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Abstract

There are many situations in which individuals have a choice of whether or not

to observe the eventual outcome. In these instances, individuals often prefer to

avoid observing the outcome. The standard von Neumann-Morgenstern (vNM)

Expected Utility model cannot accommodate these cases, since it does not distin-

guish between lotteries for which outcomes are observed by the agent and lotteries

for which they are not. I develop a simple axiomatic model that admits preferences

for observing the outcome or remaining in doubt. I then use this model to analyze

the connection between the agent’s attitude towards risk, doubt, and what I refer

to as ‘optimism’.

This framework accommodates a wide array of field and experimental obser-

vations that violate the vNM model, and that may not seem related, prima facie.

For instance, this framework accommodates self-handicapping, in which an agent

chooses to impair his own performance. It also admits a status quo bias, without

having recourse to framing effects. In a political economy setting, a voter avoids

free information if he believes other voters will do the same.

Keywords: Value of information, uncertainty, recursive utility, doubt, unobserved out-

comes, unresolved lotteries.
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Models of decision making under uncertainty usually assume that the agents expect

to eventually observe the resolution of uncertainty. However, there are many situations in

which individuals can choose to avoid finding out which outcome has occurred. In these

cases, individuals often decide not to observe the resolution of uncertainty. Consider

the classic example of genetic diseases. As Pinker (2007) discusses, “the children of

parents with Huntington’s disease [HD] usually refuse to take the test that would tell

them whether they carry the gene for it.” HD is a neurodegenerative disease with severe

physical and cognitive symptoms. It reduces life expectancy significantly, and there is

currently no known cure. A person can take a predictive test to determine whether

he himself will develop HD. A prenatal test can also be done to determine whether his

unborn child will have the disease as well.1 In an experimental study, Adam et al. (1993)

find low demand for prenatal testing for HD. This is supported by a number of other

studies as well, and Simpson et al. (2002) find that the demand for prenatal testing is

significantly lower than the demand for predictive tests. That is, individuals who are

willing to know their own HD status are often unwilling to find out their unborn child’s

status. Observing the result is an important decision, since the prenatal test is done

at a stage in which parents can still terminate the pregnancy. As for parents who do

not consider pregnancy termination to be an option, the information could still impact

the way they decide to raise their child. For example, if they know that their child will

develop HD, they might choose to prepare him psychologically for the difficult choices

he will have to make in the future.

It may seem puzzling that some parents prefer to avoid the test. It may appear

particularly surprising that a person who prefers to be certain of his own HD status

now rather than later would also choose not to find out whether his unborn child will

develop the disease.2 But note that the average age of onset for HD is high enough that

the subjects who do not see the result of the prenatal test may never find out whether

their children are affected. That is, while choosing the predictive test mostly reveals

a preference for early resolution of uncertainty, choosing (or refusing) the prenatal test

mainly reveals a preference for never observing the outcome of a lottery. It is precisely

this type of preference on which this paper focuses.3

1An affected individual has a 50% chance of passing the disease to each child. The average age of
onsets varies between ages 35 and 55. See Tyler et al. (1990) for details.

2The prenatal test is not costless, as the procedure does involve a small chance of miscarriage.
However, this cost appears small compared to the severity and likelihood of the disease, considering
that this procedure is routinely conducted to test for much less likely conditions.

3In particular, this paper does not consider other factors that are present in the HD example, such
as parents’ concern that their child will be treated differently if it is known that he has HD, as discussed
in Simpson (2002).
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The standard von Neumann-Morgenstern (vNM) Expected Utility model cannot ac-

commodate preferences for remaining in doubt, since it does not make a distinction

between lotteries for which the final outcomes are observed and lotteries for which they

are not. Redefining the outcome space to include whether the prize is observed does not

resolve the issue.4 In this paper, I modify the basic axioms of the vNM framework to

develop a model that admits strict preferences for remaining in doubt or for observing

the outcome. The central aim is to demonstrate that this simple and natural exten-

sion of the vNM framework can accommodate a wide array of field and experimental

observations that are considered incompatible with the vNM model.

Applications

I first use a simplified version of the model to accommodate seemingly unrelated behav-

ioral patterns that have motivated frameworks that are significantly different from the

standard vNM model. Two important examples are self-handicapping and the status

quo bias. In this analysis, I assume throughout that the agent is doubt-prone, meaning

that when given the choice between observing and not observing a lottery’s resolution,

they prefer not observing it.

Consider first self-handicapping, in which individuals choose to reduce their chances of

succeeding at a task. As discussed in Benabou and Tirole (2002), people may “choose to

remain ignorant about their own abilities, and [...] they sometimes deliberately impair

their own performance or choose overambitious tasks in which they are sure to fail

(self-handicapping).” This behavior has been studied extensively, and seems difficult to

reconcile with the standard Expected Utility theory. For that reason, models that study

self-handicapping make a substantial departure from the standard vNM assumptions.

A number of models follow Akerlof and Dickens’ (1982) approach of endowing agents

with manipulable beliefs or selective memory. Alternatively, Carillo and Mariotti (2000)

consider a model of temporal-inconsistency, in which a game is played between the

selves, and Benabou and Tirole (2002) use both manipulable beliefs and time-inconsistent

agents.5

4The term observation is defined as learning what the outcome is. This model does not take into
account a possible disutility from the graphical nature of the observation itself. See appendix for a
discussion on the problem with redefining the outcome space to include the observation.

5See also Compte and Postlewaite (2004), who focus on the positive welfare implications of having
a degree of selective memory (assuming such technology exists) in the case where performance depends
on emotions. Benabou (2008) and Benabou and Tirole (2006a, 2007) explore further implications of
belief manipulation, particularly in political economy settings, in which multiple equilibria emerge.
Brunnermeier and Parker (2005) treat a general-equilbrium model in which beliefs are essentially choice
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The frameworks mentioned above capture a notion of self-deception, which involves

either a hard-wired form of selective memory (or perhaps a rule of thumb), or some form

of conflict between distinct selves. These models are often not axiomatized. In contrast,

this model simply extends the vNM framework and does not allow agents to manipulate

their beliefs or to have access to any other means for deceiving themselves.6 Yet it

still accommodates the decision to self-handicap, as is shown in section 2. Intuitively, a

doubt-prone agent prefers doing worse in a task if this allows him to avoid information

concerning his own ability. This is essentially a formalization of the colloquial ‘fear of

failure’; an agent exerts less effort so as to obtain a coarser signal.

This model can also accommodate a status quo bias. The status quo bias refers to

the well-known tendency people have for preferring their current endowment to other

alternatives. This phenomenon is often seen as a behavioral anomaly that cannot be

explained using the vNM model. On the other hand, it can be accommodated using

loss aversion, which refers to the agent being more averse to avoiding a loss than to

making a gain (Kahneman, Knetch and Thaler (1991)). The status quo bias is therefore

an immediate consequence of the agent taking the status quo to be the reference point

for gains versus losses. The vNM model does not allow an agent to evaluate a bundle

differently based on whether it is a gain or a loss, and hence cannot accommodate a

status quo bias. Arguably, this is an important systematic violation of the vNM model,

and is one of the reasons cited by Kahneman, Knetch and Thaler (1991) for suggesting

“a revised version of preference theory that would assign a special role to the status

quo.”

This model does not make use of a notion of reference points or of relative gains

and losses. In the cases where the choices also have an informational component on the

agent’s ability to perform a task well, a doubt-prone agent has incentive to choose the

bundle that is less informative. This leads to a status quo bias when it is reasonable

to assume that maintaining the status quo is a less informative indicator of the agent’s

ability than other actions. Since this model does not resort to reference points, there

is no arbitrariness in defining what constitutes a gain and what constitutes a loss. The

bias of a doubt-prone agent is always towards the least-informative signal of his ability.

variables in the first period; an agent manipulates his beliefs about the future to maximize his felicity,
which depends on future utility flow. Caplin and Leahy (2001) present an axiomatic model where agents
have ‘anticipatory feelings’ prior to resolution of uncertainty, which may lead to time inconsistency.
Koszegi (2006) considers an application of Caplin and Leahy (2001). Wu (1999) presents a model of
anxiety. See Berglass and Jones (1978) for the original experiment on self-handicapping.

6While the theoretical framework later introduces a notion of optimism, the agents are not allowed
to be either optimistic or pessimistic in any of the applications considered, as it can perhaps be seen as
a form of belief manipulation.
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In instances where the status quo provides the most informative signal, the bias would

be against the status quo. For example, an individual could have incentive to change

activities frequently rather than obtaining a sharp signal of his ability in one particular

field.

This framework admits other instances of seemingly paradoxical behavior. In one

example, an individual pays a firm to invest for him even though he does not expect

that firm to have superior expertise. In other words, the agent’s utility not only depends

on the outcome, but also on who makes the decision. This result is not due to a cost

of effort, but rather to the amount of information acquired by the decision maker. This

framework can also be used in a political economy setting, as there are many government

decisions that are never observed by voters. As shown in section 2, voters may have

strong incentives to remain ignorant over these issues, even if information is free. This

is in line with the well-known observation that there has been a consistently high level

of political ignorance amongst voters in the U.S. (see Bartels (1996) for details). This

model suggests that if voters care more about policies that they may never observe, then

they have less incentive to acquire information.

Lastly, recent experiments by Dana, Weber and Kuang (2007) are consistent with this

framework. They consider a typical dictator game in which there is a clear ‘altruistic’ al-

ternative and a ‘selfish’ alternative: in one box, the dictator receives $6 and the recipient

$1, and in the other both receive $5. As is expected, a high percentage of people choose

the altruistic alternative. They then vary the experiment so that the dictator does not

know what the recipient will receive in each box, as it depends on a coin toss. However,

the dictator can observe the result of the coin toss before making his choice. He can do

so at no cost, and in some cases he is even paid to observe the coin toss. Despite this, in

this setting a high percentage of agents refuse to observe the coin toss, and choose the

‘selfish’ option. These results appear difficult to reconcile with either selfish behavior or

altruistic behavior, but they are entirely in line with doubt-prone preferences.7

Framework

An agent has primitive preferences over general lotteries that lead either to outcomes

that he observes or to lotteries that never resolve, from his frame of reference.8 This is a

7A thorough discussion of these experiments is deferred to a second paper, which also considers an
extension of this framework that accommodates behavior associated with anticipated regret, including
preferences for smaller menus and the Allais paradox.

8Throughout this paper, probabilities are taken to be objective. With subjective probabilities, there
are cases in which it may seem more natural to interpret the preferences as state-dependent. For
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richer domain of lotteries than in the standard vNM case. If the agent receives a lottery

that never resolves then he knows that he will not observe the outcome, and his terminal

prize is the lottery itself. I apply the three standard vNM axioms on this expanded

domain; that is, weak order, continuity and independence hold. I also assume that the

agent is indifferent between observing a specific outcome and receiving an unresolved

lottery that places probability one on that same outcome, since he is certain of the

outcome’s occurrence. The observation itself has no effect on the value of the outcome

in this model. This property restricts the agent’s allowable preferences over unresolved

lotteries, as I demonstrate in section 3.

I obtain a representation theorem that separates the agent’s risk-attitude over lotter-

ies whose outcomes he observes from his risk attitude over unresolved lotteries. While

this representation theorem suffices for most of the analysis, I also consider a second rep-

resentation in a two-period setting in which the agent may learn ‘early’ or ‘late’ whether

or not a lottery will resolve. His preferences over unresolved lotteries are allowed to

change over time. In contrast, his preferences over lotteries that resolve do not change

over time, as this model does not aim to capture a notion of anxiety.

Using the first (static) representation, I explore the connection between risk-aversion,

doubt-proneness and a new notion of optimism over unresolved lotteries, which I formally

define. Intuitively, an optimistic agent prefers more ‘scrambled’ information. I show

that an agent who is both doubt-prone and risk-averse over the unresolved lotteries

can be neither optimistic nor pessimistic . In addition, his utility function associated

with unresolved lotteries must be more concave than his utility function associated with

lotteries whose outcome he observes. If an agent exhibits optimism over unresolved

lotteries has the same utility function for both lotteries that resolve and lotteries that

do not, then he must be doubt-prone.

Restricting attention only to preferences over purely unresolved lotteries, this model

does not assume that these preferences obey the independence axiom. Instead, I assume

the Rank-Dependent Utility (RDU) axioms, for reasons discussed in section 3. As there

exists an accepted notion of optimism (Quiggin (1982)) in an RDU setting, it is of

interest to formally relate RDU optimism to this paper’s definition of optimism. RDU

optimism essentially corresponds to a notion of overweighing the probabilities over the

better outcomes. I show that my definition of optimism is equivalent to RDU optimism,

if it holds everywhere. In that sense, it serves as a new axiom for RDU optimism.

instance, if a person has an intrinsic preference over his ability but is unsure of his type, it is unclear
whether ability is better viewed as a state of the world or a consequence.
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Relation to the literature

The approach used in this paper is related to, but distinct from, the recursive expected

Utility (REU) framework introduced by Kreps and Porteus (1978), and extended by

Epstein and Zin (1989), Segal (1990) and Grant, Kajii and Polak (1998, 2000).9 These

earlier contribution address the issue of temporal resolution, in which an agent has a

preference for knowing now versus knowing later. While the REU framework treats the

issue of the timing of the resolution, this paper treats the case of no resolution. Simply

adding a ‘never’ stage to the REU space does not yield an equivalent representation. To

demonstrate this point, I place the agent in a two-stage model (section 5), but do not

allow the agent to have preferences over temporal resolution. The agent may, however,

change his preferences over unresolved lotteries over time. For instance, he may prefer

to avoid information in the early stage, but be curious in the later stage. In addition to

the formal differences between the two frameworks, there are also interpretational ones.

The REU model captures a notion of ‘anxiety’ (wanting to know sooner or later) which

is distinct from the notion of doubt-proneness (not wanting to know at all) addressed

here.

This paper is structured as follows. Section 1 introduces a simplified version of the

model, which is used in section 2 for the applications. Section 3 presents the model,

and section 4 defines optimism and discusses the connection between doubt-proneness,

optimism and risk-aversion. Section 5 presents a representation for a two-period setting,

and analyzes the connection between this model and the Kreps-Porteus model. Section

6 concludes. All proofs are in the appendix.

1 Simplified Model

I begin with a simplified version of the model, which is sufficient for most applications of

interest. The axiomatic treatment is deferred to section 3. The objects used throughout

are as follows. Let Z = [z, z̄] ⊂ < be the outcome space, and let L0 be the set of

simple probability measures on Z. For f = (z1, p1; z2, p2; ...; zm, pm) ∈ L0, zi occurs with

probability pi. I use the notation f(zi) to mean the probability pi (in lottery f) that zi

occurs. Let L1 be the set of simple lotteries over Z∪L0. For X ∈ L1, I use the notation

X = (z1, q
I
1 ; ...; zn, q

I
n; f1, q

N
1 ; ...; fm, q

N
m). Here, zi occurs with probability qIi , and lottery

9Grant, Kajii and Polak (1998) focus on preferences for early resolution of uncertainty, and Dillen-
berger (2011) considers preferences for one-shot resolution of uncertainty. Selden’s (1978) framework is
also closely related to the REU model.
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f1

qI2

p1

1− p1

z1

z3

z4

qN1 = 1− qI1 − qI2

qI1 z2

Figure 1: Lottery X = (z1, q
I
1 ; z2, q

I
2 ; f1, q

N
1 ), where f1 = (z3, p1; z4, 1− p1)

fj occurs with probability qNj . Note that
n∑
i=1

qIi +
m∑
i=1

qNi = 1. The reason for using

this notation, rather than the simpler enumeration q1, q2, ..., qn is explained shortly. Let

� denotes the agent’s preferences over L1, and �, ∼ are defined in the usual manner.

Assume the agent’s preferences are monotone.

For any X = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m), the agent expects to

observe the outcome of the first-stage lottery. He knows, for instance, that with proba-

bility qIi , outcome zi occurs, and furthermore he knows that he will observe it. Similarly,

he knows that with probability qNi , lottery fi occurs. But while he does observe that he

is now faced with lottery fi, he does not observe the outcome of fi. I refer to lottery fi

as an ‘unresolved’ lottery. I also use the notation qIi and qNi to distinguish between prob-

abilities that lead to prizes where the agent is informed of the outcome (since he directly

observes which z occurs), and probabilities that lead to prizes where he is not (since he

only observes the ensuing lottery). The superscript I in qIi stands for ‘Informed’, and N

in qNi for ‘Not informed’ (see figure 1).

Denote the degenerate one-stage lottery that leads to zi ∈ Z with certainty δzi =

(zi, 1) ∈ L0. The degenerate lottery that leads to fi ∈ L0 with certainty is denoted

δfi = (fi, 1) ∈ L1. Note that all lotteries of form X = f , where f ∈ L0, are purely

resolved (or ‘informed’) lotteries, in the sense that the agent expects to observe whatever
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outcome occurs. Similarly, all lotteries of form X = δf , where f ∈ L0, are purely

unresolved lotteries. With slight abuse, the notation f � f ′ (or δf � δf ′) is used, where

f, f ′ ∈ L0. In addition, f � δf (or δf � f) indicates that the agent prefers (not) to

observe the outcome of lottery f than to remain in doubt. Under the simplest set of

axioms, the representation collapses to the following:
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Simple representation. X � Y if and only if W (X) > W (Y ), where for all X =

((z1, q
I
1 ; ...; zn, q

I
n; f1, q

N
1 ; ...; fm, q

N
m) ∈ L1,

W (X) =
n∑
i=1

qIi u(zi) +
m∑
j=1

qNj u
(
v−1 (Ev(fj))

)
The functions u and v are unique up to positive affine transformation.

In this simplified setting, the representation is essentially a Kreps-Porteus (KP) repre-

sentation, albeit with a different interpretation. Section 3 considers more general axioms,

and section 5 demonstrates that even this simplified model diverges from the KP rep-

resentation if there is more than one period. But for most applications, this simple

representation suffices.

The intuition behind this representation is straightforward. The first term is of the

standard expected utility form for lotteries that are eventually observed, with utility

functional u. As the aim of this model is to depart as little as possible from expected

utility, when there are no unobserved lotteries the representation is indistinguishable

from the standard EU form. As for when there are unobserved lotteries, they are treated

in the same way as any other prize. Take an unobserved lottery f . The function v is used

to find how this lottery f ranks with respect to other outcomes in the outcome space Z.

In other words, v is used to obtain the certainty equivalent v−1(Ev(f)). Then, this rep-

resentation uses standard expected utility analysis with function u, using the certainty

equivalent v−1(Ev(f)) in lieu of a final outcome z. I now define doubt-proneness, which

refers to a preference for not observing a lottery, in the natural way.

Definition (Doubt-proneness)

• An agent is doubt-prone somewhere if there exists some f such that δf � f .

• An agent is doubt-prone everywhere if: (i) there exists no f ∈ L0 such that f � δf

and (ii) there exists some f such that δf � f .

An agent who prefers not to observe the resolution of some lottery than to observe it

is doubt-prone somewhere. An agent who (weakly, and strictly for one lottery) prefers

not to observe the outcome of any lottery is doubt-prone everywhere. Doubt-aversion

is defined in a similar manner. Section 4 provides a thorough discussion on the relation

between doubt-proneness and the functions of the more general model. The next section
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considers different settings in which agents are doubt-prone, so as to demonstrate that

various behavioral anomalies can be accommodated naturally.

2 Applications

The aim of this section is to illustrate the scope of this simple extension of the vNM ex-

pected utility model. This section makes the same assumption over preferences through-

out, namely that agents are doubt-prone (they would rather not observe the resolution

of uncertainty). I consider two applications in this section. In the first, an agent’s utility

depends directly on his ability, since it is related to his self-image. He may never fully

observe his ability, but his success at performing tasks provides him with an imperfect

signal. How well he performs a task also depends on his effort. Performing a task bet-

ter provides him with a reward, and so in the standard EU setting, he would always

put in as much effort as he can if effort is costless. In this setting, however, there is a

tradeoff between obtaining a better reward by putting in more effort and obtaining a

coarser signal of ability by putting in less effort. The agent therefore has an incentive

to self-handicap. This setup also accommodates other well known behavioral patterns.

Under one version of this setup, an agent has an incentive to remain with the status

quo. In another version of this setup, a risk-neutral agent prefers less risky bonds with

a lower expected return to more risky stocks with a higher expected return. This agent

is also willing to pay a firm to invest for him, even if he knows that the firm does not

have superior expertise.

In the second application, voters all have the same preferences, but they do not know

who the better candidate is. However, they can acquire this information at no cost. I

demonstrate that there are equilibria in which they choose to remain ignorant, and the

wrong candidate is as likely to win as the right candidate.

2.1 Preservation of self-image

I first introduce a general setup in which the agent has preferences over their self-image,

before analyzing the implications of the results in different contexts. I assume that

the agent places direct value on his ability, independently of the effect it has on his

monetary reward. Arguably, individuals care about their self-image, and would rather

think of themselves as being of higher ability than lower ability. Note that ability, or self-

worth, is never directly observed by individuals, and so this framework applies. Instead,

individuals’ success at achieving their goals, given how much effort they put in, provides
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them with imperfect signals of their ability.

Suppose then that the agent is endowed with ability (or type) t ∈ [t, t] ∈ R. He

does not know what his ability is, but his prior probability of having ability t is p(t).

The agent chooses effort e ∈ [e, e] ∈ R, to obtain a reward m ∈ [m,m] ∈ R. Although

the agent may never observe his ability, he does observe m. The reward depends on

his ability, the effort he puts in, and an intrinsic uncertainty. Let p(m|e, t) denote his

probability of receiving reward m given his effort e and his ability t. Since he does not

know what his ability is ex-ante, his prior probability of receiving m given effort e is

p(m|e) =
∑
t∈[t,t]

p(m|e, t)p(t). Assume that the expected reward is higher if he puts in

more effort for any given ability, and it is higher if he is of higher ability at any given

effort level: Em(e, t) > Em(e, t′)⇔ t > t′, and Em(e, t) > Em(e′, t)⇔ e > e′.10

The agent’s value function W depends on both his reward m and on his intrinsic

ability t. Assume that his utility for m is linear; more precisely, his expected utility over

m is Em(e). In addition, it is linearly separable from his utility over t. He is weakly

risk-averse over t (for both resolved and unresolved lotteries) as well as doubt-prone.11

Recall that u is the utility associated with resolved lotteries, and v with unresolved

lotteries. In this case, these lotteries are over his ability t.

In the standard case in which the agent expects to observe both his ability t and his

reward m, then his value function is:

W (e) = Em(e) + Eu(t)

Since effort is costless, it is immediate that he should put in the highest level of effort,

e = e. But now suppose that he does not necessarily observe his ability ex-post. In this

case, when he receives his monetary reward, he simply updates his probability on his

ability, given m and his chosen effort level e. His value function is therefore:

W (e) = Em(e) +
∑
m

p(m|e)u
(
v−1(Ev(t|m, e))

)
Depending on the functional form, the agent might not put in effort e = e. His effort

level also depends on his incentive to obtain the least information concerning his ability,

since he is doubt-prone. In other words, he takes into account what the combination of

his effort and the reward he obtains allow him to deduce about his ability. Suppose that

10All the probability distributions in this section have finite support.
11While the representation provided does not explicitly have a separate ‘money’ term, extending the

model to include this term is trivial.
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there is a unique effort level eo (the ‘ostrich’ effort) that is entirely uninformative, i.e.

p(t|m, eo) = p(t) for all t ∈ [t, t] and for all m ∈ [m,m]. Note that eo provides the agent

with the highest expected utility over his ability. That is, define

C(e) ≡ u
(
v−1(Ev(t))

)
−
∑
m

p(m|e)u
(
v−1(Ev(t|m, e))

)
As shown in the appendix, it is always the case that C(e) > 0 (for e 6= eo) for a doubt-

prone agent, with C(eo) = 0. Redefining the value function to be W̃ (e) = W (e) −
u (v−1(Ev(t))), the agent maximizes

W̃ (e) = Em(e)− C(e)

Hence C(e) is effectively the ‘shadow’ cost of effort due to acquiring information that he

would rather ignore. The optimal effort level depends on the importance of the expected

reward Em(e) relative to the agent’s disutility of acquiring information concerning his

ability, as is captured by C(e). Suppose now that e0 = e, and that the agent obtains a

more informative signal (in the Blackwell sense) for a higher effort e. Then C(e) = 0,

and C(e) is strictly increasing, so that the ‘shadow’ cost is increasing in effort level. The

following simple example serves as an illustration.

Numerical Example

Let e = t = 0, e = t = 1, p(t = 0) = 1
2

and p(t = 1) = 1
2
. The agent’s reward m only

takes value $0 and $100. The probability of obtaining reward m = $100 given e and t

are:

p(m = $100|t = 1, e) = e

p(m = $100|t = 0, e) = 0

and p(m = $0|t, e) = 1 − p(m = $100|t, e). The utility functions are u = a
√
t for some

a > 0, and v = t.

Note that in this example, the completely uninformative effort eo is equal to 0. At

effort e = 0, he is sure to obtain $0, and his posterior on his ability is the same as his

prior. As he puts in more effort, he obtains a sharper signal of his ability. If he puts in

maximum effort e = 1, then he will fully deduce his ability ex-post: if he obtains $100

then he knows he has ability t = 1, and if he obtains $0 then he knows he has ability

t = 0. His value function is now:
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W̃ (e) = 50− C(e)

where C(e) = a
2
(
√

2− e−
√

2− 3e+ e2).

The optimal level of effort e∗ is in the full range [0, 1], depending on a. As a in-

creases, the monetary reward m becomes less significant, and effort level e∗ decreases.

As a decreases, the agent’s utility over his ability becomes less significant, and effort e∗

increases (see appendix for details).

Self-handicapping

The setup presented here can be applied to several different contexts, the most imme-

diate of which is self-handicapping. There is strong anecdotal evidence that people are

sometimes restrained by a ‘fear of failure’, and will not put in as much effort as they

could. Berglas and Jones (1978) find in an experiment that individuals deliberately

impede their own chances of success, and attribute this behavior to people’s desire to

protect the image of the self.12 The amount of optimal self-handicapping depends on

the doubt-proneness of the agent, and how good of a signal he expects to obtain. As

discussed above, choosing a higher effort level leads to a tradeoff between the improved

reward Em(e) and the incurred cost C(e) of learning more about one’s actual ability.

This model also confirms Berglas and Jones’ intuition that those who are more likely to

self-handicap are not the most successful or the least successful, but rather those who

are uncertain about their own competence. Akerlof and Dickens’ (1982) observation

that people will remain ignorant so as to protect their ego is also in agreement with the

implications of this framework. But notice that here, self-handicapping follows from the

agent’s doubt-proneness over his decision making ability, and not from an ability to lie

to himself or to manipulate his beliefs in any way.

Status quo bias

The endowment effect and status quo bias are analyzed by Kahneman, Knetch and

Thaler (1991), and are explained using framing effects and loss aversion. The agent’s

preference for avoiding a loss is taken to be stronger than his preference for making a

gain, and the reference point for what constitutes a gain or a loss is assumed to be the

status quo. However, Samuelson and Zeckhauser (1988) do not view the status quo bias

to be solely a consequence of loss-aversion: “Our results show the presence of status

quo bias even when there are no explicit gain/loss framing effects.... Thus, we conclude

12See Benabou and Tirole (2002) for an explanation that uses manipulable beliefs.
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that status quo bias is a general experimental finding – consistent with, but not solely

prompted by, loss aversion.” The framework discussed here can be applied to some

settings in which a status quo bias is present.

Suppose that e now represents a choice over different bundles rather than effort.

For instance, suppose that the agent only places probability on e and e, and that e

corresponds to keeping the current allocation, while e corresponds to switching to another

bundle. In addition, suppose that acquiring a bundle also carries information on the

agent’s decision making ability. In this case, rather than representing a cost of effort,

C(e) represents the cost of deviating from the bundle that is least informative of the

agent’s decision making ability. Suppose that e0 = e, so that keeping the same bundle

is uninformative. Then the agent exhibits a status quo bias, since inaction (keeping the

same bundle) has information cost C(e0) = 0. If instead, however, keeping the status

quo bundle were more informative than obtaining other bundles, then a doubt-prone

agent would be biased against the status quo. An example would be an individual who

skips from activity to activity rather than persevere with one, so as to avoid a sharper

signal of his ability in that specific field.

The key difference between the model presented here and the standard vNM model

is that this model allows for an asymmetry in the value of acquiring a bundle compared

to losing that bundle. The bundle itself does not change value based on whether the

agent is endowed with it or not, and in that sense there is no framing effect. Instead,

acquiring a new bundle in itself has different informational implications than selling it.

In the case where the unobserved prize is the agent’s ability, then acquiring a new bundle

may provide him with more information on his ability than keeping his current allocation.

Bonds, stocks and paternity

Consider the case in which e represents an investment decision rather than effort. A

higher e represents a more risky investment, but in expectation it leads to a higher

monetary reward. As before, t corresponds to a notion of ability. An individual who is

of higher decision-making ability makes a wiser investment choice and therefore obtains

a higher expected monetary reward, given the chosen risk level. For instance, e might

be a portfolio consisting solely of bonds, while e consists solely of higher-risk stocks.

Maintain the assumption that eo = e. In other words, the riskless option is also least

informative concerning the agent’s potential as an investor.

In this setting, although the agent is risk-neutral in money, his chosen bundle e∗ may

still consist of more bonds than it would if the reward were purely monetary, as there
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is a bias towards e.13 In addition, suppose that a firm exists which offers to invest the

agent’s money in his place. Even if the agent does not believe that the firm has superior

expertise, he still agrees to pay. Since the optimal level of risk in this case is e, he is

willing to pay up to Em(e) − Em(e∗) + C(e∗). In fact, even if the firm were to choose

the suboptimal level e∗, he would be willing to pay up to C(e∗).

In the standard EU model, the agent’s choice would only depend on the monetary

reward he expects to obtain. In contrast, the framework presented here allows the agent’s

choice to depend not only on his expected reward, but also the decision making process.

That is, the agent bases his choice on the manner in which he expects to obtain the

monetary reward.

2.2 Political Ignorance

The high degree of political ignorance of voters has been thoroughly researched, particu-

larly in the US (see Bartels (1996)). Given the length of electoral campaigns in American

politics, the amount of media coverage and the accessibility of informational sources, it

seems that the cost of acquiring information should not be prohibitive for voters. Note

that there are political issues whose resolution the voters may never observe. For in-

stance, the voters may choose not to observe the amount of foreign aid given, the degree

of lobbying or nepotism, or the government stance on interrogation methods. For those

issues, a doubt-prone agent may have incentive to ignore information even if it is free. In

other words, making information more accessible would not necessarily have a strong im-

pact on the individual’s informativeness on these issues. Since voters affect the election

result as a group, each individual’s decision to acquire information has an externality

on other voters and on their decision to acquire information. This section discusses a

very simple example in which voters’ information acquisition plays a dominant role on

the other voters’ decision to acquire information. Although voting is sincere, there is a

strategic aspect to the decision to obtain information.

Consider an economy in which N citizens care about issue γ ∈ [0, 1], which is de-

termined by a politician that they vote for. They can choose not to observe what the

politician does. Suppose that there are two candidates, A and B. One of the two will

choose policy γ = 0 if elected, and the other will choose γ = 1. The voters do not know

which one is which, and place probability 1/2 that A will choose γ = 0, and 1/2 that

A will choose γ = 1 (and similarly for B). But they can acquire that information at no

cost, if they choose to do so. Let pi be the ex-post probability that the ith agent places

13A more careful study would of course be required to gauge the empirical significance.
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on the winner being the candidate who implements γ = 1, where i ∈ {1, .., N} . The

timing is as follows:

1) Each voter decides whether or not to observe where candidates A and B stand. A

voter cannot force another voter to acquire information.

2) Each voter votes sincerely, i.e. he votes for the candidate on whom he places a

higher probability of implementing policy γ that he prefers. If he is indifferent or if

he places equal probability on either candidate implementing his preferred policy,

then he tosses a fair coin and votes accordingly.

3) The candidate who obtains the majority wins the election. In case of a tie, a coin

toss determines the winner. The winner then implements the policy he prefers,

and there is no possibility of reelection.

Now suppose that every voter prefers γ to be higher. In addition, every voter is also

strictly doubt-prone. Let his value function be W I
i if he acquires information and WN

i

if he does not. Even though every voter prefers the candidate who implements γ = 1,

and even though information is free, there is still an equilibrium in which no one ac-

quires information, and the candidate who implements γ = 0 wins with probability 1
2
.

This equilibrium is Pareto-dominated (in expectation) by the other equilibria, in which

at least a strict majority of agents acquires information, and the candidate who imple-

ments γ = 1 wins with probability 1. This is briefly shown below.

Equilibrium in which no voter is informed. If no other voter is informed, then voter i

does not acquire information either. Since pi ∈ (0, 1) if no one else is informed, it follows

that W I
i < WN

i (on his own he cannot force pi ∈ {0, 1}). Unless agent i is certain that

either the right candidate or the wrong candidate always wins the election, i.e. that

pi = 1 or that pi = 0, he does not acquire information.

Note that there is no equilibrium in which a minority of voters acquires information,

since each voter in the minority has incentive to deviate. Note also that the difference

between W I
i and WN

i for a given pi ∈ (0, 1) is higher if the difference between the agent’s

utility of γ = 1 and γ = 0 is larger.

Equilibrium in which at least a strict majority is informed. If at least a strict majority is

informed, then the right candidate wins with probability 1. Hence pi = 1 for each agent

i, and so he is indifferent, since W I
i = WN

i . Note, however, that this equilibrium does
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not survive if each voter i places an arbitrarily small probability δ > 0 that each of the

other voters does not acquire information.

The externality of information plays an excessive role in this simple example, however

it may still have an impact in a more realistic model. In particular, this example suggests

that it is precisely those who are most affected who may end up least informed: as the

difference between the doubt-prone agent’s utility of the good policy and his utility

of the bad policy increases, he has less incentive to acquire information. Moreover, a

Pareto gain would be achieved if enough voters were ‘forced’ to acquire information on

the candidates’ policies.

3 Model

I now present the general (static) model. Recall from the previous section that the

outcome space is Z = [z, z̄] ⊂ <, that L0 be the set of simple probability measures on

Z, and that L1 is the set of simple lotteries over Z ∪ L0, with typical element X ∈ L1.

Depending on the lottery, the agent may or may not observes outcomes in Z. For

instance, the agent observes all the outcomes for lottery X = f , and does not observe

any outcome for lottery X ′ = δfi .

3.1 General axioms

The following certainty axiom A.1 is assumed throughout:

AXIOM A.1 (Certainty): Take any zi ∈ Z, and let X = δzi = (zi, 1) and X ′ = (δzi , 1).

Then X ∼ X ′.

The certainty axiom A.1 concerns the case in which an agent is certain that an

outcome zi occurs. In that case, it makes no difference whether he is presented with

a resolved lottery that leads to zi for sure or an unresolved lottery that leads to zi for

sure. He is indifferent between the two lotteries. Hence axiom A.1 does not allow the

agent to have a preference for being informed of something that he already knows. This

simple axiom provides a formal link between the agent’s preferences over resolved lotter-

ies and his preferences over unresolved lotteries. The following three axioms are standard.
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AXIOM A.2 (Weak Order): � is complete and transitive.

AXIOM A.3 (Continuity): � is continuous in the weak convergence topology. That

is, for each X ∈ L1, the sets {X ′ ∈ L1 : X ′ � X} and {X ′ ∈ L1 : X � X ′} are both

closed in the weak convergence topology.

AXIOM A.4 (Independence): For all X, Y, Z ∈ L1 and α ∈ (0, 1], X � Y implies

αX + (1− α)Z � αY + (1− α)Z.

Focusing on axiom A.4, it is noteworthy that the agent’s preferences � are on a

richer space than in the standard framework. The independence axiom in the standard

vNM model is taken on preferences over lotteries over outcomes, since all lotteries lead

to outcomes that are eventually observed. In this paper, the agent’s prize is not always

an outcome z, and can instead be an unresolved lottery f . By assumption A.4, however,

there is no axiomatic difference between receiving an outcome z as a prize and obtaining

an unresolved lottery f as a prize. Under this approach, the rationale for using the

independence axiom in the standard model holds in this case as well. Since the aim

is to depart as little as possible from the vNM Expected Utility model, I assume the

independence axiom A.4 throughout.

Axioms A.1 through A.4 suffice for this model to subsume the standard vNM rep-

resentation for preferences over outcomes that the agent eventually observes. That is,

suppose we focus on lotteries of form X = f , i.e. lotteries that lead to outcomes. Then

all the standard vNM axioms over these lotteries hold, and the EU representation follows

directly. These axioms are not sufficient, however, to characterize the agent’s preferences

over lotteries that do not resolve. If, for instance, the agent receives a lottery X = δf , it

is unclear what his ‘perception’ of unresolved lottery f is. The next step, therefore, is to

consider axioms that allow us to characterize the agent’s preferences over these ‘purely’

unresolved lotteries of form X = δf . As there is a natural isomorphism between lotteries

of form X = δf ∈ L1 and one-stage lotteries in L0, define the preference relation �N in

the following way:

Definition of �N For any f, f ′ ∈ L0, f �N f ′ if δf � δf ′ .

Define �N and ∼N in the usual way. I first make a continuity assumption:

AXIOM N.1 (Continuity): �N is continuous in the weak convergence topology.
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Assuming independence over the preference relation �N would lead to the simplified

representation introduced in section 1 and used in section 2 for all the applications

considered. In this section, I do not assume independence over the preference relation

�N , for the following reason. Suppose that an agent is given a choice between three

lottery tickets. The first ticket consists of a lottery f = ($1000, 1/3; $400, 1/3; $0, 1/3).

With probability 1/3, the ticket yields $1000, with probability 1/3 it yields $400, and it

yields 0 otherwise. The second ticket consists of lottery f ′ = ($1000, 1/2; $0, 1/2) and the

third ticket consists of f ′′ = ($400, 1) = δ400, which yields $400 for certain. In addition,

suppose that the agent does not purchase the ticket for himself, but for a charitable

organization that he holds in high esteem.

It is plausible that a risk-averse agent prefers the safe lottery δ400 to lottery f ′, if

he expects to observe the outcome of the lotteries (for instance, if the charity thanks

him for his contribution of the quantity it receives). But it may also be the case that

the same agent has different preferences and choose risky lottery f ′ over the safe lottery

δ400 (f ′ �N δ400), if he donates the unresolved ticket to the charity and does not expect

to observe which outcome occurs. There is a 1/2 chance that the charity has received

$1000, and he does not expect to ever find out if it has received $0. These preferences

may be driven by a notion of ‘optimism’.

Now compare lotteries f to f ′, still for the case in which the agent does not expect to

observe the resolution of uncertainty. It is also plausible that the agent prefers lottery

f to f ′ (f �N f ′): lottery f is less risky than lottery f ′, and at the same time he still

does not find out whether the charity has received $0:

($1000, 1/3; $400, 1/3; $0, 1/3) �N ($1000, 1/2; $0, 1/2) �N δ400.

These preferences appear reasonable, but they violate independence. In fact, they vio-

late the stronger axiom of betweenness, and so do not fall in the Dekel (1986) class of

preferences.14

This example illustrates that there are two distinct notions that play a role in the

agent’s preference over unresolved lotteries. The agent may be risk-averse over unresolved

lotteries, and this risk-aversion manifests itself in his comparison between lottery f and

the more risky lottery f ′. At the same time, he may be ‘optimistic’ that the good

outcome has occurred if he does not observe the lottery, which affects his assessment of

lottery f ′, compared to the safe lottery δ400. A single utility function v cannot capture

14Note that f = 2
3f
′ + 1

3δ400. This is a violation of independence (and betweenness) because the
following does not hold: f ′ �N

2
3f
′ + 1

3δ400 �N δ400. More specifically, this violates quasi-convexity.
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both these notions, since risk-aversion and optimism over what is unobserved do not

necessarily coincide. Since both risk-aversion and optimism are contributing factors to

the agent’s preferences to remain in doubt, this framework should allow the agent to

express both dimensions of preference.

I now assume the Rank-Dependent Utility (RDU) axioms, which are general enough

to allow the previous example. The RDU representation allows for two functions, v and

w, the first that reweighs the outcomes (identically to the vNM model), and the second

reweighs the probabilities. I show, in the following section, that an RDU representation

captures a notion of risk and optimism that are suitable to this model, even though

my formal definition of optimism will be different from the accepted RDU definition. I

later consider conditions which force the function w to be linear, essentially reducing the

representation of �N to a vNM representation.15

3.2 RDU representation for �N .

The following notation is convenient for the RDU representation. For lottery f =

(z1, p1; ; ...; zm, pm) ∈ L0, the z′is are ordered from smallest to highest, i.e. zm > ... > z1.

Recall that the agent’s preferences are monotone, which implies that δzm �N ... �N δz1 .

In addition, p∗i denotes the probability of reaching outcome zi or an outcome that is

weakly preferred to zi. That is, p∗i =
∑m

j=i pj. Note that for the least-preferred outcome

z1, p
∗
1 = 1. Probabilities p∗i are referred to here as ‘decumulative’ probabilities. The

RDU form, introduced by Quiggin (1982), is defined in the following manner:16

Definition (RDU) Rank-dependent utility (RDU) holds if there exists a strictly in-

creasing continuous probability weighting function w : [0, 1] → [0, 1] with w(0) = 0 and

w(1) = 1 and a strictly increasing utility function v : Z→ < such that for all f, f ′ ∈ L0,

f �N f ′ if and only if VRDU(f) > VRDU(f ′)

where VRDU is defined to be: for all f = (z1, p1; z2, p2; ...; zm, pm),

VRDU(f) = v(z1) +
m∑
i=2

[v(zi)− v(zi−1)]w(p∗i )

15The notion of ‘optimism’ may seem at odds with the previous claim that an agent who is not allowed
to manipulate his beliefs may still choose to ‘self-handicapping’. That is, one interpretation of a rank-
dependent utility representation is that the agent distorts the actual probability. For this reason, In the
analysis of self-handicapping (section 2), I do not allow the agent to be either optimistic or pessimistic.

16See also Yaari (1987), and Diecidue and Wakker (2001) for a thorough discussion of RDU.
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Moreover, v is unique up to positive affine transformation.

Note that if the weighting function w is linear, then VRDU reduces to the standard

EU form.17 I now briefly discuss the axiomatic foundation of the RDU representation,

in the context of this model. Suppose that

fα = (z1, p1; ...;α, pi; ...; zm, pm) �N (z′1, p1; ...; β, pi; ...; z
′
m, pm) = f ′β

f ′κ = (z′1, p1; ...;κ, pi; ...; z
′
m, pm) �N (z1, p1; ...; γ, pi; ...; zm, pm) = fγ

where α, β, γ, κ ∈ Z. Comparing lotteries fα and fγ, the only difference is in whether α

or γ is reached with probability pi. Since all the other outcomes are the same in both

lotteries and are reached with the same probabilities, the difference is in the value of

outcome α compared to the value of outcome γ (and similarly for f ′β,f ′κ and β, κ). In

the comparison of fα �N f ′β and f ′κ �N fγ, all the probabilities of reaching the (rank-

preserved) outcomes are the same. For that reason, this model assumes that the switch

in preference is due to a difference in the value of outcomes α and β relative to γ and

κ, and not in the way the probabilities are aggregated. It is precisely this property

that RDU provides: if fα �N f ′β and f ′κ �N , fγ, and if �N is of the RDU form, then

v(α)− v(β) ≥ v(γ)− v(κ). Note that this does not depend on the choice of z′s and p′s,

and so the following axiom, adapted from Wakker (1994), must hold:

AXIOM N.RDU (Wakker tradeoff consistency for �N):

Let fα = (z1, p1; ...;α, pi; ...; zm, pm), fγ = (z1, p1; ...; γ, pi; ...; zm, pm),

f ′β = (z′1, p1; ...; β, pi; ...; z
′
m, pm) and f ′κ = (z′1, p1; ...;κ, pi; ...; z

′
m, pm). If:

fα �N f ′β

f ′κ �N fγ

then for any lotteries gα = (ẑ1, p̂1; ...;α, p̂i; ...; ẑm̂, p̂m̂), gγ = (ẑ1, p̂1; ...; γ, p̂i; ...; ẑm̂, p̂m̂),

g′β = (ẑ′1, p̂1; ...; β, p̂i; ...; ẑ
′
m̂, p̂m̂), g′κ = (ẑ′1, p̂1; ...;κ, pi; ...; ẑ

′
m̂, p̂m̂) such that gγ �N g′κ,

it must be that gα �N g′β.

Under this axiom, only the values of α,β,γ and κ are relevant to the ordering of the

17This is not the most common form of RDU; this notation is taken from Abdellaoui (2002). Given

the rank-ordering above, the typical form would be VRDU =
∑n−1

i=1 [w(p∗i )−w(p∗i+1)]v(zi) +w(p∗n)v(zn).
It is easy to check that the two representations are identical.
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agent’s preferences when all the probabilities of reaching all other outcomes are the same

across the four lotteries. In fact, as shown in Wakker (1994), this axiom is sufficient,

along with stochastic dominance and continuity, for the RDU representation to hold.

Using this result, the general representation theorem for � is as follows:

Representation Theorem. Suppose axioms A.1 through A.4 and axioms N.1 and

N.RDU hold. In addition, suppose stochastic dominance holds for �N . Then there

exist strictly increasing, continuous and bounded functions u : Z → R, v : Z → R,

w : [0, 1]→ [0, 1] with w(0) = 0 and w(1) = 1, such that for all X, Y ∈ L1,

X � Y if and only if W (X) > W (Y )

where W is defined to be: for all X = ((z1, q
I
1 ; ...; zn, q

I
n; f1, q

N
1 ; ...; fm, q

N
m) ∈ L1,

W (X) =
n∑
i=1

qIi u(zi) +
m∑
j=1

qNj u
(
v−1

(
VRDU(fNj )

))
and

VRDU(f) = v(z1) +
∑m

h=2[v(zh)− v(zh−1)]w(p∗i ).

Moreover, u and v are unique up to positive affine transformation.

Note that u remains the utility function associated with the general lotteries (and final

outcomes). In addition, v is the utility function associated with unresolved lotteries, and

w is the probability weighting function associated with unresolved lotteries. It is not

immediately clear from this representation what doubt-proneness implies, in terms of

the shapes of the functions. The next section defines optimism, and formally relates it

to the accepted notion of optimism in an RDU setting. I then connect doubt-proneness,

risk-aversion, and this new notion of optimism.

4 Risk-aversion, doubt-proneness and optimism

In this section, I focus on the relationship between doubt-proneness and the shapes of

the functions u, v and w. I first define formally what optimism means in this con-

text. Returning to the charity example from the previous section, recall that lottery

f = ($1000, 1/3; $400, 1/3; $0, 1/3), lottery f ′ = ($1000, 1/2; $0, 1/2) and lottery δ400 =

($400, 1). While f ′ �N δ400, it is not the case that f ′ �N af ′+ (1 + a)δ400 �N δ400 for all

a, which the independence axiom would imply. In this example, f = 2
3
f ′ + 1

3
δ400 �N f ′.
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The notion of optimism over unresolved lotteries I aim to capture allows the agent

prefer more ‘scrambled’ information, since it essentially allows him to form a better

assessment of these unresolved lotteries. Consider lottery δ400, in which the agent is

certain that the outcome is $400. Now suppose that it is mixed with a lottery f̃ ′ =

($400+δ, 1/2; $400−ε), where f̃ ′ is chosen such that f̃ ′ ∼N f ′, and ε is close to 0.18 Specif-

ically, consider the mixture f̃ = 2/3 f ′+1/3 δ400 = ($400+δ, 1/3; $400, 1/3; $400−ε, 1/3)

(see figure 2). If the independence axiom over unresolved lotteries were to hold, then

f ∼ f̃ . But I also allow f �N f̃ , with the reasoning that the optimist agent prefers

knowing as little as as possible about the unresolved lottery. With lottery f , the opti-

mist can form a more reassuring perception of the outcome, as it could be much higher

($1000). With lottery f̃ , however, as ε becomes smaller and smaller, it becomes less

and less attractive to the optimist agent, as he is more and more certain of the vicinity

of the outcome. In brief, an optimist has a preference for more ‘scrambled’ informa-

tion. A pessimistic agent, on the other hand, prefers less scrambled information, since

knowing less would lead him to form a more negative perception. I allow the agent to

be optimist, pessimism or neutral (i.e. independence may hold), but I assume that his

preferences are preserved, given a specific mixture a and specific probabilities. That is, if

the agent prefers unresolved lottery f to f̃ , as in the example above, then this preference

is preserved as ε becomes smaller. I refer to this property, which I now generalize, as

‘information scrambling consistency’ (ISC).

Definition (ISC)

Let f = (z1, p1; ...; zi; pi; zi+1, pi+1; ...; zn, pn), f ′ = (z1, p1; ...; z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈

L0 such that f ∼N f ′, and case 1 : (z′i, z
′
i+1) ⊂ (zi, zi+1) (case 2 : (zi, zi+1) ⊂ (z′i, z

′
i+1)).

If, for some a ∈ (0, 1) and some z ∈ (z′i, z
′
i+1):

af + (1− a)δz �N af ′ + (1− a)δz,

then �N satisfies ISC if:

af̃ + (1− a)δz̃ �N af̃ ′ + (1− a)δz̃

for any f̃ = (z̃1, p1; ...z̃i; pi; z̃i+1, pi+1; ...; z̃n, pn), f̃ ′ = (z̃1, p1; ...z̃
′
i; pi; z̃

′
i+1, pi+1; ...; z̃n, pn)

and z̃ such that z̃ ∈ (z̃′i, z̃
′
i+1) ⊂ (z̃i, z̃i+1) (case 2 : z̃ ∈ (z̃i, z̃i+1) ⊂ (z̃′i, z̃

′
i+1)).

18For δ to also be close to 0, $400 would have to be close to the certainty equivalent of the unresolved
lottery f ′ = ($1000, 1/2; $0, 1/2).
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Figure 2: Optimism.

A preference for more scrambled information (optimism) corresponds to case 1, i.e.

preferring af + (1 − a)δz � af ′ + (1 − a)δz when (z′i, z
′
i+1) ⊂ (zi, zi+1). Similarly, a

preference for less scrambled information (pessimism) corresponds to case 2. The appeal

of the RDU representation is that it satisfies the ISC property:

Theorem 2. Suppose that RDU holds for �N . Then �N satisfies ISC.

A local preference for more scrambled information, which I refer to as local optimism,

does not correspond to the accepted RDU notion of optimism, analyzed by Wakker

(1994). Focusing instead on a global preference for more scrambled information, which

is denoted (global) optimism:

Definition (Optimism) The preference relation �N exhibits optimism if and only

if �N always exhibits a preference for more scrambled information. That is, for any

f = (z1, p1; ...zi; pi; zi+1, pi+1; ...; zn, pn), f ′ = (z1, p1; ...z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈ L0

such that f ∼N f ′, and (z′i, z
′
i+1) ⊂ (zi, zi+1), and for all a ∈ (0, 1) and z ∈ (zi, zi+1),

af + (1− a)δz �N af ′ + (1− a)δz.

The next theorem states that an agent who exhibits global optimism according to this

definition also exhibits optimism according to the standard RDU definition. In other
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words, an agent has a global preference for more scrambled information if and only if

the weighting function w is concave, which corresponds to the accepted (Wakker) RDU

definition of optimism.

Theorem 3. Suppose that �N satisfies RDU , and let w be the associated weighting

function. Then w is concave (convex) if and only if �N exhibits optimism.

The following result connects doubt-proneness, the properties of the utility functions,

and the properties of the probability weighting function w(p). A similar result hold for

doubt-aversion, and is deferred to the appendix.

Theorem 4. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and

let u and v be the utility functions associated with the resolved and unresolved lotteries,

respectively, and w be the decision weight associated with the unresolved lotteries. In

addition, suppose that u and v are both differentiable. Then:

(i) If there exists a p ∈ (0, 1) such that p < w(p), then the agent is doubt-prone some-

where. Similarly, if there exists p′ ∈ (0, 1) such that p′ > w(p′), then the agent is

doubt-averse somewhere.

(ii) If the agent is doubt-prone everywhere, then p ≤ w(p) for all p ∈ (0, 1). More-

over, if v exhibits stronger diminishing marginal utility than u, then �N violates quasi-

convexity (that is, there exists some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ � f ′′ and

αf ′ + (1− α)f ′′ �N f ′).

The differentiability assumption, though common, may seem bothersome as it is not

taken over the primitives. Alternatively, we could make an assumption over the prim-

itives that guarantees (for instance) strict concavity of u and v, which would in fact

be sufficient for the result.19 Given the results above, an assumption or deduction over

the agent’s doubt-attitude has testable implications concerning his aggregation of prob-

abilities (w) for unresolved lottery, and vice-versa. In addition, these implications can

be disentangled from the agent’s diminishing marginal utility. Since it is not necessary

that w satisfies the same empirical properties as the typical case considered under rank-

dependent utility, an experimental study would be useful for a better understanding of

the shape of w. If, in addition to doubt-proneness, mean-preserving risk-aversion (in

the standard sense) of �N is assumed, then the RDU representation collapses to the

recursive EU representation:

19For a discussion of the differentiability assumption, see Chew, Karni and Safra (1987).
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Corollary 4.1. Suppose that the conditions of theorem 4 all hold. Then the following

two statements are equivalent:

(i) Preference � displays doubt-proneness everywhere and �N displays mean-preserving

risk-aversion.

(ii) Function VRDU is of the EU form (i.e. w(p) = p for all p ∈ [0, 1]), both u and v

are concave, and u = λ ◦ v for some continuous, concave, and increasing λ.

This result further shows that attitude toward risk and attitude towards doubt con-

strain the probability weighting function, and can in fact completely characterize it.20

But note that in an RDU setting, mean-preserving risk aversion is not identical to dimin-

ishing marginal utility. That is, the previous result does not imply that a doubt-prone

agent who obeys risk aversion cannot have a concave utility function v. I now focus a

counterexample for which doubt-proneness is entirely due to the weighting factor w, and

not the difference in concavity between u and v.

Consider an agent for whom functions u and v are identical. It is already immediate

from theorem 4 that for a doubt-prone agent, it is necessary that p ≤ w(p) for all p. In

fact, this condition is sufficient.21 The following result does not require differentiability.

Theorem 5. Suppose that the conditions of theorem 4 all hold. Furthermore, suppose

that u(z) = v(z) for all z ∈ Z (or, more generally, u = λ◦v for some continuous, weakly

concave, and increasing λ). Then the agent is doubt-prone everywhere if and only if

p ≤ w(p) (with p < w(p) for some p ∈ (0, 1) if u(z) = v(z) for all z ∈ Z).

It follows that an optimistic agent for whom u is identical v (or for whom u is more

concave than v) must be doubt-prone. These results therefore connect optimism, doubt-

proneness, and risk-aversion (in the standard sense). Before concluding this section,

note that extensive research has been conducted on the shape of w in the usual RDU

setting, in which uncertainty eventually resolves.22 As this a different setting, I have not

made similar assumptions over the shape of w. Instead, I have shown that the induced

preferences to remain in doubt have strong implications on the weighting function w.

20This last corollary is similar to a result in Grant, Kajii and Polak (2000) but with a notion of
doubt-proneness that is weaker than the preference for late-resolution that would be required in the
framework they use; the difference in assumptions is due to the difference in settings. It is also of note
that under Grant, Kajii and Polak (2000)’s restriction, there is no need to assume differentiability, as it
is in fact implied.

21It is clear that if p = w(p) for all p ∈ (0, 1) and if u(z) = v(z) for all z ∈ Z, then the agent is
doubt-neutral.

22See, for instance, Karni and Safra (1990), and Prelec (1998) for an axiomatic treatment of w.
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Consider, for example, the common assumption that w is S-shaped (concave on the

initial interval and convex beyond). In that case, it must be that the agent is doubt-

prone for some lotteries and doubt-averse for others. But an empirical discussion of

whether w is S-shaped in this setting is outside the scope of this paper.

5 Dynamic model and relation to the KP represen-

tation

In this section, I present a dynamic version of the model. This setup corresponds to the

case in which an agent may not know now whether he will ever make an observation, but

he may find out later. I do this in part because this type of scenario occurs frequently;

it is often the case that an individual is not sure whether he can successfully avoid

information in the next period. In the self-image application, for instance, the agent

may take into consideration whether he might obtain information further in the future.

Another reason for conducting this analysis is to illustrate the difference between this

model and the KP representation (and, more generally, REU). I show that the models

are formally distinct, even if independence axioms hold at every stage. This result may

appear counterintuitive, since it may appear that a ‘never’ stage is formally equivalent

to a ‘much later’ stage, but with a different interpretation. I discuss the reasons for the

distinction between the two frameworks.

Suppose, for simplicity, that there are 2 stages of resolution (early and late) in a KP

setup.23 Assume, however, that the agent is indifferent between early and late resolution

of uncertainty, so that there is a single utility function u associated with lotteries that

resolve. It is clear that in this case, the KP representation is identical to an Expected

Utility representation. But now, suppose that we include preferences over unresolved

lotteries. That is, let L2 is the set of simple lotteries over L1 ∪ L0. For X ∈ L2, the

notation X = (X1, q
I
1,e; ...;Xne , q

I
ne,e; f1,e, q

N
1,e; ...; fme,e, q

N
me,e) ∈ L2, where Xi,e ∈ L1, and

fj,e ∈ L0. The subscript ‘e’ denotes the early stage. The agent’s preferences � are now

over L2, rather than L1 (see figure 3).

The timing is as follows. The agent first observes the outcome of the first stage

lottery (the early stage). For instance, with probability qIi,e, he receives a second lottery

Xi ∈ L1. The superscript I (‘Informed’) denotes that the agent expects to observe the

outcome of lottery Xi. With probability qNj,e, the agent receives a lottery fNj,e ∈ L0, which

does not resolve. Here, the superscript N (‘Not informed’ denotes that the agent never

23More stages of resolution can be added in the usual way.
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Figure 3: Lottery X = (X1, q
I
1,e; f1,e, q

N
1,e = 1− qI1,e, where X1 = (z1, q

I
1,l; z2, q

I
2,l; f1,l, q

N
1,l =

1− qI1,l − qI2,l), f1,e = (z5, pe; z6, 1− pe) and f1,l = (z3, pl; z4, 1− pl).

observes the resolution of fNj,e. A lottery fNj,e (henceforth ‘early unresolved lottery’) is a

terminal node, in the sense that the agent does not expect it to lead to a second stage.

Now suppose that the first (early) stage lottery leads to a second (late) stage lottery

Xi = (z1, q
I
1,l; z2, q

I
2,l; ...; zn, q

I
nl,l

; f1,l, q
N
1,l; f2,l, q

N
2,l; ...; fm,l, q

N
m,l). This second lottery always

resolves. With probability qIh,l, the agent receives a final outcome zIh,l, which he observes.

With probability qNk,l, he receives a lottery fk,l ∈ L0 which never resolves (henceforth

‘late unresolved lottery’). The difference between a lottery fe and a lottery fl is that

the agent knows after the early stage that he receives lottery fe which does not resolve,

while he doesn’t find out until the late stage that he receives lottery fl which does not

resolve. As before, the qI ’s and qN ’s are used to distinguish between the probabilities

that lead to prizes where he is fully informed of the outcome (since he directly observes

which z occurs), and the probabilities that lead to prizes where he is not informed (since

he only observes the ensuing lottery).

Suppose now that an continuity axiom and an independence axiom for unresolved

lottery holds at every stage. That is, define �N,e and �N,l in the natural way, and let

continuity and independence axioms hold for each of these preferences. In this case,
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there are unresolved utility functions ve, vl associated with �N,e and �N,l, respectively:

W(X) =
∑

qI(z)u(z) +
∑

qIi,e(z)
(∑

qNi,lu
(
v−1l (Evl(z|fi,l))

))
+
∑

qNi,eu
(
v−1e (Eve(z|fi,e))

)
Note that ve and vl need not be the same, since �N,e and �N,l are separate. Hence,

there are three utility functions in this setting: utility u is associated with lotteries that

eventually resolve, while functions ve and vl are associated with early and late unresolved

lotteries. It is immediate, therefore, that having a KP model that accommodates unre-

solved lotteries is formally distinct from simply adding a ‘never’ stage, as this can only

account for one additional utility function. The reason for this distinction is that the

agent’s perception of the unresolved lotteries need not be the same in the early stage as

it is in the second stage.

There is another, and perhaps more fundamental, difference between temporal res-

olution and lack of resolution. While the early stage leads to the eventual occurrence

of the late stage, there is no notion of sequence for unresolved lotteries. That is, the

first unresolved lottery cannot lead to a second lottery; each unresolved lottery is a final

prize, and hence a terminal node. For that reason, while the KP representation will have

terms such as ue(u
−1
l (·)), there cannot be an equivalent unresolved term, ve(v

−1
l (·)). In

this representation, both utility functions ve and vl are terminal, in the sense that the

expectations are over outcomes, and not over any further lotteries. While the notation

is cumbersome, this representation demonstrates that each unresolved lottery is essen-

tially a final prize, and its value depends on whether it is obtained early or late. The

agent’s preferences over unresolved lotteries are allowed to vary in time, even when he

has neutral preferences over the timing of resolution of uncertainty. The distinction be-

tween the KP representation and a representation that takes into account preferences

for unresolved lotteries holds if the independence axioms over �N,e and �N,l are relaxed.

In other words, this distinction carries through to more general REU representations.

6 Closing remarks

This paper provides a representation theorem for preferences over lotteries whose out-

comes may never be observed. The agent’s perception of the unobserved outcome, rel-

ative to his risk-aversion, induces his attitude towards doubt. This relation is captured

by his resolved utility function u, his unresolved utility function v and his unresolved
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decision weighting function w. The model presented here is an extension of the vNM

framework, and it does not entail a significant axiomatic departure. However, it can

accommodate behavioral patterns that are inconsistent with expected utility, and that

have motivated a wide array of different frameworks. For instance, doubt-prone individ-

uals have an incentive to self-handicap, and this incentive is higher if they are less certain

about their competence.24 Doubt-prone individuals are also more likely to choose the

status quo bundle, if making a decision is more informative than inaction. In addition,

an agent who is risk-neutral may still favor less risky investments, and would pay a firm

to invest for him, even if it does not have superior expertise. The agent’s attempt to

preserve his self-image implies that his utility depends not only on the outcome that

results, but also on the action taken. In a political economy context, doubt-proneness

encourages political ignorance. When individuals derive more utility from the policies

that they are not required to observe, they have less incentive to acquire information.

Moreover, agents have a greater disutility from acquiring information if they are more

ignorant ex-ante.

Finally, note that experiments that address the impact of anticipated regret frequently

allow for foregone outcomes that individuals do not observe (see Zeelenberg (1999)). Sim-

ilarly, in experiments by Dana, Weber and Kuang (2007), subjects deliberately choose to

ignore free information concerning the full consequences of their actions. These empirical

findings would be useful in determining plausible degrees of doubt-proneness, although

this is outside the scope of this paper.

24Recall that this model does not allow agents to be delusional, since they are unable to mislead
themselves into having false beliefs.
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Appendix

The appendix is structured as follows. Part 1 explains why the standard EU model is inappro-

priate when the agent does not expect to observe the resolution of uncertainty. Part 2 provides

an example of the ‘preservation of self-image’ application. All the proofs are in part 3.

A.1 Limitations of the standard EU model

This example illustrates the problem with using the standard vNM EU model when there

are outcomes that the agent never expects to observe. Consider the simple case of an agent

who has performed a task and does not know how well he has done. There are no future

decisions that depend on his performance. For example, as a simple adaptation of Savage’s

omelet, suppose that the agent does not know whether he has fed his guests a good omelet

or a bad one. With probability pt, he has done well (t), and with probability (1 − pt) he has

done badly (t). He prefers having done well to having done badly, although this will have no

future repercussions. Given the choice between remaining forever in doubt (D) and perfectly

resolving the uncertainty, (ND), it might appear that he compares:

UD = ptu(t) + (1− pt)u(t)

to

UND = ptu(t) + (1− pt)u(t)

and that since UD = UND, he is indifferent. But UD is not necessarily the right function to use

if he chooses to remain in doubt, because from his frame of reference the final outcome will not

be t or t. That is, he does not expect to ‘obtain’ ex-post utility u(t) or u(t) because he does

not expect to observe either t or t. As it is not clear what his perception of the consequence is

if he does not expect the uncertainty to be resolved (from his viewpoint), his expected utility

is undetermined. In its current form, the standard EU model does not offer a method for

evaluating this choice. Using UD effectively ignores that the relevant frame of reference is the

agent’s, not the modeler’s.25

Redefining the outcome space to include the observation itself does not eliminate the problem.

Suppose that the outcome space is taken to be Z = {tD, tD, tND, tND} where tD represents the

outcome that he did well but doubts it, tND that he did well and does not doubt it, and so

25This issue is not resolved by starting with preferences over lotteries as primitives. In the standard
framework, the agent has primitive preferences over lotteries over outcomes, and he is not allowed to
choose between lotteries whose resolution he observes and lotteries whose resolution he does not observe.
He is therefore not given the option to express those preferences.

32



forth. He therefore compares the following:

UD = ptu(tD) + (1− pt)u(tD)

to

UND = ptu(tND) + (1− pt)u(tND)

It is difficult to interpret the meaning of the consequence ‘did well, but doubts it’ from his

frame of reference, since it is not clear what it means to be in doubt if he knows that he has

done well. In addition, his preferences over tD and tD are completely pinned down. Consider

the two extremes, pt = 1 and pt = 0. When pt = 1, there is no intrinsic difference between

UD and UND, since he knows that he has done well. Hence, u(tD) = u(tND). Similarly, when

pt = 0, he knows he has done badly, and so u(tD) = u(tND). It then follows that UD = UND for

any pt ∈ [0, 1]. This definition of the outcome space is essentially the same as simply Z = {t, t}.
His indifference between remaining in doubt and not remaining in doubt is a consequence of

following this approach, it is not implicit from the standard EU model.

Redefining the outcome space so that his utility is constant if he remains in doubt is even more

problematic. Suppose that Z = {tND, tND, D}, letting tND be the outcome ‘talented and he

does not remain in doubt (he observes the outcome)’, TND be the outcome ‘untalented and

he observes it’, and letting D mean that he does not observe the outcome, hence remaining in

doubt. He now compares:

UD = u(D)

to

UND = ptu(tND) + (1− pt)u(tND)

However, in the limit pt → 1, UD should approach UND, which only occurs if u(D) = u(tND).

But in that case, as pt → 0, UD does not approach UND, and so there is an unavoidable

discontinuity.

A.2 Applications

Numerical Example (Preservation of Self-image)

The following is a more general version of the numerical example provided in the main body of

the paper. Suppose he puts in effort e ∈ [0, 1], and obtains reward m ∈ [0, 100]. He also has an

unobserved talent t ∈ [0, 1] . The agent is doubt-prone and risk-averse for both resolved and

unresolved lotteries on talent. Specifically, u = at1/2 for some a > 0, and v = t. His expected

utility of money is linearly separable from his utility of talent, and is equal to his expected

reward Em. He therefore maximizes:
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W̃ (e) = Em(e)− C(e)

where C(e) ≡ u
(
v−1(Ev(t))

)
−
∑
m

p(m|e)u ◦ v−1(Ev(t|m, e))

The agent’s prior is q that talent t = 0, and 1−q that talent t = 1. He can put in level e ∈ [e, e].

Given that he has talent t = 1 or t = 0 and puts in effort e, his respective probabilities of ob-

taining monetary reward m = 100 are p(100|t = 1, e) = e and p(100|t = 0, e) = be, for b ∈ [0, 1).

Note that the ostrich effort e0 in this example is e = 0, since he is certain to obtain m = 0,

independently of his talent. It follows from the probabilities given above that:

p($0|1, e) = 1− e

p($0|0, e) = 1− be

p(100|e) = e(q + b(1− q)

p($0|e) = 1− e(q + b(1− q))

p(1|100, e) =
q

q + b(1− q)
Solving:

W (e) = 100 ∗ p(100|e) + a
(
p(0|e)p(t)p(0|t, e)

)1/2
+ a

(
p(100|e)p(t)p(100|t, e)

)1/2
= e(100β + a(βq)1/2) + aq1/2

(
1− e(1 + β) + βe2

)1/2
where β = q + b(1 − q). Let γ = 100β + a(βq)1/2, and D = 4γ2

a2q
. Then, from the first order

conditions, we obtain:

e2(βC − 4β2) + e(4β − C)(1 + β) + C − (1 + β)2 = 0

The example in the text corresponds to the case b = 0, q = 1/2, and so β = 1/2, γ = 50 + a
2 ,

and d = 2D =
(
200
a + 2

)2
.

A.3 Proofs

Representation Theorem. Proof. LetX = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m).

By continuity, there exists a function H : L0 → Z such that δH(f) ∼N f (i.e. δδH(f)
∼ δf ) for

all f ∈ L0. By the certainty axiom A.3, it follows that δH(f) ∼ δδH(f)
. Hence δH(f) ∼ δf for

any f ∈ L0. By a well-known implication of the independence axiom A.4, X ∼ X̃, where

X̃ = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; H(f1), q

N
1 ;H(f2), q

N
2 ; ...;H(fm), qNm), and so X ∼ X̃. Defining

Ỹ similarly, Y ∼ Ỹ . By transitivity, X � Y ⇒ X̃ � Ỹ . Note that all lotteries X̃ and Ỹ

are one-stage lotteries, with final outcomes as prizes. Define the preference relation �I in the

following way: X � Y ⇒ X̃ �I Ỹ . All the EU axioms hold on �I , and so X̃ � Ỹ if and only
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if W (X̃) > W (Ỹ ), where

W (X̃) =

n∑
i=1

qIi u(zi) +

m∑
i=1

qNi u (H(fzi))

and W is unique up to positive affine transformation. But since X � Y ⇒ X̃ � Ỹ , it follows

that X � Y if and only if W (X̃) > W (Ỹ ).

To obtain the representation of H: axioms A.1-A.4 and axiom N.1 imply that �N is a weak

order and that Jensen-continuity holds. The proof for the RDU representation of �N then

follows from Wakker (1994). Then, for any f ∈ L0, we have shown that δH(f) ∼N f . Since

w(1) = 1, it follows that v(H(f)) = v−1 (VRDU (f)), and hence H(f) = v−1 (VRDU (f)), which

completes the proof.

Theorem 2. Proof. Case 1 is shown below, and case 2 can be proven in a similar way (by

changing all the signs). Suppose RDU holds for �N .

There are two cases two consider:

(a) f, f ′ have more than 2 elements:

Let f = (z1, p1; ...zi; pi; zi+1, pi+1; ...; zn, pn), f ′ = (z1, p1; ...z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈ L0

such that f ∼N f ′, and (z′i, z
′
i+1) ⊂ (zi, zi+1). Suppose that, for some a ∈ (0, 1) and some

z ∈ (z′i, z
′
i+1),

af + (1− a)δz �N af ′ + (1− a)δz

Since RDU holds:

f ∼N f ′ ⇒ VRDU (f) = VRDU (f ′)

⇒ v(z1) +

i−1∑
j=2

w(p∗j )[v(zj)− v(zj−1)] + w(p∗i )[v(zi)− v(zi−1)] + w(p∗i+1)[v(zi+1)− v(zi)]

+w(p∗i+2)[v(zi+2)− v(zi+1)] +
n∑

j=i+3

w(p∗j )[v(zj)− v(zj−1)] =

v(z1) +

i−1∑
j=2

w(p∗j )[v(zj)− v(zj−1)] + w(p∗i )[v(z′i)− v(zi−1)] + w(p∗i+1)[v(z′i+1)− v(z′i)]

+w(p∗i+2)[v(zi+2)− v(z′i+1)] +
n∑

j=i+3

w(p∗j )[v(zj)− v(zj−1)]

⇒ w(p∗i+1)− w(p∗i+2)

w(p∗i )− w(p∗i+1)
=

v(z′i)− v(zi)

v(zi+1)− v(z′i+1)
(1)
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Note that af+(1−a)δz = (z1, ap1; ...zi; api; z, 1−a; zi+1, api+1; ...; zn, apn), where the rank-

ing of z is due to z ∈ (z′i, z
′
i+1) ⊂ (zi, zi+1). Similarly, af ′+(1−a)δz = (z1, ap1; ...z

′
i; api; z, 1−

a; z′i+1, api+1; ...; zn, apn). Using the condition

af + (1− a)δz �N af ′ + (1− a)δz

it follows that

⇒ v(z1) +

i−1∑
j=2

w(ap∗j + 1− a)[v(zj)− v(zj−1)] + w(ap∗i + 1− a)[v(zi)− v(zi−1)]

+w(ap∗i+1 + 1− a)[v(z)− v(zi)] + w(ap∗i+1)[v(zi+1)− v(z)]

+w(ap∗i+2)[v(zi+2)− v(zi+1)] +
n∑

j=i+3

w(ap∗j )[v(zj)− v(zj−1)] ≥

v(z1) +
i−1∑
j=2

w(ap∗j + 1− a)[v(zj)− v(zj−1)] + w(ap∗i + 1− a)[v(z′i)− v(zi−1)]

+w(ap∗i+1 + 1− a)[v(z)− v(z′i)] + w(ap∗i+1)[v(z′i+1)− v(z)]

+w(ap∗i+2)[v(zi+2)− v(z′i+1)] +
n∑

j=i+3

w(ap∗j )[v(zj)− v(zj−1)]

⇒ w(ap∗i+1)− w(ap∗i+2)

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)
≥ v(z′i)− v(zi)

v(zi+1)− v(z′i+1)
(2)

Combining (1) and (2), we obtain:

w(ap∗i+1)− w(ap∗i+2)

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)
≥ w(p∗i+1)− w(p∗i+2)

w(p∗i )− w(p∗i+1)
(3)

Note that this does not depend on the utility function v, but only on the weighting function

w. Take any f̃ = (z̃1, p1; ...z̃i; pi; z̃i+1, pi+1; ...; z̃n, pn), f̃ ′ = (z̃1, p1; ...z̃
′
i; pi; z̃

′
i+1, pi+1; ...; z̃n, pn)

and z̃ such that z̃ ∈ (z̃′i, z̃
′
i+1) ⊂ (z̃i, z̃i+1). It must be that af̃+(1−a)δz̃ �N af̃ ′+(1−a)δz̃.

Suppose not, i.e. suppose that af̃ ′ + (1− a)δz̃ �N af̃ + (1− a)δz̃. Then, redoing a similar

calculation to the one above, we obtain:

w(ap∗i+1)− w(ap∗i+2)

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)
<
w(p∗i+1)− w(p∗i+2)

w(p∗i )− w(p∗i+1)
(4)

which contradicts (3). Hence ISC holds for this case.

(b) f, f ′ have exactly 2 elements:

Let f = (z1, 1−p; z2, p), f ′ = (z′1, 1−p; z′2, p) ∈ L0 such that f ∼N f ′, and (z′1, z
′
2) ⊂ (z1, z2).
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Suppose that, for some a ∈ (0, 1) and some z ∈ (z′1, z
′
2). If �N satisfies RDU, then:

f ∼N f ′ ⇒ v(z1) + w(p)[v(z2)− v(z1)] = v(z′1) + w(p)[v(z′2)− v(z′1)]

⇒ w(p) =
v(z′1)− v(z1)

[v(z′1)− v(z1)] + [v(z2)− v(z′2)]

⇒ w(p)

1− w(p)
=
v(z′1)− v(z1)

v(z2)− v(z′2)
(5)

Since af + (1 − a)δz = ((z1, a(1 − p); z, 1 − a; z2, ap) and af ′ + (1 − a)δz = ((z′1, a(1 −
p); z, 1− a; z′2, ap), the condition af + (1− a)δz �N af ′+ (1− a)δz implies (using a similar

calculation to the one used for obtaining (3)) that

⇒ w(ap)

1− w(ap+ 1− a)
≥ v(z′1)− v(z1)

v(z2)− v(z′2)
(6)

and combining (4) and (5), it follows that

⇒ w(ap)

1− w(ap+ 1− a)
≥ w(p)

1− w(p)
(7)

As before, this does not depend on the v′s, but only on the weighting function w. Take

any f̃ = (z̃1, 1 − p; z̃2, p), f̃
′ = (z̃′1, p1; z̃

′
2, p2) and z̃ such that z̃ ∈ (z̃′1, z̃

′
2) ⊂ (z̃1, z̃2).

It must be that af̃ + (1 − a)δz̃ �N af̃ ′ + (1 − a)δz̃. Suppose not, i.e. suppose that

af̃ ′ + (1 − a)δz̃ �N af̃ + (1 − a)δz̃. Then, redoing a similar calculation to the one above,

we obtain:

⇒ w(ap)

1− w(ap+ 1− a)
<

w(p)

1− w(p)
(8)

which contradicts (7). Hence ISC holds for this case as well, which completes the proof.

The following lemma is used in the proof of theorem 3:

Lemma 1. Let w : [0, 1] → [0, 1]. Take any p, q, p′, p′ ∈ [p, p] ⊆ [0, 1] such that p > p′ > q′,

q > q′. Then if w is concave on [p, p]:

w(p)− w(q)

p− q ≤ w(p′)− w(q′)

p′ − q′

if w is convex on [p, p]:

w(p)− w(q)

p− q ≥ w(p′)− w(q′)

p′ − q′
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Proof. The proof is only shown for a concave function w. We make use of the following well-

known result that a function f is concave if and only if for any p̃ > q̃ > r̃,

f(p̃)− f(q̃)

p̃− q̃ ≤ f(p̃)− f(r̃)

p̃− r̃ ≤ f(q̃)− f(r̃)

q̃ − r̃ (9)

We now directly prove the claim for each of the three possible cases:

(i) p > q > p′ > q′

Using (9) twice,
w(p)− w(q)

p− q ≤ w(q)− w(p′)

q − p′ ≤ w(p′)− w(q′)

p′ − q′

(ii) p > p′ > q > q′

Using (9) twice,
w(p)− w(q)

p− q ≤ w(p′)− w(q)

p′ − q ≤ w(p′)− w(q′)

p′ − q′

(iii) p > p′ = q > q′

In this case, the result follows immediately from (9):

w(p)− w(q)

p− q ≤ w(q)− w(q′)

q − q′ =
w(p′)− w(q′)

p′ − q′

which completes the proof.

Theorem 3. Proof. Suppose that �N satisfies RDU. We first show (A) that the weighting

function w is concave implies that for any f = (z1, p1; ...zi; pi; zi+1, pi+1; ...; zn, pn),

f ′ = (z1, p1; ...z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈ L0 such that f ∼N f ′, and (z′i, z

′
i+1) ⊂ (zi, zi+1),

and for all a ∈ (0, 1) and z ∈ (zi, zi+1),

af + (1− a)δz �N af ′ + (1− a)δz

We then prove the converse (B).

Proof of (A) Suppose that the weighting function w is concave. We proceed by contradiction.

There are two cases to consider:

(a) f, f ′ have more than two elements: Let f = (z1, p1; ...zi; pi; zi+1, pi+1; ...; zn, pn), f ′ =

(z1, p1; ...z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈ L0 such that f ∼N f ′, and (z′i, z

′
i+1) ⊂ (zi, zi+1).

Suppose there exists some a ∈ (0, 1) and some z ∈ (zi, zi+1) such that af ′ + (1− a)δz �N
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af + (1− a)δz. Using the derivation of theorem 3, it follows that

w(ap∗i+1)− w(ap∗i+2)

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)
<
w(p∗i+1)− w(p∗i+2)

w(p∗i )− w(p∗i+1)
(10)

We now show:

(I) w(ap∗i+1)− w(ap∗i+2) ≥ a
(
w(p∗i+1)− w(p∗i+2)

)
Note that p∗i+1 > p∗i+2 > ap∗i+2, since a ∈ (0, 1), and using the definition of p∗. It is

immediate that ap∗i+1 > ap∗i+2. It follows, therefore, from lemma 1, that:

w(p∗i+1)− w(p∗i+2)

p∗i+1 − p∗i+2

≤ w(ap∗i+1)− w(ap∗i+2)

ap∗i+1 − ap∗i+2

Rearranging, we obtain w(ap∗i+1)− w(ap∗i+2) ≥ a
(
w(p∗i+1)− w(p∗i+2)

)
.

(II) w(ap∗i + 1− a)− w(ap∗i+1 + 1− a) ≤ a
(
w(p∗i )− w(p∗i+1)

)
Note that ap∗i + 1 − a > p∗i , since a, p∗i ∈ (0, 1) implies that 1 − a > p∗i (1 − a).

Similarly, ap∗i+1 + 1 − a > p∗i+1, and we know that p∗i > p∗i+1. Using lemma 1, it

follows that:

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)

(ap∗i + 1− a)−
(
ap∗i+1 + 1− a

) ≤ w(p∗i )− w(p∗i+1)

p∗i − p∗i+1

Rearranging, we obtain w(ap∗i + 1− a)− w(ap∗i+1 + 1− a) ≤ a
(
w(p∗i )− w(p∗i+1)

)
Combining (I) and (II) (noting that both sides of (II) are greater than zero), it follows that

w(ap∗i+1)− w(ap∗i+2)

w(ap∗i + 1− a)− w(ap∗i+1 + 1− a)
≥ w(p∗i+1)− w(p∗i+2)

w(p∗i )− w(p∗i+1)
(11)

which is a contradiction of (10).

(b) f, f ′ have exactly 2 elements:

Let f = (z1, 1−p; z2, p), f ′ = (z′1, 1−p; z′2, p) ∈ L0 such that f ∼N f ′, and (z′1, z
′
2) ⊂ (z1, z2).

Suppose there exists some a ∈ (0, 1) and some z ∈ (z1, z2) such that af ′ + (1 − a)δz �N
af + (1− a)δz. Using the derivation of theorem 3, it follows that

w(ap)

1− w(ap+ 1− a)
<

w(p)

1− w(p)
(12)

We now show:

(I) w(ap) ≥ aw(p)

a ∈ (0, 1) and so p > ap > 0. It follows from the well-known result (9) used in
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proving lemma 1 that:
w(p)− w(0)

p
≤ w(ap)− w(0)

ap− 0

Using w(0) = 0 and rearranging, we obtain w(ap) ≥ aw(p)

(II) 1− w(ap+ 1− a) ≤ a (1− w(p))

Note that 1 > ap + 1 − a > p, since it is immediate from a, p ∈ (0, 1) that a > ap

and 1− a > p(1− a).

Using (9) again,
w(1)− w(ap+ 1− a)

1− (ap+ 1− a)
≤ w(1)− w(p)

1− p
Using w(1) = 1 and rearranging, we obtain that 1− w(ap+ 1− a) ≤ a (1− w(p)).

Combining (I) and (II), we obtain

w(ap)

1− w(ap+ 1− a)
≥ w(p)

1− w(p)
(13)

which contradicts (12).

Proof of (B) Suppose that for any f = (z1, p1; ...zi; pi; zi+1, pi+1; ...; zn, pn),

f ′ = (z1, p1; ...z
′
i; pi; z

′
i+1, pi+1; ...; zn, pn) ∈ L0 such that f ∼N f ′, and (z′i, z

′
i+1) ⊂ (zi, zi+1),

and for all a ∈ (0, 1) and z ∈ (zi, zi+1),

af + (1− a)δz �N af ′ + (1− a)δz

We proceed as follows: (a) we first show that there is no interval [p, p] ⊆ [0, 1] on which w

is strictly convex; (b) we then show that there is no interval [p, p] ⊆ [0, 1] such that for all

p ∈ [p, p], w(p) is ‘under the diagonal’, i.e. w(p)−w(p)
p−p >

w(p)−w(p)
p−p >

w(p)−w(p)
p−p (note that with

stronger smoothness assumptions this would be sufficient for concavity); (c) we use results (a)

and (b) to prove that w must be concave. We first note that it follows from the claim and from

the derivation of theorem 3 that:

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
≥ w(p1)− w(p2)

w(p0)− w(p1)
(14)

for all 0 ≤ p2 < p1 < p0 ≤ 1 and a ∈ (0, 1).

(a) We proceed by contradiction: suppose there does exist an interval [p, p] ⊆ [0, 1] on which

w is strictly convex. Let p < p2 < p1 < p0 < p, and let { pp2 ,
1−p
1−p0 } < a < 1. It follows that

p < ap2 < ap1 < ap1 + 1− a < ap0 + 1− a)p. Using lemma 1, it follows that:

w(p1)− w(p2)

p1 − p2
>
w(ap1)− w(ap2)

ap1 − ap2
(15)
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w(ap0 + 1− a)− w(ap1 + 1− a)

(ap0 + 1− a)− (ap1 + 1− a)
>
w(p0)− w(p1)

p0 − p1
(16)

Rearranging and combining (15) and (16), it follows that

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
<
w(p1)− w(p2)

w(p0)− w(p1)

which contradicts (14).

(b) We proceed again by contradiction: suppose that there does exist an interval [p, p] ⊆ [0, 1]

such that w(p)−w(p)
p−p >

w(p)−w(p)
p−p >

w(p)−w(p)
p−p for all p ∈ [p, p].

Let a = 1− (p− p) + ε, for an arbitrarily small ε. Let p̃ = p/a. Using result (a), [p̃, p̃+ δ]

cannot be strictly convex, for any δ ∈ (0, 1−p̃]. We can therefore find {p0, p1, p2} ∈ [p̃, p̃+δ]

such that p2 < p1 < p0 and

w(p1)− w(p2)

p1 − p2
≥ w(p0)− w(p1)

p0 − p1
(17)

As δ, ε become arbitrarily small (and aδ ≤ ε), ap2 → p, ap0+1−a→ p and {ap2, ap1, ap1+

1− a, ap0 + 1− a} ∈ [p, p]. We therefore have that for small enough δ, ε,

w(ap0 + 1− a)− w(ap1 + 1− a)

(ap0 + 1− a)− (ap1 + 1− a)
>
w(p)− w(p)

p− p (18)

and

w(p)− w(p)

p− p >
w(ap1)− w(ap2)

a(p1 − p2)
(19)

Combining (18) and (19):

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
<
p1 − p2
p0 − p1

(20)

Combining (17) and (20), we obtain:

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
<
w(p1)− w(p2)

w(p0)− w(p1)

which contradicts (14).

(c) We now prove that w is concave. Suppose not, i.e. suppose there exist 0 ≤ p < q < r < 1

such that
w(r)− w(q)

r − q >
w(q)− w(p)

q − p (21)
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Let a = 1− (r − q) + ε, for an arbitrarily small ε. Let p̃ = q/a. Using result (a), [p̃− δ, p̃]
cannot be strictly convex, for any δ ∈ (0, p̃]. We can therefore find {p0, p1, p2} ∈ [p̃− δ, p̃]
such that p2 < p1 < p0 and

w(p1)− w(p2)

p1 − p2
≥ w(p0)− w(p1)

p0 − p1
(22)

As δ, ε become arbitrarily small (and aδ ≤ ε), ap1 → q, ap0 + 1− a→ r, {ap2, ap1} ∈ (p, q]

and {ap1 + 1− a, ap0 + 1− a} ∈ [q, r].

Using result (b), we have can find some (small enough) δ, ε such that

w(ap1)− w(ap2)

a(p1 − p2)
≤ w(q)− w(p)

q − p (23)

w(ap0 + 1− a)− w(ap1 + 1− a)

(ap0 + 1− a)− (ap1 + 1− a)
≥ w(r)− w(q)

r − q (24)

Combining (21, (23) and (24) we have

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
<
p1 − p2
p0 − p1

(25)

Combining (22) and (25), we have

w(ap1)− w(ap2)

w(ap0 + 1− a)− w(ap1 + 1− a)
<
w(p1)− w(p2)

w(p0)− w(p1)

which contradicts (14), and completes the proof.

Theorem 4. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and let u and

v be the utility functions associated with the resolved and unresolved lotteries, respectively, and

w be the decision weight associated with the unresolved lotteries. In addition, suppose that u, v

are both differentiable. Then:

(i) If there exists a p ∈ (0, 1) such that p < w(p), then the agent is doubt-prone somewhere.

Similarly, if there exists p′ ∈ (0, 1) such that p′ > w(p′), then the agent is doubt-averse some-

where.

(ii) If the agent is doubt-averse everywhere, then p ≥ w(p) for all p ∈ (0, 1). Moreover, if u

exhibits stronger diminishing marginal utility than v (i.e. u = λ◦v for some continuous, weakly

concave, and increasing λ on v([z, z̄])), then �N violates quasi-concavity. (that is, there exists

some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ � f ′′ and f ′′ �N αf ′ + (1− α)f ′′).

If the agent is doubt-prone everywhere, then p ≤ w(p) for all p ∈ (0, 1). Moreover, if v exhibits
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stronger diminishing marginal utility than u , then �N violates quasi-convexity. (that is, there

exists some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ � f ′′ and αf ′ + (1− α)f ′′ �N f ′).

Proof. (i) Suppose not, i.e. suppose that there exists p ∈ (0, 1) such that p < w(p), and that

f � δf for all f ∈ L0. Let fε = (z; 1− p; z + ε, p) for some z ∈ Z, p ∈ L0, 0 < ε < z̄ − z. Since

f � δf , by continuity (and using the certainty axiom), there exists a z̃ε ∈ (z, z + ε) such that

f �
[
δz̃ε ∼ δδz̃ε

]
� δf . Hence:

(1− p)u(z) + pu(z + ε) ≥ u(z̃ε)

w(p) (v(z + ε)− v(z)) + v(z) ≤ v(z̃ε)

Rearranging:

p ≥ u(z̃ε)− u(z)

u(z + ε)− u(z)

w(p) ≤ v(z̃ε)− v(z)

v(z + ε)− v(z)

Hence:
u(z̃ε)− u(z)

u(z + ε)− u(z)
− v(z̃ε)− v(z)

v(z + ε)− v(z)
≤ p− w(p)

But as ε → 0, u(z̃ε)−u(z)
u(z+ε)−u(z) →

u′(z)
u′(z) , and v(z̃ε)−v(z)

v(z+ε)−v(z) →
v′(z)
v′(z) , by differentiability. Since the left-

hand-side goes to 1− 1 = 0 in the limit, while the right-hand-side does not change, it must be

that 0 ≤ p− w(p). But this is a contradiction, since p < w(p).

The second part of the result can be proved in a similar manner, for the case p′ > w(p′).

(ii) The result is only shown for doubt-aversion; a similar reasoning holds for doubt-proneness.

By the contrapositive of (i), it is immediate that if f � δf for all f ∈ L0, then w(p) ≤ p for all

p ∈ (0, 1). Now suppose that f � δf for some f, and that u is a (weakly) concave transformation

of v. If w is not concave, then �N cannot be quasi-concave, by Wakker (1994) theorem 25.

Since w(0) = 0, w(1) = 1, w(p) ≥ p for a concave function. We have that w(p) ≤ p, and so

it suffices to show that w(p) < p for some p. Suppose not. That is, w(p) = p for all p. Since

u is more concave than v, it must be that u−1(EU(f)) ≤ v−1(EV (f))(that is, the certainty

equivalent of f for the informed lotteries is not bigger than the certainty equivalent of f for

the unresolved lotteries, by a well known result). However, since f � δf , it must also be that

u−1(EU(f)) > v−1(EV (f)), which is a contradiction.

Note that if f ∼ δf for all f ∈ L0, than trivially, u is a linear transformation of v, and w(p) = p.

Corollary 4.1. Proof. To prove (i) ⇒ (ii):If �N displays mean-preserving risk-aversion, then

w(p) is convex, by Chew, Epstein and Safra (1986) or Grant, Kajii and Polak (2000). Since

w(0) = 0, w(1) = 1, it must be that p ≥ w(p). Since δf � f , it follows from result (ii) that

43



p ≤ w(p). Hence w(p) = p, implying that �N satisfies expected utility.

Since δf � f for all f ∈ L0, and both u and v are of EU form, u must be a concave transfor-

mation of v. This is well-known, see for instance Kreps-Porteus (1978).

The other direction, (ii) ⇒ (i), is trivial: if u and v are concave then they both display mean-

preserving risk aversion by well known results, and if u is a concave transformation of v then

δf � f for all f ∈ L0.

Theorem 5.

Proof. If u(z) = v(z) for all z ∈ Z, then δf � f if and only if

u(z1) +
m∑
i=2

[u(zi)− u(zi−1)]w(p∗i ) ≥
m∑
i=1

u(zi)p(zi) (26)

⇔ u(z1) +

m∑
i=2

[u(zi)− u(zi−1)]w(p∗i ) ≥ u(z1) +
m∑
i=2

[u(zi)− u(zi−1)]p
∗
i (27)

⇔
m∑
i=2

[u(zi)− u(zi−1)](w(p∗i )− p∗i ) ≥ 0. (28)

This expression is always true if and only if w(p) ≥ p for all p ∈ [0, 1]. For the agent to

be doubt-prone, the inequality in (28) must be strict somewhere, hence w(p) > p for some

p ∈ (0, 1). Now suppose u = λ ◦ v for some continuous, weakly concave and increasing λ. By

theorem 4, the agent is doubt-prone everywhere only if p ≤ w(p). Now suppose that w(p) > p.

Then using the same argument as above, we have:

v(z1) +

m∑
i=2

[v(zi)− v(zi−1)]w(p∗i ) ≥
m∑
i=1

v(zi)p(zi). (29)

Hence:

u

(
v−1

(
v(z1) +

m∑
i=2

[v(zi)− v(zi−1)]w(p∗i )

))
≥ u

(
v−1

(
m∑
i=1

v(zi)p(zi)

))
. (30)

But by concavity of u
(
v−1(·)

)
, we know that

u

(
v−1

(
m∑
i=1

v(zi)p(zi)

))
≥

m∑
i=1

u(zi)p(zi), (31)

with strict inequality somewhere, hence the agent is doubt-prone everywhere. This completes

the proof.
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Preservation of self-image. For an agent who is doubt-prone and risk-averse for both re-

solved and unresolved lotteries, the following holds:

C(e) ≡ u ◦ v−1(Ev(t))−
∑
m

p(m|e)u ◦ v−1(Ev(t|m, e)) ≥ 0

Proof. Note that u ◦ v−1(·) is concave. Hence

∑
m

p(m|e)u ◦ v−1(Ev(t|m, e)) ≤ u ◦ v−1
(∑

m

p(m|e)(Ev(t|m, e))
)

≤ u ◦ v−1
(∑

m

p(m|e)
∑
t

p(m|t, e)p(t)
p(m|e) v(t)

)
≤ u ◦ v−1

(∑
m

∑
t

p(m|t, e)p(t)v(t)

)

≤ u ◦ v−1
(∑

t

∑
m

p(m|t, e)p(t)v(t)

)
≤ u ◦ v−1

(∑
t

p(t)v(t)

)
= u ◦ v−1(Ev(t))
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