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Abstract

Rationalizable partition-confirmed equilibrium (RPCE) describes the steady state

outcomes of rational learning in extensive games, when rationality is almost com-

mon knowledge and players observe a partition of the terminal nodes. RPCE allows

players to make inferences about unobserved play by others; we discuss the impli-

cations of this using numerous examples. We identify the ways in which the RPCE

outcomes depend on terminal node partitions, provide conditions under which they

are invariant with respect terminal node partitions, and discuss the relationship of

RPCE to other solution concepts in the literature.
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1 Introduction

Observing actual play in a game need not reveal the actions that would be taken at

information sets that have never been reached. Consequently, players with incorrect

beliefs about off-path play need not learn that their beliefs are in error, and so the process

may not lead to a Nash equilibrium. The simplest version of this idea is self-confirming

equilibrium (SCE), which corresponds to cases where players observe the terminal node

of the game each time it is played, and the only restrictions placed on the players’ beliefs

is that they be consistent with the objective distribution on terminal nodes.1 However,

there are many applications of interest in which players do not observe the exact terminal

node that is reached. For example, consider a sealed-bid uniform-price k-unit auction for

a good of known value. Here the terminal node is the entire vector of submitted bids,

but agents might only observe the winning price and the identity of the winning bidders.

Alternatively, this information might only be made available to those who submitted

nonzero bids, with the others only told that their bid was not high enough. Moreover, the

players might have private information about their values for the good; since the terminal

node encodes Nature’s move as well as the moves of the players, the assumption that

the terminal node is observed at the end of the game implies that players observe one

another’s types.

This leads us to replace the assumption that terminal nodes are observed with the

assumption that each player has a partition over the terminal nodes, and that at the

end of each play of the game each player observes the corresponding element from their

terminal node partition, resulting in a generalization of self-confirming equilibrium we

call “partition-confirmed equilibrium.”2 However, our primary interest is in cases where

the rationality of the players and the observation structure are both (almost) common

knowledge, so that even when there is not a commonly known outcome, players can and

do reason about what their opponents might be observing. For example, we will require

that player 1’s conjecture about how player 2 thinks player 3 is playing must be consistent

1We do not explicitly study dynamics here, but the solution concepts we propose are motivated by
the idea that agents play the game repeatedly, with no strategic links between repetitions, and that their
play is “asymptotically empirical” and “asymptotically myopic” in the sense of Fudenberg and Kreps
(1995). See that paper and Fudenberg and Levine (1993b) for non-equilibrium learning models with
these properties, and Fudenberg and Levine (2009) for a survey of related work.

2Battigalli (1987) and Battigalli and Guatoli (1997) introduced the concept of terminal node partitions,
and used them to define conjectural equilibrium, which is closely related to SCE and to the partition-
confirmed equilibrium defined in this paper. Rubinstein and Wolisnky (1994) use terminal node partitions
in their definition of rationalizable conjectural equilibrium (RCE). Dekel, Fudenberg, and Levine (2004)
study the implications of various terminal node partitions for SCE in static Bayesian games. Esponda
(2011) extends RCE to games with moves by Nature in an epistemic framework, and also defines weaker
versions that relax common knowledge of ratoinality and consistency to k-th level belief.
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with player 1’s information about what player 2 observes.

This leads us to develop the concept of “rationalizable partition-confirmed equilib-

rium” (RPCE) which generalizes the “rationalizable self-confirming equilibrium” (RSCE)

of Dekel, Fudenberg, and Levine (1999, DFL). A key feature of both solution concepts is

that a player may be able to use observations of play at some information sets to make

inferences about play at information sets the player does not observe. As with RSCE, one

motivation for RPCE is that it refines the predictions of both rationalizability (Bernheim

(1984) and Pearce (1984)) and of SCE: rationalizability by requiring that players’ beliefs

are consistent with their observations and their knowledge of the other players’ obser-

vation structures, and SCE by requiring players use knowledge about opponents’ payoff

functions to refine their beliefs.

The main difference is that in RSCE all players observe the distribution over terminal

nodes, while RPCE allows each player to have a different partition of the terminal nodes.

In this case there is no longer a publicly observed outcome path, so the implications of

common knowledge of the observation structure are less immediate.3 Roughly speaking,

RPCE describes situations where players know that the outcome of play has converged,

even when they do not observe all aspects of this outcome themselves.

The RPCE concept is of interest in its own right; it also serves to provide additional

support for the use of Nash and subgame perfect equilibrium in games where it coincides

with one or the other. In particular, we will see that players can do a fair bit of reasoning

about play they do not observe, even when we do not assume that players know one

another’s strategies.

Many of our points can be made using “participation games,” which are one-shot

simultaneous move games in which some or all of the players have the option of an action

called “Out”: If a player plays Out, his payoff is 0 regardless of the play of the others,

and he observes only his own action and payoff. Roughly speaking, the idea of RPCE is

that if player 1 (say) always plays Out, but knows that players 2 and 3 play every period

and observe the terminal node at the end of each round, and player 1 believes that play

has converged, then she can use her knowledge of the payoff functions and observation

structure to place restrictions on the (unobserved) play of her opponents. In particular

when players 2 and 3 observe the terminal node each period, 1’s belief about their play

must be concentrated on the set of Nash equilibria of the “subgame” between them. In

3A similar complication arises in “heterogeneous” equilibria, in which different agents in the same
player role take different actions and thus have different observations, which is why DFL restricted
attention to the “unitary” case where all agents in a given player role use the same strategy and have
the same beliefs. This paper restricts attention to unitary beliefs; we plan to extend RPCE to the
heterogeneous case in future research.
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contrast, if player 1’s choice of “Out” ends the game and prevents players 2 and 3 from

acting, then when player 1 always plays Out players 2 and 3 do not have the chance to

learn; here the only restriction on 1’s belief when he plays Out is that the play of 2 and

3 is rationalizable.

In addition to the partition over terminal nodes, this paper differs from DFL by

allowing players to have correlated beliefs about their opponents’ play. As we argue by

example, restricting to independent beliefs is less natural here, for when a player knows

that her opponents have repeatedly played a coordination game, but has not seen their

actions, it seems odd to require that the player’s beliefs about the opponents correspond

to a product distribution. Put differently, with partitions on terminal nodes, play of the

game on its own may provide some of the players access to a common signal that is not

observed by others.

In general the set of RPCE outcomes depends on the terminal node partitions, because

coarser partitions provide less information and so generate fewer restrictions on the allowed

beliefs. We identify four different reasons that the dependence can arise, and then give

conditions under which RPCE is invariant to changes of partitions. Roughly speaking,

the set of player i’s RPCE strategy is invariant to changes in her terminal node partition

in simultaneous-move games when the actions of each opponent has no effect on what

that opponent observes.

The paper is organized as follows. In Section 2, we provide an example to illuminate

our point. In the example, we discuss two related extensive-form games, and explain

why we might expect them to have different long-run outcomes under rational learning.

Section 3 defines a model of extensive-form games with terminal node partitions. Section

4 revisits the example in Section 2, and analyzes other examples to show the implications

of RPCE. Section 5 motivates the RPCE definition by exploring the consequences of

alternative specifications. In Section 6 we analyze how the changes in the terminal node

partition affect the outcomes of games with terminal node partitions. Section 7 explains

the connection PCE and RPCE with other concepts from the literature, notably the

rationalizable conjectural equilibrium (RCE) of Rubinstein and Wolinsky (1994). Unless

stated otherwise, proofs can be found in Appendix B.

2 An Illustrative Example (Example 1)

This section provides an informal illustration of the effect of the players’ knowledge about

the observation structure. To do this, we compare three extensive-form games that are

similar to each other, and identify an outcome that seems a plausible long-run consequence
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of rational learning in one of the games but not the others. We formalize the intuition

after we provide a formal model; here we give only an informal argument.

Figure 1

The three games, games A, B, and C, are depicted in Figure 0. In game A, player 1

moves first, choosing between In and Out. If he chooses In, players 2 and 3 play matching

pennies with player i choosing between Hi and Ti, if players 2 and 3 match 2 gets 1 and

3 gets −1, if they do not match then player 3 gets 1 and player 2 gets −1. Player 1’s
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payoffs are the amount that player 2 gets plus an “extra” of 0.1, if player 1 plays In.

Thus for example if player 2 and 3’s actions match then player 1 gets 1+0.1 = 1.1. When

player 1 plays Out, all players obtain the payoff of 0. At the end of each play of the game,

players observe the exact terminal node that is reached, as in self-confirming equilibrium.

In game B, player 1 moves first, again choosing between In and Out. Instead of 2

and 3 only acting when 1 plays In, now they play the matching pennies game regardless

of 1’s action. The map from action profiles to payoffs is exactly the same as in game

A. In particular, if 1 plays Out she gets 0 regardless of the actions of players 2 and 3.

The important assumption is that if 1 plays Out she observes only her own action and

payoff but not the action of the other player: the corresponding cell of her terminal node

partition contains four elements corresponding to the four possible choices of players 2

and 3. In Figure 1, this is denoted by connecting player 1’s payoffs at corresponding

terminal nodes by dots. Players 2 and 3 observe the exact terminal nodes. Note that the

observation structures for player 1 are the same in games A and B.

Finally, game C has the same extensive form and payoffs as in game B, while the

terminal node partitions for players 2 and 3 are different: here we assume that they do

not observe each other’s action.4 This unobservability is represented by connecting each

player’s corresponding payoffs by dots.

Note that even though player 1 receives the same information in these games, the

observation structures of players 2 and 3 differ. In game A, players 2 and 3 do not

observe each other’s play when 1 plays Out, so there is no reason for player 1 to expect

their play to resemble a Nash equilibrium. Consequently, an impatient player 1 might

choose to play Out, fearing that player 2 would lose to player 3. In game B, on the other

hand, players 2 and 3 observe each other’s play, whatever player 1’s action is. Thus they

should be playing as in the Nash equilibrium of the matching pennies game, and 1 knows

this, so she should play In. In game C, even though 2 and 3 play repeatedly, they do not

observe each others’ play. Hence 1 can expect that 2 is consistently loosing to player 3,

and so she can play Out.

In Section 4 we formalize this intuition. Before doing so, we provide a formal model

of extensive-form games with terminal node partitions in the next section.

4This means that their payoffs are not measurable with respect to the partitions. This specification
is made only to make our point in a simple example. Example 5 illustrates much the same point with
payoffs that are measurable with respect to the partitions.
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3 The Model

3.1 Extensive-Form Games with Terminal Node Partitions, Strate-
gies, and Beliefs

X is the finite set of nodes, with Z ⊆ X being the set of terminal nodes. The distribution

over Nature N ’s moves is known to all players. The set of players is I = {1, . . . , n}. Hi

is the collection of player i’s information sets. Set H =
∪

i∈I Hi and H−i = H \ Hi. Let

A(h) be the set of available actions at h ∈ H, Ai =
∪

h∈Hi
A(h), and A = ×i∈IAi and

A−i = ×j 6=iAj. For each z ∈ Z, player i’s payoff is u(z).

To model what players observe at the end of each round of play, let Pi = (P 1
i , . . . , P Li

i )

be a partition over Z. Except where otherwise noted, we will require that ui(z) = ui(z
′)

if terminal nodes z and z′ are in the same partition cell, so that payoffs are measurable

with respect to terminal node partitions.5

Player i’s behavioral strategy πi is a map from Hi to probability distributions over

actions, satisfying πi(h) ∈ ∆(A(h)) for each h ∈ Hi. The set of all behavioral strategies

for i is Πi, and the set of behavioral strategy profiles is Π = ×i∈IΠi. Let Π−i = ×j 6=iΠj and

Π−i,k = ×j 6=i,kΠj, with typical elements π−i and π−i,j, respectively. For π ∈ Π and πi ∈ Πi,

let H(π) and H(πi) be the collection of information sets reached with positive probability

given π and (πi, π
′
−i), respectively, where π′

−i is any completely mixed behavioral strategy.

A strategy profile π completely determines a probability distribution over terminal

nodes; let d(π)(z) be the probability of reaching z ∈ Z given π. We let Di(π)(P l
i ) =∑

z∈P l
i
d(π)(z) for each cell P l

i of player i’s partition; We assume that the extensive form

has perfect recall in the usual sense, and extend perfect recall to terminal node partitions

by requiring that two terminal nodes must be in different cells of Pi if they correspond

to different actions by player i. If every terminal node is in a different cell of Pi, the

partition Pi is said to be discrete. If the cell i observes depends only on i’s actions, the

partition is called trivial.6

As in DFL, we will require optimality at some off-path information sets, so we will

need to specify assessments at off-path information sets: Player i’s assessment ai is a map

that assigns to each of i’s information sets a probability distribution over nodes in that

information set. Let Ai be the set of assessments for player i; i’s assessment ai and his

opponents’ behavioral strategies π−i completely determine i’s expected payoff for playing

any strategy πi, conditional on any h ∈ Hi. Denote by µi ∈ ∆(Ai ×Π−i) the belief held

5In particular, Theorem 5 will assume this condition.
6Even if the terminal node partition is trivial, i may be able to distinguish among some terminal

nodes, because we require that i’s terminal node partition distinguishes between i’s own actions.
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by player i. That is, a belief is a probability distribution over pairs of an assessment and

a profile of the opponents’ strategies. Notice that we allow the possibility that player

1’s belief about players 2 and 3’s plays be (subjectively) correlated. For example, it is

possible that 1 is sure that 2 and 3 play the same action, while she is not sure whether

it is L or R. This type of belief is consistent with the assumption that 1 thinks 2 and 3

play independently. We say that version vk
i has an independent belief if the projection

of µi,k on Π−i corresponds to a product measure. In this case we associate (ak
i , µ

i,k) with

(ak
i , π

i,k
−i) ∈ Ai × Π−i.

7 Note that the space that beliefs lie in is not Ai × ∆(Π−i), but

∆(Ai × Π−i). This is because an assessment may be correlated with the expectation of

opponents’ strategies, so it may not be sufficient to postulate only a single assessment.

Example 9 shows why this extra generality is desirable.

We say that πi ∈ Πi is a best response to µi ∈ ∆(Ai × Π−i) at H̄i ⊆ Hi if the

restriction of πi to the subtree starting at h ∈ H̄i is optimal against µi in that subtree The

formal definition of optimality here is made complicated by the fact that we allow player

i’s assessment over off-path nodes to be correlated with his belief about the opponents’

strategies. The expected payoff conditional on reaching a given information set depends on

the relative weights over different assessments, and we need to specify how these weights

are determined. Appendix A gives a precise definition, and Example 15 in the Online

Supplementary Appendix illustrates the need for this complication.

3.2 Versions, Conjectures, and Belief Models

As in DFL, we define a version of player i, denoted vi. In DFL vi specifies player i’s

strategy, her assessment, and her belief about the opponents’ play. The definition of a

version in our context will be different from that of DFL, as we include the assessment

as part of beliefs, and also associate with each version a probability distribution over

opponents’ versions that we call a “conjecture.” This is a convenient way to formalize

the condition that a belief is generated by some probability distribution over opponents’

versions. To introduce the notion of conjectures formally, we first need to specify a profile

of sets of versions.

DFL used the notion of belief model to define solution concepts. A belief model in

DFL was V = (V1, . . . , Vn) where each Vi is a set of player i’s versions. We also identify a

belief model. Formally, a belief model is expressed by V = (V1, . . . , Vn) where each Vi is

7Recall that independent randomizations over behavior strategies is equivalent to a behavior strategy
from Kuhn’s theorem- see e.g. Fudenberg and Kreps (1995). DFL consider only independent beliefs; as
we explain below that restriction is less appealing in the context we consider here. Fudenberg and Levine
(1993) discuss the interpretation of correlated beliefs and its implications for self-confirming equilibrium.
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the set of player i’s versions.8

Version k of player i is denoted by vk
i = (πk

i , µ
i,k, pi,k), where the first element is

version k’s strategy πk
i ∈ Πi, the second is her belief µi,k ∈ ∆(Ai × Π−i) , and the third

is her conjecture pi,k ∈ ∆(×j 6=iVj). Notice that the specification of conjectures takes into

account the idea of correlated beliefs, as otherwise, pi,k must lie in the space ×j 6=i∆(Vj).

We allow pi,k to take any number in [0, 1]: Even if player i is sure that there is only a single

agent in player j’s player role, she may not be sure whether this single agent is of version

v1
j or v2

j . We let Ki < ∞ be the number of elements in Vi; that is, Vi = {v1
i , . . . , v

Ki
i }.

3.3 Partition-Confirmed Equilibrium and Rationalizable Partition-

Confirmed Equilibrium

Before stating our solution concept, we develop several regularity conditions.

Let Wj(πj) be the set of j’s versions vl
j such that πl

j = πj, and let W (π−i) =

×j 6=iWj(πj).

Definition 1. Given a belief model V , version vk
i has a coherent belief if µi,k(·, π−i) =∑

v−i∈W (π−i)
pi,k(v−i).

This requires that the version’s belief matches his own conjecture about the opponents’

versions.

The requirement that all versions in a belief model have a coherent belief is analogous

to requiring the belief model be belief-closed, as defined in DFL. Specifically, in Appendix

B we prove the following:

Claim 1. π ∈ Π is generated by a belief model in which all versions have coherent beliefs

and satisfy the best response condition and all beliefs correspond to product measures if

and only if it is generated by a DFL-style belief-closed model in which the best response

condition is satisfied for all versions.9

We require that, for each version vk
i of each player role i, any pair of an assessment

and opponents’ strategies in the support of µi,k satisfies KW-consistency. We say that

µi,k is KW-consistent if any (ai, π−i) ∈ Ai ×Π−i in the support of µi,k is consistent in the

sense of Kreps and Wilson (1982): there exists a sequence of pairs of an assessment and

8The reason that each Vi may contain multiple versions is that in our solution concept we want to
allow for the possibility that some version’s conjecture is incorrect. For example, a version vi of player i
may conjecture that vj of player j exists with a positive probability, while vj may not actually exist.

9Recall that DFL restrict attention to independent beliefs, which is why we need to do the same for
this equivalence.
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a completely mixed behavioral strategy {am
i , πm}∞m=1 with the property that each am

i is

generated by πm and Bayes rule, and that am
i → ai and πm

−i → π−i as m → ∞.

Definition 2. Given a belief model V , version vk
i ∈ Vi is self-confirming with respect

to π∗ if for any π−i in the support of µi,k, Di(π
k
i , π−i) = Di(π

k
i , π

∗
−i).

Let us explain the equality in this definition. The left hand side is the distribution

over i’s terminal partition generated by version k’s strategy and her belief about the

opponents’ play. The right hand side is the distribution that she observes if the actual

distribution of the play is π∗. That is, this equality says that vk
i ’s observation (the left

hand side) is equal to the actual play (the right hand side).

The next definition incorporates the idea that players know the terminal node par-

titions of other players and the self-confirming condition. First, let us define the link

between strategies and versions.

Definition 3. Given a belief model V , π ∈ Π is generated by a version profile v ∈
×j∈IVj if for each i, πi is a strategy prescribed by vi.

For notational simplicity, let πj(vj), π(v) and π−i(v−i) denote the strategy (profile)

generated by vj ∈ Vj, v ∈ ×j∈IVj and v−i ∈ ×j 6=iVj, respectively.

Definition 4. Given a belief model V , vk
i is observationally consistent if pi,k(v−i) > 0

implies, for each j 6= i, vj is self-confirming with respect to π(vk
i , v−i).

If vj is self-confirming with respect to π(vk
i , v−i) then by Definition 2, for all π−j in

the support of vj’s belief, Dj(πj(vj), π−j) = Dj(πj(vj), π−j(v
k
i , v−i,j)) = Dj(π

k
i , π−i(v−i)).

Hence the definition is equivalent to the following:

a

Definition 4’. Given a belief model V , vk
i is observationally consistent if pi,k(v−i) > 0

implies, for each j 6= i, Dj(πj(vj), π−j) = Dj(π
k
i , π−i(v−i)) for all π−j in the support of

vj’s belief.

pi,k(v−i) > 0 means that vk
i assigns positive probability to the event that the profile

of opponents’ versions is v−i (which induces the opponents’ strategy profile π−i(v−i)).

When vk
i thinks such a profile is possible, observational consistency requires the equality

in the definition to hold. The left hand side in this equality is what vj expects to observe

given his belief under the partition given by Dj. The right hand side describes what vk
i

thinks vj is observing under the partition given by Dj. Thus the equality claims that vk
i

believes that vj’s belief is consistent with what vj observes. In other words, the condition
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states that vk
i thinks vj’s belief matches the reality- that is, vk

i believes vj satisfies the

self-confirming condition with respect to the strategy profile generated by what vk
i thinks

the actual version is.

To understand this condition better, consider the following example: Suppose that

v1
1 believes that (v1

2, v
1
3) and (v2

2, v
2
3) are possible and that no other profiles are possible.

Then we require that v1
1 thinks what v1

2 would be observing is consistent with his play,

v1
1’s play, and also v1

3’s play. It is important to note that we do not require v1
1 thinks v1

2’s

belief is consistent with v2
3’s play. This is because, even though v1

1 thinks each of v1
2 and

v2
3 is possible, she thinks (v1

2, v
2
3) is impossible.

Note that the equality in Definition 4’ only need hold when vk
i thinks the profile v−i

exists: Otherwise, vk
i need not believe that vj’s observation is consistent with her belief.

Relatedly, even if vk
i thinks vj exists and vj thinks version vn

m exists, vk
i ’s belief need

not be consistent with what vn
m observes. This is because vk

i might think that “I’m sure

that vj exists, but this vj incorrectly conjectures that version vn
m exists.” Note also that

the equality is imposed for all π−j in the support of vj’s belief. Otherwise, vk
i could be

conjecturing that vj who does not satisfy the self-confirming condition exists. Finally,

if vj is self-confirming with respect to π∗, then in the left hand side of the equation in

Definition 4’, Dj(πj(vj), π−j) can be replaced with Dj(πj(vj), π
∗
−j).

The rationale for this condition is that player i knows j’s terminal node partition and

knows that j’s belief is consistent with what j observes, but in the model developed so

far this knowledge is informal. In Subsection 3.4 we make this interpretation of the ob-

servational consistency precise, by constructing an epistemic model with the state space

being the set of all possible version-partition configurations. We will show that our obser-

vational consistency condition corresponds to the situation where the version in question

knows the opponents’ terminal node partitions and that they satisfy the self-confirming

condition.

Now we are ready to define our solution concepts. First, as a benchmark definition,

we define an analog of SCE that does not incorporate the idea of rationalizability.

Definition 5. π∗ is a partition-confirmed equilibrium (PCE) if there exist a belief

model V and an actual version profile v∗ such that the following three conditions hold:

1. π∗ is generated by v∗;

2. For all i and k, πk
i is a best response to µi,k at H(πk

i , π−i) for all (ai, π−i) ∈
supp(µi,k).

3. v∗
i is self-confirming with respect to π∗;
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Condition (1) says that the equilibrium strategy profile is generated by the specified

belief model. We call the version that generates the strategy profile the “actual version.”

Condition (2) ensures that players optimize against their beliefs, but the condition

merely requires that they optimize only at the “on-path” information sets. This is one of

the conditions that we strengthen in our main solution concept.

Condition (3) is the “self-confirming” part of the equilibrium concept. Notice that this

condition is imposed only for the versions that actually exist. However, imposing the self-

confirming condition for all versions does not restrict the set of equilibria (See Theorem

7). However, in the main concept that we define shortly, imposing the self-confirming

condition for non-actual versions does rule out some seemingly sensible outcomes. We

will discuss this point later in more detail.

Our main interest is in the concept of RPCE.

Definition 6. π∗ is a rationalizable partition-confirmed equilibrium (RPCE) if

there exist a belief model V and an actual version profile v∗ such that the following five

conditions hold:

1. π∗ is generated by v∗;

2’. For all i and k, πk
i is a best response to µi,k at H(πk

i );

3. v∗
i is self-confirming with respect to π∗;

4. For all i and k, vk
i has a coherent belief;

5. For each i and k, vk
i is observationally consistent.

Note that RPCE strengthens PCE by replacing condition (2) with condition (2’) and

requiring that versions have coherent beliefs and are observationally consistent.

Condition (2’) says that each version plays a best response to his belief at the informa-

tion sets that he himself does not preclude. This is the condition called rationalizability

at reachable nodes in DFL. As discussed there, rationalizability at all information sets is

not robust to small uncertainty about players’ rationality, hence we require it to be true

only at those information sets that are not precluded by the player’s own strategy.10

As mentioned earlier, condition (3), the self-confirming condition, is required only

for versions that are objectively present, i.e. the actual versions. In Example 7 we will

10DFL and Greenberg, Gupta and Luo (2003) define an analog of RSCE that requires all versions
optimize at all information sets; this version is not robust to small uncertainties about the payoffs. See
Fudenberg, Kreps, and Levine (1988) for an analysis of the robustenss of equilibrium refinements to
payoff uncertainty, and Dekel and Fudenberg (1990) and Börgers (1994) for the robustness of iterated
weak dominance.
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explain the reason for this restriction. There was no such restriction in RSCE. Roughly,

this is because in DFL’s model, all players’ terminal node partitions are discrete, so the

probability distribution over terminal nodes is common knowledge among players, which

precludes the need for there being two versions with different observations in a set of

versions. We clarify this point in Theorem 6, where we show that requiring the condition

for all versions do not restrict the set of equilibria when the terminal nodes partitions

are discrete. Also, in the (nonrationalizable) PCE concept, this distinction does not

matter because the coherent-belief condition is not imposed. This point will be clarified

in Theorem 7.

The “replacement” discussed in the third remark after the definition of observational

consistency (replacing “Dj(πj(vj), π−j)” with “Dj(πj(vj), π
∗
−j)”) works only for actual

versions; for other versions, this replacement may not work.11

We did not require observational consistency when defining PCE. This is because

observational consistency is hard to interpret when there is no connection between beliefs

and conjectures, and such a connection is described by the coherent belief condition, which

we do not require in the PCE concept.

Finally, notice that if players do not get to observe any consequence of opponents’

actions, conditions (3) and (5) have no bite, hence RPCE reduces to (extensive-form)

rationalizability.

3.4 Observational Consistency and Knowledge about Terminal

Node Partitions and the Self-Confirming Condition

In this section we make our interpretation of observational consistency precise, using an

epistemic model.

Let Ω = V×P , where V is the set of all version profiles, and P is the set of all terminal

node partitions. The information set hi(ω) is the set of states that i thinks possible. That

is,

hi((v, P )) = {(vi, v
′
−i) ∈ V|vi’s conjecture assigns a positive probability to v−i} × P̄i(P ),

where P̄i : P → 2P \ {∅} is some given function.

Notice that it may be the case that ω 6∈ hi(ω), as agents’ conjectures can be incorrect.

To simplify the notation, let π(v) be the strategy profile played by version profile v.

11See for example the belief model provided in Example 7.
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Define the following:

E(P ) = V × {P};

ESC
i = {(v, P ) ∈ Ω|vi is self-confirming with respect to π(v) under Pi};

ESC
−i =

∩
j 6=i

ESC
j , ESC =

∩
j∈I

ESC
j ;

EOC
i = {(v, P ) ∈ Ω|vi is observationally consistent under P−i};

To interpret, E(P ) is the set of all states with partition P ; ESC
i and EOC

i are the sets

of all states ω such that the self-confirming condition and observationally consistency

condition, respectively, are satisfied if ω is the reality.

Note that whether vi is self-confirming or not depends on Pi while whether it is ob-

servationally consistent or not depends on P−i.

We define knowledge, mutual knowledge, and common knowledge as in the usual

model. That is, for any given E ⊆ Ω, define Ki(E) = {ω|hi(ω) ⊆ E} and K(E) =

∩i∈IKi(E). Let Kn(E) = K(Kn−1(E)) with K0(E) = E, and let K∞(E) =
∩∞

n=0 Kn(E).

Now we show that if i knows the terminal node partitions and she believes that the

self-confirming condition is satisfied for all players, then she must be observationally

consistent.

Theorem 1. Suppose that the definition of information sets are given by hi above with

some P̄i for each player i. Then, for each i,( ∪
P∈P

[Ki(E(P )) ∩ E(P )]

)
∩ Ki(E

SC
−i ) ⊆ EOC

i .

Proof. Fix i ∈ I and suppose
(∪

P∈P [Ki(E(P )) ∩ E(P )]
)
∩ Ki(E

SC
−i ) 6= ∅, because if it

were empty then we would be done. Take an arbitrary ω = (v, P ) in this set.

First, ω ∈
(∪

P∈P [Ki(E(P )) ∩ E(P )]
)

implies that P ′ = P for all (v′, P ′) ∈ hi(ω).

Second, ω ∈ Ki(E
SC
−i ) implies that, for any j 6= i, v′

j is self-confirming with respect to

π(v′) under P ′
j for all (v′, P ′) ∈ hi(ω).

These two mean that v′
j is self-confirming with respect to π(v′) under Pj for all

(v′, P ′) ∈ hi(ω).

By the definition of hi, this means that v′
j is self-confirming with respect to π(vi, v

′
−i)

under Pj for all v′
−i to which vi’s conjecture assigns a positive probability. Hence, by

Definition 4, vi is observationally consistent under P−i. Hence ω ∈ EOC
i .

Note that the opposite direction of set inclusion is generally false, as the right hand

side is always nonempty, while
(∪

P∈P [Ki(E(P )) ∩ E(P )]
)

may be empty depending on

14



how we specify P̄i in the definition of hi.

We say that players have correct beliefs about the partitions if

hi((v, P )) = {(vi, v
′
−i) ∈ V|vi’s conjecture assigns a positive probability to v−i} × {P}.

Theorem 2. Suppose that players have correct beliefs about the partitions. Then,( ∪
P∈P

[Ki(E(P )) ∩ E(P )]

)
∩ Ki(E

SC
−i ) = EOC

i .

Proof. Suppose that players have correct beliefs about the partitions. We have already

proven one direction. So we prove the opposite direction.

Notice that when players have correct beliefs about the partitions,
(∪

P∈P [Ki(E(P )) ∩ E(P )]
)

=

Ω. Hence all we need to prove is Ki(E
SC
−i ) ⊇ EOC

i .

Suppose that ω = (v, P ) ∈ EOC
i . Then, by Definition 4, v′

j is self-confirming with

respect to π(vi, v
′
−i) under Pj for all v′

−i to which vi assigns a positive probability. By the

definition of hi and the assumption that players have correct beliefs about the partitions,

this means that v′
j is self-confirming with respect to π(vi, v

′
−i) under P ′

j for all (v′, P ′) ∈
h∗

i ((v, P )). Since whenever (v′, P ′) ∈ hi(v, P ) we must have v′
i = vi by definition, we have

that v′
j is self-confirming with respect to π(v′) under P ′

j for all (v′, P ′) ∈ hi((v, P )). Hence

hi((v, P )) ⊆
∩

j 6=i E
SC
j = ESC

−i . By definition Ki(E
SC
−i ) = {w′|hi(w

′) ⊆ ESC
−i }, so we have

that ω ∈ Ki(E
SC
−i ).

Now we consider higher order knowledge. The next theorem states that RPCE implies

common knowledge of the partition structure and the self-confirming condition.

Theorem 3. Given partitions P ∗, if π∗ is an RPCE then there exists v such that π(v) = π∗

and (v, P ∗) ∈
(∪

P∈P K∞(E(P ))
)
∩ K∞(ESC) = K∞(EOC) where players have correct

beliefs about the partitions.

Proof. Fix P ∗. Take a belief model that rationalizes π∗. Let the actual version profile be

v. Let ω = (v, P ∗). Suppose that players have correct beliefs about the partitions.

First we show ω ∈ EOC . To see this, suppose that for some n = 0, 1, 2, · · · , ω ∈
Kn(ESC) but ω 6∈ Kn+1(ESC). Then there must exist ω′ = (v′, P ∗) ∈ ESC∩

[∪
ω0=ω,{ωk}n

k=0,ωk+1∈hi(ωk) ωn
]

such that hi(ω
′) 6⊆ ESC . But by the definition of hi, v′ must be an element of the belief

model that rationalizes π∗. Hence if ω′′ = (v′′, P ∗) ∈ h∗
i (ω

′) then v′′ must also be an ele-

ment of the belief model that rationalizes π∗, so in particular v′′
i must be observationally

consistent under P ∗
−i. This means ω′′ ∈ EOC , so hi(ω

′) ⊆ ESC . Contradiction.
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Now, we show that
(∪

P∈P K∞(E(P ))
)
∩K∞(ESC) = K∞(EOC), which completes the

proof. Notice that
(∪

P∈P [Kn(E(P ))]
)

= Ω for any n = 0, 1, 2, · · · . Hence

K∞(EOC) = K∞

(( ∪
P∈P

[Ki(E(P )) ∩ E(P )]

)
∩ Ki(E

SC
−i )

)

= K∞(ESC) =

( ∪
P∈P

[K∞(E(P ))]

)
∩ K∞(ESC).

Thus the proof is complete.

4 Implications of RPCE

In this section we revisit Example 1 and consider several examples to illustrate the impli-

cations of RPCE. One of the themes will be the difference between situations where player

1 (say) prevents other players from acting (and thus from learning) and situations where

the other players do act but player 1 does not observe their play. First we revisit Example

1 to show how the RPCE definition delivers the desired conclusion there. Example 2 adds

a player to game B to study the assumption of higher order knowledge of rationality. In

Example 3, RPCE implies that belief about unobservable play should correspond not only

to rationalizable actions, but also a Nash equilibrium. We then generalize this result to a

class of “participation games.” Example 4 points out the implication of the general result

presented in Example 3, and argues that the RPCE concept may be too restrictive in

some cases. Example 5 demonstrates that a player need not expect the unobservable play

by the opponents to resemble a Nash equilibrium if their terminal node partitions are not

discrete. Finally, Example 6 demonstrates that a player can learn from an opponent’s

play the information about a third player’s play that she does not directly observe.

a

Example 1 Revisited.
Here we show that in games A and C it is possible for player 1 to play Out in RPCE,

but this is not possible in game B.

Consider game A. We argue that player 1 can play Out in an RPCE with the following

belief model and actual versions12:

V1 =
{
v1

1

}
, v1

1 = (Out, (H2, T3), p
1,1(v1

2, v
1
3) = 1);

12The notation that we use when presenting belief models in examples involves slight abuse of notation.
In particular, we do not specify the assessments as they are clear in the examples.
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V2 =
{
v1

2, v
2
2

}
, v1

2 = (H2, (Out,H3), p
2,1(v1

1, v
2
3) = 1), v2

2 = (T2, (Out, T3), p
2,2(v1

1, v
1
3) = 1);

V3 =
{
v1

3, v
2
3

}
, v1

3 = (T3, (Out,H2), p
3,1(v1

1, v
1
2) = 1), v2

3 = (H3, (Out, T2), p
3,2(v1

1, v
2
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

It is clear from inspection that all the conditions in the definition of RPCE hold. For

example, v1
2 can believe that player 3 plays H3 because she never gets to observe 3’s play,

while v1
3 plays H3 because he believes that 2 plays T2, which again is justified by the fact

that he is not observing 2’s play. Since v1
1 never observes 2 and 3’s play, and she knows

that they do not get to play on the path so do not observe each other’s play, she can

believe that they can have such mutually inconsistent beliefs, hence can entertain a belief

that the opponents play (H2, T3), which is consistent with the self-confirming condition.

In game C, exactly the same belief model (and the same argument) can be used to justify

player 1 choosing Out.

Now we turn to game B. Fix an RPCE π∗, with an associated belief model V . Suppose

that some version of player 1’s belief assigns a positive probability to a version profile

(vk
2 , v

l
3) such that πk

2 and πl
3 are not best responses to each other. Suppose without loss

of generality that πk
2 is not a best response to πl

3. Notice that by the observational

consistency condition, we have D2(π
k
2 , π−2) = D2(π

k
2 , ·, πl

3) for all π−2 in the support of

µ2,k. Since player 2 observes the exact terminal node reached, this implies that µ2,k assigns

probability 1 to πl
3. But this means that the best response condition is violated for player

2.

Therefore, it must be the case that µ1,k assigns the weight exactly equal to 1
2

to each

of H2 and H3. The best-response condition then implies that πk
1(h1)(In) = 1, as playing

In gives her the expected payoff of 0.1 while playing Out gives her 0. Because this is true

for any version vk
1 of player 1 and π∗ is generated by the actual versions, we conclude that

π∗
1(h1)(In) = 1, that is, player 1 plays In with probability 1.

Example 2.
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Figure 2

Now consider a modification of game B, depicted in Figure 2, where we add “player 0”

at the top of the extensive-form game. Specifically, player 0 moves first, choosing between

In and Out. whatever action is played, the game goes on and game B is played, where

only player 1 knows the action taken by player 0. The map from the action profile for

players 1, 2, and 3 to their payoffs are exactly the same as in game B, while player 0

gets 0 if he plays Out, 1 if he plays In and player 1 also plays In, and −1 if he plays In

and player 1 plays Out. The terminal node partitions are the same as in game B, where

everyone knows the move by player 0, and player 0 observes everything if he plays In and

does not observe anything if he plays Out.

In any RPCE of this game, player 0 must play In, because player 0 must infer that

player 1 plays In. Remember that in Example 1 all versions of player 1 must play In; the

coherent belief condition ensures that player 0 believes that 1 plays In with probability

1.13

This example shows that RPCE assumes that a player not only knows that the play

by the opponents has converged, but she also knows that an opponent knows that the

play by these opponents has converged.

13Player 0 can play Out if players 2 and 3 observe whether 0 played In or Out before they move. In
that game, if 0 usually plays Out, then when 0 unexpectedly plays In 1 has no reason to think that 2
and 3 have converged to equilibrium play, so 1 can play Out in the belief that 2 would lose, so 0 can play
Out.
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Example 3.

Figure 3

Consider the game in Figure 3. Three players move simultaneously. Player 1 chooses

In or Out. Players 2 and 3 choose Hi or Ti or Ni. The terminal node partitions are

such that everyone observes the exact terminal node reached, except that player 1 cannot

distinguish between the opponents’ action profiles if she plays Out.

Notice that H2 is a best response to H3, which is a best response to T2, which is a

best response to T3, which in turn is a best response to H2. The game has a unique Nash

equilibrium, namely (N2, N3). Hence all actions are rationalizable, while only Ni is in the

support of Nash equilibrium strategy.

In this game, RPCE requires not only that 1 expects 2 and 3 to play rationalizable

actions, but also that she expects their play to correspond to a Nash equilibrium. Hence

1 should expect the payoff of 1 from playing In, so 1 should play In. The proof of this

is exactly the same as in Example 1: if player 1’s belief assigns a positive probability

to a version profile such that player 2 is not best responding to player 3, observational

consistency condition for player 1 implies that the best response condition for player 2

should be violated.

This example shows that an action being rationalizable does not necessarily imply

that there exists an RPCE in which some player expects it to be played with a positive

probability. Again, it is important in this example that 2 and 3 do not know 1’s action

when they move; otherwise 1 can play Out, believeing that 2 and 3 play Hi or Ti, which

are rationalizable if she plays Out.

19



Both in game B and this example, RPCE requires that player 1 expects a Nash play

by players 2 and 3. This point can be generalized in the next part.

a

A Theorem for Participation Games
A player 1 participation game Γ is a game with a set of players I, action profiles A,

and payoff function u, in which all players move simultaneously (so Z = A), where player 1

has an option to play an action “Out” which gives her a constant payoff of 0. The terminal

node partition is such that everyone observes the exact terminal node reached, except that

1 does not observe anything if she plays Out. Γ−1 is a game with a set of players I \ {1},
action profiles A−1, and payoff function vj’s defined by vj(a−1) = uj(Out, a−1).

Theorem 4. Fix a player 1 participation game Γ. If player 1 plays Out with probability

1 in an RPCE, then there is a convex combination of Nash equilibria of game Γ−1 such

that no action of player 1 has a strictly positive payoff.

Corollary 1. Fix a player 1 participation game Γ such that there is a unique Nash

equilibrium in Γ−1. If player 1 plays Out with probability 1 in an RPCE, then no action

of player 1 gives her a positive payoff against this unique Nash equilibrium.

To sum up, in player 1 participation game, 1 must expect not only that the opponents’

actions are rationalizable, but also that their play resembles a Nash equilibrium of their

game. This restriction rules out the possibility of 1’s playing Out in some cases, for

instance in game B and in the game in Example 3.

Example 4 (Shapley Example).

Figure 4
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The game in Figure 4 replaces the matching pennies game in game B with the “Shapley

game” (Shapley, 1964) . Specifically, player 1 moves first, choosing between In and Out.

Whatever 1 chooses, 2 and 3 get their moves, choosing between Ai, Bi, and Ci. The

terminal node partitions are such that everyone observes the exact terminal node reached,

except that player 1 cannot distinguish between the opponents’ action profiles if she plays

Out.

As shown in Theorem 4 (and Corollary 1), in RPCE player 1 expects players 2 and

3’s play resembles that of the Nash equilibrium of their game, hence plays In. Note that

in the Shapley game fictitious play (Brown, 1951) does not converge.14 RPCE requires

that 1 expects 2 and 3 to play as in Nash equilibrium even in such a case.

If the Shapley game is played by two players then the only RSCE corresponds to the

unique Nash equilibrium of the game. RPCE further requires that a player involved in

the game expects the unobserved play to resemble to a Nash equilibrium, which may be

too strong an assumption as a description of long-run outcome of learning processes. In

the Online Supplementary Appendix, we define a less restrictive solution concept that

allows player 1 to play Out; as we will see, though, the less restrictive concept may in

some settings be too inclusive.

Example 5 (Participation Game with Unobservable Actions).

14Brown (1951) introduced fictitious play as a way to compute Nash equilibria. Fudenberg and Kreps
(1993) give fictitious play a descriptive interpretation in strategic form games, and point out some prob-
lems with that interpretation when the process cycles as instead of converging to constant play of a fixed
pure action profile.
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Figure 5

In Figure 5, players i = 1, 2, 3 move simultaneously, choosing between Ini and Outi.

The terminal node partitions are such that player 1 does not observe anything if she plays

Out1, while she observes the exact terminal node reached if she plays In1. Each of players

2 and 3 does not observe anything if he plays Outi, while he observes the exact terminal

node reached if he plays Ini.

Notice that for any Nash equilibrium of 2 and 3’s simultaneous move game, player 1

expects a payoff of at least 1
2

from playing In1. Thus if 1 believes that 2 and 3’s play

corresponds to a Nash profile, she must play In1. We argue, however, that in RPCE it

is possible for player 1 to play Out1. Specifically, consider the following belief model and

actual versions:

V1 =
{
v1

1

}
, v1

1 = (Out1, (Out2, Out3), p
1,1(v1

2, v
1
3) = 1);

V2 =
{
v1

2, v
2
2

}
,

v1
2 = (Out2, (Out1, In3), p

2,1(v1
1, v

2
3) = 1), v2

2 = (In2, (Out1, Out2), p
2,2(v1

1, v
1
3) = 1);

V3 =
{
v1

3, v
2
3

}
,

v1
3 = (Out3, (Out1, In2), p

3,1(v1
1, v

2
2) = 1), v2

3 = (In3, (Out1, Out2), p
3,2(v1

1.v
1
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

It is clear from inspection that all the conditions in the definition of RPCE hold. In this

belief model, player 1 believes that both players 2 and 3 play Outi. Although Out2 is not

a best response against Out3, player 2 does not observe 3’s play when he is playing Out2,

and so he can believe that 3 plays In3. Likewise, player 3 can play Out3, believing that 2

plays In2. Player 1 plays Out1 because she believes that (Out2, Out3) is played as a result

of such mutually inconsistent beliefs. The point is that player 1 knows the terminal node

partitions of players 2 and 3, and this knowledge leads her to believe in the non-Nash

play by the opponents.

We note that Out1 could not be played in any RPCE if the terminal node partitions

for players 2 and 3 were discrete. This is because in any Nash equilibrium of the game

by players 2 and 3, player 1 should expect the payoff of 1
2
, so by Theorem 4 she should

play In. Hence, nondiscrete terminal node partitions allow an action to be played even

if the action is outside the support of equilibria under finer partitions.15 In other words,

15The key here is that 2 and 3 act not knowing 1’s action: Otherwise their play is only required to be
rationalizable in the subgame that follows 1’s off-path action. Thus even if they have discrete partitions,
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the conclusion of Theorem 4 may fail if the hypothesis that player 1’s opponents have

discrete partitions is weakened.

To sum up, this example shows that a player need not expect unobserved play by the

opponents to resemble a Nash equilibrium if these opponents do not observe the exact

terminal nodes, and as a consequence she may play an action that she would not play if

the opponents could observe the exact terminal nodes.16

Example 6 (Learning from an Opponent’s Play).

Figure 6

In the game in Figure 6, there are three players, i = 1, 2, 3, each choosing between Li

and Ri. Player 1 moves first, and player 2 moves only when 1 chooses L1. Whatever has

happened, 3 then moves, terminating the game. All players observe the exact terminal

node reached, except that player 2 does not observe the consequence of 3’s action if 1

plays R1.

We show that, if player 1’s partition is discrete, she cannot play R1. To see this,

suppose, to the contrary, that she plays R1 in an RPCE. The self-confirming condition

and the best response condition for player 1 imply that 3 is playing R3 with probability

strictly greater than 1
2
. But then, the best response for player 2 is to play R2 with

1 can still play Out1, expecting both the opponents to play Outi.
16In Example 8 we will discuss a game in which if a player’s own terminal node partition becomes finer

(with other players’ partitions held fixed), she no longer plays an action that she plays when her partition
is coarser.
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probability 1. However, this implies that 1’s payoff from playing L1 is 0.1 > 0, so she

cannot play R1.

What happens in this example is that, with a discrete terminal node partition for

player 1, player 2 can and should learn 3’s play by observing 1’s play.

5 Justification of the RPCE Definition

In this section we consider several examples to justify the details of the definitions of

RPCE and PCE. In each of these examples, we consider a game and its outcome that we

think is plausible as a consequence of rational learning, and argue that such an outcome is

possible in RPCE, while it would be impossible under alternative versions of the definition.

Example 7 argues that the self-confirming condition should not be imposed on a non-

actual version, and Example 8 argues that we should allow for correlated beliefs in our

model. Example 9 justifies our specification of the space that beliefs lie in, and Example

10 shows that adding the coherent belief condition to the PCE concept may rule out some

of sensible outcomes.

Example 7 (Self-Confirming Condition for Zero-Share Versions).

Figure 7

In this example we argue that we should not require the self-confirming condition for

non-actual versions.

In the game in Figure 7, player 1 moves first, choosing between In and Out. Regardless

of 1’s choice, players 2 and 3 play a coordination game, choosing between L2 and R2, and

L3 and R3, respectively, not knowing 1’s action. The terminal node partitions are such
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that everyone observes the exact terminal node reached, except that 1 does not observe

2 and 3’s play if she plays Out.

For the solution concept to correspond only to the implications of common knowledge

of rationality and (almost) common knowledge of the payoff functions, it should allow for

the outcome (Out, L2, L3). Intuitively, if 1 thinks that 2 and 3 coordinate on the (R2, R3)

equilibrium, she has an incentive to play Out, which makes her unable to observe what

2 and 3 actually play. Given what 1 is observing, 1’s belief that 2 and 3 coordinate on

the (R2, R3) equilibrium does not contradict the assumption of the common knowledge of

rationality and the observation structure.

Indeed, the outcome (Out, L2, L3) is possible in RPCE. To see this, consider the belief

model and actual versions:

V1 = {v1
1}, v1

1 = (Out, (R2, R3), p
1,1(v2

2, v
2
3) = 1);

V2 = {v1
2, v

2
2}, v1

2 = (L2, (Out, L3), p
2,1(v1

1, v
1
3) = 1), v2

2 = (R2, (Out,R3), p
2,2(v1

1, v
2
3) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (L3, (Out, L2), p
3,1(v1

1, v
1
2) = 1), v2

3 = (R3, (Out,R2), p
3,2(v1

1, v
2
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

It is clear from inspection that (Out, L2, L3) is an RPCE with this belief model. Notice v2
2

and v2
3 are non-actual versions, and they do not satisfy the self-confirming condition. v1

1

plays Out because she conjectures that these non-actual versions exist, and her conjecture

is never falsified because she plays Out.

Now we show that the outcome in which (Out, L2, L3) is played is impossible if we

further require the self-confirming condition for non-actual versions. To see this, suppose

that we strengthen Definition 6 by replacing condition (3) with the condition that for all

vk
i , vk

i is self-confirming with respect to π∗.

First note that, since 2 is playing L2, by this modified condition and the best response

condition all versions of player 3 should play L3. Similarly, all versions of player 2 should

play L2. Then, since we assume coherent belief, any version of player 1 must believe that

players 2 and 3 play (L2, L3). But by the best response condition 1 must then play In

(which gives her payoff 1) as opposed to Out (which gives her payoff 0).

Therefore, the outcome in which (Out, L2, L3) is played is impossible if we use the

modified self-confirming condition.17

Example 8 (Correlated Beliefs).

17Notice that this argument does not go through with the notion of PCE: Since we do not require
beliefs to be coherent, 1 may still believe that 2 and 3 to play R2 and R3, respectively.
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Figure 8

Our formulation of beliefs is more complicated than DFL, because we allow for cor-

related beliefs, while DFL restricted attention to independent beliefs. In this example

we motivate correlated beliefs by arguing that a player can play an action only when she

believes in correlation at such information sets.

Consider the game depicted in Figure 8. This game is similar to Example 7, but player

1 has two actions that make the terminal nodes observable for her. Specifically, 1 moves

first, choosing among three alternatives: A, B, and Out. Regardless of her action, players

2 and 3 play the simultaneous-move coordination game choosing between Li and Ri for

each player i, not knowing 1’s action. The terminal node partitions are such that everyone

observes the exact terminal node reached except that player 1 cannot distinguish among

four terminal nodes that are caused by the action Out.

To capture the long-run consequences of rational learning, RPCE should allow for the

possibility that 1 plays Out. Intuitively, since players 2 and 3 get to play on the path,

they should play as in a Nash equilibrium of their coordination game. Hence it makes

sense for player 1 to believe that players 2 and 3 coordinate on either (L2, L3) or (R2, R3),

but that they are equally likely. Given this belief, the expected payoff from playing action

A is the average of 1 and −2, which is −1
2
, and the payoff for action B is also −1

2
in the

same way. Hence, with this belief, playing Out, which gives her the payoff of 0, is indeed

an optimal action to take.

Note that RPCE allows for correlated beliefs, so the exact argument that we have just

made implies that player 1 can play Out in RPCE. Indeed, it is clear from inspection that

all the conditions in the definition of RPCE hold in the following belief model and actual
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versions:

V1 = {v1
1}, v1

1 = (Out, (
1

2
(L2, L3) +

1

2
(R2, R3)), p(v1

2, v
1
3) = p(v2

2, v
2
3) =

1

2
);

V2 = {v1
2, v

2
2}, v1

2 = (L2, (Out, L3), p(v1
1, v

1
3) = 1), v2

2 = (R2, (Out,R3), p(v1
1, v

2
3) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (L3, (Out, L2), p(v1
1, v

1
2) = 1), v2

3 = (R3, (Out,R2), p(v1
1, v

2
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

However, if player 1 is restricted to hold a independent belief, the action Out is

impossible. To see this, notice that for Out to be at least as good as playing A for a

version of player 1, her belief has to assign probability at least 1
3

to (L2, L3). In the same

way, for Out to be at least as good as playing B for a version of player 1, her belief has

to assign probability at least 1
3

to (R2, R3). However, any independent randomization by

players 2 and 3 leads to the situation where the minimum of the probabilities assigned to

(L2, L3) and (R2, R3) is no more than 1
4
. Hence for any independent beliefs, Out cannot

be a best response.

We note that, as in Example 5, if the terminal node partitions were discrete, player

1 could not play Out. However, the reason behind this effect of terminal node partitions

is different: It is now that player 1 can entertain a correlated belief, which she would be

unable to have if she actually observes 2 and 3’s play.18

Example 9 (Assessment-Strategies Correlation).

18A similar argument can be made in Example 9 to show that player 1 cannot play Out and so player
4 cannot play R4.
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Figure 9

We have allowed vk
i ’s belief µi,k to lie in the space ∆(Ai ×Π−i) and not necessarily in

Ai × ∆(Π−i). Here we provide an example that justifies this specification.

Consider the extensive-form game depicted in Figure 9. In this example, player 4

moves first, choosing between L4 and R4. In either case player 2 moves next, choosing

between L2 and R2, not knowing 4’s choice. If 4 played L4, player 1 moves next, knowing

that 4 chose L4 but not knowing 2’s choice. She has three choices, A, B, and Out.

Unless 1 gets her move and plays Out, 3 gets to play without knowing anything about

the past play other than the fact that 1 has not played Out. 3 chooses between L3 and

R3. The terminal node partition is such that everyone observes the exact consequence of

any sequence of actions, while player 1 does not distinguish among those terminal nodes

that are caused by R4.

We argue that it is plausible that 4 plays R4. To support this outcome, it must be

possible that 4 believes 1 to play Out once her information set is reached. For this play

to satisfy the best response condition at this information set, we should allow for player

1 to believe that players 2 and 3’s play is correlated, just as in Example 8. Notice that

player 1 knows that 2 and 3 are actually playing the coordination game on the path of

play because 4 plays R4, thus this correlated belief seems to be one of the plausible beliefs

(and indeed it is possible in our RPCE concept). However, to allow for this correlation,

1 should expect 3 to play L3 given the node caused by L2 and R3 given the node caused

by R2. This is possible when each profile of opponents’ strategies is associated with a
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different assessment, but is impossible if only a single assessment is used for a distribution

of the opponents’ strategies. Indeed, for any single assessment at 1’s information set, 1’s

expected payoff from playing either A or B is at least 1
4
, so playing Out can never be a

best response. Hence player 4 should expect the payoff of 1 by playing L4, which means

that 4 cannot play R4.

Example 10 (PCE with and without Coherent Beliefs).

Figure 10

As mentioned earlier, adding the coherent belief condition to the PCE concept rules

out some profiles which seem plausible when players do not know the opponents’ payoff

functions.

Figure 10 displays a simultaneous-move game between players 1 and 2, where player 1

chooses between In and Out, while player 2 chooses between L and R. Note that L is the

dominant strategy for player 2. The terminal node partition is that both players observe

the exact terminal node reached except that player 1 does not observe the consequence

of player 2’s play if she plays Out.

First we argue that (Out, L) is a sensible outcome in this game if players do not know

the opponents’ payoff functions. To see this, note that L is a best response against Out,

which player 2 indeed observes. Out is not a best response against L, but player 1 does

not observe player 2’s play when she plays Out, so she may well believe that player 2

is playing R. In this case the expected payoff from playing In is −1, so playing Out is

indeed a best response against such a belief. Thus PCE allows for this outcome.

However, if we add the coherent belief condition, this outcome is no longer supported

in PCE. To see this, notice that the best response condition ensures that all versions of

player 2 play L, as it is the dominant strategy. If we impose the coherent belief condition,

player 1’s belief has to be a convex combination of player 2’s strategies specified in player
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2’s possible versions. Hence player 1 must believe that player 2 will play L with probability

1. But then the best response against this belief is In, invalidating the candidate outcome

of (Out, L).

This is in contrast with the DFL’s Theorem 2.1, which shows that adding the belief-

closed condition (which corresponds to our coherent belief condition) to the SCE concept

does not restrict the set of possible outcomes. In their context players know opponents’

play on the equilibrium path. Thus if a player’s belief about an opponent’s play at an

information set h corresponds to a dominated strategy then h must lie off the path of

play. This conclusion fails if players do not necessarily observe all on-path play, which is

why adding the coherent belief condition matters for PCE but not SCE.19

We note that, if the terminal node partitions were discrete, player 1 could not play In

in any PCE. So terminal node partitions allow extra actions not only under RPCE but

also under PCE.

6 The Effect of Changes in Terminal Node Partitions

In this section we discuss the effect of changing terminal node partitions on RPCE out-

comes. The focus of this section is mostly on how the set of an individual player’s RPCE

strategies depends on terminal node partitions. Before discussing this, in Subsection

6.1, we briefly discuss how the set of RPCE strategy profiles depends on terminal node

partitions.

In Subsection 6.2, we ask how the set of an individual player’s RPCE strategies depends

on the terminal node partitions.20 Specifically, we identify four reasons that the set of

an individual player’s RPCE strategies is affected by terminal node partitions, and show

that in a special class of games the set is invariant with respect to changes in terminal

node partitions.

6.1 The Effect of Terminal Node Partitions on RPCE Strategy

Profiles

First, consider how the set of RPCE strategy profiles (not an individual player’s strategies)

changes with the terminal node partitions. If the terminal node partitions P are coarser

19One may wonder if this result hinges on the fact that we do not impose observational consistency. This
is not true, as a belief model to support the (Out, L) outcome can satisfy the observational consistency
condition (for example, specify V1 = {(Out,R)} and V2 = {(L,Out)}).

20One motivation for this is that the analyst may only know the terminal node partitions of some of
the players and/or may only observe some players’ moves.
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than P′ then any strategy profile that is RPCE under P′ is also an RPCE under P: if a

belief model rationalizes a strategy profile under P′ then it can also be used to rationalize

the same strategy profile under P.

On the other hand, versions V in the belief model that rationalizes a strategy profile

under P may not rationalize it under a finer partition P′. Perhaps the most obvious

reason is that a player may not want to play a particular action once she learns the

unobserved play by the opponents. For example, the strategy profile discussed in Example

7 ((Out, L2, L3)) would not be an RPCE if player 1’s terminal node partition were discrete:

If she observes that the equilibrium that the opponents are coordinating on is different

from the one that she was expecting, she wants to play In.

These examples show that not only the set of RPCE strategies but also the RPCE

outcome of these games (the distribution over terminal nodes) can depend on the terminal

node partitions.

6.2 The Effect of Terminal Node Partitions on an Individual

Player’s RPCE Strategies

Now we ask how the set of an individual player’s RPCE strategies depends on the terminal

node partitions. To begin with, note that if terminal node partitions P are coarser than

P′ then any strategy that i can play in RPCE under P′ can also be played by i in an

RPCE under P. The main purpose of this section is to identify four reasons that versions

V in the belief model that rationalizes a strategy under P may not rationalize it under a

finer partition P′. As we will see, these reasons are that:

(i) Player i’s opponents’ terminal node partitions have changed (Example

5);

(ii) Player i has a correlated belief (Example 8);

(iii) Player i’s belief is coherent with the conjecture that assigns strictly pos-

itive probabilities to multiple versions of the opponents (Example 11);

(iv) Some player j believes player i has an incorrect belief (Example 11 Re-

visited, Example 12, and Example 13).

In the absence of all these reasons, we can specify a new actual versions for i’s opponent

as in i’s belief, and such an actual version profile defined in the original belief model

would rationalize a strategy under P′.21 Hence, when these conditions are absent, the set

of player i’s RPCE strategies is invariant with respect to her terminal node partition.
21This is proven in Theorem 5. For example, in Example 7, the new actual version profile for the

opponents would assign share 1 to (R1, R2), which corresponds to 1’s actual version’s belief.
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The plan of the rest of this subsection is as follows. First we briefly review reasons (i)

and (ii). Then we present an example for reason (iii) (Example 11), and discuss how it

is related to the characterization of SCE outcomes in Fudenberg and Levine (1993a) and

Kamada (2010). We then use the example and a related similar one to illustrate (iv). In

response, we define a notion of “own-action independence,” which is violated in all of these

examples. We show that reason (iv) can still occur under the “own-action independence”

condition (Example 13), but not in simultaneous move games. This leads us to Theorem

5, which shows that in simultaneous move with own-action independence for player i’s

opponents and measurable payoffs (with respect to terminal node partitions), the set of

i’s RPCE strategies is invariant with respect to her terminal node partition.

We have already discussed the first two reasons. For reason (i), as discussed in Example

5, if the opponents’ terminal node partitions were different in two games, a player may

expect different opponents’ plays by playing In, so she may play differently. For reason

(ii), as discussed in Example 8, if a player plays an action entertaining a correlated belief

about the opponents’ unobserved play under one terminal node partition, she may not

play that action if the partition were discrete, because the observed play should correspond

to an independent belief. In both examples, the strategies that are ruled out by refining

the partitions are played on the path of play, thus changing the partitions alters not only

the set of strategies that the player in question can play in RPCE, but also the outcomes

that she can induce in RPCE. The same comment applies to all examples that follow

when we change terminal node partitions.

The next example explains reason (iii).

Example 11 (Reason (iii)).

Figure 11
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This example considers a 2-player game, so reason (ii) does not apply. Here if player

1’s terminal node partition is changed (keeping the opponents’ partitions unchanged) she

can no longer play an action that she plays under the original terminal node partition.

Consider the game in Figure 11. This game is a two-player simultaneous-move game.

Player 1 chooses among A1, B1, and Out1; player 2 chooses among In2 and Out2. The

terminal node partitions are such that both players observe the exact terminal node

reached except that player 1 does not observe the consequence of player 2’s action if she

plays Out1, and player 2 does not observe the consequence of player 1’s action if he plays

Out2.

First we show that player 1 can play Out1. To see this, consider the following belief

model and actual versions:

V1 = {v1
1, v

2
1}, v1

1 = (Out1,
1

2
In2+

1

2
Out2, p(v1

2) = p1,1(v2
2) =

1

2
), v2

1 = (B1, Out2, p
1,2(v1

2) = 1);

V2 = {v1
2, v

2
2}, v1

2 = (In2, Out1, p
2,1(v1

1) = 1), v2
2 = (Out2, B1, p

2,2(v2
1) = 1);

The actual version profile is (v1
1, v

1
2).

It is clear from inspection that all the conditions in the definition of RPCE hold. Note

that, since each player faces only one opponent, all players have independent beliefs.

Notice that, although player 1’s action is rationalized by a belief that corresponds to

2’s mixed strategies, she is sure that 2 is playing a pure strategy: Both versions v1
2 and

v2
2 play pure strategies. If 1’s conjecture assigns probability 1 to either of these versions,

1 cannot play Out1: If 1 expects In2 with probability 1 then she wants play A1; if she

expects Out2 with probability 1 then she wants play B1. Thus, the action Out1 is possible

only when 1’s belief corresponds to 2’s mixed strategy.

Player 1 can be unsure which of v1
2 and v2

2 is present, because she plays Out1 and this

makes it unable for her to observe the exact terminal node reached, so she never knows

which action player 2 is playing.

Now we argue that, if 1’s terminal node partition is discrete, she can never play a

strategy that assigns probability 1 to Out1. To see this, we first note that no version of

player 2 can play a mixed strategy if 1 plays Out1. This is because if player 1 plays Out1

with probability 1 and player 2 assigns a positive probability to In2, then 2’s terminal

node partition allows him to observe 1’s choice of Out1, and hence he expects the payoff

of 1 from playing In2 and 0 from playing Out2. This means he is not indifferent, so he

cannot mix.

Thus, whenever 1 plays Out1 with probability 1, 2 should not play a mixed strategy.

But this implies that, if 1’s terminal node partition is discrete, 1 is observing either (a) 2
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is playing In2 with probability 1 or (b) 2 is playing Out2 with probability 1. However, as

we have explained above, player 1 would be better off by playing A1 than Out1 in case (a),

and B1 than Out1 in case (b). Hence, she cannot play a strategy that assigns probability

1 to Out1 if her terminal node partition is discrete, although this action could be played

if the partition were not discrete.

The key here is that player 1’s belief is coherent with the conjecture that assigns strictly

positive probabilities to multiple versions of player 2, but the corresponding “mixed strat-

egy” by player 2 cannot be played in RPCE.

a

A Remark on Example 11.
Fudenberg and Levine (1993a) and Kamada (2010) identify the conditions that guar-

antee that the outcome of an SCE is identical to a Nash outcome, in games with discrete

terminal node partitions. Roughly, players are required to have independent and unitary

beliefs, and the equilibrium has to be “strongly consistent,” as defined in Kamada (2010).

To prove this theorem, they explicitly construct a Nash equilibrium from an SCE that

satisfies these conditions: While for an off-path information set hj that player i can de-

viate to reach, they set player j to play as in i’s belief, strategies at other information

sets are unchanged. The three conditions ensure that this modification is well-defined.

In particular, the independent beliefs condition guarantees that the modification can be

done information set by information set.

Given this, it might seem natural to conjecture that given independent beliefs, if π∗

is an RPCE under partitions (Pi,P−i) then in a game under (P̄i,P−i) with P̄i being the

discrete partition, we can let i’s opponents play “as in i’s belief” (while we do not change

i’s strategy) and the modified strategy profile constitutes an RPCE of the game under

(P̄i,P−i), because of common knowledge of rationality. Reason (iii) above shows why

this argument fails: The problem is that we cannot replace i’s opponents’ strategies “as

in i’s belief” even if we impose independent beliefs. This is what happens in Example 11.

In Example 11, two versions of player 2 that player 1 assigns positive probabilities play

different strategies which are rationalized by different beliefs, and it is not necessary the

case that we can rationalize a convex combination of these pure strategies by some single

belief. The intuition is similar to the idea behind the need of unitary beliefs to establish

the outcome equivalence between SCE and Nash: If heterogeneous beliefs are allowed, a

player’s two pure strategies in the support of her mixed strategy may not be rationalized

by a single belief, so the mixed action may not be played in a Nash equilibrium.
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So far we have identified three reasons that versions V in the belief model that ratio-

nalizes a strategy under P may not rationalize it under a finer partition P′: (i) player i’s

opponents’ terminal node partitions have changed; (ii) i has a correlated belief; (iii) i’s

belief is coherent with the conjecture that assigns strictly positive probabilities to multiple

versions of the opponents.

Further investigation of Example 11 shows that there is yet another reason that we

may expect a different RPCE actions for different terminal node partitions, which is

reason (iv):

a

Example 11 Revisited.
Now we analyze the effect of making player 2’s terminal node partition discrete in

Example 11.

Now, player 2 is no longer able to play a strategy that plays In2 with probability 1. To

see this, suppose that In2 is played with probability 1 when 2’s terminal node partition is

discrete. Notice that In2 is a best response only when player 1 assigns probability no less

than 1
2

to Out1. However, as we have discussed, Out1 can be a best response only when

1’s belief correspond to a mixed strategy of player 2. The version of player 1 who plays

Out1 should expect that the versions that she assigns a positive probability should be

observing Out1 regardless of these versions’ strategies because 2’s terminal node partition

is discrete. But the best response condition implies that these versions should play In2

with probability 1, contradicting our earlier conclusion that 1’s belief should correspond

to a mixed strategy.

What happens here is as follows: When player 2’s terminal node partition was not

discrete, player 1 could believe that player 2 has an incorrect belief about player 1’s action.

However, if 2’s terminal node partition is discrete, player 1 cannot entertain such a belief,

which rules out some of player 1’s actions, and it in turn rules out some actions of player

2.

Notice that, although the example involves “reason (iii)” that we discussed above, the

logic is independent of it. The next simple example clarifies this point. The example

also shows that reason (i) can be present in two-player games without involving reason

(iii).

Example 12 (Reason (iv)).
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Figure 12

Consider the game depicted in Figure 12. In this game, players 1 and 2 move simul-

taneously, choosing between Ini and Outi, i = 1, 2. Notice that in this game, player

2 is indifferent between In2 and Out2 when 1 plays Out1. As usual, the terminal node

partition is such that player i observes the consequence of the opponent’s action when

she plays Ini, while she cannot do so when she plays Outi.

We first show that player 1 can play In1 given these terminal node partitions. To see

this, consider the following belief model and actual versions:

V1 = {v1
1, v

2
1}, v1

1 = (In1, Out2, p(v1
2) = 1), v2

1 = (Out1, In2, p(v2
2) = 1);

V2 = {v1
2, v

2
2}, v1

2 = (Out2, Out1, p(v2
1) = 1), v2

2 = (In2, Out1, p(v2
2) = 1);

The actual version profile is (v1
1, v

1
2).

It is clear from inspection that all the conditions in the definition of RPCE hold. Notice

that player 2 plays Out2 because he believes player 1 is playing Out1. Such a belief is

justified because given Out1, 1 does not observe 2’s play, so 1 can incorrectly believe that

2 is playing In2. However, such an “incorrect belief” is not possible if player 1’s terminal

node partition is discrete, so player 2 cannot believe that 1 plays Out1 when he plays

Out2. This in turn rules out the possibility of the strategy that assigns probability 1 to

In1.

To see this formally, suppose that player 1’s terminal node partition is discrete and

she plays In1 with probability 1. Then, for the best response condition for player 2 to

be satisfied, player 2 must be playing In2 with probability 1, or Out2 with probability

1. However for the best response condition for player 1 to hold, it must be the case that
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Out2 is played with probability 1. For Out2 to be a best response for player 2, his belief

must assign probability 1 to Out1. But then the observational consistency condition and

the assumption that player 1’s terminal node partition is discrete imply that there exists

a version of player 1 who plays Out1 with a belief that assigns probability 1 to Out2.

However such a version violates the best response condition, as In1 gives a strictly higher

payoff than Out1 against Out2.

Note that the example hinges on the assumption that player 2 is indifferent between

In2 and Out2 when 1 plays Out1, as otherwise either one of (In2, Out1) or (Out2, Out1)

cannot satisfy the best response condition. However the logic behind reason (iv) is inde-

pendent of ties, as shown by Example 16 in the Online Supplementary Appendix.

Finally we note that player 1 cannot play In1 if player 2’s terminal node partition

becomes discrete. This is easy to check: If it were discrete, player 2 must play In2 with

probability 1 if player 1 plays In1. However, then, player 1 would be better off by playing

Out1 than In1. This shows that reason (i) can be present in two-player games without

involving reason (iii).

Note that, in Examples 11, 11 Revisited, and 12, it is important that an opponent’s

observation about other players’ strategies depends on his own action. In these examples,

this dependence is captured by the terminal node partitions. Notice that terminal node

partitions are not the only ways to capture this dependence– if whether a player’s opponent

gets a move depends on the player’s action, then the player’s observation will depend on

her own action. In Example 17 in the Online Supplementary Appendix, we present one

such example.

To formalize this dependence, we introduce a notion of “own-action independence”:

Let ζ : A → Z be the map that assigns to each action profile the terminal node caused

by that action profile.

Definition 7. A game with player i’s terminal node partition Pi is own-action inde-

pendent for i if, ζ(ai, a−i) and ζ(ai, a
′
−i) are in the same cell of Pi if and only if ζ(a′

i, a−i)

and ζ(a′
i, a

′
−i) are in the same cell of Pi.

That is, if i’s action does not affect what she observes, the game is own-action indepen-

dent for i. Notice that, for instance in Example 1, own-action independence for player 1

not only rules out games B and C which involve nondiscrete terminal node partitions, but

also game A in which the terminal node partition is discrete. The reason is that in game

A, the terminal node the cell of terminal node partition caused by Out is independent of

2 and 3’s actions, while it does depend on their actions if she plays In. The condition
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is satisfied, for example, in simultaneous-move games with discrete partitions, but it is

slightly more general. For example, game A is own-action independent for players 2 and

3.

Even with own-action independence for players other than i, reason (iv) still has bite,

as seen in the following example.

Example 13 (Learning from an Opponent’s Play II).

Figure 13

Consider the game depicted in Figure 13. This game is exactly the same as the one

in Example 6, except that now the terminal node partition for player 1 is such that she

does not observe the consequence of 3’s action if 1 plays R1. Notice that the game is

own-action independent for players 2 and 3.

First, we show that player 1 can play R1 in an RPCE. To see this, consider the

following belief model and actual versions:

V1 = {v1
1}, v1

1 = (R1, (L2, R3), p(v1
2, v

1
3) = 1);

V2 = {v1
2}, v1

2 = (L2, (R1, L3), p(v1
1, v

2
3) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (R3, (R1, L2), p(v1
1, v

1
2) = 1), v2

3 = (L3, (R1, L2), p(v1
1, v

1
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).
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It is clear from inspection that all the conditions in the definition of RPCE hold. Notice

that players 1 and 2 disagree about player 3’s action, which neither of them observe when

1 plays R1, which is why 2 can play L2 even though 1 is playing R1.

Now, remember that in Example 6 we showed that, if player 1’s partition is discrete,

she can no longer play R1: With a discrete terminal node partition for player 1, player 2

can and should learn 3’s play by observing 1’s play. But this is impossible when 1 and 2’s

terminal node partitions coincide.

Notice that in the above example, it is important that, with nondiscrete partition,

some player believes another player has an incorrect belief. The difference from the logic

in Examples 11 and 12 is that, in these examples i’s opponent j believes that i is not best

responding to j’s play with a nondiscrete partition, so if j knows i observes j’s play then

j should expect i is best responding to j, so j should play differently. In Example 13, on

the other hand, when the partition is discrete, j learns a third player m’s strategy from

the fact that i is observing m’s play and best responding to it, and this information that

j gets from observing i’s play changes how j should act. This learning from player i’s

play was not an issue in Examples 11 and 12.

The key of Example 13 is that player 2’s information set lies at an off-path information

set, but we require him to play optimally there. A simple condition that rules out this

possibility is to restrict ourselves to simultaneous-move games.

Now we have explained all four reasons that versions V in the belief model that

rationalizes a strategy under P may not rationalize it under a finer partition P′. We are

now ready to state a theorem.

Let Π∗
i (Pi,P−i) ⊆ Πi be the set of i’s strategies that i can play in RPCE under

terminal node partitions (Pi,P−i). Also, let ΠIND
i (Pi,P−i) ⊆ Π∗

i (Pi,P−i) be the set of

i’s strategies that i can play in RPCE in which the actual version of i is restricted to

entertain an independent belief, under terminal node partitions (Pi,P−i).

Theorem 5. Suppose that a game is simultaneous-moves and own-action independent for

all j 6= i, and that payoffs are measurable with respect to terminal node partitions. Then,

for all pair of i’s partitions, Pi and P′
i, and all P−i, ΠIND

i (Pi,P−i) = ΠIND
i (P′

i,P−i).
22

22The key feature of Example 13 is that there is a path of actions from the off-path information set of
player 2 to reach the on-path information set of player 3. We conjecture that the theorem would hold
even if we relaxed simultaneous moves to the assumption that player i “induces a single hypothesis,” that
is, for all information set of player i, hi ∈ Hi, and for every information set h that is a successor of hi,
there is only a single sequence of information sets {h(ι)}ι=κ

ι=1 such that h(1) = hi, for each ι = 1, . . . , κ− 1
there is an action from the node in h(ι) which leads to a node in information set h(ι+1), and h(κ) = h.
This condition is satisfied, for example, in game A and all two-player games (with perfect recall).
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This theorem restricts beliefs to be independent. Since the distinction between inde-

pendent and correlated beliefs has bite only for games with three or more players, we have

the following corollary:

Corollary 2. In two-player simultaneous-move games, if a game is own-action indepen-

dent for j 6= i and payoffs are measurable with respect to terminal node partitions, then

for all pair of i’s partitions, Pi and P′
i, and all P−i, Π∗

i (Pi,P−i) = Π∗
i (P

′
i,P−i).

23

We note that the theorem and the corollary rely on the measurability of payoffs with

respect to terminal node partitions. Indeed, the corollary (and hence the theorem) fails

if the payoffs are not measurable with respect to terminal node partitions. In the Online

Supplementary Appendix, we provide a counterexample for such a case (Example 18).

To sum up, the set of strategies a player can use in equilibrium is typically sensitive

to the details of her terminal node partition.

As a final remark in this section, we note that the set of an individual player’s PCE

strategies are unaffected by reasons (i), (iii), and (iv) as they have bite only when a player

knows the opponent’s payoff functions. However, even without reason (ii), the set of an

individual player’s PCE strategies depends on terminal node partitions because, as we

have seen in Example 10, PCE does not require the knowledge about the opponents’

payoff functions.

7 RPCE, RSCE, and RCE

In this section we compare RPCE with other concepts from the literature. In Subsection

7.1 we compare RPCE with RSCE, and show that RPCE “reduces” to RSCE if the

terminal node partition is discrete and beliefs are unitary and independent. In Subsection

7.2 we compare RPCE with RCE, and show that when the “signal function” specified in

the definition of RCE takes an appropriate form, RPCE is equivalent to RCE if moves

are simultaneous.

23Notice that, in Example 11, player 1 cannot assign probability 1 to Out1 when player 2’s terminal
node partition is discrete, so reason (i) still has bite even in two-player games. Hence the equivalence
in this corollary would fail if we changed the opponent’s terminal node partition. To see that player 1
cannot assign probability 1 to Out1 if player 2’s partition becomes discrete, suppose, to the contrary, that
player 1 plays Out1 with probability 1 in an RPCE when player 2’s partition becomes discrete. Since
player 1 must expect player 2 to best respond to Out1 and the unique best response to Out1 is In2,
player 1’s belief must assign probability 1 to In2. However, player 1 would then be better off by playing
A1 rather than Out1, contradicting the best response condition for player 1.
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7.1 Comparison with Rationalizable Self-Confirming Equilib-

rium

In this subsection we show that RPCE reduces to RSCE if we require independent beliefs

when the terminal node partitions are discrete. Given these restrictions, superficially

there are two differences between RSCE and RPCE: First, in RSCE the self-confirming

condition is required for all versions but in RPCE it is required only for actual versions.

Second, observational consistency is not directly imposed in RSCE but it is imposed in

RPCE. We show that these two differences do not affect the set of equilibria when unitary

beliefs are required and the terminal node partitions are discrete.

To see this formally, let us first define RSCE (notations are adjusted to accord with

ours). This concept is defined for games with discrete terminal node partitions. First, we

define SCE:

Definition 8. π∗ is a self-confirming equilibrium if there exist a belief model V and

an actual version profile v∗ such that the following three conditions hold:

1. π∗ is generated by v∗.

2. For all i and k, πk
i is a best response to µi,k at H(πk

i , π
i,k
−i).

3’. For any versions vk
i , d(πk

i , π−i) = d(π∗) for all π−i in the support of µi,k.

6. For all i and k, vk
i has an independent belief.

As in the difference between PCE and RPCE, RSCE strengthens condition (2), and

adds the coherent belief condition.

Definition 9. π∗ is a rationalizable self-confirming equilibrium if there exist a belief

model V and an actual version profile v∗ such that the following three conditions hold:24

1. π∗ is generated by v∗.

2’. For all i and k, πk
i is a best response to µi,k at H(πk

i ).

3’. For any versions vk
i , d(πk

i , π−i) = d(π∗) for all π−i in the support of µi,k.

4. For all i and k, vk
i has a coherent belief;

6. For all i and k, vk
i has an independent belief.

24DFL allows all π̂ that have the same distribution over terminal nodes as π∗ to be RSCE, but this
difference is not important for our purpose.
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As noted earlier, there are two differences between these definitions and those of PCE

and RPCE, namely that condition (3’) (every version expects the same distribution over

terminal nodes) is stronger than condition (3), and that PCE and RPCE do not impose

the independence condition (6). Even with a discrete terminal node partition the way

condition (3) is stated is somewhat different than condition (3’), but as the next result

shows this difference is irrelevant.

Theorem 6. Fix a game with discrete terminal node partitions.

1. Condition (3’) implies condition (5).

2. If a strategy profile is generated by a belief model that satisfies conditions (3), (4),

and (5) then it can also be generated by a belief model that satisfies conditions (3’),

(4), and (5).

Part 1 is not surprising: Since the terminal node partitions are discrete, condition (3’)

essentially requires that the terminal node reached is common knowledge, so observational

consistency holds. Part 2 says that in the presence of the observational consistency

condition, requiring the self-confirming condition for non-actual versions does not further

restrict the set of equilibria. Notice that this conclusion was not true when we considered

RPCE with nondiscrete terminal node partitions (See Example 7).

Corollary 3. RPCE with independent beliefs in games with discrete terminal node par-

titions is equivalent to RSCE.

In the next example, which is taken from DFL’s Example 3.2, we show that replacing

condition (3) by condition (3’) without requiring observational consistency would change

the set of possible outcomes even when the terminal node partitions are discrete.

Example 14 (DFL Example).
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Figure 14

Consider the game depicted in Figure 14. In this game, there are three players, 1, 2,

and 3. Player 1 moves first, choosing between u and r. If 1 chooses r, 2 gets the move,

choosing between a and d, where the latter ends the game. If u or (r, a) are chosen then

3 gets the move, without knowing which causes his move. 3 chooses between U and D.

All players’ terminal node partitions are discrete.

DFL argue that the outcome (u, U) is impossible in RSCE, because if 3 chooses U then

2 should play a since he observes the terminal node, and then 1 should take r. However, if

we replace condition (3’) by condition (3) in Definition 9 where observational consistency

is not imposed, this outcome becomes possible. To see this, consider the following belief

model and actual versions:

V1 = {v1
1, v

2
1}, v1

1 = (u, (d, U), p1,1(v2
2, v

1
3) = 1), v2

1 = (r, (a,D), p1,1(v1
2, v

2
3) = 1);

V2 = {v1
2, v

2
2}, v1

2 = (a, (u, U), p2,1(v1
1, v

1
3) = 1), v2

2 = (d, (u,D), p2,2(v1
1, v

2
3) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (U, (u, a), p3,1(v1
1, v

1
2) = 1), v2

3 = (D, (r, a), p3,2(v2
1, v

2
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

It is clear from inspection that all the conditions in the definition of RSCE other than

condition (3’) hold and that condition (3) holds. Notice that v2
1, v2

2, and v2
3 are not

self-confirming, and they are non-actual versions.

43



The key is that the actual version of player 1, v1
1, believes that player 2 plays d, while

such a belief is impossible if observational consistency is imposed: the equation in the

definition of observational consistency applied to v1
1’s belief is d(π2

2, π
2,2
−2) = d(π2

2, π
1
1, π

1,1
−1,2),

which is d(d, (u,D)) = d(d, u, U). But this equation is false.

Notice that the distinction between conditions (3) and (3’) described in the above ex-

ample relies on the fact that RSCE requires common knowledge of rationality (at reachable

nodes). Indeed, this type of examples does not exist if we consider (non-rationalizable)

SCE. The next theorem generalizes this point, considering the correlated PCE concept in

games with terminal node partitions that are not necessarily discrete.

Theorem 7. The set of PCE does not change if we replace condition (3) with the follow-

ing:

For all vk
i , vk

i is self-confirming with respect to π∗.

The intuition for this result is simple: Since we do not require the coherent belief

condition in the PCE concept, conjectures do not mean much, so eliminating the non-

actual versions (who may not satisfy the self-confirming condition) does not invalidate

the belief model as a justification of a PCE.

7.2 Comparison with Rationalizable Conjectural Equilibrium

In this subsection we compare RPCE to RCE. Rubinstein and Wolinsky describe RCE

as corresponding to situations where “each player chooses an action which maximizes his

payoff given a conjecture regarding the actions of the others; each agent’s conjectures

are consistent with his signal and own choice, (and) the conjectures are also consistent

with the understanding that everyone rationalizes his action in this manner.” One obvious

difference is that RPCE, like RSCE, requires players believe others will play rationally

(maximize the presumed payoff functions) as long as they have not behaved irrationally

in the past, while RCE is designed to model normal form games and places no restrictions

on play at off-path information sets.25,26 Because of this difference, RPCE makes stronger

predictions than RCE in most extensive-form games. If all players move on every path,

this distinction becomes moot, and the two concepts become very similar. In particular,

like RPCE, RCE can require a player to believe play in an unobserved subgame has

converged to a Nash equilibrium, as in Example 4, which might not be apparent from the

Rubinstein and Wolinsky paper.

25See the example in Figure 2.1 of DFL.
26Gilli (1999) proposes a related solution concept; Battigalli (1999) shows it is equivalent to RCE.
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In one-shot simultaneous-move games, we can make a precise connection between RCE

and RPCE. . To state the comparison, let us first define the RCE concept.

Here we follow the notation used in Rubinstein and Wolinsky (1994), whenever ap-

propriate.27

Consider a normal-form game with players I = {1, . . . , n}, the action set Ai, A =

×i∈IAi, and A−i = ×j 6=iAj, the payoff function ui : Ai → R. The set of mixed strategies

are Mi = ∆(Ai), M = ×i∈IMi, and M−i = ×j 6=iMj. There is a set of private signals

Si, and a signal function gi : A → Si. gi(a) is the signal that i privately observes when

the action profile is a ∈ A. With an abuse of notation we write gi(m) for a probability

distribution over Si given the mixed profile m ∈ M , called a random signal. Let σi ∈ ∆(Si)

be the general element of the set of random signals.

The strategy-signal pair (mi, σi) is said to be g-rationalized by µ ∈ ∆(M−i) if (i)

gi(mi,m−i) = σi for all m−i ∈ supp(µ), and (ii) mi is a best response against µ. (i) says

that whatever i thinks is possible must be consistent with her strategy and the signal.

The sets of strategy-signal pairs B1, . . . , Bn are g-rationalizable if for all i, every

(mi, σi) ∈ Bi is g-rationalized by some µ such that for all m−i ∈ supp(µ) and all j,

(mj, gj(mi,m−i)) ∈ Bj. What this says is as follows: Fix i’s version who plays mi and

gets the signal σi, with a belief µ that is consistent with this strategy-signal pair. Then,

if she thinks that m−i is possible, an opponent j who plays mj must exist in Bj, and

he receives a signal that is consistent with i’s play (mi) and what she thinks is possible

(m−i).

An RCE is m∗ ∈ M such that there exists g-rationalizable sets B1, . . . , Bn such that

(m∗
i , gi(m

∗)) ∈ Bi for each i.

For an extensive-form game Γ with terminal node partitions P = (P1, . . . ,Pn), let

(AΓ, gP) be the pair of normal-form representation of Γ and the profile of signal functions

(denoted by gP := (gP
1 , . . . , gP

n )) that corresponds to the map from action profiles to the

terminal nodes according to partition P. Conversely, given any (A, g) such that gi(m) =

gi(m
′) implies mi = m′

i (so that the (extended notion of) perfect recall assumption is

satisfied), we define the related simultaneous-move extensive form game ΓA, and endow

it with the terminal node partition that corresponds to (g1, . . . , gn).

Finally, we say that a behavioral strategy π is equivalent to a mixed strategy profile

m or a mixed strategy profile m is equivalent to a behavioral strategy π if π is generated

by m according to the Kuhn’s theorem.

Now we are ready to state the formal connection between the two concepts.28 We omit

27The formal part their paper considers only pure actions. The “Comments” section informally de-
scribes two extensions to mixed strategies; we adopt the first of those here.

28An analogous relationship can be made between PCE and conjectueral equilibrium (CE), where CE
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the proof.

Theorem 8.

1. Any RPCE in (Γ,P) is equivalent to some RCE in (AΓ, gP).

2. Any RCE in (A, g) is equivalent to some RPCE in (ΓA,Pg).
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Battigalli, P. [1999]: “A Comment on Non-Nash Equilibria,” mimeo.

Battigalli, P. and D. Guatoli [1997]: “Conjectural Equilibria and Rationalizability in a
Game with Incomplete Information” in Decisions, Games and Markets, Kluwer Aca-
demic Publishers, Norwell, MA.

Bernheim, D. B. [1984]: “Rationalizable Strategic Behavior,” Econometrica, 52, 1007-
1028.

Börgers, T. [1994]: “Weak Dominance and Approximate Common Knowledge,” Journal
of Economic Theory, 64, 265-276.

Brown, G. W. [1951]: “Iterative Solutions of Games by Fictitious Play” in Analysis of
Production and Allocation, ed. by T. C. Koopmans. New York: Wiley.

Dekel, E. and D. Fudenberg [1990]: “Rational Behavior with Payoff Uncertainty,” Journal
of Economic Theory, 52, 243-267.

Dekel, E., D. Fudenberg and D. Levine [1999]: “Payoff Information and Self-Confirming
Equilibrium,” Journal of Economic Theory, 89, 165-185.

Dekel, E., D. Fudenberg and D. Levine [2002]: “Subjective Uncertainty over Behavior
Strategies: A Correction,” Journal of Economic Theory, 104, 473-478.

Dekel, E., D. Fudenberg and D. Levine [2004]: “Learning to Play Bayesian Games,”
Games and Economic Behavior, 46, 282-303.

Esponda, I. [2011] “Rationalizable Conjectural Equilibrium: A Framework for Robust
Predictions,” mimeo.

is m∗ ∈ M such that (m∗
i , gi(m∗)) is g-rationalized by some µ ∈ ∆(M−i) for all i. .

46



Forges, F. [1986]: “An Approach to Communication Equilibria,” Econometrica, 54, 1375-
1386.

Foster, D. P. and R. V. Vohra [1997]: “Calibrated Learning and Correlated Equilibrium,”
Games and Economic Behavior, 21, 40-55.

Fudenberg, D. and D. M. Kreps [1993]: “Learning Mixed Equilibria,” Games and Eco-
nomic Behavior, 5, 320-367.

Fudenberg, D. and D. M. Kreps [1995]: “Learning in Extensive Games, I: Self- Confirming
Equilibrium,” Games and Economic Behavior, 8, 20-55.

Fudenberg, D., D. M. Kreps, and D. K. Levine [1988]: “On The Robustness of Equilibrium
Refinements,” Journal of Economic Theory, 44, 354–380.

Fudenberg, D. and D.K. Levine [1993a]: “Self-Confirming Equilibrium” Econometrica,
61: 523-546.

Fudenberg, D. and D. K. Levine [1993b]: “Steady State Learning and Nash Equilibrium”
Econometrica, 61, 547-574.

Fudenberg, D. and D,K. Levine [2009]: “Learning and Equilibrium” Annual Review of
Economics 1, 385-419.

Gilli, M. [1999] “On Non-Nash Equilibria,” Games and Economic Behavior , 27, 184-203.

Greenberg, J., S. Gupta, and X. Luo [2003]: “Towering Over Babel: Worlds Apart-But
Acting Together,” mimeo, ” McGill Univ.

Kamada, Y. [2010]: “Strongly Consistent Self-Confirming Equilibrium,” Econometrica,
78, 823-832.

Kreps, D. and F. Wilson [1982] “Sequential Equilibria,” Econometrica 50, 863-894.

Pearce, D. [1984]: “Rationalizable Strategic Behavior and the Problem of Perfection,”
Econometrica, 52, 1029-1050.

Rubinstein, A. and A. Wolinsky [1994]: “Rationalizable Conjectural Equilibrium: Be-
tween Nash and Rationalizability,” Games and Economic Behavior, 6, 299- 311.

Shapley, L. [1964]: “Some Topics in Two-Person Games,” in Advances in Game Theory,
ed. by M. Drescher, L.S. Shapley, and A. W. Tucker. Princeton University Press.

47



A Definition of Best Response

Given µ ∈ ∆(Ai × Π−i), consider a sequence of beliefs {µm}∞m=1 such that

• For each point (ai, π−i) in the support of µ, and for each m, µm assigns probability

µ(ai, π−i) to some point in the interior of Ai×Π−i.
29 Denote that point by (am

i , πm
−i).

• {(am
i , πm

−i)}∞m=1 converges to (ai, π−i).

• am
i is generated by πm

i by Bayes rule, so in particular KW-consistency holds for each

point in the support of µ.

Notice that each h ∈ Hi is reached with a positive probability given any point in the

support of µm for any m, provided that i’s own strategy does not rule it out. Thus, given

belief µm and each point (am
i , πm

−i) in the support of µm, we can compute by Bayes rule the

probability (conditional on reaching h) that the opponents’ strategy profile is πm
−i. Given

a point (am
i , πm

−i) in the support of µm, let rh(a
m
i , πm

−i) be this conditional probability. Let

rh(ai, π−i) = limm→∞ rh(a
m
i , πm

−i) be its limit if it exists.

Definition 10. Given H̄i ⊆ Hi, πk
i is a best response at H̄i if there exists a sequence

of beliefs {µm}∞m=1 that converges to µi,k as above such that for all h ∈ H̄i, the restriction

on πk
i to the subtree starting at h is optimal against the probability distribution rh(·, ·)

genearted by the sequence {µm}∞m=1 and µi,k in that subtree.

Note that a single seqeunce applies to all h ∈ H̄i, as opposed to an alternative specifi-

cation in which for each h, one seqeunce is constructed. However it can be the case that

rh(ai, π−i) 6= rh′(ai, π−i) if h 6= h′.

B Proofs

In this section we provide the proofs of the results stated in the main text.

B.1 Proof of Claim 1

Proof.

Fix a strategy profile that is generated by a belief model V and an actual version profile

v∗ in which all versions have coherent beliefs and satisfy the best response condition and all

beliefs correspond to product measures. Construct a belief model V̂ in which everything is

the same as in V except that each belief µi,k in V is replaced with belief µ̂i,k that has a unit

29Remember that µ’s support is finite.
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mass on a single point that corresponding to the weighted average of the original belief

µi,k. Specify the same actual versions as in the original model. Since two beliefs µi,k and

µ̂i,k induce the same probability distribution over terminal nodes given any i’s strategies

by construction, the best response condition is still satisfied in the new belief model. Also,

since the point that µ̂i,k assigns the unit mass can be generated by a “mixture” (explained

in footnote 11 of DFL; Dekel et al. (2002) corrects the definition of “mixture” but for

our analysis both the old and the corrected definitions have the same implications) over

strategies in the support of µi,k by the assumption of product measures, the belief-closed

condition is also satisfied. The converse direction is analogous: for any strategy profile

which is generated by a belief-closed belief model in which the best response condition is

satisfied for all versions, we can replace each belief by a probability distribution over the

support of the “mixture” in the belief-closed condition, which guarantees the coherent

beliefs condition and the product measure requirement, and the best response property

is preserved.

B.2 Proof of Theorem 4

Proof.

Fix a player 1 participation game Γ. Suppose that 1 plays Out with probability 1 in

an RPCE. Let the actual version of player 1 be vk
1 . By the best response condition, Out

is a best response to µ1,k. Thus it suffices to show that all the point in the support of µi,k

corresponds to a Nash equilibrium of Γ−1. That is, it suffices to show that each profile

π−1 in the support of µ1,k is a Nash equilibrium of Γ−1.

Fix π̃−1 in the support of µ1,k, and let the corresponding version profile be ṽ−1. First,

observational consistency for player 1 implies that for any player j 6= 1, d(π̃j, π−j) =

d(π̃j, Out, π̃−1,j) for all π−j in the support of ṽj’s belief, because Dj = d as player j’s

terminal node partition is discrete. This means that ṽj’s belief assigns probability 1 to

(Out, π̃−1,j) because player j’s terminal node partition is discrete and Γ is a simultaneous-

move game. From the best response condition π̃j is a best response against ṽj’s belief, so

π̃j is a best response against (Out, π̃−1,j). Hence π̃j is a maximizer of vj(·, π̃−1,j). Since

this is true for all j 6= 1, this means that π̃−1 is a Nash equilibrium of Γ−1.

B.3 Proof of Theorem 5

Proof.

Fix a simultaneous-move game with terminal node partitions (Pi,P−i) that is own-

action independent for all players j 6= i. Also, fix an RPCE of this game π∗ with an
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associated belief model V and an actual version profile v∗ in which the actual version of

i has an independent belief. It suffices to show that player i can play π∗
i in an RPCE of

the game under the discrete terminal node partitions.

Denote player i’s actual version by vk
i = v∗

i , and consider a strategy profile (πk
i , π

i,k
−i).

We show that this is a Nash equilibrium of the game (hence it is an RPCE in the game

with discrete terminal node partitions), which proves our claim because πk
i = π∗

i as π∗ has

to be generated by v∗, and all the information sets are reached with positive probability

in simultaneous-move games.

First, since the best response condition is satisfied in the original belief model V and

vk
i has an independent belief, πk

i is a best response to πi,k
−i .

Now we show that πi,k
j is a best response against (πk

i , π
i,k
−i,j). Suppose to the contrary

that πi,k
j is not a best response against (πk

i , π
i,k
−i,j). Then, by the linearity of the payoff

functions, there must exist a version vl
j ∈ Vj such that pi,k(vl

j) > 0 and πl
j is not a best

response against (πk
i , π

i,k
−i,j).

Observational consistency and the assumption that i has an independent belief imply

that Dj(π
l
j, π−j) = Dj(π

l
j, π

k
i , π

i,k
−i,j) for all π−j in the support of µj,l. This implies, by the

own-action independence for j, that for any π′
j ∈ Πj, Dj(π

′
j, π−j) = Dj(π

′
j, π

k
i , π

i,k
−i,j) must

hold for all π−j in the support of µj,l.

This and the measurability of payoffs with respect to the terminal node partitions

imply that, for any π′
j ∈ Πj, the payoff from playing π′

j against µj,l is the same as that

of playing π′
j against any π−j in the support of µj,l, which in turn is the same as that of

playing π′
j against (πk

i , π
i,k
−i,j). Since the payoff from playing πl

j against µj,l is no less than

that of playing any other π′
j against µj,l, we have that the payoff from playing πl

j against

(πk
i , π

i,k
−i,j) is no less than that of playing any other π′

j against (πk
i , π

i,k
−i,j). In other words,

πl
j is a best response to (πk

i , π
i,k
−i,j).

B.4 Proof of Theorem 6

Proof.

Part 1: Since terminal node partitions are discrete, the observational consistency

condition for version vk
i reduces to the requirement that pi,k(v−i) > 0 implies, for each

j 6= i, d(πj(vj), π−j) = d(πk
i , π−i(v−i)) for all π−j in the support of vj’s belief. But the

conclusion of this requirement is automatically satisfied by condition (3’), as both sides

of the equality are equal to d(π∗).

Part 2: Fix a strategy profile π∗ and an associated belief model V and an actual ver-

sion profile v∗ that satisfies conditions (3) and (5). Construct a new belief model V̂ that is

identical to the original ones, except that all versions that do not satisfy the self-confirming
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condition in the original belief model are eliminated and each version’s conjecture assigns

the same weight to the versions that are still in V̂ . Specify the same actual version profile

as in the original model (such versions are not eliminated because of condition (3)). By

definition, v∗ generates π∗. By construction, condition (3’) holds. Hence by part 1, con-

dition (5) holds as well. Finally, the coherence belief condition holds because condition

(3) implies that the actual version vk
i = v∗

i must satisfy d(πk
i , π

i,k
−i) = d(π∗), and whenever

d(πl
j, π−j) = d(π∗) for all π−j in the support of µj,l, observational consistency implies that

for any version of j’s opponent vn
m in the support of pj,l, d(πn

m, π−m) = d(π∗) for all π−m

in the support of µm,n. This means that the elimination of versions that we have done

does not invalidate the coherent belief condition.

B.5 Proof of Theorem 7

Proof.

Fix a PCE π∗ with an associated belief model V and an actual version profile v∗ in

which some non-actual version vk
i ’s self-confirming condition is violated. Construct a new

belief model V̂ that is identical to the original one, except that all versions that do not

satisfy the self-confirming condition in the original belief model are eliminated and each

version’s conjecture is arbitrary. Specify the same actual versions as in the original model

(such versions are not eliminated because of condition (3)). By definition, v∗ generates

π∗. Since we did not change πk
i and µi,k for each vk

i that still exists in V̂i for all player

i, the best response condition still holds for all vk
i ∈ V̂i. Finally, condition (3’) holds by

construction.
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1 Additional Examples

In this appendix, we provide three examples that are omitted in the main text.

Example 15 (Complication in the Definition of Best Response).

Figure 15

Consider the game depicted in Figure 15. This game is similar to a part of Example

9, but now player 2 has an option to play Out2, which ends the game. Specifically, player

2 moves first, choosing between L2, R2, and Out2. Playing Out2 terminates the game,

while playing the other actions lead to player 1’s information set, where 1 does not know

which of L2 and R2 are played. 1 has three actions, A, B, and Out1. Out1 terminates

the game, while A and B lead to player 2’s information set, where 3 does not know which

of A and B are played. 3 chooses between L3 and R3, both of which end the game. The

terminal node partitions are discrete.

We first show that player 2 can play Out2 in RPCE. Notice that this requires 2 to

believe 1 to play Out1 with a high probability. Consider the following belief model:

V1 = {v1
1}, v1

1 =

(Out1, q
(
a1,1(xL) = 1, (Out2, L3)

)
+(1−q)

(
a1,1(xR) = 1, (Out2, R3)

)
, p1,1(v1

2, v
1
3) = p1,1(v1

2, v
2
3) =

1

2
);
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V2 = {v1
2}, v1

2 = (Out2, (Out1, L3), p
2,1(v1

1, v
1
3) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (L3, (a
3,1(L2) = 1, (Out1, Out2)), p

3,1(v1
1, v

1
2) = 1),

v2
3 = (R3, (a

3,2(R2) = 1, (Out1, Out2))), p
3,2(v1

1, v
1
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3),

where q = 1
2
, and a3,1(L2) and a3,2(R2) denote the probabilities that 3’s assessment assigns

to the nodes corresponding to actions L2 and R2, respectively. It is clear from inspection

that all the conditions in the definition of RPCE hold.

In this belief model, player 1’s information set lies off the path of play. Hence, to

calculate the best response for player 1, there must be a way to specify the weights

for each assessment-strategy pair, which is given by q. This is why we need a se-

quence of beliefs in the definition of best response in Appendix A of the paper. In

this example, we consider a sequence of beliefs {µm}∞m=1 such that µm assigns prob-

ability 1
2

to
(
a1,1(xL) = 1, ((1 − ε

m
)Out2 + ε

m
L2, L3)

)
and the remaining probability to(

a1,1(xR) = 1, ((1 − ε
m

)Out2 + ε
m

R2, R3)
)
.

Example 16 (Reason (iv) without Relevant Ties).

Figure 16
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Consider the game depicted in Figure 16. There are four players, 1, 2, 3, and 4.

Players i = 1, 2 move first, to choose between Ini and Outi. The game ends except when

(Out1, In2) is chosen. If it is chosen, then players i = 3, 4 move simultaneously, choosing

between Li and Ri. The terminal node partitions are such that players observe the exact

consequence of the opponents’ actions unless they do not move on the path of play or

they play Outi, while in such cases they do not observe the exact consequence of the

opponents’ play.1

Note that this example is the same as Example 12, except that now (Out1, In2) is

followed by a simultaneous-move game by players 3 and 4. In Example 12, it is important

that there is a tie in payoffs. The point of this example is to show that reason (iv) does

not hinge on the ties in payoffs.

We first show that player 1 can play In1 in an RPCE. To see this, consider the following

belief model:

V1 = {v1
1, v

2
1}, v1

1 = (In1, Out2, ·, ·), p1,1(v1
2, ·, ·) = 1), v2

1 = (Out1, (In2, L3, L4), p
1,2(v2

2, v
1
3, v

1
4) = 1);

V2 = {v1
2, v

2
2},

v1
2 = (Out2, (Out1, R3, R4), p

2,1(v2
1, v

2
3, v

2
4) = 1), v2

2 = (In2, (Out1, L3, L4), p
2,2(v2

1, v
1
3, v

1
4) = 1);

V3 = {v1
3, v

2
3}, v1

3 = (L3, (Out1, In2, L4), p
3,1(v1

1, v
1
2, v

1
4) = 1), v2

3 = (R3, (·, ·, R4)), p
3,2(·, ·, v2

4) = 1);

V4 = {v1
4, v

2
4}, v1

4 = (L4, (Out1, In2, L3), p
4,1(v1

1, v
1
2, v

1
3) = 1), v2

4 = (R4, (·, ·, R3)), p
4,2(·, ·, v2

3) = 1);

The actual version profile is (v1
1, v

1
2, ·, ·).

It is clear from inspection that all the conditions in the definition of RPCE hold. Notice

that version v1
1 believes that version v1

2 is incorrectly believing that player 1’s actual

version is v2
1, who, from the viewpoint of v1

2, incorrectly believes that player 2 is version

v2
2.

Now we show that In1 cannot be played with probability 1 if player 1’s terminal

node partition is discrete. To see this, suppose to the contrary that player 1 plays In1

with probability 1. If 2 plays In2 with positive probability, then by the self-confirming

condition, 2 expects 1 to play In1 with probability 1, so by the best response condition 2

should play In2 with probability 1. But then player 1 is not best-responding, so player 2

must play Out2 with probability 1, and from observational consistency when 1’s partition

is discrete, 2 must expect 1 to believe 2 plays Out2 with probability 1. Since 1’s best

1The assumption that 3 and 4 do not observe the opponents’ play when they do not get to play
simplifies the belief model but is not essential to the result.
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response to such a belief is to play In1 with probability 1, player 2 must believe 1 plays

In1 by the coherent belief condition. But the best response to such a belief cannot assign

a positive probability to Out2. This means that player 1 cannot play In1 with probability

1.

Example 17 (Reason (iii) with Discrete Terminal Node Partitions
for Opponents).

Figure 17

Consider the game depicted in Figure 17. There are three players, 1, 2, and 3. Players

1 and 2 move first, where 1 chooses between A, B, and Out, and 2 chooses between L2

and R2. If R2 is chosen, the game ends. If L2 is chosen, player 3 gets his move, choosing

between L3 and R3. The terminal node partitions are such that everyone observes the

exact terminal node reached, except that player 1 does not observe the consequence of

the opponents’ actions if she plays Out.

We first show that player 1 can play Out in an RPCE. To see this, consider the

following belief model:

V1 = {v1
1}, v1

1 = (Out, (
1

2
L2 +

1

2
R2, L3), p

1,1(v1
2, v

1
3) = p1,1(v2

2, v
1
3) =

1

2
);
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V2 = {v1
2, v

2
2}, v1

2 = (L2, (Out1, L3), p
2,1(v1

1, v
1
3) = 1), v2

2 = (R2, (Out1, R3), p
2,2(v1

1, v
2
3) = 1);

V2 = {v1
3, v

2
3}, v1

3 = (L3, (Out1, L2), p
3,1(v1

1, v
1
2) = 1), v2

3 = (R3, (Out1, R2), p
3,2(v1

1, v
2
2) = 1);

The actual version profile is (v1
1, v

1
2, v

1
3).

It is clear from inspection that all the conditions in the definition of RPCE hold.

Notice that player 1 is unsure which action player 2 is going to play, which leads 1

to play Out. Even though the terminal node partition for player 2 is discrete, 2 does

not observe player 3’s action if 1 plays Out, hence 2 can play either L2 with probability

1 or R2 with probability 1, while he cannot play a mixed strategy unless he is exactly

indifferent.

Now we show that, if player 1’s terminal node partition is discrete, player 1 cannot

play Out. To see this, suppose to the contrary that player 1 plays Out. Then, for Out to

be at least as good as A, the probability of L2 must be no greater than 2
3
. Similarly, for

Out to be at least as good as B, the probability of R2 must be no greater than 2
3
. These

two imply that player 2 must be playing a mixed strategy, and hence, as player 2 observes

player 3’s play, the payoff from playing L2 must be exactly equal to 0. This means that

player 3 is playing R3 with probability 1
2
.2 So the probability of (L2, R3) must be no less

than 1
3
× 1

2
= 1

6
. However, if this is the case, either the payoff from playing A or that from

playing B is strictly greater than 1
6
× 10 + 5

6
(−2) = 0, so player 1 cannot play Out.

Remember that in Example 11 (which illustrates reason (iii)), it was important that

the opponent of the player whose terminal node partitions are changed has nondiscrete

terminal node partition. This example shows that reason (iii) can be present even if the

opponents’ terminal node partitions are discrete. The key is that what the opponent j

observes depends on j’s action.

Example 18 (Measurability of Payoffs with Respect to Terminal
Node Partition).

2In this example player 3 is indifferent among any terminal nodes. We can avoid ties by replacing
player 3’s move by, say, a simultaneous-move coordination game by players 3 and 4.
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Figure 18

In this example we point out that the conclusion of Theorem 2 may fail if payoffs are

not measurable with respect to terminal node partitions.

Consider the game depicted in Figure 18. Players i = 1, 2 move simultaneously,

choosing between Hi, Ti, and Ni, Notice that this is the game played by players 2 and 3

in Example 3. The terminal node partitions are such that each player does not observe

anything about the consequence of the opponent’s play. This implies that the payoffs are

not measurable with respect to terminal node partitions. For example, player 1 with H1

gets 2 if player 2 plays H2 and −2 if player 2 plays T2, while she does not observe the

consequence of 2’s action.

Since no one gets to see anything, RPCE allows for all rationalizable strategies. In

particular, (H1, H2) is an RPCE, with the following belief model:

V1 = {v1
1, v

2
1}, v1

1 = (H1, H2, p
1,1(v1

2) = 1), v2
1 = (T1, T2, p

1,2(v2
2) = 1);

V2 = {v1
2, v

2
2}, v1

2 = (H2, T1, p
2,1(v2

1) = 1), v2
2 = (T2, H1, p

2,2(v1
1) = 1);

The actual version profile is (v1
1, v

1
2).

It is clear from inspection that all the conditions in the definition of RPCE hold.

Now consider the case where we modify player 1’s terminal node partition to the

discrete partition (with player 2’s terminal node partition held fixed). Note that in the

above belief model, player 2 who plays H2 believes that 1 is incorrectly believing that 2

is playing T2. However, when player 1’s terminal node partition is discrete, that belief

7



model cannot satisfy observational consistency of player 2, as now player 2 can no longer

believe that 1 has an incorrect belief.

Moreover, H1 cannot be played in any RPCE. To see this, note that player 2 must

expect that player 1 is best responding to whatever 2 plays. Since 2 has to play a best

response to his belief, this means that 2 has to play a Nash equilibrium strategy in any

RPCE. However there is only one Nash equilibrium action, which is N2. As a unique best

response to N2 is N1, the only possible 1’s RPCE strategy is to play N1 with probability

1. Hence H1 cannot be played in any RPCE.

2 Correlated Equilibrium

In the main sections of this paper we considered a model in which it is common knowledge

that the play has converged. However, as pointed out in Example 4, this may sometimes

be too strong an assumption, as under many learning dynamics play need not converge

to a stationary distribution in all games. This suggests we use a weaker notion to capture

the effect of long run learning; one such notion is that of correlated equilibrium.3 In

this section we present a model that uses the idea of correlated equilibrium to develop a

less restrictive alternative to RPCE. We use the same specification of extensive-form and

terminal node partitions.

To introduce the idea of correlated equilibrium, we postulate a state space and a

probability distribution over it. Specifically, consider a state space Ω with a typical

element ω, and probability distribution over Ω, denoted q. For each information set of

player i, hi, there is a partition over Ω, Qi(hi) = (Q1
i (hi), . . . , Q

Ji
i (hi)), where if hi precedes

h′
i then for each Qj

i (h
′
i) there exists some Qk

i (hi) ⊇ Qj
i (h

′
i). That is, Qi(h

′
i) is a weakly

finer partition than Qi(hi). Denote Q = (Q1, . . . , Qn). Player i’s strategy at hi, πi(hi),

is a map from the cells of the partition Qi(hi) to distributions over actions available at

hi. Then, player i’s strategy is defined to be a mapping from her information sets

to her strategies at her information sets. Let Πi be the set of all i’s strategies, and

denote Π = ×iΠi and Π−i = ×jΠj. The probability distribution over terminal nodes

and over cells of the partition for player i, d and Di, are defined in an analogous manner

as in Section 3 of the paper. Note that d (and hence Di) depends on the probability

distribution q. H(π) and H(πi) are defined analogously to the ones in Section 3 of the

paper.

3See Aumann (1987) for the definition and discussion of (normal-form) correlated equilibrium. Foster
and Vohra (1997) shows that if two players use learning procedures with calibrated forecasts and play
best responses to such forecasts, the time average of the frequency of play must converge to the set of
correlated equilibria.
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Assessment ai is again a mapping from her information sets to her assessments at her

information sets. i’s assessment at hi, ai(hi), is a map from the cells of the partition

Qi(hi) to distributions over nodes in hi. Let αi be the set of all i’s assessments.

As in Section 3 of the paper, a belief µi is defined as a probability distribution over

αi × Π−i.

Given (Ω,Q, q), best response is defined analogously to the one in Section 3 of the

paper.

We postulate a belief model again. Now it is written as (V, (Ω,Q, q)). Each version

vk
i in Vi is specified as

vk
i = (πk

i , µ
i,k, pi,k),

where πk
i ∈ Πi, µik ∈ ∆(αi× ∈ Π−i), and pi,k ∈ ∆(×j 6=iVj).

4

We note that the way we model the idea of correlated equilibrium is analogous to but

slightly different from the definition of extensive-form correlated equilibrium by Forges

(1985).5

With this set of notation in hand, Definitions 1-3 can be used literally except that we

replace “Given a belief model V ” with “Given a belief model (V, (Ω,Q, q)).”

Definitions of partition-confirmed equilibrium and rationalizable partition-confirmed

equilibrium can be used literally except that we replace “there exist a belief model V ”

with “there exist a belief model (V, (Ω,Q, q)).”

a

The Shapley Example Revisited.
Consider the game discussed in Example 4. In Example 4, we concluded that player

1 has to expect the equilibrium play by players 2 and 3, so 1 should play In. However,

4Here we follow the way we modeled correlated beliefs in Section 3 of the paper. We note that there
is an alternative way to model correlated beliefs in the current context. Namely, to have an enlarged
state space. Then the belief simply becomes a point in αi × Π−i and a conjecture becomes a point
in ×j 6=i∆(Vj). For example, suppose that there are three players, 1, 2, and 3, and two states, ω and
ω′. Player 1 does not observe the state while 2 and 3 do. Then 1’s belief about 2 and 3’s play may
be “subjectively correlated” if 1 believes that 2 and 3 play one action (denote L) given ω and another
action (denote R) given ω′. Strictly speaking, the correlation that we considered in the main text and the
correlation considered in this footnote are different: In the former, 1 believes that 2 and 3 play L with
probability 1, or R with probability 1. In the latter, 1 believes that 2 and 3 both play L with probability
a half, and R with probability a half. We employed the current specification to make the comparison
with the model in Section 3 of the paper transparent.

5One small difference worth noting is that in Forges the partition Qi(hi) is weakly finer than partition
Qj(hj) even for two different players i and j if hj precedes hi, and hence the notion was defined only
for games in which information sets are ordered by precedence. In our case this requirement is imposed
only for partitions associated with the same player i, because in our context a player who does not
observe the opponents’ action profile may move after their moves, but in such a case we do not want
the player to observe the realization of the information that the opponents obtain. As a consequence of
this generalization, our concept is defined also for games in which information sets are not ordered by
precedence.
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in the solution concept that we defined in this section, this is not necessary. To see

this, notice that there is a correlated equilibrium of the simultaneous-move game by

players 2 and 3, which assigns an equal weight to each of the profiles (A2, B3), (A2, C3),

(B2, A3), (B2, C3), (C2, A3), and (C2, B3). If player 1 expects that 2 and 3’s play is

as in this correlated equilibrium, she expects the payoff of −1 from playing In, so she

chooses Out which gives her the payoff of 0. Formally, consider the state space Ω =

{ω1, ω2, ω3, ω4, ω5, ω6} and partitions Q = (Q1,Q2,Q3) such that Q1(h1) = (Q1
1(h1)),

Q1(h2) = (Q1
2(h2), Q

2
2(h2), Q

3
2(h2)), and Q1(h3) = (Q1

3(h3), Q
2
3(h3), Q

3
3(h3)), where

Q1
1(h1) = {ω1, ω2, ω3, ω4, ω5, ω6};

Q1
2(h2) = {ω1, ω2}, Q2

2(h2) = {ω3, ω4}, and Q3
2(h2) = {ω5, ω6};

Q1
3(h3) = {ω3, ω5}, Q2

3(h3) = {ω1, ω6}, and Q3
3(h3) = {ω2, ω4},

and a distribution q(wi) = 1
6

for all i = 1, . . . , 6.

The belief model (V, (Ω,Q, q)) is

V1 = {v1
1}, V2 = {v1

2}, and V3 = {v1
3},

where the own strategies are

π1
1(h1)(Q

1
1(h1))(Out) = 1;

π1
2(h2)(Q

1
2(h2))(A2) = 1, π1

2(h2)(Q
2
2(h2))(B2) = 1, and π1

2(h2)(Q
3
2(h2))(C2) = 1;

π1
3(h3)(Q

1
3(h3))(A3) = 1, π1

3(h3)(Q
2
3(h3))(B3) = 1, and π1

3(h3)(Q
3
3(h3))(C3) = 1,

the beliefs are

µ1,1(·, (π1
2, π

1
3)) = 1, µ2,1(·, (π1

1, π
1
3)) = 1 and µ3,1(·, (π1

1, π
1
2)) = 1,

and the conjectures are

p1,1(v1
2, v

1
3) = 1, p2,1(v1

1, v
1
3) = 1, and p3,1(v1

1, v
1
2) = 1.

Notice that, in this belief model, if player i = 2, 3 finds himself in the partition cell Q1
i

(resp. Q2
i ; resp. Q3

i ), he plays action Ai (resp. Bi; resp. Ci). Each state corresponds

to an action profile in the support of correlated equilibrium described above, and the

partition implies that at each cell a player knows that one of the two states have realized

10



but does not know which. By exactly the same reasoning as the one that proves the

profile is indeed a correlated equilibrium, all versions in the above belief model satisfy

the best response condition. It is clear from inspection that all other conditions in the

(modified) definition of RPCE defined in this section hold, and hence player 1 can play

Out in (modified) RPCE.

Although the specification in this section resolves the issue associated with the Shap-

ley cycle, it allows for perhaps too many outcomes. For example in a 2-player 2 x 2

coordination game, there is a correlated equilibrium that assigns probability 1
2

to each of

pure equilibria. Our formulation allows for such a distribution of play as a solution, but

this does not seem to be a sensible outcome of rational learning process, as typically the

dynamic converges to one of these equilibria.
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