θi|s) are characterized by cT = Σθi�sΣ−1

s�s , which gives

(Σθi�s)
T = Σs�sc�(14)

For any j �= i, the jth row of (14), Cov(θi� sj) = ∑
k∈I Cov(θj� θk)csk + csjσ

2
ε ,

using Cov(θi� sj)= Cov(θi� θj) can be written as

Cov(θi� θj)= csj
∑
k �=j

Cov(θj� θk)+(csi −csj )Cov(θi� θj)+csj (σ2
θ+σ2

ε)�(15)

where we used that coefficients csj are the same for all j �= i. Equation (15)
gives

Cov(θi� θj)= csj (I − 1)σ2
θ ρ̄

1 − (csi − csj )
+ csj (σ

2
θ + σ2

ε)

1 − (csi − csj )
�
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Since csj is the same for all j �= i� Cov(θi� θj) is identical for all j �= i and, hence,
by equicommonality, ρi�j = ρ̄ for all j �= i. Since the argument holds for any i,
it follows that ρi�j = ρ̄ for all pairs i, j, i �= j.

If : Assume that ρi�j = ρ̄ for all j �= i in the correlation matrix C . We derive
the first two moments of F(θi|s). The variance–covariance matrix of signals
Σs�s can be written as

Σs�s =

⎛
⎜⎜⎝
a b · · · b

b a · · · b
���

���
� � �

���

b b · · · a

⎞
⎟⎟⎠ �

where a= σ2
θ + σ2

ε and b= ρ̄σ2
θ . Its inverse is given by

Σ−1
s�s =

⎛
⎜⎜⎜⎝
ã −b̃ · · · −b̃

−b̃ ã · · · −b̃
���

���
� � �

���

−b̃ −b̃ · · · ã

⎞
⎟⎟⎟⎠ �

where

ã= σ2
θ + σ2

ε + (I − 2)ρ̄σ2
θ

(σ2
θ + σ2

ε)
2 + (I − 2)(σ2

θ + σ2
ε)ρ̄σ

2
θ − (I − 1)ρ̄2σ4

θ

and

b̃= ρ̄σ2
θ

(σ2
θ + σ2

ε)
2 + (I − 2)(σ2

θ + σ2
ε)ρ̄σ

2
θ − (I − 1)ρ̄2σ4

θ

�

Assuming without loss of generality that i= 1, one can writeΣθi�s = σ2
θ(1� ρ̄� ρ̄� � � � � ρ̄).

From the projection theorem, the coefficients in expectation E(θi|s) are char-
acterized by cT = Σθi�sΣ−1

s�s , which gives

csi =
σ4
θ + σ2

εσ
2
θ + (I − 2)ρ̄σ4

θ − (I − 1)ρ̄2σ4
θ

(σ2
θ + σ2

ε)
2 + (I − 2)(σ2

θ + σ2
ε)ρ̄σ

2
θ − (I − 1)ρ̄2σ4

θ

�(16)

csj = ρ̄σ2
εσ

2
θ

(σ2
θ + σ2

ε)
2 + (I − 2)(σ2

θ + σ2
ε)ρ̄σ

2
θ − (I − 1)ρ̄2σ4

θ

�(17)

We now show that expectation E(θi|si�p∗(s)), with the coefficients derived in
(5) and (6), assigns the same weight to all individual signals as coefficients (16)
and (17). To see this, using (10), write the equilibrium price as a function of
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signals. The expectation becomes

E(θi|si�p∗(s))

=E(θi)+
[
cs + cpcs

1 − cp
1
I

]
[si −E(si)] + cpcs

1 − cp
1
I

∑
j �=i
(sj −E(sj))

and, hence, E(θi|si�p∗(s))=E(θi|s) if and only if for all j �= i,

csi = cs +
cpcs

1 − cp
1
I
�(18)

csj = cpcs

1 − cp
1
I
�(19)

That conditions (18) and (19) hold can be verified from (5), (6), (16), and (17).
This proves the equality of expectations E(θi|si�p∗(s)) and E(θi|s) for all s.

Next, we demonstrate the equality of variances in the posterior cumulative
distribution functions F(θi|si�p∗) and F(θi|s). Letφs be defined by Var(θi|s)=
(1 − φs)σ2

θ . From the projection theorem, φs = (Σθi�sΣ
−1
s�s (Σθi�s)

T )/σ2
θ and,

therefore,

φs = csi + (I − 1)ρ̄csj

= σ4
θ + σ2

εσ
2
θ + (I − 2)ρ̄σ4

θ − (I − 1)ρ̄2σ4
θ + (I − 1)ρ̄2σ2

εσ
2
θ

[σ2
ε + (1 + (I − 1)ρ̄)σ2

θ](σ2
θ(1 − ρ̄)+ σ2

ε)

= (1 − ρ̄)
(1 − ρ̄+ σ2)

×
[

1 + ρ̄σ2 + (I − 1)ρ̄(1 − ρ̄)+ (I − 1)ρ̄2σ2 − (1 − ρ̄)(I − 1)ρ̄
(1 − ρ̄)(σ2 + (1 + (I − 1)ρ̄))

]

= φp�

where φp is defined by Var(θi|si�p∗) = (1 − φp)σ2
θ and, hence, the poste-

rior variances coincide, and by the normality of distributions, F(θi|si�p∗) =
F(θi|s). Q.E.D.

PROOF OF PROPOSITION 4: Applied twice, the projection theorem gives con-
ditional variances Var(θi|si) and Var(θi|si�p∗), from which price informative-
ness ψ+ is derived,

ψ+ = σ2ρ̄2

[(1 + σ2)(1 − γ)+ ρ̄][(1 + σ2)− ρ̄] �(20)
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For any ψ+ and γ, equation (20) is quadratic in ρ̄ with roots

ρ̄= (σ2 + 1)
2(σ2 +ψ+)

[ψ+γ± √
ψ+2γ2 + 4ψ+(1 − γ)(σ2 +ψ+)]�(21)

For any ψ+ ∈ [0�1] and γ ∈ [0�1), equation (21) gives the values of ρ̄ that,
jointly with γ, give rise to price informativeness equal to ψ+. For ψ+ > 0, equa-
tion (20) has a positive and a negative root. For a given pair (γ� ρ̄) and the
corresponding ψ+, the threshold τ is determined as the change of ρ̄ that main-
tains constant the value of price informativeness ψ+ with an additional trader,
whose inclusion increases γ by

�γ ≡ 1
I(I − 1)

= (1 − γ)2

2 − γ �

Using (21) for ρ̄ > 0, threshold τ can be found,

τ = (σ2 + 1)
2(σ2 +ψ+)

× [
ψ+�γ+ √

ψ+2(γ+�γ)2 + 4ψ+(1 − γ−�γ)(σ2 +ψ+)

− √
ψ+2γ2 + 4ψ+(1 − γ)(σ2 +ψ+)

]
�

Since the positive root in (21) is decreasing in γ and increasing in ψ+, then τ
< 0. The threshold for ρ̄ < 0 can be derived analogously. Q.E.D.

PROOF OF PROPOSITION 5: From the projection theorem applied to (y� si�
p∗) for any y =X�Ri�εi, the vector of coefficients in the conditional expecta-
tion E(y|si�p∗) is the product

(cy�si � cy�p)= (Cov(y� si)�Cov(y�p∗))Σ−1�(22)

where Σ is the variance–covariance matrix of vector (si�p∗). The inverse of Σ
is

Σ−1 = 1
det(Σ)

(
Var(p∗) −Cov(si�p∗)

−Cov(si�p∗) Var(si)

)
�

Using that si =X +Ri + εi, we have that Var(si)= ∑
y σ

2
y and Cov(y� si)= σ2

y .
From the projection of p∗ on the signal components X�Ri, and εi, we obtain
Cov(y�p∗)= βyσ2

y , y =X�Ri�εi, and Cov(si�p∗)= ∑
y βyσ

2
y . Using (22),

cy�p = 1
det(Σ)

[
βyσ

2
y

∑
y′
σ2
y′ − σ2

y

∑
y′
βy′σ

2
y′

]
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= 1
det(Σ)

∑
y′ �=y
(βy −βy′)σ2

y σ
2
y′ �

Letting c̄ ≡ 1/det(Σ) = Var(si)Var(p∗) − (Cov(si�p∗))2 and observing that
c̄ > 0, by the positive definiteness of Σ, we obtain (9). Q.E.D.

LEMMA 1—Identification: A common value component exists if and only if
the infinite auction is equicommonal, that is, lim I→∞ 1

I−1

∑
j∈I�j �=i ρi�j ≡ ρ̄∞ is the

same for all i. Moreover, X = θ̄∞ ≡ limI→∞ 1
I

∑
i∈I θi, where the common value

component is unique up to a constant.

PROOF: Let {θi}∞
i=1 be a jointly normally distributed random vector. Define

R≡ limI→∞ 1
I

∑
i Ri. Only if : Let X be such that, for all i, θi =X +Ri, X⊥Ri,

and Ri⊥R. Then

lim
I→∞

1
I − 1

∑
j∈I;j �=i

Cov(θi� θj)

= Cov
(
X +Ri�X + lim

I→∞
1

I − 1

∑
j∈I;j �=i

Rj

)

= Cov
(
X +Ri�X + lim

I→∞
I

I − 1
1
I

∑
j∈I
Rj − lim

I→∞
1

I − 1
Ri

)

= Cov
(
X +Ri�X +R− lim

I→∞
1

I − 1
Ri

)
= Cov(X +Ri�X +R)= Var(X)�

Since limI→∞ 1
I−1

∑
j∈I�j �=i ρi�j = limI→∞ 1

I−1

∑
j∈I;j �=i Cov(θi� θj)/σ2

θ = Var(X)/σ2
θ

is independent across bidders, the auction is equicommonal. If : Consider an
infinite equicommonal auction. We show that X = θ̄∞ and Ri = θi − θ̄∞ satisfy
conditions (i) and (ii) in the definition of a common value component. For a
vector {θi}Ii=1 of the first I <∞ elements of {θi}∞

i=1, define θ̄I ≡ 1
I

∑
i∈I θi:

Cov(θ̄I� θi − θ̄I)= 1
I

∑
j∈I

Cov(θj� θi)− 1
I2

∑
j∈I

∑
k∈I

Cov(θj� θk)

= 1
I

∑
j∈I�j �=i

Cov(θj� θi)− 1
I2

∑
j∈I

∑
k∈I�k �=j

Cov(θj� θk)�

Taking the limit as I → ∞ and using that limI→∞ 1
I

∑
k∈I�k �=j Cov(θj� θk) =

ρ̄∞σ2
θ for all j, we have Cov(θ̄∞�Ri) = limI→∞ Cov(θ̄I� θi − θ̄I) = 0. Since θ̄∞
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and Ri are normally distributed, they are independent. In addition,

ρ̄∞σ2
θ = lim

I→∞
1

I − 1

∑
j∈I�j �=i

Cov(θi� θj)

= Cov(θ̄∞ +Ri� θ̄∞ +R)= Var(θ̄∞)+ Cov(Ri�R)

and Var(θ̄∞) = ρ̄∞σ2
θ imply Cov(Ri�R) = 0 and, hence, the normally dis-

tributed Ri and R are independent. For the uniqueness of the decomposi-
tion (up to a constant), observe that for any random variable X that sat-
isfies the two conditions in the definition of a common value component,
θ̄∞ ≡ limI→∞ 1

I

∑
i∈I θi =X +R holds. For any I <∞,

Var
(

1
I

∑
i∈I
Ri

)
= Cov

(
1
I

∑
i∈I
Ri�

1
I

∑
j∈I
Rj

)

= 1
I

∑
i∈I

Cov
(
Ri�

1
I

∑
j∈I
Rj

)
�

Since Cov(Ri� limI→∞ 1
I

∑
j∈I Rj) = 0, taking the limit as I → ∞ gives

Var(R)= 0. It follows that R is a deterministic constant and X is equal to θ̄∞

modulo a (deterministic) constant. On the other hand, for any common value
component X , the random variable θ̄∞ + const, where const is an arbitrary
constant, satisfies the definition of a common value component. Q.E.D.
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