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Abstract

We analyze the problem of optimal monopoly pricing in social
networks in order to characterize the influence of the network topology
on the pricing rule. It is shown that this influence depends on the
type of providers (local versus global monopoly) and of externalities
(consumption versus price). We identify two situations where the
monopolist does not discriminate across nodes in the network (global
monopoly with consumption externalities and local monopoly with
price externalities) and characterize the relevant centrality index used
to discriminate among nodes in the other situations. We also analyze
the robustness of the analysis with respect to changes in demand,
and the introduction of bargaining between the monopolist and the
consumer.
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Bramoullé, Geoffroy de Clippel, Jan Eeckhout, Matt Elliott, Sanjeev Goyal, Matt Jackson
and Michael Königfor their helpful comments.
†Department of Economics, Ecole Polytechnique, 91128 Palaiseau France, tel: +33 1

69 33 30 40, francis.bloch@polytechnique.edu
‡CNRS-LAMETA, Supagro, 34060 Montpellier France, tel:+ 33 4 99 61 31 09, nico-

las.querou@supagro.inra.fr

1



1 Introduction

This paper analyzes the optimal pricing strategy of a monopoly in a social
network. Our objective is to understand how discriminatory prices reflect (or
not) the centrality of consumers in the social network. Marketing techniques
to discriminate among consumers based on their social connections have long
been in use. When selling new products or creating an installed base for
products with network externalities, it is not uncommon for firms to offer
“referral bonuses” – discounts or cash to consumers who bring new friends
into the network. In doing so, the firm rewards agents with a large number
of friends, and price discriminates according to the consumer’s number of
neighbors, or degree centrality. In a more systematic fashion, following MCI
in 1990, telecommunication companies have introduced ”friends and family
plans” as a way to discriminate among consumers based on their number of
friends and pattern of calls (Shi, 2003).

With the spectacular emergence of online social networks like Facebook,
Orkut and MySpace, new possibilities for large scale social network based
discriminatory pricing have emerged. Due to a combination of privacy and
technical reasons, this possibility has not yet been exploited, and most of
the monetization of online social networks stems from targeted advertising
using data on consumer characteristics rather than their social connections.
However, the discrepancy between the current revenue of Facebook (between
1.2$ and 2$ billion in 2010) and its value (82.9$ billion reported as of January
29, 2011)(Levy, 2011) suggests that new marketing opportunities based on
social network data will likely be exploited in the near future. In fact, the
agreement between Facebook and the group buying platform Groupon which
allows consumers to sign up on Groupon on their Facebook page points
in that direction. Groupon may exploit the social network of Facebook to
attract new customers, offering deals and coupons to consumers who bring in
new friends, thereby discriminating in favor of consumers with higher degree
centrality in the network.

While the current social-network based price discrimination strategies
only make use of the consumer’s number of neighbors, it is very likely that
more detailed data on social networks will soon be used in pricing and mar-
keting strategies (Arthur et al. (2009), Hartline et al. (2008)). An important
issue is to understand whether the number of neighbors is always the relevant
measure of centrality that should be used for price discrimination. Even in
case where this characteristic is relevant, it is necessary to assess its actual
influence (positive or negative) on the prices that should be offered. In this

2



paper, we consider price discrimination based on the entire social network,
where each agent receives a price associated to her nodal characteristic. We
consider two channels through which social networks influence a consumer’s
demand. In the first model of local network externalities, consumers bene-
fit from the consumption of the same good by their direct neighbors. This
model captures situations where agents receive discounts if they call friends
who subscribe to the same network, share a common software with their
colleagues or co-authors, or need to reach a critical mass of consumers to
obtain a deal or launch a project. In the second model of aspiration based
reference price, consumers construct a reference price for the good based on
the price charged to their direct neighbors, and experience a positive utility if
the price they receive is below their reference price. This model is applicable
to situations where firms use discriminatory pricing that lacks transparency,
like airline pricing and negotiated pricing.

In both models, our objective is to understand which measure of centrality
is relevant to rank prices charged at different nodes. Are prices increasing or
decreasing in the number of neighbors that a consumer has? Is the structure
of the network at distance two (the number of neighbors of neighbors) a rel-
evant information for optimal monopoly pricing? When does the monopoly
charge uniform prices across nodes? To answer these questions, we consider
a linear model, where consumers pick a random valuation for the object ac-
cording to a uniform distribution. In the model of local network externalities,
a consumer’s utility is positively affected by the consumption of her direct
neighbors ; in the model of aspiration-based price reference, a consumer’s
utility is positively affected by the average price charged to her direct neigh-
bors. Using the analysis pioneered by Ballester, Calvó-Armengol and Zenou
(2006), we characterize the demand of every consumer as a function of her
centrality in the network. We then consider two different market structures:
one where a single monopoly serves all the consumers in the network and
internalizes the externalities across nodes, and one where each consumer is
served by a different local monopoly.

In the local network externalities model, we first obtain a network irrel-
evance result: when a single monopoly serves all the nodes, it will optimally
choose a uniform price in the network. This striking result can be explained
as follows. There are two countervailing effects of the centrality of a node
on the optimal price. On the one hand, a more central node generates more
positive externalities on its neighbors and hence should be subsidized (the
classical effect by which more central agents receive lower prices) ; on the
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other hand, more central agents benefit more from the object, and have a
higher valuation which can be captured by the monopolist. In the linear
model, these two effects are exactly balanced, giving rise to a uniform pric-
ing strategy. (However, with general distribution functions, the irrelevance
network no longer holds and one of the two effects dominates the other.)
When different nodes are served by different firms, the positive externality
of the consumption of the central node on the other nodes is no longer inter-
nalized. The first effect vanishes, and only the second effect remains, so that
more central agents with higher valuations are charged higher prices.

In the aspiration-based price reference model, we obtain a second network
irrelevance result, this time when every node is served by a different firm.
This irrelevance result, which is robust to changes in the model, stems from
the following observation. If all other firms charge the optimal monopoly
price, a local monopoly cannot benefit from charging a different price. When
all nodes are served by a single monopolist, this reasoning fails as the mo-
nopolist may want to increase the price at some node in order to increase
demand at the neighboring nodes. For example, in a star, the monopoly has
an obvious incentive to charge a high price at the hub in order to increase
demand at peripheral nodes.

We finally discuss two extensions of the model. In the first extension, we
consider general demand schedules and analyze the robustness of our results.
In the second extension, we compute the consumer surplus accruing at each
node. This enables us to analyze the agent’s incentives to form links in the
social network and the formation of prices as a result of a bargaining process
between the monopoly and the consumer.

We now discuss briefly the related literature. The model of local network
externalities finds its origin in the seminal work of Farrell and Saloner (1985)
and Katz and Shapiro (1985) on network externalities. These early papers
eschew the ”network” dimension of network externalities and implicitly as-
sume that consumers are affected by the global consumption of all other
consumers. Models of local network externalities which explicitly take into
account the graph theoretic structure of social networks have been proposed
by Jullien (2001), Sundarajan (2006), Saaskhilati (2007) and Banerji and
Dutta (2009). Jullien (2001) and Banerji and Dutta (2009) analyze com-
petition between two price-setting firms. While Banerji and Dutta (2009)
consider uniform prices, Jullien (2001) allows for discriminatory pricing at
different nodes, and provides partial results suggesting that firms set lower
prices at nodes with higher degree. Sundarajan (2006) studies monopoly
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pricing in a model where consumers make a deterministic choice between
adopting the new product or not. Ghiglino and Goyal (2010) focus instead
on a model of conspicuous consumption, where agents compare their con-
sumption with that of their neighbors and suffer a negative consumption
externality. In the same linear model as the one we consider, they character-
ize the competitive equilibrium prices and allocations and show that identical
consumers located in asymmetric positions in the network choose to trade
and end up at different equilibrium allocations. Finally, in a work which is
independent from ours, Saaskhilati (2007) studies uniform monopoly pricing
on social networks. His main focus is not on discriminatory pricing but on
the relation between the network topology and the uniform price charged
by the monopoly, and he computes optimal prices and consumer surplus for
some specific network structures like symmetric networks and stars.

The study of optimal pricing and marketing strategies in social networks
has recently received attention in the computer science literature. Following
the work on influence maximization of Domingos and Richardson (2001) and
Kempe, Kleinberg and Tardos (2003) which aimed at identifying influential
agents in a network without any reference to price and revenue maximiza-
tion, recent work by Hartline et al. (2008) and Arthur et al. (2009) compute
optimal pricing strategies. They show that a simple two-price strategy (the
”Influence and Exploit Marketing”, where the seller chooses a set of con-
sumers to which the product is sold for free – or at a cashback ”referral
bonus” –) performs very well compared to the optimal marketing strategy
which is NP-hard to compute. The main difference between these approaches
and ours stem from the timing of purchases. Both Hartline et al. (2008) and
Arthur et al. (2009) consider sequential purchases where myopic consumers
base their consumption decision on the number of consumers who have al-
ready bought the product. We consider instead a simultaneous consumption
decision for all consumers in the network who are fully rational.

The model of aspiration based reference price has been studied in mar-
keting (Xia, Monroe and Cox (2004), Mazumdar et al. (2005)) along lines
developed in social psychology. The theory of social comparison (see Suls and
Wheeler (2000) for a detailed account) posits that most outcomes (like prices
and salaries) are perceived in comparison to other agents’ outcomes, so that
prices are deemed fair or unfair in reference to prices paid by other consumers
in a similar situation. Hence, consumers construct reference prices based on
what their neighbors have been charged, and evaluate the price they receive
by comparison to this reference price.
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The rest of the paper is organized as follows. We discuss the model of
local network externalities in Section 2, and the model of aspiration based
reference price in Section 3. Section 4 contains a discussion of the robustness
of the analysis and an extension to bargaining over total surplus. All proofs
are relegated to the Appendix.

2 Local Network Externalities

We consider a model of local network externalities, where consumers are
affected by the consumption choices of their neighbors in a social network.
As in Jullien (2001), Saaskhilati (2007) and Banerji and Dutta (2009), we
construct a model of network externalities where consumers only care about
the consumption of a subset of agents determined by an exogenous social
network. We first introduce a simple linear model of demand with local
network externalities (Subsection 2.1), discuss a simple example (Subsection
2.2) and characterize optimal pricing rules of a monopolist (Subsection 2.3)
and of local monopolies (Subsection 2.4).

2.1 The Model

We consider a set N of consumers located along a social network, denoted
g. The adjacency matrix of this network is denoted G with typical element
gij ∈ {0, 1}. We recall that gij = 1 if and only if there exists an edge
in the network linking consumers i and j. We assume that the network is
undirected, so that gij = gji. We let di =

∑
j gij denote the degree of node i

in the network.

Each consumer i has a unit demand for the good, and draws an intrin-
sic value θi from the uniform distribution F over [0, 1]. We suppose that
intrinsic values are independently distributed. Consumers experience local
network externalities in the sense that their value for the good increases by
the constant value α > 0 whenever one of their neighbors consumes the good.
Finally, consumers have positive linear utility for money, so that the utility
of consumer i is expressed by:

Ui = θi − pi + α
∑
j

gij Pr[j buys the good ]. (1)

The timing of events is as follows: the monopoly chooses a price vector
(p1, ..., pn) before observing the realization of the valuation vector (θ1, ..., θn).
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Each consumer learns her valuation θi and makes her consumption decision at
the interim stage, knowing pi and θi, but not the valuations θ−i drawn by the
other consumers. Clearly, if a consumer of type θi buys the good, so does any
consumer of type θ′i > θi. Hence, consumer i’s optimal purchasing decision is
characterized by a threshold value θ̃i. Furthermore, as all consumers adopt
the same optimal threshold purchasing decision rules, we can compute θ̃i
using the following expression:

θ̃i = pi − α
∑
j

gij(1− F (θ̃j)). (2)

Alternatively, if we let xi = 1−F (θ̃i) denote the probability that consumer
i buys the good, we have:

xi =


0 if 1− pi + α

∑
j gijxj < 0

1 if − pi + α
∑

j gijxj > 0,

1− pi + α
∑

j gijxj otherwise
(3)

We now solve this system of interdependent demands in order to obtain
the demand of a consumer at node i as a function of the vector of prices,
p = (p1, ..., pn) charged at different nodes. This amounts to inverting the
system of equations (3) under the condition that all demands xi are contained
in [0, 1], and is formally equivalent to solving a linear-quadratic game as
in Ballester Calvó-Armengol and Zenou (2006) and Ballester and Calvó-
Armengol (2009).

Let λ(G) denote the largest eigenvalue of the adjacency matrix G. When
αλ(G) < 1, the matrix [I− αG] is invertible and [I− αG]−1 is nonnegative
(Debreu and Herstein, 1963). Furthermore, let aij ≥ 0 denote the ij entry
of the matrix [I − αG]−1. If we only consider a subset S of players with
corresponding network GS, we let aij,S denote the ij entry of the square
s × s matrix [I − αGS]−1. By a simple application of Theorems 1 and 2
of Ballester, Calvó-Armengol (2009), we characterize the unique system of
demands in the following Proposition.

Proposition 2.1 If αλ(G) < 1, for any vector of prices p = (p1, ..., pn),
there exists a unique system of demands satisfying equation (3). In this
solution, the set of consumers is partitioned into three sets S0, S1 and S =
N \ (S0 ∪ S1) such that:

xi =


0 if i ∈ S0

1 if i ∈ S1∑
j∈S aij,S(1− pj +

∑
k∈S1

gjk) otherwise
(4)
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Proposition 2.1 shows that, if externalities are not too large, the inter-
dependence between consumer demands at different points in the network
results in a unique system of demands. For an arbitrary price vector, p, as
demands must belong to the bounded interval [0, 1], the description of equi-
librium demands involves a partition of the set of nodes into (i) nodes with
zero demand, (ii) nodes where consumers buy with probability one and (iii)
nodes where consumers buy with a probability xi ∈ (0, 1). For consumers
at these last nodes, the coefficients of the demand system ∂xi

∂pj
= aij are ex-

actly the entries of the matrix [I− αGS]−1, which can be interpreted as the
Katz-Bonacich notion of network centrality (Katz (1953), Bonacich (1987)):

Definition 2.2 Given a network G and a positive scalar α, the Katz-Bonacich
centrality of agent i in the network is given by:

bi(G, α) = [I− αG]−11 = (
∑
j

aij)

We can use the power series expansion [I − αG]−1 =
∑∞

k=0 α
kGk, to

rewrite aij =
∑
αkµ

k
ij, where µkij, the ij entry of the matrix Gk, counts the

number of paths of length k between i and j. Following this interpretation,
the Katz-Bonacich coefficient aij,S measures the sum of discounted paths
from i to j in the subgraph gS formed by consumers in S.

2.2 When does centrality matter? An example

In order to understand when and how the position of a consumer in the
network affects the optimal price, we consider an example with 4 consumers
located along the following network.

Suppose that α = 0.1. The demand system for this example is given by:

x1 = 1.13662− 1.01033p1− 0.10333p2− 0.0229621p3,

x2 = 1.36625− 0.10333p1 − 1.0333p2 − 0.229621p3,

x3 = 1.26292− 0.0114811p1 − 0.114811p2 − 1.13662p3,

x4 = 1.26292− 0.0114811p1 − 0.114811p2 − 1.13662p3.

If a single monopolist with zero marginal cost chooses prices p1, p2 and
p3 to maximize π = p1x1 + p2x2 + 2p3x3, the optimal solution is p∗1 = p∗2 =
p∗3 = 0.5. If each node is served by a different firm, the equilibrium price
vector is given by: p∗1 = 0.527065, p∗2 = 0.576561, p∗3 = p∗4 = 0.523774. Hence,
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Figure 1: A four-consumer network

the ranking of prices reflects the degree centrality of the nodes. The more
central node (node 2) is charged the highest price, followed by nodes 3 and
4 and finally node 1. We now show that this example illustrates a general
result on the relation between prices and node centrality.

2.3 Optimal monopoly pricing

Suppose that a single monopolist chooses the vector of prices p in order to
maximize profit. We assume that the monopoly produces each unit of the
good at a constant cost c < 1, so that her expected profit is given by:

Π =
∑
i∈N

xipi − cxi.

The following Proposition characterizes the optimal pricing strategy of the
monopoly, assuming that the condition αλ(G) < 1 is satisfied.
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Proposition 2.3 In the model with positive consumption externalities, the
optimal pricing strategy of the monopoly is to charge a uniform price p∗ = 1+c

2

at each node. Given this pricing strategy, the expected demand of a consumer
i is given by xi = 1−c

2

∑
j aij, which is proportional to the Katz-Bonacich

centrality measure of consumer i in graph g.

The striking result of Proposition 2.3 is that the monopoly does not ex-
ploit differences in consumer’s centralities to charge discriminatory prices,
but charges instead a uniform monopoly price at each node. She lets demand
adjust at each node in the network according to consumer’s centralities, with
consumers with higher levels of Katz-Bonacich centrality having a higher
probability of purchasing the good.

The network irrelevance result of Proposition 2.3 is supported by the fol-
lowing intuition. When choosing the price at node i, the monopoly balances
two effects: a price increase at node i raises profit at that node, but also
reduces demand and profits at all other nodes in the network. In the linear
model we analyze, this trade-off, measured by a positive effect

∑
aij(1− pj)

and a negative effect
∑
aji(c − pj), is independent of a node’s centrality.

Hence, the monopoly faces the same trade-off at every node and optimally
chooses a uniform pricing rule. However, the exact balance which leads to
uniform pricing is a knife-edge result, which relies on the assumptions on the
distribution function F .

Finally, consider the surplus of consumer i, measured ex ante before the
consumer learns her valuation. With a linear demand system, it is easy to
see that

CSi =
1

2
x2i ,

The consumer surplus at node i is monotonically increasing in the demand
at node i, and hence directly related to the Katz-Bonacich centrality. Con-
sumers with higher Katz-Bonacich centrality receive a larger surplus. This
result also shows that if consumers endogenously choose whether to form so-
cial links, they will aim at maximizing their Katz-Bonacich centrality mea-
sure. When the linking cost is small, this will result in the formation of the
complete network, as the Katz-Bonacich centrality of all players is increasing
in the number of links in the social network (see Ballester Calvó-Armengol
and Zenou (2006), Theorem 2 p. 1409.) For higher values of the linking
cost, players’ incentives to form links depend on the marginal effect of the
addition of a link on the Katz-Bonacich centrality measure, which is difficult
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to compute for general networks. For example, Ballester Calvó-Armengol
and Zenou (2004) study a model of endogenous formation of criminal net-
works based on the marginal effect of the addition of a new link on the
Katz-Bonacich centrality measure, but do not provide any characterization
of equilibrium network structures.

2.4 Pricing with local monopolies

We now suppose that each consumer is served by a different firm, and consider
the pricing game played by n local monopolies with profit functions:

Πi = xi(pi − c).

Each monopoly chooses its price pi to maximize its own profit, taking
as given the price pj chosen at all other nodes in the social network. The
following Proposition characterizes the equilibrium prices as a function of the
externalities parameter α:

Proposition 2.4 In the model with local monopolies, there exists α > 0
such that, for all α < α, there is a unique equilibrium price vector p∗ which
satisfies:

p∗ = c1 +
1− c

2
1 + α

1− c
4

G1 + α21− c
8

(G21−G1) +O(α3).

Proposition 2.4 shows that local monopolies charge different prices at dif-
ferent nodes, so that the uniform pricing rule is no longer valid. Intuitively,
given the prices chosen by other firms, a local monopoly at a more central
node faces a higher demand, and hence has an incentive to choose a higher
price. In order to understand what is the relevant centrality index to rank
the prices chosen at different nodes in the social network, we consider an ap-
proximation around the point α = 0, when externalities are small. Rewriting
the characterization of equilibrium prices at a particular node i, we have:

p∗i = c+
1− c

2
+ α

1− c
4

di + α21− c
8

∑
j

gij(dj − 1) +O(α3). (5)

Hence, at the first order, the relevant measure is the degree of the node:
nodes with higher degree face higher prices. At the second order, if two
consumers have the same number of neighbors, prices will be higher for the
consumer who has the largest distance-two neighborhood. Clearly, equation
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(5) only offers an approximation of equilibrium prices around the point α = 0.
In order to judge the accuracy of the approximation, we ran a sensitivity
analysis, by generating random networks and computing, for each network,
the threshold value of α for which the ranking of equilibrium prices in our
approximation coincides with the exact ranking of equilibrium prices.1 The
results are given in the following table, which lists for different numbers of
agents (n = 6, 7, 8, 9, 10, 15 and 20), the minimal, maximal and mean values
of the threshold value of α over 1000 randomly generated networks.

n 6 7 8 9 10 15 20
αmin 0.19 0.14 0.01 0.01 0.005 0.01 0.01
αmax 1 1 0.38 0.38 0.305 0.15 0.11
αmean 0.301 0.248 0.213 0.188 0.160 0.108 0.082

Table 1: Simulations for price rankings

As expected, the threshold value of α decreases with the number of agents,
but remains surprisingly high, showing that the approximation is reasonably
accurate in order to compare equilibrium prices charged at different nodes.

Using the first order condition for profit maximization, we can compute
the demand at node i as

xi = aii(p
∗
i − c),

where aii is the Katz-Bonacich coefficient measuring the discounted number
of paths from node i to node i. Because the number of paths from i to i
of length 1 is zero and of length 2 is equal to the degree of node i, aii =
1 + α2di +O(α3). By Proposition 2.4, when α is sufficiently small

(1− θ̃i(p∗)) =
1− c

2
+α

1− c
4

di+α2(
1− c

2
di+

1− c
8

∑
j

gij(dj−1))+O(α3).

Hence, for low values of the externality parameter, the ranking of consumer
surplus coincides with the ranking of prices, with consumers with higher
degree centrality benefiting from a larger surplus. For small linking costs,
consumers thus always have an incentive to form additional social links, and
the complete social network is formed in equilibrium. For higher values of
the linking cost, the characterization of the endogenous network structure is
a complex problem that we leave for future research.

1We are immensely grateful to Sebastian Bervoets who wrote the computer program
and ran the simulations.
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3 Aspiration Based Reference Price

We now consider a model where externalities do not result from consumption
but from prices. Following the literature on social comparisons, we assume
that agents compare the price they receive with the prices received by their
neighbors, and enjoy positive utility if they receive a lower price than the
prices in their neighborhood. We start by introducing a linear model of
price externalities (Subsection 3.1), continue the discussion of the example
introduced in the previous section (Subsection 3.2) and characterize the op-
timal pricing of a global monopolist (Subsection 3.3) and of local monopolies
(Subsection 3.4).

3.1 The model

We assume that utilities are defined over the average price charged to a
consumer’s neighbor:

Ui = θi − pi + α
1

di

∑
j

gijpj. (6)

where θi is a taste parameter uniformly distributed on [0, 1]. As in the case
of local network externalities, prices are announced before consumers learn
their random valuation, and a consumer located at node i buys the good if
and only if

θi ≥ pi − α
1

di

∑
j

gijpj. (7)

Notice that in the model of aspiration based reference price, a consumer’s
decision is independent of the consumption choices of other consumers, so
agents do not need to learn the valuations of their neighbors. Furthermore,
as opposed to the case of consumption externalities, we do not need to invert
the demands to obtain the system of demands as a function of the price
vector. Instead, the demand at node i is directly given by:

xi =


0 if 1− pi + α

di

∑
j gijpj < 0,

1 if 1− pi + α
di

∑
j gijpj > 1,

1− pi + α
di

∑
j gijpj otherwise

We denote by G′ the row-stochastic matrix with typical element g′ij =
gij
di

.
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3.2 When and how does centrality matter? The ex-
ample continued

We return to the example of Section 3, and consider the demand system:

x1 = 1− p1 + 0.1 ∗ p2,
x2 = 1− p2 + 0.033p1 + 0.066p3,

x3 = 1− p3 + 0.05p2 + 0.05p3.

x4 = 1− p3 + 0.05p2 + 0.05p3.

The global monopolist chooses prices p1, p2 and p3 to maximize p1x1 +
p2x2 + 2p3x3, yielding the optimal prices p∗1 = 0.5387, p∗2 = 0.5807, p∗3p

∗
4 =

0.5376. We observe that this price ranking does not reflect degree centrality
any longer, as the price charged to node 1 is higher than the prices charged at
nodes 3 and 4. However, node 2, which is the ”hub” of the network receives
the highest price, a result that we will generalize below. If each node is served
by a different firm, the unique equilibrium prices are uniform: each consumer
is charged a price p∗ = 0.5263.

3.3 Optimal monopoly pricing

The following Proposition characterizes the unique optimal price chosen by
the monopoly in the price externalities model.

Proposition 3.1 In the model of aspiration based reference price, if αλ(G′+
G

′T ) < 2, there exists a unique optimal price vector p∗ which satisfies:

p∗ = (1 + c)
∞∑
k=0

1

2k+1
αk(G′ + G

′T )k1.

Proposition 3.1 shows that in the model with average price externalities,
the monopoly charges discriminatory prices on the social network. Each
price is proportional to the Katz-Bonacich centrality of node i with respect
to the matrix G′ + G

′T . In order to gain additional intuition about the
relevant centrality index to rank monopoly prices, we compute a first-order
approximation of the prices around the point α = 0,

pi =
1 + c

2
+

1 + c

4
α(1 +

∑
j

gij
1

dj
) +O(α2).
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The relevant centrality measure is the sum of inverse degrees of a node’s
neighbor. The monopoly has an incentive to charge higher prices at nodes
which have higher centrality, as measured by the sum of the inverse degrees
of a node’s neighbors. A network of particular interest is the star, where the
hub has a very high centrality measure and hence receives a higher price than
the peripheral agents. This ranking of prices in the star is very intuitive: by
raising the price in the hub, the monopoly is able to increase demand at all
peripheral nodes, whereas an increase in the price of the peripheral node only
increases demand at the hub. Hence the indirect positive effect of a price
increase is higher for the hub than for a peripheral agent, implying that the
optimal price will be higher at the hub.

Using the first order condition for profit maximization, demand at node
i is given by:

xi = p∗i − c− α
∑ gij

dj
(p∗j − c).

Hence agents with many neighbors of low degree (like the hub of the star)
receive a smaller surplus than agents with few neighbors of high degree (like
the peripheral agents in the star), reflecting the intuition that agents at the
hub of the star are harmed by their location in the network, as they pay a
higher price than their neighbors. This result suggests that in a model of
endogenous network formation, agents would try to avoid occupying central
positions, resulting in the construction of symmetric social networks.

3.4 Pricing with local monopolies

We now consider a situation where each node is served by a different local
monopoly. We obtain a new network irrelevance result:

Proposition 3.2 In the model of aspiration based reference price, there is
a unique symmetric equilibrium where all local monopolies charge the same
price p∗ = 1+c

2−α . The expected consumption is then the same at every node.

In order to understand Proposition 3.2, notice that if all other nodes
charge the price p∗ which maximizes xp(1 − α), it is a best response for
node i to choose the same monopoly price. Hence, prices are uniform across
the network and equal to the monopoly price. We remark that this network
irrelevance result, as opposed to that of the previous section, is a robust result
which, as shown in Section 4, holds irrespective of the specific assumptions
on the distribution function F . Furthermore, it implies that consumers at
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every node have the same demand, so that consumer surplus is independent
of a node’s centrality. In fact, consumers have an incentive to connect to one
other node in order to benefit from the positive social comparison effect, but
no incentive to form any additional link.

4 Extensions

In this Section, we discuss two extensions of the model: optimal monopoly
pricing with general distributions (Subsection 4.1) and bargaining between
the monopolist and consumers on the division of the surplus (Subsection 4.2).

4.1 General Distribution Functions

In the analysis so far, we have restricted attention to linear demands gener-
ated by a uniform distribution of valuations. This restriction is motivated by
tractability considerations. With linear demands, optimal prices are charac-
terized as the solution to a system of linear equations, allowing for a study of
the relation between prices and node centrality in arbitrary network topolo-
gies. Furthermore, with uniform distributions, the marginal effect of a change
in prices on demand is independent of the price level, eliminating the com-
plexity which would result from the curvature of the demand function. How-
ever, we are aware of the fact that the assumption of uniform distribution
is restrictive, and we discuss in this extension partial results obtained under
general distribution functions.

We consider a general distribution of valuations F over a compact interval
[θ, θ] ⊂ <+ with continuous and bounded density f . Assume that F satisfies

the monotone hazard rate condition: f(θ)
1−F (θ)

is monotonically increasing in θ.

4.1.1 Local network externalities

We focus attention to optimal prices such that demand at every node is
interior. To this end, we need to impose additional assumptions on the
distribution function and the externalities parameter α. Define:

Φ(θ) ≡ 1− F (θ) + θ

2f(θ)
,

Ψ(θ) ≡ 1− F (θ)

f(θ)
.

16



By the monotone hazard rate property, Ψ is a decreasing function. Notice
that Φ may either be increasing or decreasing, and is a constant function
if and only if F is the uniform distribution. We will assume however that
Φ′(θ) ≤ 1 so that Φ(θ)−θ is a decreasing function. To guarantee the existence
of an interior demand equilibrium, we let φ(θ)−θ ≥ α(n−1) ≥ 0 ≥ Φ(θ)−θ
and Ψ(θ)− θ ≥ α(n− 1) ≥ 0 ≥ Ψ(θ)− θ. Under these assumptions, we can
prove:

Proposition 4.1 There exists an interior optimal pricing strategy for the
monopolist which is characterized by the solution to the system of equations:

θ̃i = Φ(θ̃i)− α
∑

gij(1− F (θ̃j)).

There exists an interior equilibrium price vector for the local monopolists
which is characterized by the solution to the system of equations:

θ̃i = Ψ(θ̃i)− α
∑

gij(1− F (θ̃j)).

This characterization of equilibrium enables us to study the robustness of
Propositions 2.3 and 2.4 with respect to changes in the distribution. We first
consider the case of a single monopolist. The network irrelevance result of
Proposition 2.3 does not hold with a general distribution F . The discussion of
optimal pricing rules differs when Φ(θ) is increasing and Φ(θ) is decreasing.
When Φ(θ) is decreasing, the optimal pricing rule leads the monopoly to
charge a higher price at more central nodes:

Corollary 4.2 Suppose that Φ(θ) is decreasing. For any two nodes i and j
such that gik = 1⇒ gjk = 1, pj > pi.

When Φ(θ) is increasing, there is no general result on the relation between
node centrality and prices. However, as the following example shows, more
central nodes may experience either higher or lower prices, depending on the
shape of the distribution F .

Example 4.3 Suppose that n = 3 and g12 = g23 = 1, g13 = 0. Let F (θ) =
θ2(3β

2
− 1

2
) + 3

2
(1− β) for β, θ ∈ [0, 1]

It is easy to check that the distribution function F satisfies the assumption
Φ′(θ) < 1. Notice that, for β < 1

3
, the function Φ(θ) is increasing, for β > 1

3
,

the function Φ(θ) is decreasing, and for β = 1
3
, the distribution F is uniform.

Let p be the optimal price charged at the peripheral nodes 1 and 3 and q
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the price charged at the central node 2. The following table lists the optimal
prices for different values of β with α = 0.1:

β 0 0.2 0.4 0.6 0.8 1.0
p 0.408 0.457 0.517 0.555 0.580 0.598
q 0.397 0.448 0.522 0.572 0.608 0.636

Table 2: Optimal prices for different distributions

Table 2 shows that the ranking of prices at the central and peripheral
node varies with β: when the distribution puts more weight on low values of
θ (lower value of β), the central node has a lower price than the peripheral
node ; this result is reversed when the distribution puts more weight on high
values of θ.

By contrast, the result of Proposition 2.4, showing that more central
nodes are charged higher prices by local monopolists, remains valid for gen-
eral distributions of θ:

Corollary 4.4 For any two nodes i and j such that gik = 1 ⇒ gjk = 1,
pj > pi.

Corollary 4.4 reflects the robust intuition that a local monopoly which
does not internalize the effect of a change in price at the demand at other
nodes, always prefers to charge higher prices at more central nodes which
have a higher demand.

4.1.2 Aspiration based reference prices

In the model of aspiration based reference prices, Proposition 3.1 shows that
the relevant centrality index is the sum of inverse degrees of a node’s neigh-
bor. This Proposition cannot easily be extended to general distributions.
However, we can use the same intuition as in Proposition 3.1 to compare
prices in the specific context of a star:

Remark 4.5 Suppose that the network g is a star. In the model of aspiration
based reference price with general distributions, the single monopolist always
charges a higher price to the hub than to the peripheral agents.
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As opposed to the network irrelevance result of the model of local network
externalities, the network irrelevance result of Proposition 3.2 is robust to
changes in the demand function. In fact, define the monopoly price p∗ as the
solution to the equation

1− F (p(1− α))

f(p(1− α))
= p− c (8)

Remark 4.6 In the model of aspiration based reference price with general
distributions, there is always an equilibrium where the local monopolies all
charge the monopoly price p∗.

4.2 Bargaining

In the previous sections, it was implicitly assumed that suppliers had all
the bargaining power. In the present subsection, we would like to get some
intuition on the influence of consumers’ bargaining power.

4.2.1 Local network externalities

Suppose that the price at node i is negotiated between the monopolist and
the consumer at that node. In order to avoid any difficulties, we suppose that
bargaining takes place before the valuation of the consumer is known, when
both parties have symmetric information. In that case, the total surplus to
be shared is given by

CSi = (xi(c))
2.

where demand is computed as the minimal value for which the trading surplus
between the monopolist and the consumer is positive. As c is uniform across
nodes, as in the case of uniform monopoly pricing, demand at node i is
proportional to the node’s Katz-Bonacich centrality. If we assume that the
monopolist has the same bargaining power at all nodes, the surplus accruing
to the monopolist is thus monotonically increasing in the Katz-Bonacich
centrality measure at that node. Hence, when prices are formed by bargaining
between the monopolist and the consumers, the price at node i reflects the
Katz-Bonacich centrality of that node.

4.2.2 Aspiration based reference price

If the monopolist and the consumer bargain before the valuation is known,
the relevant price to compare is the ”participation fee” Ti which is paid by the
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consumer before she learns her valuation. The total surplus of a consumer
at node i is given by:

CSi =
1

2
(1 + α

1

di

∑
j

gijTj − c)2.

If, at each node, the monopolist receives an equal share γ of the surplus, then
for low values of α, there exists an equilibrium where the monopolists charge
the same price T at each node with

T =
γ

2
(1 + αT − c)2.

Hence, for low values of externalities, there exists a price T resulting from
the bargaining between the monopolist and the consumers at every node,
which is independent of the centrality of the consumer in the social network.

5 Conclusions

This paper contributes to an emerging literature which tries to understand
how a monopolist optimally discriminates in a social networks according to
consumer’s centrality. As opposed to some recent contributions in computer
science, which focus on sequential consumption decisions among myopic con-
sumers, we consider simultaneous consumption choices among perfectly ra-
tional agents. We show that in a model of local network externalities where
consumers are positively affected by the consumption of their neighbors, a
single monopolist does not discriminate across the network. Local monop-
olies charge higher prices at nodes which have a higher degree centrality.
When consumers compare the price they receive with the average price in
their social neighborhood, a single monopolist has an incentive to charge a
higher price to a node which has many neighbors of small degree, like the
hub of a star. Local monopolies do not internalize the price externalities and
in equilibrium charge a uniform price across the network.

We would like to mention two open problems that deserve further study.
First, the study of endogenous formation of the social network requires a
detailed analysis of the marginal value of additional links that we would like
to undertake in future research. Second, as in any model of price discrim-
ination, consumers located at different nodes in the social network end up
paying different prices for the good, and could resell the good to one another.
The study of models of resale along social networks is obviously an important
area for future research.
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7 Proofs

Proof of Proposition 2.1: Because xi is increasing in xj, the system of
equations (3) exhibits complementarities, and the analysis of Corollary 1
in Ballester and Calvó-Armengol (2009) applies. However, Ballester and
Calvó-Armengol (2009) only consider a situation with positivity constraints
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xi ≥ 0 , and we need to adapt their argument to take care of the additional
constraints xi ≤ 1. First note that, once S0 and S1 are fixed, by Theorem
2 in Ballester and Calvó-Armengol (2009), the demand of consumers in S is
uniquely given by the Katz-Bonacich centrality measure restricted to S, as
stated in the Proposition. The only statement to prove is that the partition
of the set N of consumers into the three sets S0, S1 and S is unique. Suppose
by contradiction that there exist two systems of demands characterized by
two different partitions S0, S1, S and S ′0, S

′
1, S

′ with corresponding demands
x∗ and x

′∗. Transform the problem by increasing prices pi for all i ∈ S1 to
the point where:

pi = α
∑

gijxj.

Let p′ denote the new price vector. Because none of the demand vectors
have been changed, and the constraints are still satisfied, the initial demand
system x∗ remains a solution to the new problem. Furthermore, for the new
vector of prices p′, the constraint xi ≤ 1 become irrelevant, and x∗ is a
solution to the classical linear complementarity problem studied by Ballester
and Calvó-Armengol (2009). Hence, the system of demands x∗ is the unique
solution to the new problem with prices p′. Next notice that p′ > p, (all
prices in p′ are at least as large as prices in p and some prices are strictly
higher). Consider the solution x

′∗ to the initial problem with prices p, and
let p increase incrementally towards p′. Because the matrix [I − αG]−1

is nonnegative, this increase in price will initially result in a reduction of
x

′∗
i for all i ∈ S, and possibly the move of some consumers from S1 to S.

By successive steps, we observe that this increase of prices from p to p′ will
necessarily result in a reduction of all quantities x

′∗
i . This shows in particular,

that if x
′∗
i = 0 for the price system p, then x

′∗
i = 0 for the price system p′. As

S0 is the unique set of consumers with zero demand at prices p′, we conclude
that S ′0 ⊆ S0. Clearly, we can repeat the same argument interchanging the
roles of S0 and S ′0, in order to obtain S0 ⊆ S ′0, establishing that S0 = S ′0, and
concluding the proof of the Proposition.

Proof of Proposition 2.3: We first note that the monopoly will never
choose a price vector p such that the constraint xi ≥ 0 or xi ≤ 1 binds for
some i. Suppose by contradiction that i ∈ S0 and the constraint xi ≥ 0 is
binding. If this is the case, we must have pi > 1. By reducing the price pi
so that xi > 0, the monopoly increases the profit made on node i (because
(pi − c)xi > 0), and increases the value xi which results in an increase in
xj for all j 6= i. This is a profitable deviation. Conversely, suppose that
i ∈ S1 and the constraint xi ≤ 1 is binding. By increasing the price so
that pi = α

∑
gijxj, the monopoly increases the profit made on consumer
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i, and does not change the profit made on any other consumer because xi
remains equal to 1. Again, this is a profitable deviation, establishing that the
monopoly will always choose a vector of prices so that demands are interior.
Now, if

Π =
∑
i

(pi − c)
∑
j

(aij(1− pj)),

differentiating with respect to pi we find:

∂Π

∂pi
=

∑
j

(aij(1− pj))−
∑
j

(aji(pj − c)).

Because the network is undirected, G is a symmetric matrix, and so is [I −
αG]−1, so that aji = aij. We thus have, for all i,

∂Π

∂pi
=

∑
j

aij(1 + c− 2pj) = 0.

Because aij ≥ 0 for all ij, this last system of equations has a unique solution:
pj = 1+c

2
for all j.

Proof of Proposition 2.4: We first note that firm i will always choose a
price pi such that the constraints 0 ≤ xi and xi ≤ 1 are not binding : if
0 ≤ xi were binding, the firm could increase its profit by reducing its price
so that xi > 0 and if xi ≤ 1 were binding, the firm could increase its profit
by increasing its price and selling the same quantity xi = 1. Hence, we can
restrict attention to choices of prices pi which maximize:

Π = (pi − c)
∑
j

aij(1− pj),

resulting in the first order condition:

2aiipi +
∑
j 6=i

aijpj = aiic+
∑
j

aij.

This system can be rewritten in matrix form as

(A + ∆(A))p = c∆(A) + A1 (9)

where ∆(A) denotes the diagonal matrix formed by picking the diagonal
elements of A, i.e. the diagonal matrix such that dii = aii and dij = 0 for
i 6= j. By simple algebraic manipulations, we obtain:
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(I + A−1∆(A))(p− c1) = (1− c)1,

(I− 1

2
(I−A−1∆(A)))(p− c1) =

1− c
2

1.

Recalling that A = [I− αG]−1,

A−1∆(A) = (I− αG)∆((I− αG)−1). (10)

Hence, if 1
2
λ((I − αG)∆((I − αG)−1)) < 1, we can invert the matrix (I +

A−1∆(A)) to obtain:

p− c1 =
1− c

2
(I− 1

2
(I− (I− αG)∆((I− αG)−1)))−11. (11)

Now recall that

(I− αG)−1 =
∞∑
k=0

αkGk,

Furthermore,

∆(
∞∑
k=0

αkGk) =
∞∑
k=0

αk∆(Gk),

Hence

I− (I− αG)∆((I− αG)−1) =
∞∑
k=1

αk(G(∆(Gk−1))−∆(Gk)). (12)

This last expressions shows that there exists α such that λ(I−(I−αG)∆((I−
αG)−1) < 1 for α ≤ α. Hence, the matrix (I− 1

2
((I−αG)∆((I−αG)−1))) is

invertible if external effects are sufficiently small. To finish the computation,
note that:

(I− 1

2
(I− (I− αG)∆((I− αG)−1)))−1 =

∞∑
l=0

(
1

2
)l(I− (I− αG)∆((I− αG)−1))l,

=
∞∑
l=0

(
1

2
)l(
∞∑
k=1

αk(G(∆(Gk−1))−∆(Gk)))l.
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We now want to express the composition of two power series as a power
series, and compute the coefficients Cm such that:

∞∑
l=0

(
∞∑
k=1

αkG(∆(Gk−1))−∆(Gk)))l =
∞∑
m=0

αmCm. (13)

These coefficients can be obtained by using the Faà di Bruno formula on
the composition of power series. 2 To express this formula, consider the
composition of two power series:∑

l

(
∑
k

akαk)
l =

∑
cmα

m,

For any integer m, let P(m) denote the set of all partitions of the integer m,
i.e., sets of integers k1, ..kR such that

∑
r kr = m. Then, the Faà di Bruno

formula states that:

cm =
∑

k1,...,kR∈P(m)

ak1ak2 ...akR .

Applying the formula, we find:

Cm =
∑

k1,k2,...,kR|
∑
kr=m

∏
(G(∆(Gkr−1))−∆(Gkr). (14)

Computing the first terms of the sequence, we find: C0 = I,C1 =
G,C2 = G2 − ∆(G2) = G2 − ∆(G1), where the last equality is due to
the fact that the diagonal elements of G2 are equal to the degrees of the
agents. We thus find the formula in the Proposition.

Proof of Proposition 3.1:
We can restrict attention to choices of prices pi which result in interior

demands, and maximize:

Π =
∑
i

(pi − c)(1− pi + α
∑
j

g′ijpj),

resulting in the first order conditions:

2pi − α
∑
j

g′ijpj +
∑
j

g′ji = 1 + c, (15)

or in matrix terms

2See Johnson (2002) for an historical account of the formula and its uses and variants.
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(I− α1

2
(G′ + G′T ))p =

1 + c

2
1. (16)

If α 1
2
λ(G′ + G′T ) < 1, the matrix (I − α 1

2
(G′ + G′T ) is invertible, and the

solution is given by

p = [(I− α1

2
(G′ + G′T )]−1

1 + c

2
1. (17)

We use the power series expansion to write:

[(I− α1

2
(G′ + G′T ))]−1 =

∞∑
k=0

1

2k
αk(G′ + G′T )k,

establishing the Claim.

Proof of Proposition 3.2: We can restrict attention to choices of prices pi
which result in interior demands, and let each firm maximize:

Π = (pi − c)(1− pi + α
∑
j

g′ijpj),

resulting in the first order conditions:

2pi − α
∑
j

g′ijpj = 1 + c, (18)

or in matrix terms

(I− α1

2
(G′))p =

1 + c

2
1. (19)

Because the matrix G′ is stochastic, G′1 = 1, and p∗ = 1+c
2−α1 is the unique

solution to equation (19)

Proof of Proposition 4.1: We focus on interior demands, characterized
by:

θ̃i = pi − α
∑

gij(1− F (θ̃j)).

Rewrite the profit of the monopoly as:

π =
∑
i

(θ̃i + α
∑

gij(1− F (θ̃j)))(1− F (θ̃i)),

and differentiate with respect to θ̃i to obtain:
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θ̃i = Φ(θ̃i)− α
∑

gij(1− F (θ̃j)). (20)

The second order condition is satisfied as Φ(θ) − θ is decreasing. To prove
existence of a solution to the system of equations, consider the function
T : [θ, θ]n → [θ, θ]n such that T (θ−i) is the unique solution to equation 20.
The function T is a continuous function from a compact interval of <n to
itself and admits a fixed point by Brouwer’s fixed point theorem. Similarly,
rewrite the profit of a local monopoly as:

πi = (θ̃i + α
∑

gij(1− F (θ̃j)))(1− F (θ̃i)),

and follow the same steps to show existence of an interior demand equilibrium
characterized by the equation:

θ̃i = Φ(θ̃i)− α
∑

gij(1− F (θ̃j)). (21)

Proof of Corollary 4.2: Consider the two equations:

θ̃i = Φ(θ̃i)− α
∑

gik(1− F (θ̃k))

θ̃j = Φ(θ̃j)− α
∑

gjk(1− F (θ̃k))

Taking the difference between the two equations,

θ̃i − θ̃j = Φ(θ̃i)− Φ(θ̃j) + α
∑

k|gik=0

gjk(1− F (θ̃k)) + αgijF (θ̃j)− F (θ̃i). (22)

which implies that θ̃i > θ̃j as Φ(θ) is decreasing and F (θ) increasing. Finally,
as Φ(θ) is decreasing, Φ(θi) = pi < Φ(θj) = pj.

Proof of Corollary 4.4: The proof is identical to the proof of Corollary
4.2, observing that Ψ(θ) is always decreasing.

Proof of Remark 4.5: Let p be the price charged to the peripheral agents
and q the price charged to the hub. The profit of the monopolist is given by

π = q(1− F (q − αp)) + (n− 1)p(1− F (p− αq)).
Because the monopolist can always choose to charge q to the peripheral

nodes and p to the central node, by a revealed preference argument we must
have:
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p(1− F (p− αq)) ≥ q(1− F (q − αp)).

Now suppose by contradiction that p > q, and consider a change where the
monopolist increases the price of the peripheral nodes to p. By doing this, it
increases the profit on the central node as 1 − F (p − αq) < 1 − F (p − αp).
Furthermore, the new profit at any of the peripheral nodes is:

p(1− F (p− αp)) > p(1− F (p− αq)) ≥ q(1− F (q − αp)),

so that the profit at the peripheral node also increases, contradicting the fact
that (p, q) is an optimal pricing strategy.

Proof of Remark 4.6: Let all other firms choose the monopoly price p∗.
Then the local monopoly chooses a price p to maximize

πi = (p− c)(1− F (p− αp∗)).

Obviously, this profit function is maximized at p = p∗.
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